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Abstract. This work describes a new approach for writing multi-agent systems
considering the use of the Erlang programming language. An analysis of the
features of this language is provided, which shows that Erlang characteristics
allow a programmer to easily model and implement agent systems. Then, a
new agent programming platform, called eXAT—erlang eXperimental Agent
Tool—will be described. This platform has been designed by the authors to
support agent development and deploying with Erlang; the aim is to pro-
vide an all-in-one environment, allowing an agent designer to program agent
intelligence, agent behavior and agent communication with a single language.
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1. Introduction

To date, in the field of agent programming platforms and languages, two main
trends are registered [4]; many platforms are written using existing well-known pro-
gramming languages, such as Java or C++ [16, 1, 60, 9], while, on the other hand,
ad-hoc agent programming languages have been proposed [59, 48, 61, 56, 45, 49],
able to map agent-specific characteristics to native constructs. In the authors’
opinion, both of these approaches suffer of the same incompleteness problem. Plat-
forms typically realized with existing imperative languages often need to integrate
additional tools, able to model and handle other important aspects of agent pro-
gramming, like the intelligence. These additional tools are based on programming
languages and models strongly different than those of the platform. For exam-
ple, rule-production systems [2, 3, 7], which are often integrated together with
Java platforms, are based on a declarative/logic constructs. Another example is
JADEX [55], the BDI [57] extension for JADE [16], which forces the agent pro-
grammer to use XML and OQL. As a result, to develop a complete multi-agent
application, the programmer is forced to deal with several and heterogeneous lan-
guages and programming methodologies. As an alternative, agent programming
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languages [23, 59, 48, 61, 56, 45, 49] are rich of agent-specific constructs but lack
statements and libraries needed for general-purpose applications. These languages
are specifically designed to model and implement agent’s mind, reasoning process
and behaviors. For this reason, they provide constructs to specify beliefs, intentions
and plans, to map actions deriving from the arrival of an ACL message, to for-
malize the agent’s reasoning process, etc. But, on the other hand, these languages
do not provide functions or libraries for e.g. building user interfaces, writing net-
work/Internet communication protocols, handling generic data in form of strings
or byte sequence, etc. Therefore, the integration of other environments is often
needed to build a complete software system. As a result, writing the various as-
pects of the same multi-agent application adopting a number of different languages
not only needs more sophisticated and elaborated design strategies, but often in-
troduces inefficiencies, since e.g. data needs to be converted when transferred from
the domain of a language to another.

The approach suggested by the authors is to combine, in a single program-
ming language, the ability of offering a general-purpose environment, with lan-
guage constructs and a programming philosophy able to express all the main
agent-related features. It was not necessary to design a new programming lan-
guage, but Erlang [14, 12, 8] has demonstrated to be a language very promising
for the development of agent systems [31]. Apart authors’ research [28, 30, 29],
the Erlang language has gained interest, in the agent community: it is cited in the
“Agent Software” list of the Agentlink web site [4] and some of its characteris-
tics (message reception and matching semantics) have inspired some concepts and
constructs of other agent programming language [48, 49]. A recent work [62] has
proposed an Erlang-based BDI tool.

This Chapter deals with the reasons that make Erlang suitable for modeling
all the aspects of multi-agent systems. To evaluate the real effectiveness of us-
ing Erlang in agent system implementation, an agent platform has been realized,
called eXAT—erlang eXperimental Agent Tool [6, 58, 28, 30, 29]1. Such a platform
(which is itself completely written in Erlang) provides an all-in-one environment to
program agent intelligence, agent behavior and agent communication. The Chapter
is structured as follows. Section 2 gives a brief overview of the Erlang language,
showing its syntax and main peculiarities; we also discuss the reasons that led
us to consider this language an interesting instrument to model and design agent
systems. Section 3 summarizes of the basic working scheme of the eXAT platform
and its components, sketching the agent model it supplies. An in-depth description
of the functionalities of eXAT is dealt with in Sections 4, 5 and 6, while Section 7
provides a qualitative comparison of eXAT with some other agent platforms and
agent programming languages. Section 8 concludes the Chapter.

1The platform is available through a BSD-style license and can be downloaded at http://www.

diit.unict.it/users/csanto/exat/.
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2. Erlang for Agents

2.1. Overview of the Language

Erlang is a functional language developed at Ericsson laboratories [14, 50, 8]. It was
initially designed with the aim of having a flexible language and runtime environ-
ment to implement the control system of telephone exchange equipments [12, 15];
the language was then extended in order to make it general-purpose.

Erlang derives from Prolog and borrows from this language the syntax, the
data types and the ability of handling symbols, but not the semantics: while Prolog
is logic, Erlang is functional. Erlang programming is based on functions that can
have multiple clauses. Each function clause can also have a guard, i.e. a boolean
expression representing a pre-condition to be met in order to activate the clause.
When a function is called, the matching clause (that also makes the guard true, if
present) is executed. Figure 1 reports a sample Erlang source that shows some of
the main features of the language. As it is shown in the Figure, each Erlang source
file, called module, starts with a declaration of the module name (which must be
the same of the source file) and the list of “exports”, that is the list of functions,
each with its arity2, which can be called by other modules. Then we have the
declaration and implementation of each function with the relevant clause. Each
function clause ends with a semicolon (;) while the last clause ends with a dot (.).

As for data, data types and variables, Erlang uses the same rules of Prolog. A
constant is represented with a (untyped) number or an atom, which is a lowercase
literal or any literal enclosed within single quotes (e.g. hello, ’wants-to-do’).
Variables are instead represented with uppercase literals. This syntax is used, in the

2number of arguments of the function.

�
-module ( samples ). % Module declaration
-export ([ fact /1, foo /2, sum /1, match_inform/1, execute /2]).

