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Abstract. At present several Java-based multi-agent platforms from differ-
ent developers are available, but none of them fully supports agent mobility
and communication inaccessibility simulation. They are thus unsuitable for
experiments with large scale real-world simulation. In this chapter we de-
scribe architecture of A-globe, fast, scalable and lightweight agent develop-
ment platform with environmental simulation and mobility support. Beside
the functions common to most agent platforms it provides a position-based
messaging service, so it can be used for experiments with extensive environ-
ment simulation and communication inaccessibility. Simple benchmarks that
compare the A-globe performance against other available agent platforms are
also included.

1. Introduction

In this chapter we present A-globe [2], an agent platform designed for fast pro-
totyping and application development of multi-agent systems. A-globe provides
the same level of services as JADE, COUGAAR, FIPA-OS, JACK (see Section 3
for comparisons and references). Besides presentation of the system itself, we will
describe several application scenarios. The main focus of the A-globe developers
has been given to the following applications domains:

• simulation, especially simulation of the multi-agent environment and collec-
tive behavior of large communities

• scalability, high-number of fully fledged and fully autonomous agents, that
are loosely coupled with lightweight infrastructure

• agent migration persistence and code and state migration within the commu-
nication network as much as physical reallocation of the computational host
and thus modelling of partial and non-permanent communication inaccessi-
bility[13].
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The platform provides functions for residing agents, such as communication
infrastructure, store, directory services, migration function, deploy service, etc.
Communication in A-globe is very fast and the platform is relatively lightweight.

A-globe platform is FIPA [6] compliant on the ACL level while it does not
support the FIPA specification for inter-platform communication, as the address-
ing and transport-level message encoding were simplified. Interoperability is not
necessary for development of the closed systems, where no communication outside
these systems is required. This is the case of e.g. agent-based simulations. For large
scale scenarios the interoperability also brings problems with system performance
where memory requirements, communication speed may become the bottleneck of
an efficient collective operation.

A-globe is suitable for real-world simulations including both static and mo-
bile units (e.g. logistics, ad-hoc networking simulation), where the core platform
is extended by a set of services provided by Geographical Information System
(GIS) and Environment Simulator (ES) agent. The ES agent simulates dynamics
(physical location, movement in time and others parameters) of each unit.

In this chapter you will learn about the architecture and more technical
details about the A-globe multi-agent platform (see Section 2), the comparison
with different available platforms will be provided (see Section 3). The last section
of this chapter will be devoted to simulation and two implemented simulation
scenarios (see Section 4).

2. System Architecture

The system integrates one or more agent platforms. The A-globe design is shown
in Figure 1. Its operation is based on several components:

• agent platform – provides basic components for running one or more agent
containers, i.e. container manager and message transport layer (section 2.1);

• agent container – skeleton entity of A-globe, ensures basic functions, com-
munication infrastructure and storage for agents (section 2.2);

• services – provide some common functions for all agents in one container;
• environment simulator (ES) agents – simulates the real-world environment

and controls visibility among other agent containers (section 4.1);
• agents – represent basic functional entities in a specific simulation scenario.

Simulation scenario is defined by a set of actors represented by agents re-
siding in the agent containers. All agent containers are connected together to one
system by the GIS services. Beside the simulation of dynamics the ES agent can
also control communication accessibility among all agent containers. The GIS ser-
vice applies accessibility restrictions in the message transport layer of the agent
container.
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Figure 1. System Architecture Structure

2.1. Agent Platform

The main design goals were to develop the platform as lightweight as possible and
to make it easily portable to different operating systems and devices (like PDA).
The platform is implemented as an application running on Java Virtual Machine
(JVM 2 edition 5.0 or higher is required). Several platforms can run simultaneously
(maximum 1000) on one computer, each in its own JVM instance. When a new
agent container is started, we can explicitly specify in which platform it will be
created and run.

The platform ensures the functionality of the rest of the system using two
main components:

• Container Manager. One or more agent containers can run within single agent
platform. Container Manager takes care of starting, execution and finishing of
these containers. Containers are mutually independent except for the shared
part of the message transport layer. Usage of single agent platform for several
containers running on one computer machine is beneficial because it rapidly
decreases system resources requirements (use of single JVM), e.g. memory,
processor time, etc.

