
Multi Agent System Development Kit

Vladimir Gorodetsky, Oleg Karsaev, Vladimir Samoylov,
Victor Konushy, Evgeny Mankov and Alexey Malyshev

Abstract. Recent advances in the area of multi–agent technology are attracting a
growing attention and interest of both scientific community and industry. This
interest is stipulated, on the one hand, by the steadily increasing capabilities of multi-
agent technology that offers a new paradigm and powerful means for design of large
scale distributed intelligent systems, and, on the other hand, by the practical needs of
industry to have a reliable and efficient technology to cope with new challenges of
practice. At present, one of the most important research challenges is elaboration of
powerful methodologies for agent-based systems engineering and development of
efficient software tools supporting implementation and deployment of the multi-
agent systems. The paper presents one of such tools, Multi–Agent System
Development Kit, based on and implementing Gaia methodology that supports the
complete life cycle of multi-agent system engineering, implementation and
deployment, and insures the integrity of all the solutions produced by designers at
different stages of the development process.

1 Introduction

Although agent-oriented software engineering has been a subject of intensive research
for over a decade, it has not yet reached the level of maturity required for it to be rated
as an industrial technology. By now a lot of MAS software tools have been developed.
Among them, the well-known and highly popular are AgentBuilder [20], Jack [18],
JADE [3], ZEUS [9], FIPA-OS [13], agentTool [11], etc. An almost complete list of
such software tools can be found in ([24], [25]). Nevertheless, in spite of the rich
theoretical achievements in the area, there practically exist no Multi-Agent System
(MAS) software tools capable of supporting the complete life cycle of industrial MAS
comprising analysis, design, implementation, deployment and maintenance.

96 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

A capabilities study of the existing software tools allows to see a number of
common disadvantages considerably decreasing their performance and degree of
maturity. The first of such disadvantages to be mentioned, and a substantial one,
consists in insufficient usage of the experience accumulated within the object–oriented
approach and the existing (at least, de-facto) "standards" developed for the analysis,
design and implementation stages that are commonly used in the information
technologies [6]. The major source of it is the fundamental mismatch between the
methods and the abstract conceptions used by the object-oriented approach [6], on the
one hand, and by the agent-oriented approach ([22, 23]) on the other hand, explicitly
shown in [21]. A number of initiatives is being currently undertaken to overcome this
mismatch and to find an efficient solution. Among them, the most promising one is the
initiative being jointly undertaken by two leading international organizations focused on
standardization in the area of new information technologies, FIPA and OMG, as a part
of project Agent UML [1].

Another considerable disadvantage of the existing MAS software tools is a weak
consistency of the solutions produced at the consecutive stages of a MAS application
life cycle. As for this, a certain growth of research activity can be observed in the
development of methodologies aimed at supporting the above mentioned consistency of
the MAS life cycle, including the analysis, design, implementation, deployment and
maintenance aspects. Some well-known methodologies of such kind are Gaia [21],
MESSAGE [7], MaSE [12], Prometheus [19], Adelfe [4], Tropos [14], PASSI [8]. The
core of the integrity maintenance problem is the necessity to automatically maintain the
consistency of the solutions being produced at the different stages of the MAS
development process. For example, while implementing MAS, it is necessary to strictly
conform to the solutions produced at the analysis and design stages. Rational Rose
software tool supporting an information system object-oriented analysis, design and
implementation, can serve as a guiding line for this purpose. Comparison of MAS
development tools and methodologies can be found in ([5], [10]).

This paper presents the Multi-Agent System Development Kit (MASDK) that was a
subject of research and development during the last four years. The first and second
versions of MASDK [15] were practically used for fast prototyping of several MAS
applications in different problem domains [16, 17]. The experience accumulated during
this period as well as recent advances and trends in MAS methodology and technology
made clear the fundamental drawbacks of the earlier versions and gave way to forming
sound requirements for the next version of MASDK, version 3.0.

For this version design some new trends and achievements in the agent-oriented
software engineering methodology have been taken into account. In particular, the basic
methodological principles of the Gaia methodology [21] have been implemented.
Indeed, Gaia methodology consists of two basic stages of MAS development that are (1)
analysis and (2) design. The analysis is aimed at reaching “an understanding of the

system and its structure (without reference to any implementation detail)” [21]. This
stage assumes development of abstract solutions and notions related to the system
organization, i.e. identification of MAS tasks, description of role models, and
interaction model [21]. An objective of the design stage is “to transform the abstract

models derived during the analysis stage into models at a sufficiently low level of

Multi Agent System Development Kit 97

abstraction that they can be easily implemented” [21]. This stage assumes formal
specification of agent models, service models, and acquaintance model.

MASDK 3.0 software tool is currently being assessed and evaluated by means of
developing of a number of multi-agent systems, e.g., for intrusions detection in
computer network, for situation assessment and for business activity monitoring.

This paper describes the MASDK 3.0 software tool, and with a certain focus on its
correlation with the Gaia methodology. Section 2 outlines MASDK 3.0 software tool,
technology supported by it, and abstract agent architecture. Section 3 covers the overall
view of the specification structure of multi-agent systems developed using MASDK,
outlines development methodology and its mapping with Gaia one. The analysis and
design stages, supported by MASDK and carried out through usage of a number of
specialized graphical editors are considered in section 4. Section 5 outlines the
implementation and deployment stages. Section 6 considers one of the most important
problems of any MAS technology which consists in maintaining consistency of
solutions produced at various technology stages; it is also shown in the section how the
consistency is insured within a technology supported by MASDK. Related works and
comparison of MASDK with some other tools is presented in Section 7. In conclusion
the paper basic results are summarized.