% List of function callable by another module

fact (N) when N == 0 - > 1;

fact (N) -> N * fact (N - 1).

foo (hello , X) -> io:format ("Say ’Hello ~w ’\n" , [X]);

foo (goodbye , X) -> io:format ("Say ’Goodbye ~w’\n" , [X]);

foo (_, X) -> io:format ("woops !\n").

sum ([]) - > 0

sum ([H | T]) -> H + sum (T).

match_inform ([$(,$i ,$n ,$f ,$o ,$r ,$m ,$ | T]) -> true;

match_inform (X) when islist (X) -> false .

execute ({X, ’wants -to-do’, Y}, {Y, ’is - feasible ’}) -> % .. do something
execute (_,_) -> false.

�� �

Figure 1. Some Examples of Erlang Code



50 A. Di Stefano and C. Santoro

specification of function clauses, to indicate if a parameter, given when the func-
tion is invoked, must match an actual value or it has to be bound to a variable; in
clause specification, the symbol “ ” plays the role of a wildcard (see functions fact
and foo in Figure 1). Basic Erlang types include also lists and tuples. Lists, syn-
tactically represented with square brackets [term1,term2,. . . ,termn], are handled
using the Prolog-style statement [H|T] = List (see the sum function in Figure 1,
that sums all the elements of a list). Erlang tuples are instead sequence of terms
enclosed in graph brackets, i.e. {term1,term2,. . . ,termn}; operations allowed on
tuples are (i) to separate elements, (ii) to get the length and (iii) to read the nth

element. Erlang also handles strings, which are treated as lists where each element
is the ASCII code of each character. String processing is thus performed using
list matching expressions. As an example, the function match inform in Figure 1
returns “true” if the argument is a string that begins with (inform3.

Even if Erlang is syntactically similar to Prolog, it features many differences
not only in semantics but also in other aspects, such as the concurrency and pro-
gramming model. Erlang programs are composed of a set of isolated processes that
share nothing and communicate one another by means of messages exchanged us-
ing smart and flexible language constructs. The process model and communication
abstraction are derived from CSP [46] and π-calculus [52]; however a programmer
is not forced to deal with such process calculi to design programs: a complete set
of library modules hides the details of the process model, facilitating the devel-
opment of concurrent Erlang programs. The Erlang concurrency constructs also
handles distribution transparently, by allowing a seamless communication among
processes belonging to different network nodes: the language constructs to perform
data exchange do not change if processes are remote instead of local.

In addition to the cited characteristics, Erlang programs feature portabil-
ity, since they are compiled in platform-independent (bytecoded) executable files
that can directly run using the Erlang virtual machine4. The Erlang runtime en-
vironment is also quite complete since it provides a very large number of libraries,
comparable to those of other more famous languages5.

2.2. Why Erlang?

This Section briefly discusses the reasons leading to choose Erlang for implement-
ing agent systems. Section 7, instead, will compare other agent platforms/lan-
guages with the eXAT/Erlang approach.

The first reason is tied to the agent model. By definition [44, 64], an agent
senses the environment and acts onto it on the basis of the inputs and its internal
state; thus, an agent behavior can be expressed by means of a function like

(Act, NewState) = f(Sense, CurrentState) (1)

3The symbol $x is a shortcut for the representation of the ASCII code of the letter x.
4The Erlang environment is provided for many platforms, such as Windows, Linux, BSD, Solaris,
VxWorks, etc.
5See the documentation provided in the Erlang web site [8].
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start
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event1

action1

stop

event3

action3

event2

action2

(action1, state1) = f(event1, start)
(action2, stop)   = f(event2, start)
(action3, stop)   = f(event3, state1)

Figure 2. A Finite-State Machine and its specification using a
function with several clauses

Since, in the agents’ world, Act, NewState, CurrentState and Sense are discrete
variables, functions like (1) call for the use of the finite-state machine (FSM)
abstraction for a representation of agent behavior, and functions with multiple
clauses for a concrete specification and implementation of such an agent behavior.
We can represent a FSM with a directed graph, where vertexes represent states
and edges represent events triggering actions that lead to another state; using this
representation, each function clause written as (1) is indeed the specification of a
state transition, as the example in Figure 2 reports6. Such a model can be easily
implemented in Erlang by means of a direct one-to-one mapping of the (agent)
model provided by (1) to native language constructs, i.e. an Erlang function with
several clauses. As a reference, Figure 3 reports the realization, in Erlang, of the
FSM in Figure 2. The reader can appreciate the 1 : 1 mapping of the function f
to its implementation (in this case, the “action” is not a specific value returned
by the function, but each action is implemented in the body of the function); the
listing also shows the function execute fsm that concretely executes our FSM by
picking next event, calling function f and recursively calling itself (until the state
stop is reached). For reference, Figure 4 shows a (possible) Java implementation
of the same FSM: we can see that transitions are “hidden” in the body of the

6In the graph representing a FSM, we used the UML notation that indicates the initial state
with an edge exiting from a filled circle and the final state with an edge leading to a filled double
circle.

�
-module ( sample_fsm ).

-export ([ run /0]).

f(event1 , start ) -> % ... write the implementation of ’action1’
state1 ;

f(event2 , start ) -> % ... write the implementation of ’action2’
stop;

f(event3 , state1 ) -> % ... write the implementation of ’action3’
stop.

execute_fsm (stop) -> ok;

execute_fsm (CurrentState) -> Event = get_next_event(),

NextState = f(Event , CurrentState), execute_fsm (NextState ).

run () -> execute_fsm (start ).
�� �

Figure 3. Erlang implementation of the FSM in Figure 2
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�
public class SampleFSM {

int EVENT1 = ...;

int EVENT2 = ...;

int EVENT3 = ...;

int START = ...;

int STATE1 = ...;

int STOP = ...;

int f(int event , int state ) {

switch ( state ) {

case START:

switch ( event ) {

case EVENT1 : do_action1 (); return STATE1 ;

case EVENT2 : do_action2 (); return STOP;