• Message Transport. The platform-level message transport component ensures
an efficient exchange of messages between two agent containers running in a
single agent platform (single JVM).
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2.2. Agent Container

The agent container hosts two types of entities that are able to send and receive
messages: agents and services. Agents do not run as stand-alone applications. In-
stead, they are executed inside the agent containers, each agent in its own separate
thread. The schema of general agent container structure is shown in Figure 2. Con-
tainer provides the agents and services with several low level functions (message
transport, agent management, service management). Most of the higher level con-
tainer functionality (agent deployment, migration, directory facilitator, etc.) is
provided as standard container services.

Container Core ServiceService ManagerAgent Manager

Message Transportransport

Agents Services

SStore

Library ManagerLibrary Manager

Figure 2. The Agent Container Structure

The agent container components are:

• Container Core. The Container Core starts up and shuts down all container
components.

• Store. The purpose of Store is to provide permanent storage through interface
which shields its users from the operating system’s filesystem. It is used by all
container components, agents and services. Each entity in the agent container
(agent, service, container components) is assigned its own virtual storage,
which is unaffected by the others. Whenever an agent migrates, its store
content is compressed and sent to the new location.

• Library Manager. The Library Manager manages the libraries installed in
the container and monitors which agents/services use which library.

• Message Transport. The Message Transport is responsible for sending and
receiving messages from and to the container.

• Agent Manager. The Agent Manager takes care of creation, execution and
removal of agents on the container. It creates agents, re-creates them after
platform restart, routes the incoming messages to the agents, packs the agents
for migration and removes agent’s traces when it migrates out of the platform
or dies.

• Service Manager. The Service Manager takes care of starting and stopping
the services present in the agent container and their interfacing to other
container components. The user can start, stop and inspect the services using
a GUI. There are two types of services – user services and system services.
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Figure 3. Container GUI: Agent Information

The system services are automatically started by the container and form a
part of the container infrastructure (agent mover, library deployer, directory
services etc.). The system services cannot be removed. The user services can
be started by the user or any agent/service. The user services can be either
permanent (started during every container startup) or temporary (started
and stopped by an agent). In contrast to agents the services are not able to
migrate to other containers.

The container name must be unique inside one system built from several con-
tainers. This name is also used for determination of the specific store subdirectory
for the agent container and is registered with the Environment Simulator Agent.

2.2.1. Container GUI. The agent container has a graphic user interface (GUI),
which gives the user an easy way to inspect container state and to install or
remove its components (agents, services and libraries). The GUI could be shown
or hidden both locally and remotely (by message). The GUI screen shot is shown
in figure 3.

The window has two parts. The tree on the left side shows names of agents,
services and libraries present on the container. The right side shows detailed in-
formation about the object selected in the tree. Moreover, the agents and services
are allowed to create their own GUI without any restrictions.

2.2.2. Library Manager. The Library Manager is responsible for the libraries in-
stalled in the agent container and monitors the use of these libraries by agents
and services. Descriptor of each agent or service specifies which libraries the
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agent/service requires. The Library Manager is also responsible for automatic li-
brary migration when the agent using this library migrates, as described in the
dedicated section 2.3. The user can add, remove and inspect libraries using the
container GUI.

LibrarySender

obtainLibrary(name)

request(TheLibrary)

done(TheLibrary)

Destination Container
Source

Container

LibraryManager LibraryRequesterClient

storeLibrary(TheLibrary)

obtainLibrary(name)

finished(result)

Figure 4. Library Deployment Sequence Diagram

Every new loaded library in A-globe container internally uses the library
name constructed from the original library name and SHA-1 hash [1] of the li-
brary content. The loaded library is automatically labelled with unique version
label constructed as ver{ver num in the container}@{container name}. This
way, two different libraries with same file name can be used in parallel within a
single A-globe platform. The library can be removed before a class loader opens
it. After opening, it can not be removed from the runtime environment. It can be
only removed at A-globe restart.

Class loader is defined for each agent and service. If an agent/service doesn’t
use any special library, it uses a bootstrap class loader. The bootstrap class loader
locates classes only in the name space defined in the path specified by the starting
CLASSPATH parameter or manifest CLASSPATH parameter in the JAR library used
by Java runtime. If an agent/service uses specific libraries, it has to define its
own class loader which tries to load classes in specified libraries. However, even
the agent specific class loader always prefers classes defined by the bootstrap class
loader. Therefore, default classes can not be ”overridden” - it has no sense to define
own java.lang.String class because it will never be actually loaded. In A-globe,
each agent (service) class loader defines agent/service class resolving name space.
The migration process and the message transport layer always use respective name
space.