2 Outline of MASDK 3.0 Software Tool and Technology Supported

MASDK 3.0 software tool consists of the following components (Fig.1): (1) System
core which is a data structure designed for XML-based representation and storing of
MAS formal specification; (2) Integrated set of graphical editors supporting the user's
activity aimed at formal specifying of the MAS under development; (3) Library of C++
classes, comprising what is usually called Generic agent, corresponding to the reusable

component common for all agents; (4) Communication platform to be installed in the
computers, in the network, that are involved in the MAS being designed, and (5)
Builder of software agent instances, that carries out (i) generation of source and

MASDK

System core:
XML specification

of MAS

Integrated set of
editors

Generic
agent

 Software agent
builder

Communication
platform

Host
A A A

Host

A A A

Fig. 1. MASDK software tool components and their interaction

98 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

executable codes of software agents in C++ language and (ii) deployment of software
agents over the earlier installed communication platform.

Generalized architecture of the agents developed using MASDK is shown in Fig.2.
It includes the following basic components:

 invariant (reusable) component called Generic Agent,
 agent behavior model,
 mental model of agent,
 set of agent services represented in terms of state machines, and
 library of auxiliary application-oriented functions.

The Generic agent component which is the basic class for all agents is a reusable
component of MASDK environment (Fig.1). This component can be thought of as
engine that realizes a common (reusable) scenario of agent operation. It comprises the
general functions that 1) support sending and receiving of messages, 2) initiate
respective services of agents, control of their execution and process of interruptions
depending on the current states of agents, 3) provide the interaction agents with human
users, 4) provide access to
agents’ data storages, etc.

The Agent behavior model,
Mental model and State
machines are intended for
problem-oriented specification
of agent. The agent behavior
model specifies the states
associated with providing the
agent with respective services,
the models of services being
specified as state machines.
The mental models comprise
specification of notions, data
storage structure, and the initial
data and knowledge possessed
by the agent. All three
mentioned classes of
components are developed by a designer using the integrated set of editors (Fig.1) and
stored in system core (Fig.1) as XML-based specifications.

The Functions specify agent operation in the states of state machines. They are
coded in the usual way, i.e., in MASDK in C++ language, and can be of one of the two
varieties: scripts and external functional components. Scripts are fragments of software
code that are developed using corresponding MASDK editors and stored in the system
core as entries of MAS XML-based specification. External functional components are
developed out of the MASDK environment and viewed as components the execution of
which is initiated by the agent during execution of scripts.

A specification of MAS in MASDK includes specifications of agents and agent

classes. Agents of each class have a common specification of the components

Fig. 2. Agent architecture

XML-based
specification

Reusable
component

Coded in
C++

Generic agent

Mental model

State
machine

Functions

State
machine

State
machine

Agent behavior model

Multi Agent System Development Kit 99

comprising the architecture of agent (Fig.2), except for the content of mental models, in
particular – the initial data and the knowledge possessed by the agents.

Software implementation of agents is performed by the Software agent builder

component (Fig.1) in automatic mode. For each agent class, the software agent builder
executes the three successive tasks:
1. Generation of the source ++ code of the problem–oriented components of agent

class, i.e. of the Agent behaviour model and all State machines. The main goal of
this task is transformation of XML-based specifications of these components into
source code in ++ on the basis of XSLT technology.

2. Compilation of the C++ code of agent class into an executable code. For this
procedure the following components are used as inputs:

 Source C++ code of the problem–oriented components produced by the task 1;
 Source C++ codes of particular functions;
 Generic agent components, which are reusable components of MASDK.

In case of an error, the generator analyses the compilation output file and localizes
the state machine, also indicating the state which contains the error. If a syntax error
is made by a designer who was responsible for specifying the algorithm of the agent
behavior, the generator indicates the name of the state machine, its state and the
number of the row, in which the designer made the error.

3. Building the data storage (storages) specified in mental models of the agent class.

3 Methodology of MAS development

A MAS development process in MASDK can be technologically divided in to three
stages. At the first stage a detailed design of the MAS is developed. In particular, this
stage assumes the development of the models described in Gaia methodology [20],
namely – role models, interaction model, agent models, service models, and
acquaintance model. At that the service models of agent classes are described in greater
detail than it is done with Gaia methodology. All activities at this stage are entirely
carried out by the integrated set of editors (ISE) and the results (the detailed design of
the MAS) are stored at the system core component in special XML-based language. The
second stage consists in programming the particular components that can be derived
from the detailed design of the MAS developed at the previous stage. The third stage
consists in compiling and building the software agents.

Thus, almost all development process is carried out based on the ISE component; so,
let us discuss this component and the respective methodology of application systems
development in detail. The set of editors comprising the ISE component can be divided
into three categories (Fig.3): 1) the set of editors (MAS model, Protocol, Ontology
editors) aimed at describing abstract concepts and system organization, 2) the set of
editors (Agent class behavior model, State machine, State, Private ontology editors)
designed for description of concrete concepts and design of agent classes, and 3) the set
of editors (Agents’ configuration and Agent mental model editors) aimed at building and
deployment of the agents.

100 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

The enumerated set of editors provides the following methodology for MASs
development that starts from the two initial stages (analysis and design) which are parts
of Gaia methodology [21].

1) Analysis. The development process is initiated with the requirements statement and
the results of role and interaction models specification that comprise an organizational

model of the MAS. The respective activities are supported by the MAS model and the
Protocol editors.

2) Design. According to Gaia methodology the objective of this stage assumes
development of agent, service and acquaintance models. The agent model development
assuming determination of agent classes and instances of each from them is carried out
using the MAS model and the Agents’ configuration editors. The service models are

System level (Abstract concepts)

System’s organization

Agent class’s design (Concrete concepts)

MAS model

Ontology

Protocol

Agent class behavior model

Private ontology

State
machine

State 1

Protocol

State
machine

…

State k

…

…

Fig. 3. Structure of graphic editors in MASDK and their mapping with Gaia methodology

State 1

…

State k

Gaia
methodology

Analysis
stage

Design
stage

Agents building
and deployment

Agents’ configuration

Agent mental models

Multi Agent System Development Kit 101

developed using the Agent class behavior model editor and the acquaintance model with
the aid of the MAS model one.