}

break;

case STATE1 :

switch ( event ) {

case EVENT3 : do_action3 (); return STOP;

}

}

}

public void run () {

int currentState = START;

while ( currentState != STOP ) {

int event = get_next_event ();

currentState = f(currentState , event );

}

}

}
�� �

Figure 4. A possible Java implementation of the FSM in Figure 2

switches of method f and not clearly visible as in Figure 3. Surely, we could
also consider a more “formally correct” Java implementation that maps events,
states and actions to classes/objects, and thus provides an object-based framework
for FSM specification and execution; but this would imply several source files,
a lot of code lines (more than those of the Erlang listing) and the needing of
handling an object model that could be complex. This is due to the fact that
each concept in Java (as in many other O-O languages) must be mapped onto
an object, and this often results in a framework with many classes. On the other
hand, symbolic languages, like Erlang, can represent concrete concepts directly
with symbols, thus facilitating the engineering and also reducing the lines of code
to be written and debugged. Moreover, the mechanism for identifying the function
clause that matches a call (which we exploit in specifying and executing a FSM)
is provided natively by Erlang: any other language not offering the same feature
could implement something similar with a library, but can neither overcome the
limitations of the language nor introduce new constructs7.

7This is true if we do not consider the possibility of building an interpreter, for function clauses,
which is implemented on the top of an existing language; but this is the same as defining and
using another language for our FSM specification and implementation. Thus, in this case, we
should evaluate the new language built and not the language used to write the interpreter.
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A second reason for choosing Erlang is the concurrency and programming
model. Erlang programming philosophy is based on decomposing a problem into
tasks, associating each task to a single Erlang process, and making processes
communicate in order to achieve the goal of the problem. Languages featuring
this characteristic are called by Joe Armstrong—one of the inventors of Erlang—
Concurrent-Oriented Programming Languages (COPL). He claims in [13] that “We
often write programs that model the world or interact with the world. Writing such
programs in a COPL is easy. First we perform an analysis, which is a three-step
process: 1. We identify all the truly concurrent activities in our real-world activity;
2. We identify all the message channels between the concurrent activities; 3. We
write down all the messages which can flow on the different channels. Now we write
the program. The structure of the program should exactly follow the structure of
the problem.” The reader can easily find, in this citation, many characteristics in
common with multi-agent system programming and design [64, 65, 66]. For exam-
ple, engineering a multi-agent system using the Gaia methodology [63, 66] implies
to derive, from a description of the system to be designed, (i) the roles to be
played by the various agents, then (ii) charge each roles with one or more tasks,
and finally (iii) identify the interactions that have to occur among agents playing
roles.

Other reasons making Erlang attractive are related to both its similarity with
Prolog and its built-in capability of identifying the function clause to be activated
(function clause matching). Such characteristics can be exploited for program-
ming both agent intelligence and agent behavior with the same language. As for
the former aspect, the design and implementation of agent intelligence should be
supported by a suitable artificial intelligence tool, such as a rule-production sys-
tem. To this aim, in many currently available agent platforms, which are mainly
Java-based, an integration with tools such as JESS [2], CLIPS [3] or Drools [7] (or
other ad-hoc approaches [55]) is mandatory. In this sense, Erlang function clauses
and clause matching mechanism are very suited to support the specification of
pre-conditions activating actions (coded in the body of the function), in the per-
fect style of rule-production systems. As an example, see the function execute in
Figure 1: here the first function clause can be seen as a pre-condition, like a Prolog
predicate, that triggers something. Such a characteristic eases the implementation
of expert systems or rule-production engines supporting agent reasoning. More-
over, this aspect, and in particular the matching capability, if related to the agent
model based on FSM, can be used, when designing the behavior of an agent, to
specify the conditions triggering change of state.

All the above argumentations highlight that Erlang possesses many inter-
esting features for the implementation of software agents; however, such a lan-
guage does not itself provide a complete runtime environment for the execution of
agent-based applications, but it only supports specific aspects of agent design and
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implementation. Behaviors expressed with multiple functions clauses need a suit-
able engine to support their (autonomous) execution. Similarly, using functions
clauses as pre-conditions for rules is not sufficient to realize an expert system: an
appropriate library able to process these rules, also supporting a knowledge base,
is mandatory. This is supplied by eXAT, an agent platform realized by the authors
to provide a complete runtime environment, that will be described in the following
Sections.

3. An Overview of the eXAT Platform

eXAT is an agent platform that allows multi-agent application programming using
only the Erlang language; it provides a suitable support to realize agent intelli-
gence, agent behavior and agent collaboration. These main aspects rely on eXAT
agent’s model, which is sketched in Figure 5 and described below.

eXAT Platform

ERES Engines

Triggering Events
(assertion of facts

due to rule processing)

Agent Actions
(assert/retract facts)

ACL Communication
Module

Triggering Events
(reception of ACL

messages)

Agent Actions
(sending of ACL messages)

Agent Behaviors

Rational Effects
(ACL semantics)

Erlang-native IPC Mechanism

ACL Communication
Module

Agent Agent

Erlang Runtime
Environment

Figure 5. Agent Model in eXAT

As the Figure reports, the main components of an eXAT agent are the ERES
engines, which implement agent’s intelligence, and the behaviors, which imple-
ment agent’s computation. Such components are able to interact with the ACL
Communication Module, which is provided by the platform to support message ex-
changing among agents. All components of an agent and the ACL Communication
Module influence each other as briefly sketched below. An in-depth description of
the functioning and usage of such modules is instead provided in the subsequent
Sections.