A-globe 27

Agents Services

Agent Manager Service Manager

Container Core

Message Transport

Receiving

Thread

Incoming

Queue

Incoming

Queue

TCP/IP connections to

the other containers

Figure 5. Message Flow

Therefore, several agents with different versions of the same main class can
run in a single agent container.

2.2.3. Message Transport. The Message Transport is responsible for sending and
receiving messages. Shared TCP/IP connection for message sending is created
between every two agent containers hosted on different agent platforms when the
first message is exchanged between them. Messages between two agent containers
running in the same agent platform are passed via the platform-level message
transport component. The message flow inside the container is shown in figure 5.

The message structure respects FIPA-ACL [7]. Messages are encoded either
in XML or Byte64 format. Message content can be in XML format or String.
The structure of each message content in XML format is described by Document
Type Definition (DTD). For coding and decoding XML messages the Java APIs
for XML Binding (JAXB) [10] package is used. For transport, all binary data (e.g.
libraries, serialized agents, etc.) is encoded using the open source Base64 coding
and decoding routines.

The message transport layer takes care that all message are serialized (mar-
shaled) and deserialized (unmarshaled) in the appropriate class name space de-
pending on the sender and receiver agent/service’s class loader.

Agent may receive messages without using conversation discrimination (all
messages incoming to this agent are processed in one method), otherwise it must
use the conversation manager with tasks.

2.2.4. Conversation Manager and Tasks. Usually, an agent deals with multiple
jobs simultaneously. To simplify the development of such agents, A-globe offers
tasks. A task is able to send and receive messages and to interact with other tasks.
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The Conversation Manager takes care of every message received by the agent to
be routed to the proper task. The decision, to which Task a message should be
routed, depends on the massage ConversationID. The ConversationID should
be viewed as a ’reference number’.

2.2.5. Agents. The agents are autonomous entities with a unique name and an
ability to migrate. There is a separate thread created for each agent. A wrapper
running in the thread executes the agent body. Whenever an agent enters an error
state or finishes its operation, the control is passed back to the wrapper, which han-
dles the situation. The return value of the agent state is used to determine agent’s
termination type (die, migrate, suspend). Therefore, potential agent failures are
not propagated to the rest of the agent container. Agents could be deployed to
remote containers.

Client ServiceManager Service

ServiceShell

getService()

getServiceShell()

create

serviceShell

serviceShell

Service Call

performOperation()

performOperation()

result

result

Figure 6. Service Shell Operation

2.2.6. Services. The services are bound to a particular container by their identifier.
The same service may be present at several containers and can be also deployed to
remote containers. Services handle the requests coming in two forms - as messages
or local interface calls.

The agents (and services or container components) have two ways to com-
municate with a service. Either via normal messages or by using the service shell.
The service shell is a special proxy object that interfaces service functions to a



A-globe 29

client. The UML sequence diagram of service shell creation and use is shown in
Figure 6.

The advantage of the service shell is an easy agent migration (for migration
description see section 2.3): while the service itself is not serializable, the service
shell is. When an agent migrates, the shell serializes itself with the information
what service name it was connected to. When the agent moves to the new location,
the shell reconnects to the same service at the new location. When a service is shut
down, it notifies it’s shells so that they refuse subsequent service calls.

There are several common services described in the table 1. These services
are automatically started by the agent container and provide common functions
for all agents.

Service name Description

container/command Service through which the container
core remotely receives commands
(show/hide GUI, shutdown)

container/directory It provides extended white pages and
directory pages services. It supports in-
accessible environment and uses visi-
bility updates provided by ES Visibil-
ity servers. The service is automatically
started on every client container.

container/library/directory Provides searching of library matching
some search criteria

container/deploy Service responsible for starting an agent
from agent info record

gis/master Master side of Environment Simulator
service

gis/client Client side of Environment Simulator
service

Table 1. System services description

2.2.7. Agent/Service Naming and Addressing. The agent name is globally unique
and is normally generated by the platform during agent creation. The service name
is unique only within one agent container (services cannot migrate) and is specified
by the service creator. The address has the following syntax:

aglobe://platform_ip:port/[agent|service]/name.