3) Ontology description. Domain ontology description is specified by means of the
Ontology editor and initially1 can be developed in parallel with stages 1 and 2. However
there are relations between the models presupposes a certain sequence of their
development. In particular, a detailed specification of communication acts of the
protocols at later phases of development implies specifying of messages contents in
terms of ontology notions. It means the respective notions of ontology have to be
specified for doing it. The first three stages are designed for describing abstract concepts
of the application system. The concrete concepts are developed through the following
sequence of stages.
4) State machine development (Service development). Each service identified at the
design stage (stage 2) is developed as a state machine using State machine and State
editors. At that, such a state machine is described at the level of states and transitions
between them without minor details of states implementation. A service is associated
with respective protocols and activities and, consequently, development of a state
machine assumes relating each state to either communication act of some protocol or
one of the activities. One communication act is related to only one state, while one
activity can be related to several states. Transitions between states describe the scenario
of the service execution.

5) Private ontology development. Private ontology is required for specification of the
notions used for describing the agent class mental model. At that, it involves private
notions of the agent class and the notions inheriting ones from the shared ontology
developed at stage 3. Private ontology development also assumes specifying a data
storage scheme (or several storage schemes) of agent class.

6) Agents initial mental model. This stage consists in describing initial data and
knowledge of the agents. It must be noted that at the previous stages (namely – 4, 5) the
agent classes have been specified and the agents of each class have no specifics except
for their names. Therefore, the initial mental models of agents are their specifics that
single out the agents of each class.

7) Agent classes components programming. Components of each agent class that have
to be specified in the usual way (in case of MASDK environment it consists in
developing a code in C++ language) are identified as a result of stage 3 execution. All
of them are either scripts of agent classes’ behavior in particular states of state machines
or invoked from these scripts as external components.

8) Agents code generating. This function is executed automatically by Software agent
builder component (Fig.1).

9) Agents configuration and deployment. This stage assumes specifying the locations of
agents, deploying of the agent according to the results, and filling in the storages of the
agents with their initial mental models developed at stage 6.

1 Development process in MASDK can have iterative character. It means each model developed

in process of MAS development can be refined repeatedly.

102 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

Thus a development of MAS in MASDK is generally reduced to development of
mentioned problem-oriented components. It is carried out using of graphical editors
through which the respective XML-based templates stored in system core are filled in.
These graphical editors and structure of respective components are considered in the
following section.

4 Integrated system of editors

MAS specification comprises a set of interrelated components that are developed based
on respective template types and stored in the system core. Set of these components
comprising MAS specification are depicted in the environment browser a screenshot of
which with an abstract example is shown in Fig.4. Specification of each MAS includes
the following components:

 Domain ontology;
 Meta model of MAS describing its

organization, namely – names of the
identified roles, agent classes, protocols
and relations between them;

 Description of role models;
 Specification of protocols.

Model of each agent class comprises the
following models:

 Private ontology describing the notions
and storages of mental model;

 SM Manager (State Machines manager)

describing list of service names and
scenarios of their execution;

 Set of state machines, each of them
specifying respective service;

 Initial mental model of each agent from
the class;

 Deployment model describing
configuration of agents and their
locations;

 Host model describing necessary data of
the hosts where agents are located.

The integrated editors system consists of
seven basic graphic editors corresponding to
the respective classes of components
constituting the specification of MAS under
development. It means that the components of

Fig. 4. Browser and System core
content

Multi Agent System Development Kit 103

each class are developed using respective graphic editor (the main editor). Let us remark
that according to the methodology of MAS development in MASDK described in
section 3, a designer uses the same editors at all different stages of a process. Using a
graphic editor implies using several auxiliary editors. These are used for specifying
specific details of the components and not dealt with in detail in the paper.

4.1 MAS model editor

MAS model editor (Fig.5) and related to it the auxiliary editors (dialogs) are designed
for description of the MAS organization, and they also support carrying out of the two
initial stages of the development process: analysis and design partially. At the analysis
stage these editors are used for specifying role and interaction models. The set of roles
identified/found at this stage is presented in the upper part of the model editor window.
In the current version of MASDK a model of each role is specified in the auxiliary
editor according to the template which is an accessory of Gaia methodology as high-
level (textual) description. A formal specification of this template for graphic

Fig. 5. MAS model editor

104 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

representation of the role models has been developed and after implementation of the
respective editor it will be integrated in MASDK environment.

Description of an interaction model is implemented using two editors. The MAS
model editor allows to describe a high-level representation of this model. Such a
representation assumes listing of all interaction protocols, specification of all
participants of each protocol, and pointing out the roles that initiate these protocols. It is
presented in the bottom part of the editor window (Fig.5). The initiators of the protocols
are presented as triangles. A detailed specification of each protocol is executed using
another editor which is described in the
section 4.2.

High-level representation of the
interaction model in the model editor allows
for considering additional useful tasks related
to the specification of this model. In
particular, one of these tasks deals with the
possibility of describing the MAS behavior
on the whole. This task is reduced to
investigation of possible relations between
protocols and using them for describing
meta-scenarios of the MAS behavior. It is
viewed as one of the possible improvements
of MASDK environment in future. However,
the current version already allows to analyze
some aspects of this task. Presentation of the
rectangles denoting protocols in proper order,
and using different colors gives way to show
protocols nesting. E.g., in the example the
protocol 2 is specified as nested protocol in
protocol 1.