ERES engines are rule processing systems supporting agent reasoning through
an Erlang library called ERES [5]. Each engine has its own rules and a knowledge
base that stores a set of facts; each fact is specified with an Erlang tuple or a
list. The knowledge base of an ERES engine, when associated to an agent, is thus
able represent the “mental state” of such an agent. Rules are written as function
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clauses and rule processing is based on checking that one or more facts, with certain
patterns, belong to the knowledge base and then executing the guarded action or
asserting new facts. An agent may use different ERES engines, each implementing
a different reasoning process; this can be used for the engineering of reasoning
processes that appear separated at initial design stage. In this case, the agent’s
mental state can be considered composed of the facts stored in the knowledge
bases of all the engines associated to the agent. The ERES module will be fully
described in Section 4.

Agent behaviors, expressed by using Erlang functions with multiple clauses
describing a FSM, implement the actions an agent has to perform to achieve its
goal and are processed by the behavior execution module of eXAT. Agent behav-
iors are subject to both the agent’s mental state and the occurrence of external
events ; these represents triggers, for the FSM, that cause action execution and
state change. Triggers relevant to agent’s mental state refer to the presence of one
or more facts in a given ERES engine. External events refer instead to the arrival
of an ACL message. Behavior engineering is made flexible by allowing a designer
to compose behaviors in sequence—to support serial activities—or in parallel—
to support multiple concurrent activities (e.g. handling of multiple simultaneous
interactions). Moreover, the concept of inheritance, typical of the object-oriented
programming paradigm, is introduced in eXAT to allow the specialization (exten-
sion) of a behavior by means of re-definition of one or more elements of the FSM
mapping function. To this aim, eXAT provides a library that, together with sup-
porting such a specialization, adds object-orientation capabilities to Erlang, thus
allowing classes to be written and objects to be instantiated as in Java/C++.
This feature combines the advantages of functional and object-based program-
ming in order to offer an agent development environment more flexible than that
of provided by a traditional object-oriented language. Behavior engineering and
functioning will be dealt with in Section 5.

To make agent collaboration possible, eXAT agent behaviors use the service
provided by the ACL module, which is responsible to support exchanging, composi-
tion, parsing and matching of ACL messages, according to the FIPA standard [38].
A set of functions are used to send and receive FIPA speech acts and bind the
reception of a specific message to a behavior event. The communication module
is able not only to trigger actions on the basis of the reception of a message but
also to concretely influence and check the agent’s mental state, following message
exchanging and according to FIPA-ACL semantics [38]. This is an important con-
tribution with respect to other agent platforms, which require this link to be made
“by hand” by agent designers. Messaging and semantic support will be described
in Section 6.
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�
-module ( sample ).

-export ([ rule /3, purchasing /3]).

-rules ([ parents , purchasing ]).

parents ( Engine , {’child -of’, X, Y}, { female , Y}) ->

eres:assert ( Engine , {’mother -of’, Y, X});

parents ( Engine , {’child -of’, X, Y}, {male , Y}) ->

eres:assert ( Engine , {’father -of’, Y, X}).

purchasing ( Engine ,

[’has -goal ’, Agent , [ purchasing , Good , Price ]],

[’balance -of’, Agent , Balance ])

when ( Balance - Price ) > 3000) - >

eres:assert ( Engine , [ intends , Agent , [ purchase , Good ]]).
�� �

Figure 6. Some Sample Productions Rule in ERES

4. Supporting Intelligence with ERES

As introduced above, the ERES library supports the concurrent execution of mul-
tiple rule-processing engines. Each engine works on its own Knowledge Base (KB),
which stores a set of facts, and with one or more Production Rules. Each rule is an
Erlang function clause (the clause represents a predicate applied to the KB) and
its body can contain any Erlang statement as well as functions to manipulate the
KB of the engine, i.e. asserting another fact or retracting an existing fact. A rule
is expressed using the following form:

func name (Engine, FP1, FP2, . . . , FPn) when predicate ->
Body of the rule action

Here Engine is the (name of the) ERES engine the rule belongs to and FP1, FP2,
. . . , FPn are patterns matching facts: if the KB contains facts that match all the
patterns of the rule, the latter is activated and the function body is executed.

Such a rule specification model perfectly reflects the syntax and semantics
of well-known rule production systems [3, 2, 7]. As an example, let us suppose
we want to implement the following rule: If X is the child of Y and Y is female,
then Y is X’s mother; otherwise, if Y is male, then Y is X’s father. This rule can
be written using the two clauses of the function parents in Figure 6, given that
we represent the relations “child of”, “mother of”, “father of” and the “gender”
respectively with the Erlang tuples {’child-of’, X, Y}, {’mother-of’, X, Y},
{’father-of’, X, Y} and {female, X}, {male, X}. As another example, the
function purchasing in Figure 6 says that if an agent has the goal of purchasing
an item and the agent’s remaining balance is greater than 3000 ¤, then the agent
intends to buy that item.

Rules are pre-processed by the ERES module when the engine is started. This
aims at building a data structure suitable for efficiently finding rule clauses to be
fired, should a fact be asserted or retracted. The technique employed is a variation
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Figure 7. ERES Engines and User Processes

of the Forgy’s RETE algorithm [33] and exploits Erlang matching capabilities to
perform the selection and join operations8.

An additional features of ERES is the capability of realizing blackboard ar-
chitectures [24]. An ERES engines with no production rules can in fact behave as a
Linda tuple space [20], and thus used to perform coordination among activities of
an agent or among different agents that would not use message exchanging9. This
is an important additional characteristic of the platform since it provides a native
means to support many well-known agent coordination models [53, 19, 25, 54, 22].

From the runtime point of view, as Figure 7 reports, each ERES engine runs
on a separate Erlang process. A set of APIs is provided to allow user processes
to interact with running engines; such primitives include creating/destroying an
engine, adding a new rule, manipulating existing rules, asserting/retracting a fact,
checking for the presence of one or more facts with a given pattern, waiting for
the assertion of a fact with a given pattern, obtaining all the facts of the KB , etc.
(see [5, 58] for more details). According to Erlang distribution model, each ERES
engine can be also accessed by Erlang processes running on different network nodes
(see Figure 7).