2.3. Agent Migration and Cloning Procedure

In order to successfully migrate, the agent has to support serialization. The Library
Manager takes care that all necessary libraries are transferred with the agent code.
The migration sequence is shown in Figure 7.
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AgentOrig AgentManager MoverService
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request(deployAgent)

AgentFinished

Figure 7. Agent Migration

All exceptions that might occur during the process are properly handled and
the communication is secured by timeouts. If the migration cannot be finished for
any reason, the agent is re-created in its original container.

If the done message is successfully sent by the agent destination container
but never received by the source container, two copies of the agent emerge. If the
done message is received by the source container, but the agent creation fails at the
destination container, the agent is lost. These events can never be fully eliminated
due to the possible communication inaccessibility, but maximum caution was given
to minimize their probability.

When the migrating agent uses external libraries, the library manager service
(see Section 2.2.2) moves the necessary libraries not available on the new container
on behalf of the migrating agent. The migration process makes use of the Java
programming language features - serialization and externalization. Whenever an
agent migrates or a new agent(service) is deployed, the Library Manager checks
which libraries (including the library version) are missing on the container and
obtains them from the source container. The inter-platform functionality of the
Library Manager is realized though the service library/loader (this service is
present on every agent container). Library deployment sequence diagram is shown
in Figure 4.
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Agent cloning is analogous to the agent migration. The procedure differs only
in two points - the clone created on the remote can have a different name, specified
by the agent and the original agent is not removed at the end of the operation.

2.4. Sniffer Agent

The Sniffer Agent is an on-line tool for monitoring all messages and their trans-
mission status (delivered or not-reachable target). This tool helps find and resolve
communication problems in the system during the development phase.

The sniffer can be started only on an agent container where gis/master service
is running. After the sniffer starts, all messages between agents and services inside
any container or among two agent containers are monitored. Messages can be
filtered by the sender or receiver of the message. All messages matching the user-
defined criteria are shown in the sniffer GUI, as shown in Figure 8. The message
transmission status is visualized by the type of line. The color of the message
corresponds to the message performative.

Figure 8. The sniffer

2.5. Communication Analyzer

The sniffer agent provides a detailed overview of the communication between
agents. However, the amount of details provided by the sniffer, combined with
the column alignment of agents makes the global view of the interactions in the
community difficult to grasp. Quite often, we prefer to clearly see the intensity of
interactions between agents, rather than the details of individual communications.
This is exactly the service provided by the communication analyzer, as shown in
Figure 9. Communication Analyzer presents selected agents, filtered by a regular
expression, in a circle. Messages exchanged between agents influence the color and
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the width of the links between communicating agents. In order to keep the im-
age updated, old messages fade away progressively and only the recent ones are
visible. Such visualization tool is important especially in situations with limited
accessibility, where the fragmentation of the community can be readily perceived.
For example in ACROSS scenario (see paragraph 4.2), we can observe the aver-
age number of agents participating in auctions or the lack of communication with
agents that are not considered to be trustful by others.

Figure 9. The Communication Analyzer user interface. Note
that two disjoint parts of the agent system can be clearly ob-
served, indicating possible communication failure.

3. Platform comparison

This section presents the results of comparison of available JAVA-based agent de-
velopment frameworks evaluated by an industry expert Pavel Vrba from Rockwell
Automation Research Center in Prague [21], which were carried out in a cooper-
ation with the Gerstner Laboratory.

These benchmarks were focused especially on the platform performance which
is a crucial property in many applications. Detailed description of the particular
features is beyond the scope of this chapter. Firstly, the particular benchmark
criteria, which the agent platform should provide are identified (e.g. small memory
footprint and message sending speed). These benchmarks were carried out for the
following agent platforms1 - JADE [9, 3], FIPA-OS [17], ZEUS [11], JACK [8] and

1GRASSHOPPER’s licence does not allow to use it for benchmarking and other comparison
activities.
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A-globe [2]. Shall be noted that the platforms feature various special capabilities
that are out of scope of the comparison (e.g. BDI capability in JACK). These
features can have an impact on the investigated performance measures.

serial [ms] parallel [s] serial [ms] parallel [s] serial [ms] parallel [s]