The above results, including the information about the found roles, the interaction
protocols, mapping of the roles to the protocols and the textual description of the role
models are used for defining the agent models, namely – the agent classes. According to
the methodology this is considered to be a task of the design stage. The set of agent
classes and assignment of roles to them are shown in the middle part of the MAS model
editor window. Let us notice that any agent class may be able perform one or several
roles. E.g., in the example, the agent class 3 is mapping two roles while two other agent
classes are one-to-one mapping roles 1 and 2.

4.2 Protocol Editor

Detailed description of the roles interaction protocols is one of the key tasks of the
analysis stage. Realizing the extremely high importance of this task was evidently one
of the motives for the Agent UML project ([1], [2]) having been jointly initiated by
FIPA and OMG. The project goal consists in extension of the UML language to agent-

Fig. 6. Protocol editor

Multi Agent System Development Kit 105

based system specification language, and one of the focuses of this Project is
development of a language specially designed for specification of agent interaction
protocols [2].

MASDK 3.0 includes a graphic editor of protocols. An example of a protocol
graphic representation in Fig.6 within the window of editor in question is Contract Net
Protocol. The current version of the implemented editor makes use of some basic
constructs of Agent UML project. In particular, the basic capabilities of the roles
interaction protocol are as follows: 1) the protocol is specified as a modified sequence
diagram (Fig.6); 2) the message exchange scheme is specified using AND, OR and XOR

connectors; 3) the participants of interaction protocols are roles; 4) the specification of
message classes is implemented in ACL language. Some of the constructs being
considered in Agent UML project and not included in current version of the protocol
editor are several life lines of a role and nested protocols. The first construct (several
life lines of a role) will be included in the next version of the protocol editor.
Specification of the nested protocols in MASDK is not regarded as a task being solved
using the protocol editor. The interaction model in MASDK is specified at two levels
and with usage of two editors respectively. The first level of an interaction model is
specified using MAS model editor (Section 4.2), and detail specification of each
protocol is carried out using protocol editor. At that, specification of nested protocols is
a task related to the first level with usage of MAS model protocol. This possibility is
described in Section 4.1.

4.3 Ontology editor

A sample snapshot of the window of this editor is given in Fig.7. It aims at introducing
the shared application ontology notions and the relations between them, and at
specifying the private ontologies of agent classes. Description of the notions assumes
introducing attributes for them and specification of the attributes domains.

The classes of relations are important characteristics of the ontology editor. At that,
including them in MASDK suggests availability of respective mechanisms in the
environment that have to provide for solving a number of tasks in which introduced
relations are used. In particular, these mechanisms have to provide for solving the
following tasks:

 Insuring correctness of the relations specifications, i.e. checking of constraints
specific for particular classes of relations, e.g., introducing an inheritance
between notions should prohibit cycles generation.

 Support of data storage structures generation aimed at storing the agent classes
mental models.

 Providing the necessary syntactic expressiveness of the agents' mental model
specification language and an object–oriented style of access to the data storages.

The existing version of MASDK includes the mechanisms that allow to implement
these functions for processing inheritance relations. In the course of this processing,
both single and multiple inheritance relations between the ontology notions are
considered. Development and implementation of the mechanisms of this kind for other

106 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

classes of relations (inclusion, association, etc) is in progress now, this task being
considered as a high priority.

The inheritance relations between the classes of ontology notions described using a
respective graphic editor are depicted by arrows between the notions belonging to this
relation (Fig.7).

This editor is also used as the editor of agent class private ontology. Besides the
abilities and functions discussed above, it is also able to perform the following
functions.

Since private ontology of an agent class can include not only specific notions but
some notions of the shared part of the application ontology as well, the application
ontology editor has to be able to select a subset of the application ontology notions in
order to use them in the private ontology of an agent class. This function is the first
additional one.

The second additional function of the application ontology editor supports
specification of the storage structure for the agent class mental model. To realize this
function, specification of the notions and relations of the agent class private ontology is
carried out. Later, while generating agent class instances, this specification is used for
automated generation of respective storages for data and knowledge. The resulting data
structures can be either relational data bases or XML files.

Fig. 7. Ontology editor

Multi Agent System Development Kit 107

4.4 Agent Class Behavior Model Editor

Agent class behavior model is designed for listing a set of agent class services and for
specifying scenarios of their execution. A MAS model specification comprising the role
models, the interaction model, and the assignment of roles to the agent classes form a
basis for deriving a set of services for each agent class. Specification of agent class
behavior model is carried out using graphic editor whose screenshot along with an
abstract example of the model is shown in Fig.8. It should be noted that this editor only
describes the name and conceptual description of services. More detailed formal
specification of each service is carried out as a state machine model, and to do this a
state machine editor described in Section 4.5 is used.

The main objective of the model consists in specifying scenarios of the derived
services execution. It implies specifying the respective components defining the types of
events initiating execution of services, and actions that can be or has to be performed
during execution of the respective services. The model template includes the following
kinds of such components.
Input protocols

This component lists the protocols in which the agent class under development is a
participant and not an initiator. It is worth noting that this subset of protocols is derived

Fig. 8. Agent class behavior model editor

108 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

from MAS model automatically. Based on the above this component specifying is
reduced to mapping of each protocol from the list to respective service. This activity is
carried out through the auxiliary dialog related to this component, and in the window of
agent class behavior model editor such relations are shown as arrows between the Input

protocols component and the respective services. Each protocol from the list is one-to-
one mapping respective service. At that each mapping implies the certain information
for the service (state machine) development. It has to comprise states for processing of
all protocol’s communication acts, and the first protocol’s act triggers execution of the
service (state machine).
Output protocols

This component contains the list of the protocols in which the agent class under
development is indicated as initiator. This component specifying is reduced to carrying
out same activities as those being executed for Input protocol component specifying.
This subset of protocols is automatically derived from the MAS model; each protocol
from the list is one-to-one mapping respective service (state machine). This activity is
carried out through the auxiliary dialog related to this component, and in the window of
agent class behavior model editor such relations are shown as arrows between the
respective services and the Output protocols component. Each mapping implies that the
state machine realizing the service has to comprise states for processing of all protocol’s
communication acts.
User commands