5. Engineering Agent Behaviors

As introduced in Section 3, the overall computation of an agent is programmed
in eXAT by means of a set of behaviors, each modeled as a finite-state machine.
This philosophy is similar to that of other agent platforms [16, 1], but behavior
engineering is made more flexible in eXAT thanks to the integration of object-
oriented and functional/symbolic programming concepts.

An eXAT behavior is programmed using a set of Erlang functions that express
what are the events that, bound to certain states, trigger the execution of certain
actions and the change of state. Since an event is in general characterized by an
associated data, each event is defined by specifying its type and a data pattern, the

8See the citation for the details on the RETE algorithm.
9To this aim a set of Linda-like primitives (out, in, inp, rd and rdp) is also provided by the ERES
module.
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latter indicating the template to be matched by the data in order to activate the
event itself. For example, the “arrival of an inform speech act” is an event whose
type is “arrival of any ACL message” and whose pattern specifies a matching be-
tween the performative name and the “inform” constant. This separation between
event types and data patterns allows behaviour specialization and promotes reuse,
as it will be detailed in Section 5.2. Event types handled by eXAT are:

• Reception of an ACL message (event type acl). The data pattern is a speci-
fication of how the triggering message has to be formed.

• Expiry of a given timeout (event type timeout). The data pattern is the
timeout value in milliseconds.

• Assertion of fact(s) (event type eres). The data pattern specifies the template
of the fact(s) that has to be asserted, in a given ERES engine, in order to
trigger the event.

• A silent (spontaneous) event (event type silent). This event type has no
associated data.

An eXAT behavior, expressed by modeling the FSM with a directed graph as
reported in Section 2.2, is represented by means of the following three functions,
action, event and pattern:

action : StateName → setof (EventName, ActionProcedure)
event : EventName → (EventType, PatternName)
pattern : PatternName → PatternSpecification
EventType ∈ {silent, eres, acl, timeout}

(2)

Function action returns the information related to the edges exiting the state name
(vertex) given as parameter; each information is composed of the name of the event
and the procedure implementing the action (the new state reached by the edge
after action execution is encoded by using an API function, called in the body of
action implementation). Function event gives, for each event name, the event type
and the name of the associated data pattern. Finally, function pattern returns, for
each pattern name, the relevant pattern specification, which is dependent of the
type of the event tied to the pattern itself.

It can be easily noted that the model above is different than that of for-
mula (1), however its semantics is the same: we have only separated the various
parts of a FSM in order to make specialization possible by means of inheritance.
As it will be detailed in Section 5.2, such a specialization process will imply to
change only one or more values returned by one or more functions in (2) of a
behavior already designed.

As an example of behavior engineering in eXAT, we report in Figure 8 a sim-
ple FSM with its implementation (ignore, for the moment, the Self parameter,
which is passed to all the functions reported in the listing, because its meaning
will explained in Section 5.2). As it can be noted, two clauses for action have
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start

purchase_item
eres:{balance, X > 3000}

do_purchase

timeout

back_to_start

acl:(request ... :language LISP ...)

do_giveup

stop

acl:(confirm ...)

do_giveup

�
-module ( sample1 ).

-export ([ action /2, event /2, pattern /2 , ...]).

action (Self , start ) -> [{ start_to_purchase_event , do_purchase },

{ start_to_stop_event , do_giveup }];

action (Self , purchase_item) ->

[{ purchase_to_start_event , back_to_start},

{ purchase_to_stop_event , do_giveup }].

event (Self , start_to_purchase_event ) -> {eres , balance_pattern };

event (Self , start_to_stop_event ) -> {acl , request_pattern};

event (Self , purchase_to_start_event ) -> { timeout , timeout_value};

event (Self , purchase_to_stop_event ) -> {acl , confirm_pattern}.

pattern (Self , balance_pattern) -> {my_engine , get ,

{balance , fun (X) -> X > 3000 end }};

pattern (Self , request_pattern) -> [# aclmessage { speechact = request ,

language = ’LISP’ }];

pattern (Self , timeout_value) - > 1000;

pattern (Self , confirm_pattern)-> [# aclmessage { speechact = confirm }].

do_purchase (Self , Event , Data , StateLeft ) ->

% perform action ...
% ... and set next state
object :do (Self , purchase_item).

back_to_start (Self , Event , Data , StateLeft ) ->

% set next state
object :do (Self , start ).

do_giveup (Self , Event , Data , StateLeft ) ->

% perform finalization ...
% ... and stop behaviour
object :stop ( Self).

�� �

Figure 8. A sample behavior in eXAT

been used, one for each behavior state name (state stop is the final state in which
the behavior is ended). Four clauses (the same of the number of transitions) are
instead used for functions event and pattern. The example also shows the way
in which patterns are specified: balance pattern is an ERES pattern indicat-
ing the assertion of fact {balance, X}, with X > 3000, while request pattern
specifies instead the matching of a “request” ACL message whose content field is
expressed in LISP. Pattern specification also allows complex matching expressions,
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by means of the use of ’fun’ Erlang constructs, which define lambda functions (see
the balance pattern in Figure 8).

As the listing shows, each action is implemented in the function whose name
is specified in the behavior structure (do purchase, back to start and do giveup
in the example); the parameters given to these functions indicate, in order, the
event fired, the actual data bound to that event and the name of the FSM state in
which the event occurred. Action implementation has the responsibility of setting
the next state of the FSM; this is performed by using eXAT functions object:do or
object:stop, to respectively change the FSM’s state and terminate the behavior.