JA DE v 3.1 0,8 0,36 7,5 0,19 76,3 0,49
JA DE v 3.1

1 host, 2 JVM, RMI 10,3 4,92 111,9 6,35 1 190,5 7,14
JA DE v 3.1
2 hosts, RMI 5,79 3,30 68,8 3,71 770,3 2,48

FIPA -OS v 2.1.0 28,6 14,30 607,1 30,52 2 533,9 19,50
FIPA -OS v 2.1.0
1 host, 2 JVM, RMI 20,3 39,51 205,2 12,50
FIPA -OS v 2.1.0
2 hosts, RMI 12,2 5,14 96,2 5,36

ZEUS v 1.04 101,0 50,67 224,8 13,28
ZEUS v 1.04
1 host, 2 JVM, ? 101,7 51,80 227,9
ZEUS v 1.04
2 hosts, TC P/IP 101,1 50,35 107,6 8,75

JA CK v 3.51 2,1 1,33 21,7 1,60 221,9 1,60
JA CK v 3.51

1 host, 2 JVM, UDP 3,7 2,64 31,4 3,65 185,2 2,24
JA CK v3.51
2 hosts, UDP 2,5 1,46 17,6 1,28 165,0 1,28

AGlobe v 1.0 0,3 0,10 2,8 0,04 28,4 0,09
AGlobe v 1.0

1 host, 2 JVM, TC P/IP 2,4 0,33 24,6 0,88 242,7 0,98
AGlobe v 1.0
2 hosts, TC P/IP 2,2 0,33 13,9 0,31 96,5 0,44

JAVA-based Agent Development Toolkits/Platforms - Benchmark Results

Agent Platform agents: 1 pair
messages: 1.000 x

agents: 10 pairs
messages: 100 x

agents: 100 pairs
messages: 10 x

Message sending - average roundtrip time (RTT)PIII, 600MHz, 256MB

April 2004, Rockwell Automation in Prague

Table 2. Message delivery time results for selected agent platforms

3.1. Message Speed Benchmarks

The agent platform runtime, carrying out interactions, should be fast enough to
ensure reasonable message delivery times. The selected platforms have been put
through a series of tests where the message delivery times have been observed
under different conditions.

In each test, the so called average roundtrip time (avgRTT) is measured. This
is the time period needed for a pair of agents (let’s say A and B) to send a message
from A to B and get reply from B to A. The roundtrip time is computed by the
agent A when a reply from B is received as a difference between the receive time
and the send time. This message exchange was repeated several times (depending
on the type of experiment) and the results were computed as an average from all
the trials.

The overall benchmark results are presented in the Table 2. A more transpar-
ent representation of these results in the form of bar charts is depicted in Figure 10.
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Figure 10. Message delivery time - serial test results

Three different numbers of agent pairs have been considered: 1 agent pair (A-B)
with 1000 messages exchanged, 10 agent pairs with 100 messages exchanged within
each pair and 100 agent pairs with 10 messages per pair. Moreover, for each of
these configurations two different ways of executing the tests are applied.

In the serial test, the A agent from each pair sends one message to its B
counterpart and when a reply is received, the roundtrip time for this trial is com-
puted. It is repeated in the same manner N -times (N is 1000/100/10 according
to the number of agents). The parallel test differs in such a way that the A agent
from each pair sends all N messages to B at once and then waits until all N replies
from B are received.

Different protocols used by agent platforms for the inter-platform commu-
nication are mentioned: Java RMI (Remote Method Invocation) for JADE and
FIPA-OS, TCP/IP for ZEUS and A-globe and UDP for JACK. Some of the tests,
especially in the case of 100 agents, were not successfully completed mainly be-
cause of communication errors or errors connected with the creation of agents.
These cases are marked by a special symbol.

3.2. Memory requirements benchmark

This issue is mainly interesting for deploying agents on small devices like mobile
phones or personal digital assistants (PDAs) which can have only a few megabytes
of memory available. This issue is also important for running thousands of agents
on one computer at the same time. Approximate memory requirements per agent
can be seen in Figure 11.
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Figure 11. Approximate memory requirements per agent

4. Simulation

A-globe platform is primarily aimed at large scale, real world simulations with
fully fledged agents. To support this goal, it includes a special infrastructure for
environmental simulation. We will now describe this infrastructure, together with
two scenarios implemented using the platform, where we emphasize the concepts
used in the simulation of two very different environments for a multi-agent system.