This component is used in case when the agent class under development has
interface with user, and any services are triggered by him. The component specifying is
reduced to 1) listing of user commands, 2) their one-to-one mapping to respective
services (state machines), and 3) identifying states of agent class when the commands
are accessible. Mechanism providing for a usage of the commands is realized as a
reusable function of the generic agent component. In particular, it selects accessible
commands depending on the agent state and presents them in the user interface of the
Portal component described in Section 5. In the window of the agent class behavior
model editor such relations are shown as arrows between the User command component
and respective services.
User Interfaces

This component represents the list and conceptual description of the user interface
dialogs initiated by the agent class in question. The dialogs can either represent certain
information for user or imply his response, e.g., while receiving certain data for
subsequent operation. Mechanism supporting a usage of such dialogs is realized as a
reusable function of the generic agent component as well.
Pro-active model

This component specifies possibility of agent’s class to initiate an execution of any
services without environmental impacts like, e.g., receiving messages or user
commands. The component specifying is reduced to listing rules like “When … if …
then …”. The first condition (When) specifies either time instants or event initiating
checking of the second condition (if). The second condition specifies the agent class
mental state in which the service (state machine) indicated in the third part of the rule

Multi Agent System Development Kit 109

(then) has to be executed. The component specifying is carried out through the auxiliary
dialog, and in the window of agent class behavior model editor such relations are shown
as arrows between the Pro-active model component and the respective services.
Mechanism providing for checking of these rules and initiating of the services is
realized as a reusable function of the generic agent component as well.
Environment events and Effects

If agent is operating within an external environment then it can receive data from
any external equipment (e.g., sensors) or/and their control. In this case it is necessary to
specify interaction between agent class and external equipment, and the Environment
events and Effects components are used then. These components specifying consists in
1) listing of interaction acts, 2) their mapping to the respective services, and 3)
specifying the interface trough which data exchange is executed. Carrying out the latter
task is reduced to specifying of mechanisms supporting information receiving from and
sending to external equipment and algorithms of such information processing. Such
mechanisms are rather application dependent and therefore they have to be specified "ad
hoc", however, the generic agent component includes some reusable solutions which
can be used for doing it.

Developing scenarios of the services execution implies specifying two kinds of
relations: relations between components described above and services, and relations
between services. The latter kind of relations is used to specify the following two cases:

 synchronous initiation of nested services, and
 asynchronous initiation of any service.

Synchronous initiation of a nested service B by a service A means the following
scenario of their execution. Execution of the service A is interrupted after initiation of
the service B, and continued after the service B accomplishment. At that the service A
can use the results of the service B execution; the service can be considered as nested
one in the following two cases: 1) when it provides for the execution of some other
services, and 2) when it provides for the operation of an agent class related to any
protocol. Asynchronous initiation of the service B by the service A can be considered if
the results of the service B execution are not required for the service A execution. At
that if some services are triggered by any service asynchronously then they will be
executed in parallel.

The following relation existing between liveness properties of a role model in Gaia
methodology [21] and graphic notation used for specifying of the agent class behavior
mode l are worth noting. On the one hand, “the atomic components of a liveness
expression are either activities or protocols” [21]. On the other hand, components that
are used for specifying of an agent class behavior model denote protocols, services

(some of them associated with activity execution), acts of agent class interaction with
user and with external equipment. At that, a liveness expression includes the operators:
“x followed by y”, “x or y occurs”, “x and y interleaved”, which can be specified via
respective kinds of relations between components and services in the agent class
behavior model. All above described relations between the liveness expressions and the
agent class behavior models are used at the design stage of MAS development, and
allow to account for the results received at the analysis stage.

110 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

4.5 State Machines Editor

Specification of the agent class services is carried out in terms of state machines. This
comprises the following activities: (1) specification of the set of state machine states;
(2) specification of transitions and conditions determining the transition choice
depending on the agent current state; (3) specification of the state machine (agent)
behavior in each particular state.

The first and second activities are executed by a designer of MAS. These activities
are supported by graphic editor given in Fig.9. The third activity, on the contrary, is
executed by a programmer trough respective dialogs.

It should be noted that agent class behavior model, state machines and their states
can be considered as different levels of description of agent class behavior. At that,
agent class behavior model (Section 4.4) aims at describing agent class’s behavior on
the whole. State machines are used to describe partial scenarios of agent classes, and
states of state machines are used to describe partial functions executed within respective
scenarios. Thus, the editor of state machines can be considered the graphic editor of
partial behavior scenarios of agent classes.

 Specification of state machine can use specific functions that perform actions of

Fig. 9. State machine editor

Multi Agent System Development Kit 111

several specific classes, such as processing of one or more input messages, sending one
or several messages, waiting for a response, invoking asynchronous process, initiating
other state machine, etc. Specification of the functions of a kind can be based on the use
of respective reusable components. Since functions in MASDK are described in terms
of partial states, the environment includes several pre-defined different templates of
states that are used to specify functions of respective classes. States specified according
to different templates are highlighted in the window of an editor by different colors
(Fig.9).

Initial sketch of each state machine can be developed automatically. Component that
carries out this activity uses as input data solutions developed at the previous stages of
system development. In particular, it analyzes agent class behavior model, and if the
state machine under development is mapped to a protocol, analyzes specification of this
protocol and generates states aimed at processing the protocol’s communication acts. At
the following step, a designer develops in detail the above initial sketches of the state
machines inserting auxiliary states and updating transitions scheme.