5.1. Composing Behaviors

The finite-state machine abstraction used to develop agent behaviors is a com-
mon (and simple) way to express agent computations. However, in the case of
engineering complex agent applications, the behaviors of involved agents could be
complex as well, thus needing a FSM composed of a large number of states and
transitions. Such a situation could present several difficulties during development
stage. In principle, the use of a single (even large) FSM could be not enough when
an agent computation has to be composed of concurrent activities, e.g. agents han-
dling multiple and concurrent interactions. Secondly, in many situations, parts of
an overall agent computation, which have been already designed, could be reused
in another different agent application (this is the case instance of standard FIPA
interaction protocols [43], such as the contract-net [39], the request protocol [41],
the English auction [40], etc.)10. Such considerations lead us to engineer an overall
agent computation through small and ready-to-use components, each one imple-
menting a simple and basic behavior, to be arranged in sequence—to support serial
activities—or in parallel—to support multiple concurrent activities11.

eXAT supports such a model by allowing the specification, in the body of an
action function, of the next behavior to be executed or the set of behaviors that
have to concurrently run. This is achieved by means of the function agent:behave,
which takes, as argument, a behavior name or a list of behavior names. Serial exe-
cution is supported by a sequence of agent:behave function calls, and specifying,
in each call, one of the behaviors to be executed12; parallel execution is instead
achieved by specifying the behaviors to be concurrently started in a list given as the
parameter of a single agent:behave function call. This function is synchronous,
that is, it triggers (sub-)behaviors execution and then waits for their completion.

As an example, the top of Figure 9 reports a behavior with two state tran-
sitions. The first transition is tied to the assertion of the fact {action, purchase},
which triggers (sub-)behavior b1; when the latter’s execution ends, behavior b2 is

10But reuse could be considered also for behavior patterns not strictly related to standard inter-
action protocols.
11This approach is equivalent to using subroutines and co-routines in traditional imperative
languages and it is also used in some agent platforms currently available, such as JADE [16].
12The execution order is obviously the same as the order of the function calls.
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started; then the state goes again to start. The second transition, tied to the re-
ception of a request speech act, triggers the parallel execution of behaviors b3 and
b4. Here the reader can note, in the listing, the use of the function agent:behave
to specify the sub-behaviors to be executed.

start

eres:{action, purchase}

do_purchase
stop

acl:(request ... :language LISP ...)

do_giveup

sub-behaviour "b1"

sub-behaviour "b3"

sub-behaviour "b4"

sub-behaviour "b2"

�
-module ( sample2 ).

-export ([ action /2, event /2, pattern /2 , ...]).

action (Self , start ) -> [{ start_to_start_event , do_purchase },

{ start_to_stop_event , do_giveup }].

event (Self , start_to_purchase_event ) -> {eres , action_pattern};

event (Self , start_to_stop_event ) -> {acl , request_pattern}.

pattern (Self , balance_pattern) -> {my_engine , get ,

{action , purchase }};

pattern (Self , request_pattern) -> [# aclmessage { speechact = request ,

language = ’LISP’ }].

do_purchase (Self , Event , Data , StateLeft ) ->

agent:behave (Self , b1),

agent:behave (Self , b2), % execute sub-behaviours in sequence
object :do (Self , start ).

do_giveup (Self , Event , Data , StateLeft ) ->

agent:behave (Self , [b3 , b4]), % execute sub-behaviours in parallel
object :stop ( Self).

�� �

Figure 9. Behavior Composition

5.2. Specializing Behaviors

Behavior composition, performed according to the concepts above, allows the “as-
is” reuse of the code of an existing behavior in several multi-agent applications.
However, in some cases, a behavior could not be designed so general to allow its
reuse for a specific purpose, but some changes need to be applied. In order to
make reuse possible also in these cases, eXAT allows behavior engineering using an
object-orient approach and, in particular, by means of virtual inheritance. Such a
concept is applied to create a new behavior b′, derived from b, that transforms the
FSM of b according to the following possibilities:

1. Adding new states and transitions;
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start

purchase_item
eres:{balance, X > 3000}

do_purchase

timeout

back_to_start

stop

acl:(confirm ...)

do_giveup

acl:(request ... :language LISP ...)

do_giveup

acl:(refuse ...)

change event into

Figure 10. Behavior Extension

2. Removing existing states and/or transitions;
3. Modifying existing states and/or transitions by changing:

(a) the state reached by a transition;
(b) the action procedure bound to a transition;
(c) the event type bound to a transition;
(d) the data pattern bound to a transition;
(e) one or more elements of a data pattern.

Figure 10 depicts an example of such an extension: here we considered the reuse of
the FSM of Figure 8 by changing the timeout event into the arrival of a “refuse”
speech act.

Supporting such an extension concept is made possible in eXAT thanks to
the provided “object” module, which introduces object-orientation in Erlang pro-
grams; this module is intended for writing classes with attributes and methods,
also featuring virtual inheritance as in Java or C++. The object model provided
is similar to that of Java. A class is declared and implemented in a single Erlang
module (corresponding indeed to a single source file); it must define and export
the extends function, returning the name of the ancestor class/module13; then
functions declared in the module can be treated as methods by adding another
parameter, called Self, in function declaration: this parameter represents the ob-
ject’s instance within which the method is invoked and plays the same role of the
this keyword in C++ and Java. According to Erlang style, a method can have
multiple clauses and guards, and they play a fundamental role also in deriving
child classes: methods feature a fine grained overriding model, because we can
override all clauses of a method (the whole method), a single clause of a method,
or even add another clause to method. This characteristic provides a very flexi-
ble and expressive programming environment and it is an important feature that
cannot be obtained with a traditional object-oriented programming language14.

13This function may be not declared if the class/module has no ancestors.
14For instance, C++, Java or Python allow the definition of methods with different prototypes
and default parameters, but this is not the same as having different clauses.
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�
-module ( sample1_extended ).