4.1. Simulation support in A-globe

While designing the simulations in A-globe platform, we use agents not only to
play roles in the simulated world - actor agents but we also use them to implement
the world where the actor agents act. The agents used for the world simulation are
all located in a dedicated master container and are called Environment Simulation
agents.

These agents only rarely use messages to communicate with actor agents.
Instead, they communicate via topic messaging - container-to-container messaging
specifically reserved for environmental simulation, as shown in Figure 12.

Topic messaging is managed by GIS Service - a special service that is a
part of the A-globe platform and can be started in a container by specifying
an appropriate startup parameter. This parameter value determines whether the
container is a master, server side container or a client - normal container with
actor agents.

Client agents subscribe with GIS client service to receive various topics. If
such a topic is received by the container, it is distributed to all subscribed agents.
Note that all agents in the container receive the same value - this is appropriate
in our opinion, as the environment perception shall be identical for all collocated
agents. In addition, the agents who wish to act on the environment can submit
topics to the GIS service. These topics are then sent to all ES agents in the master
container subscribed to receive the topic.

In the nominal configuration, each ES agent manages an internal model of
the environment, updates the model with the actions received from actors and
submits the environment status to actors in their containers. Each ES agent can
handle one or more topics and one topic can be handled by more then one agent.
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Figure 12. Topic messaging in A-globe

Specialized ES agents can also subscribe to receive local topics from other ES
agents. Typically, many specialized ES agents can receive position information
from position agent and use this data to submit appropriate localized environment
information to agents.

This approach scales fairly well with the community size. However, when the
environment becomes more complex, it is often not economic to handle the envi-
ronment simulation in the ES agents as the interactions become too cumbersome
and internal models too complicated. In this case, the server can use an appropri-
ate GIS server with an ES agent wrapper for simulation purposes. The ES agent(s)
is then responsible only for obtaining the information from the appropriate layers
of the GIS server and submitting them to corresponding topics. The use of the GIS
server is not without a cost - the integration with wrapper agent is rarely flawless
and shall be avoided for simple environments.

ES agent can be responsible for nearly any simulation layer, depending on
the wishes of the developers. However, a privileged place between ES agents is
occupied by accessibility agents, who control the existence of communication links
between containers holding the actors. Their prominence is caused by the fact that
the platform messaging layer is integrated with these agents through predefined
topics and any attempt to send a message to an agent in an inaccessible container
is automatically unsuccessful.

There are several ES agents implemented and some of them are provided as
a part of the A-globe platform package for optional use:
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Figure 13. Platform Visibility Matrix

• Manual (Matrix) ES Agent This agent provides simple user-checkable visibil-
ity matrix, as shown in Figure 13. The user simply checks which containers
can communicate together and which can not.

• Distance-based ES Agent This agent is a fully automatic environment simula-
tor. It receives positions of mobile agent containers representing mobile units
in virtual world and automatically controls accessibility between them. The
visibility is controlled by means of the simulation of the short range wireless
link. Therefore each container can communicate only with containers located
inside the predefined radius limit. As the containers move, connections are
dynamically established and lost.
Other visibility agents can be implemented for each specific simulation, pro-

vided that they respect the ontologies and protocols that apply for them.

4.2. ACROSS – Agent Complex Reasoning Simulation System

To illustrate the concepts of the platform design presented above, we will present
the ACROSS scenario that uses the above features to create a relatively rich world
where diverse types of agents can interact. Currently, we use this scenario as a com-
mon base for multiple research projects, where we need to investigate interactions
between a relatively high number of fully-fledged agents.

Figure 14. ACROSS scenario. The geography of the island is
modelled after the real Java island in Indonesia, with necessary
simplifications.
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In our scenario, figure 14, we solve a logistics problem in a non-collaborative
environment with self-interested agents. Agents that are part of the scenario have
no common goals and their cooperation is typically financially motivated.

We have three types of information about each agent [15]. Public information
is available to all agents in the system. It includes the agent identity, services
proposed to other agents and other relevant characteristics it wishes to reveal.
Semi-private information is the information which the agent agrees to share with
selected partners in order to streamline their cooperation. In our case, resource
capacity cumulated by resource type is shared within transporters’ alliances (see
below). Private information is available only to agent itself. It contains detailed
information about agent’s plans, intentions and resources.