Fig. 10. MAS configuration editor

112 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

5 Deployment

Deployment of MAS consists in carrying out the following functions:
 Specification of the MAS configuration,
 Specification of initial states of agent mental models, and
 Generation and installation of software agents in the computer network

according to the MAS configuration.
MAS configuration is specified using graphic editor given in Fig.10. This editor is

used for specification of the following data about agents: (1) agent's unique name; (2)
indication of agent class, whose instance is the software agent, and (3) the host name
and its Internet address where the software agent in question has to be situated. For
example, Fig.10 shows a configuration where six agents are instances of two agent
classes (one agent of the first class and five agents of the second class). The
configuration assumes that agents are situated in a single host.

It is important, that while having a set of agent classes developed an arbitrary
number of different MAS configurations can be generated. They can differentiate in the
number of agents of different classes and their allocation within Internet.

Specification of initial states of agent mental models is the next step of MAS
implementation preceding its deployment. At this step, data base of each agent destined
for storing of its mental model is filled in, thus, forming initial state of its mental model.
It is necessary to recall that the scheme of the aforementioned data base is given in
terms of notions of private ontology of the respective agent class. The above activity
can be carried out either through invariant user interface, which is not depended from a
agent class storage schemes, or through interfaces tuned to peculiarities of the MAS in
question, i.e., tailored for them. The last version is preferable when the number of
private ontology notions and/or relations between them is too large.

Executable code of the MAS of determined configuration is generated through
special functional component of Software agent builder. Generation procedure results in
filling in the initial states of software agents mental models.

Before the deployment of MAS (installation of the software agents) within the
particular computer network, communication platform has to be installed. For this
purpose, a reusable component of MASDK called Portal is installed in all the
computers where MAS is deployed. Installation of Portal is supported by a special
function of the MASDK environment.

Multi Agent System Development Kit 113

Communication platform is destined to support the message passing (both local and
remote) between MAS agents. It is important that the same communication platform can
support operation of several multi-agent systems. Messages are transmitted between
agents by portals these agents run on. TCP/IP is used to pass messages between agents.
A message is represented as an XML with a proprietary structure. At the moment not an
external message transmission protocol is supported.

Portal is provided with a user interface (Fig.11), that supports the following
functions:

MM SAO P BM PO SM S

MM SAO P BMM PO SM S

Role

Notions

Protocol

Notions

Notions

Event/activity
classes

Interaction act

Message class

Event/activity
classes

Notions

Notions

Legend:
MM – mental model of MAS, SAO –shared application ontology,
P – protocol, BM – agent class behaviour model,
PO – private ontology of an agent class, SM – state machine, S – state of SM

Fig. 11. Scheme of interrelations between components

114 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

 Initiating and shutting down the agents of a selected MAS;
 Visualization of the available user commands of operating agents and activation

of their performance.

6 Maintenance of MAS Consistency

An important problem of MAS development is the consistency maintenance. If
consistency of the MAS project components is not maintained in the development
process then total development efforts and costs can considerably increase. It should be
noted that the MAS design processes can potentially be well structured, thus, allowing
development of special mechanisms intended for consistency maintenance. Such a
possibility is based on the use and evolution of abstract notion classes utilized in the
methodology. Particularly, the list of these notion classes within MASDK environment
includes: role, protocol (communication acts, classes of messages), agent class,
auxiliary components of agent class behavior model (see subsection 4.4), state machine
(state, specialized state class), ontology notions. The use of these abstract notions
basically allows regarding the design process as specification of instances of the above
abstract notions and establishing different interconnections between them. While
establishing such interconnections, it is necessary to meet a certain set of requirements
and constraints that are independent of application domain. Scheme of main
interconnections between components used in MASDK is depicted in Fig.12. This
provides a possibility to well maintain the MAS consistency.

Within the MASDK 3.0 environment a special component called Master is used to
practically exploit the above opportunity. It operates in two modes: (1) Consistency
checking and (2) Design mastering. In the first mode, Master provides a designer with
the list of consistency violations of various kinds, e.g., “Communication act of the

protocol <name_of_the_act> is not provided with the respective function on the agent
class side". While operating in the second mode, Master supports the necessary
ordering of MAS design processes in the top-down style. At certain phases of design
process this mode of operation allows Master, while accounting for already produced

Fig. 12. User interface of the Portal component

Multi Agent System Development Kit 115

solutions, to automatically generate certain new solutions or their parts. For instance, if
behavior model of an agent class is specified, Master can initiate generation of the
respective set of states of state machine implementing the above behavior model.

7 Related Work

There are many tools for MASs development and each tool has its own features. We
selected only tools that support visual designing and development. In the following
sections we compare MASDK against 4 most known for us tools meeting the mentioned
criterions.

7.1 agentTool

agentTool [11] is a tool for analyzing, designing and implementing multi-agent
systems by MaSE methodology. In contrast to MASDK, the analysis phase in agentTool
starts from defining goals and use cases that should help to discover roles in the target
MAS. MASDK doesn’t have analogues to goals and use cases. In agentTool after that
each role is assigned goals it is responsible for and tasks are defined to achieve these
goals. MASDK doesn’t have an analogue to a task.

Then in both tools protocols are defined, but in agentTool only two roles can
participate in a protocol. In contrast to agentTool, in MASDK a protocol is detailed
down to communication acts. In agentTool it is also possible to define communication
acts but only for agent classes irrelatively of any protocol. In both tools agent classes are
defined by roles they play.

Then in agentTool each agent class is refined by defining components it consists of.
Those components as communication acts are specified using a finite state automaton.
In MASDK this step is performed in “SM Manager” editors that have more formal
structure and advanced facilities (see details in the corresponding chapter).

At the end agentTool generates Java classes for agents and communication acts,
which have to be filled in with implementation code. MASDK has built in editors for
entering all required implementation code in C++ and allows to generate source code in
C++ and to build executable modules. Also, MASDK has facilities to install a built
MAS.