-export ([ extends /1, event /2, pattern /2]).

extends () -> sample1 .

event (Self , purchase_to_start_event ) -> {acl , refuse_pattern}.

pattern (Self , refuse_pattern) -> [# aclmessage { speechact = refuse }].
�� �

Figure 11. Listing of the Behavior of Figure 10

Behavior engineering in eXAT exploits this Erlang-based object-oriented pro-
gramming capability: each behavior is indeed a class, all defined functions—action,
event, pattern and the functions implementing the actions—are methods15, and
behavior extension is performed by deriving that class and accordingly overriding
one or more methods or method clauses. In particular, FSM modifications at items
(1) and (2) of the list above (adding and removing states and transitions) can be
achieved by overriding existing (or adding new) clauses of the action method or
of the methods implementing the actions. Item (3a) can be realized by overriding
a method implementing the action. Finally, items (3b–e) can be implemented by
suitably overriding methods action, event, pattern or one of their clauses.

It is now easy to show how the behavior extension of Figure 10 can be im-
plemented. The code is reported in Figure 11 and shows how easy is to add the
desired feature: we extended the sample1 behavior in Figure 8 by overriding the
event clause relevant to the transition to be modified and then adding the needed
ACL pattern.

Behavior extension in eXAT allows the redefinition of not only single method
clauses, as it has been shown, but also single elements of data returned by action/2,
event/2 and pattern/2 functions. This ability, called partial redefinition, means
to change only some elements of the data returned by a function, e.g. one of the
couples {event, action} bound to a certain state, the event of such a couple, the
event type or the pattern name bound to a certain event, one element of a data
pattern, etc. As an example, if we would design a behavior like that of Figure 11
but for agents that speak only “Prolog”, we need to accordingly change only the
language slot of ACL patterns. This is made possible in eXAT by means of the use
of the function acl:refine that allows a single pattern specified in the ancestor
class to be refined: in our example, as reported in Figure 12, this function is used
to add a matching value for the “language” slot in ACL messages. Such a partial
redefinition capability implies a very flexible control on behavior engineering. This
feature is made possible thanks to the intrinsic characteristics of Erlang and is
hard to obtain with a traditional object-oriented language16.

15This is the reason why the sample codes in Figure 8 and 9 report function declarations with
Self as the first parameter.
16Indeed it could require a very complex object model to try to achieve a similar—but not the
same—flexibility.
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�
-module ( sample1_extended_prolog_speaking ).

-export ([ extends /1, pattern /2]).

extends () -> sample1_extended.

pattern (Self , request_pattern) ->

acl :refine (Self , request_pattern , 1,

#aclmessage { language = ’Prolog ’});

pattern (Self , refuse_pattern) ->

acl :refine (Self , refuse_pattern , 1,

#aclmessage { language = ’Prolog ’}).
�� �

Figure 12. A more specialized behavior

6. Messaging and Semantics

eXAT agents interact through the exchange of ACL messages, in accordance with
the FIPA-ACL standard [38]. While message reception is performed by means of
the specification of an ACL message pattern that triggers an action in a behavior,
message sending is done through a set of functions of the eXAT “acl” module,
each function specialized to send a different speech act type and named like the
speech act it sends. So we have functions acl:inform, acl:cfp, acl:confirm,
acl:request, etc. All these functions take, as parameter, the message to be sent,
encoded in an Erlang form17. In the current version of eXAT, such messages are
sent using messaging primitives and the transport protocol natively provided by
the Erlang runtime system, so (at the moment) interactions are possible only
among eXAT agents. Interaction with agents running on other kind of platforms
is currently not supported, but a new eXAT release is under development18, which
will provide standard FIPA message transport protocols [37, 36] and message en-
coding [34, 35].

Since messaging relies on Erlang standard communication primitives, from
the point of view of the Erlang runtime, an agent is seen as a process whose
registered name corresponds to the name of the agent set by the programmer19.
This means that agent naming and addressing follow, in the current release of
eXAT, the same rules of process addressing in Erlang: a local agent is referred
using its name, while a remote agent is referred using a concatenation of its name,
the sign “@” and the name of the remote site in which the agent lives.

The messaging modules of the eXAT platform not only provide a simple
means to exchange messages with the right syntax, but they are also able to sup-
port message semantics. According to FIPA-ACL specification [38], eXAT includes
automatic checking of the feasibility precondition (FP) and the rational effect (RE)

17In particular, the Erlang record #aclmessage is defined, where each field corresponds a slot of
a standard ACL message, i.e. sender, receiver, content, language, etc.
18We plan to release this new version by June 2005.
19In Erlang, each process may be registered with a literal name so that message addressing is
performed using the registered name of the receiving process.
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relevant to each speech act sent. This is made possible by (i) providing an Erlang-
based syntax of SL sentences [42] and (ii) using an ERES engine (and in particular
the relevant Knowledge Base) as a representation of the mental state of an agent,
storing Erlang-translated SL sentences as facts20. Such a combination allows FPs
to be checked by looking at what is stored in the KBs representing the mental state
of sender and receiver agents, while REs can be supported by suitably updating
these KBs.

The use of ACL semantics in agent programming is an important support for
the engineering of “really rational” agents. In such agents, the deliver of a message,
on the basis of the semantics, is able to change receiver’s mental state; therefore,
agent reaction can be programmed on the basis of the semantic effect the message
has onto agent’s mental state [18, 17, 26]. As it is known, this ensures a decoupling
between messages and agent actions, allowing an agent to decide, on the basis of
its autonomous reasoning process, what to have to do when a message is received.
Such an ACL semantics support gives more autonomy and interaction awareness
to agents, and also allows a more flexible agent engineering. As an example, let
us suppose that we would like to design an agent that does something when “it
knows that a sentence is true”; let us also suppose that the sentence can be asserted
by either the agent’s reasoning process or the arrival of an inform message that
explicitly asserts the sentence. As in both cases the effect is “believing that the
sentence is true”, exploiting automatic processing of ACL semantics provided by
eXAT implies to write a behavior where the trigger is exactly what we need: the
assertion of the fact representing the sentence in the ERES engine representing the
agent’s mental state. Without such a built-in semantic support, we should have
used two triggers in the behavior—thus provoking a loss of generality—or add
another behavior that mimics inform RE—thus burdening the agent design and
implementation processes.