Thus from our point of view agentTool has more expressive capabilities for
analyzing and designing but those for implementation are incomplete. MASDK allows
to develop a MAS ready for running but relationships between designing and
implementation details aren’t so clear.

116 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

7.2 PTK

PTK supports MAS development by PASSI [8] methodology. It is implemented as a
Rational Rose plug-in and uses UML for step-by-step designing and development multi-
agent systems.

PTK has good facilities to support all stages of MAS development. Development in
PTK starts from problem domain analysis and from functional decomposition of the
target MAS. Then roles, protocols and agent classes are discovered. In contrast to
MASDK, PTK has good facilities for the analysis of functionality of the target MAS
and for distribution of functions between roles and agents.

An ontology in PTK is described by two diagrams: Domain Ontology and
Communication Ontology. For each communication user has to define an ontology, a
language and a protocol. In MASDK interactions between agents are fully described for
roles these agents play.

Every agent in PTK is described as a class. Agents’ behavior is displayed in one or
more activity diagrams. However those diagrams have no affect on the classes. In
MASDK agents’ structure and behavior are specified using state machines which are
automatically transformed into executable modules. PTK also delivers template agents
with corresponding facilities. Finally PTK generates classes for agents, tasks and
ontology which should be completed in the Pattern Repository tool. Agents created in
PTK can be executed on FIPAOS or JADE.

From our point of view the design phase in PTK is more clear and useful for
unskilled users but MASDK provides with more convenient facilities for
implementation and deployment.

7.3 JACK

JACK [18] is a full-scale environment for MAS development using Java. It supports
MAS development accordingly with BDI agent’s model.

Analysis and design is performed in this tool using BDI concepts: Capability, Event,
Plan, Agent. However there is no considerable distinction between analysis and design
stages which can be done iteratively like in MASDK, because both systems support
integrity. In contrast to MASDK, JACK was designed for reactive intelligent agents
development. It allows to create variants of a plan to react on events. Those plans are
used by the engine implemented in the generic agent for searching a way to reach a
goal. In MASDK State Machine is an analogue of the plan but there is no an analogue to
Capability (MASDK has some properties of Capability which are in the Role concept).
MASDK is more useful when the system behavior and agents coordination with detailed
description of protocols should be specified explicitly. There are no protocols in JACK
but messages are treated as a kind of events. Both tools support full specification of
implementation details.

Thus both systems support full development cycle with iterative modifications.
MASDK is more useful for systems with a strict coordination but JACK for reactive

Multi Agent System Development Kit 117

systems. Comparing to JACK, MASDK has more advanced system of graphic editors
but language constructions in JACK are more elaborated.

7.4 Zeus

Zeus [9] is mostly intended for development of MASs concerning planning and
especially distributed planning problems. A proprietary methodology with FIPA
protocols support is used in Zeus.

Development of a MAS in Zeus starts with Ontology description. Zeus allows to use
single inheritance between notions and specify notion attributes with simple or user-
defined types (JavaObjects). Similar functionality is also implemented in MASDK.

Then in Zeus agents are specified and the ontology notions are linked to them
(MASDK has Private Ontology as an analogue). Protocols (any protocol can be one of 6
predefined types) and strategies are indicated for the agents. MASDK doesn’t have an
analogue to the ‘strategy’ concept. Zeus doesn’t support further detailing of agents but
in MASDK there are SM-Manager and State Machine Editors for that purposes.

At the next step project tasks are specified with connection to ontology notions and
with execution restrictions. MASDK doesn’t have an analogue to a task.

At last Zeus generates Java source code for the target MAS. It is possible to choose
target platform: UNIX or Windows.

Thus Zeus with its planning problems orientation gives an opportunity to concentrate
more on a problem domain than on interactions between agents. In contrast to Zeus, in
MASDK the designing phase is supported more deeply but protocols should be created
from scratch using corresponding editors. Also, MASDK has no explicit analogue of the
‘task’ concept.

8 Conclusion

MASDK environment presented in the paper possesses a number of practically
important advantages allowing to noticeably decrease efforts and costs associated with
the development of MASs of wide range. Among them, the most important ones are the
following:

1) Development process is carried out according to well grounded methodology, in
our case the Gaia methodology, whose abstract notion classes determined at the
analysis stage are further specialized and developed in depth at the stages of design and
implementation.

2) Graphical style of the development process supported by a number of user
friendly editors of MASDK provides for clear and easy understandable presentation of
MAS and its components along the whole development process. Together with the
thorough and clear methodology graphical style provides for productive and effective
cooperation between designer and programmer during the whole life cycle of MAS
development.

118 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

3) Due to well structured set of abstract notion classes used in analysis and design
processes, the MASDK environment provides for checking and maintenance of integrity
of the development results at all stages of the process.

4) Representation of interaction protocols that is a key task in any MAS
specification is particularly based on solutions involving the existing experience of
object-oriented approach whose main solutions are considered now as de-facto
standards in information technology.

5) One of the most important ideas of MASDK is reusability of solutions. Generic
agent library, that integrates reusable solutions/software components, practically
implements the reusability idea, thus, reducing development process to the specification
of application-oriented data and knowledge.

Currently the MASDK software tool is basically implemented and is validated based
on development of MASs in such problem domains as information fusion and situation
assessment, computer network security, agent-based business activity simulation and
monitoring.

Acknowledgment

We wish to thank European Office of Aerospace Research and Development of the
USAF (EOARD) and the Russian Academy of Sciences, Department of Information
Technology and Computer Science (Project 4.3) for support granted.

We also thank Cadence Design Systems Ltd. for its realistic assessment of the
MASDK capabilities and its industrial perspectives as part of a joint project. It helped to
determine needs and directions of further improvement of the platform and to prove the
advanced solutions implemented.

References

 1. Agent UML: http://www.auml.org/
2. Bauer, B., Muller, J. P., and Odell, J.: Agent UML: A Formalism for Specifying Multiagent

Interaction. In: Ciancarini, P. and Wooldridge, M. (eds): Agent-Oriented Software
Engineering, Springer-Verlag, Berlin, (2001) 91-103

3. Bellifemine, F., Caire, G., Trucco, T., and Rimassa, G.: Jade Programmer’s Guide. JADE 2.5
(2002) http://sharon.cselt.it/projects/jade/

4. Bernon, C., Gleizes, M.P., Peyruqueou, S., and Picard, G.: Adelfe, a methodology for
Adaptive Multi-Agent Systems Engineering. In: Third International Workshop “Engineering
Societies in the Agents World” (ESAW-2002), Madrid, (2002)

5. Bitting, E., Carter, J., and Ghorbani, A. A.: Multiagent Systems Development Kits: An
Evaluation. In: Proceedings of the 1st Annual Conference on Communication Networks &
Services Research, Moncton, Canada, (2003) 80-92

6. Booch, G.: Object-Oriented Analysis and Design, 2nd ed., Addison-Wesley: Reading, MA,
(1994)

Multi Agent System Development Kit 119

7. Caire, G., Leal, F., Chainho, P., Evans, R., Garijo, F., Gomez, J., Pavon, J., Kearney, P.,
Stark, J., and Massonet, P.: Agent-oriented analysis using MESSAGE/UML. In: Wooldridge,
M., Ciancarini, P., and Weiss, G., (editors): Second International Workshop on Agent-
Oriented Software Engineering (AOSE-2001), (2001) 101-108

8. Cossentino, M., Sabatucci, L., Sorace, S., and Chella, A.: Patterns reuse in the PASSI
methodology. In: Fourth International Workshop Engineering Societies in the Agents World
(ESAW'03), London, UK (2003) 294-310

9. Collis, J. and Ndumu, D.: Zeus Technical Manual. Intelligent Systems Research Group, BT
Labs. British Telecommunications. (1999)

10. Dam, K. H., and Winikoff, M.: Comparing Agent-Oriented Methodologies. In: Proceedings of
the Fifth International Bi-Conference Workshop on Agent-Oriented Information Systems (At
AAAMAS-03), Melburn (2003)

11. DeLoach S. and Wood, M.: Developing Multiagent Systems with agentTool. In:
Castelfranchi, C., Lesperance Y. (Eds.): Intelligent Agents VII. Agent Theories Architectures
and Languages, 7th International Workshop, LNCS. Vol.1986, Springer Verlag, (2001)

12. DeLoach, S. A., Wood, M. F., and Sparkman, C. H.: Multiagent systems engineering. In:
International Journal of Software Engineering and Knowledge Engineering, 11(3), (2001)
231-258

13. FIPA-OS: A component-based toolkit enabling rapid development of FIPA compliant agents.
http://fipa-os.sourceforge.net/

14. Giunchiglia, F., Mylopoulos, J., and Perini, A.: The Tropos software development
methodology: Processes, Models and Diagrams. In: Third International Workshop on Agent-
Oriented Software Engineering, Jula (2002)

15. Gorodetski, V., Karsaev, O., Kotenko, I., and Khabalov, A.: Software Development Kit for
Multi-agent Systems Design and Implementation. In: Dunin-Keplicz, B., Navareski, E. (Eds.):
From Theory to Practice in Multi-agent Systems. Lecture Notes in Artificial Intelligence, Vol.
2296, (2002) 121-130

16. Gorodetski, V., Karsaev, O., and Konushi, V.: Multi-Agent System for Resource Allocation
and Schedulling. In: Lecture Notes in Artificial Intelligence, Vol. # 2691, (2003) 226-235

17. Gorodetsky, V., Karsaev, O., and Samoilov, V.: Multi-agent Technology for Distributed Data
Mining and Classification. In: Proceedings of the IEEE Conference Intelligent Agent
Technology (IAT-03), Halifax, Canada, (2003) 438-441

18. Jack. Jack intelligent agents – version 3.1, agent oriented software. Ltd., Australia,
http://www.agent-software.com.au .

19. Padgham, L. and Winikoff, M.: Prometheus: A pragmatic methodology for engineering
intelligent agents. In: Proceedings of the OOPSLA 2002 Workshop on Agent-Oriented
Methodologies, Seattle, (2002) 97-108

20. Reticular Systems Inc: AgentBuilder An Integrated Toolkit for Constructing Intelligent
Software Agents. Revision 1.3. (1999) http://www.agentbuilder.com/.

21. Wooldridge, M., Jennings, N.R., and Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. In: Journal of Autonomous Agents and Multi-Agent Systems, Vol.3.
No. 3 (2000) 285-312

22. Woldridge, M.: Agent-based software engineering, In: IEEE Proc. Software Eng, 144(1),
(1997) 26-37

23. Woldridge, M., and Jennings, N. R.: Pitfalls of agent-oriented development. In: Proc. Second
Int. Conf. On Autonomous Agents (Agents 98), Minneapolis/St Paul, MN, (1998) 385-391

24. http://www.agentbuilder.com/AgentTools/index.html.
25. http://www.agentlink.org/resources/agent-software.php

120 V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

Information about software

Software is available in the Internet as:

() prototype version
() full fledged software (freeware), version no.:
() full fledged software (for money), version no.:
() Demo/trial version
(x) not (yet) available

Contact person for question about the software:

Name: Oleg Karsaev
email: ok@mail.iias.spb.su

Oleg Karsaev
Laboratory of Intelligent Systems
St. Petersburg Institute for Informatics and Automation
14 Line, 39, St. Petersburg, 199178
Russia
email: ok@mail.iias.spb.su