7. Related Work

Today there are many agent platforms and languages [4], so comparing eXAT with
all of them is quite difficult; we will instead concentrate our attention only on
some of the most widely known. In the following, we will distinguish approaches
that employ agent programming languages designed ad-hoc and agent platforms
built on the top of existing (and general purpose) programming languages. We
already dealt with the incompleteness problem of both approaches in Section 1,
which was the main reason driving us to search for an alternative; for this reason,
we will describe here only the differences the chosen agent languages and platforms
present with respect to our Erlang/eXAT approach.

20The translation from SL to Erlang is simple: each SL sentence, represented as a list “(a b

c ...)” is translated into an Erlang list, i.e. “[a, b, c, ...]”, while a parameter such as
“:paramname paramvalue” is translated into the Erlang tuple “{paramname, paramvalue}”.
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7.1. Agent Programming Languages

The concept of software systems written using processes (agents) interacting through
the exchange of messages is not only a base of Erlang but also of some agent pro-
gramming languages. This basic model is derived from formal approaches, such
as CCS [51], π-calculus [52] and actor model [11]. The agent programming lan-
guages April [48] and Go! [49] follow these models. April is a symbolic language for
concurrent programming; not only its process model is similar to that of Erlang,
but also message matching constructs follow the same Erlang rules. Go! is instead
April enriched with logic functionalities, such as knowledge base representation
and (concurrent) reasoning capabilities, as in Parlog [23]. Go! allows a designer to
define functions, Prolog-like predicates and queries, i.e. the Prolog “goals”. Agent
programming in Go! is thus basically logic/declarative and supported by many
language constructs; it also allows to define objects as knowledge base elements,
like in CLOS [47] or CLIPS [3].

Agent0 [59], PLACA [61], AgentK [27] and 3APL [45] are high-level languages
for the design of goal-oriented agents. They are based on the BDI model [57] and
provide constructs for defining beliefs, intentions, plans, obligations, capabilities,
etc. Some of them integrate an agent communication language [32, 38] to allow
interoperability with other agents.

A different philosophy is instead the base of APL [21] and JACK [10]. Both
support the BDI model but the language is mainly Java-based, that is, it extend-
s/integrates Java and provides a compiler that transforms the source code into Java
executables. APL has its own grammar (similar to that of Java) which presents
ad-hoc statements to define agents with their beliefs, plans and goals; it also allows
Java constructs and standard JRE libraries in agent developing. JACK, instead,
extends the Java language by adding some constructs to define the agent-specific
features needed by the BDI model.

The programming model of these approaches is different than that of eXAT,
which instead clearly separates the behavioral part from the agent’s intelligence,
allowing the programmer to intervene on both. This means that eXAT provides a
“low-level” agent programming philosophy, in which the programmer can control
all agent parts with a grain finer than that of the cited languages, whose processing
mechanisms are built-in and not visible to (nor manageable for) the designer. In-
deed, an higher-level programming platform could be also obtained by integrating
eXAT with Erlang-based BDI tools, such as [62].

7.2. Agent Platforms

Among the agent platforms available today, it is worthwhile considering those
which comply with the FIPA agent interoperability standard [43]. For this rea-
son, here we will deal with JADE [16] and FIPA-OS [1], which are the most
widely known (Java-based) FIPA compliant platforms. Both take care of agent
interoperability and behavioral aspects but do not provide any support for agent
intelligence: it must be implemented by integrating external tools [2, 7, 55]. Also
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ACL semantics is not supported and must be done (by hand) by the programmer
when needed21.

As for behavior engineering, JADE supports FSM-based behaviors with in-
heritance and specialization. JADE behaviors are based on computations (sub-
behaviors) tied to each FSM state; such a computation specifies the action an
agent has to do when it reaches that state; the computation must also check and
generate the events that fire transitions to another state. A similar approach is
provided in FIPA-OS. Here computations are encapsulated into Task objects, each
having the responsibility of catching an event (i.e. the arrival of a message) and
starting another Task to perform the action and wait for the next event.

In both platforms, sub-behaviors (or Tasks) are strongly tied to the specific
FSM for which they are designed; eXAT instead provides a separation between
FSM structure and the tied computations: event generation and handling is not
a task of a user-defined computation but a native mechanism provided by eXAT,
while agent actions, that are bound to transitions, specify what agent has to do
after event occurrence. Such kind of structure allows an existing FSM to be used
with other actions—by overriding the methods defining the actions—or to use the
actions in another context—by calling the action method from another behavior22.

8. Conclusions

In this Chapter, a new approach for multi-agent system implementation with the
Erlang language has been described, supported through eXAT, a new experimen-
tal Erlang-based agent platform. The choices of developing a new platform and
employing Erlang have been motivated, by showing how the main characteristics
of this language can be exploited for agent implementation. On this basis, a model
for engineering agent behaviors has been provided, which considers the use of mul-
tiple finite-state machines whose events may be bound to ACL message reception
as well as be the result of a reasoning process of the agent. Behavior engineering is
also made flexible by allowing FSM composition and specialization. Such concepts
are altogether made available in eXAT by means of suitable libraries that permit
to design, with the same programming language and tool, agent intelligence, agent
behavior and agent communication. The advantages of the proposed approach are
clearly stated through the whole Chapter; eXAT characteristics have been also
compared to those of some other existing platforms and agent programming lan-
guages.
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Information about Software

Software is available on the Internet as
(*) prototype version

Internet address: http://www.diit.unict.it/users/csanto/exat/
Description of software: Erlang-based Agent Platform
Download URL: http://www.diit.unict.it/users/csanto/exat/download.html

Contact person for question about the software:
Name: Corrado Santoro
email: csanto@diit.unict.it
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