The following types of agents participate in the scenario as actors:
Location Agents: Location agents represent population and natural resources,

figure 15 (a). They create, transform or consume resources. As most location
agents are unable to completely cover the local demand, they acquire the
surplus goods from other locations through one round, sealed bid auctions
organized by buyers according to the FIPA CNP protocol [5]. As most Lo-
cation agents are physically remote, it is necessary to transport the acquired
goods from the provider to the buyer. In order to do so, location agents
contract ad-hoc coalitions of transporter agents to carry the cargo, figure 16.

Figure 15. (a) – Location and 3 Transporter agents in a village
container; (b) – a Driver agent in a car container

Transporter Agents: Transporter Agents are the principal agents in our sce-
nario. They use their resources - vehicles, driven by Driver agents - to trans-
port the cargo as requested by location agents. As a normal request exceeds
the size that may be handled by a single transporter, transporters must form
one-time coalitions in order to increase the coverage and thus to be chosen in
the auctions. All transporter agents are self-interested and they don’t wish to
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cooperate with all other transporters. They only pick the partners that are
compatible with their private preferences. The compatibility is checked us-
ing the public information available about the potential partner and agents’
private preferences.

While answering the calls for proposals, the agents must form the coali-
tions relatively fast and efficiently to submit their bid before timeout elapses.
Therefore, they use the concept of alliances, discussed in [15], to make the
process more efficient. Alliances are groups of agents who agree to exchange
the semi-private information about their resources in order to allow efficient
pre-planning before starting the coalition negotiation itself. Using the pre-
planning, negotiation can directly concentrate on optimization issues, rather
than starting from resource query, saving valuable time and messages.

Driver Agents: Driver Agents drive the vehicles owned by Transporter agents,
figure 15 (b). They handle path planning, loading, unloading and other driver
duties.

Figure 16. Location agents contract ad-hoc coalitions of trans-
porter agents to carry the cargo

Numbers of agents actually used can vary from project to project, but the
basic configuration uses 25 Location agents, each of them in separate container, 25
Transporter Agents distributed among Location agents’ containers and 65 Driver
Agents, each with its own container. Besides these ”active” agents, we do need
several services per container to implement platform functions like GIS, directory
or migration management. With the latest optimizations, this configuration runs
on a single PC, greatly facilitating the experiments.

Besides the agents mentioned above, several other agents are used for world
simulation purposes, as described in 4.1. ACROSS scenario is managed by the
following agents:

NodePod Agent simulates the positions and movements of all agent contain-
ers (see 2.2) in the simulated world. ACROSS world containers are positioned in the
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graph. Location agents are placed in a selected node, while the vehicle containers
move through the graph following the edges - roads. For each moveable container,
at least one agent in this container must be able to communicate the decisions
about future directions to the NodePod agent and to handle events generated by
the NodePod upon arrival to the graph node. NodePod doesn’t take any part in
road planning or decision making - it plainly simulates the movements of agent
container support on the map following the orders from the Driver agents.

For large scale scenarios, we prefer to handle the movements of agents in a
central simulation element, rather than in the container itself. This approach, even
if slightly less flexible while adding new agents, pays off thanks to the important
savings in the number of messages necessary to run the simulation. In most cases,
we require the movements to be smooth, requiring at least 10 simulation steps
per second. If the movements are managed in a distributed manner, the system
would require 600 messages per second just to report the positions of containers.
Besides the sheer number of messages, we must take into account the fact that
many simulation agents require the knowledge of all agent’s position in order to
generate their output (for example accessibility). Synchronization then becomes
an important issue.

Besides the communication with driver agents, the NodePod agent also pro-
vides the updated positions of all containers to all other simulation agents in the
master container, especially to the Visibility Agent.

Accessibility Agent is an ES agent that simulates the accessibility between
the agent containers. It uses the position data received from NodePod ES agent
to determine the distance, updates the data with stochastic link failures specified
by the configuration parameter and sends the updates to the containers whose
accessibility has changed.

We shall note that the two types of inaccessibility - distance based or caused
by the link failures - have very different effects on the processes in the community.
In the first case, agents who are inaccessible cannot start any direct interaction and
this translates into the suboptimal performance of the system, according to the
standard economic theories. On the other hand, if the inaccessibility is stochastic,
the interactions can indeed start, but the actors must be aware of the possibility
that the link can be broken at any time. Therefore, the agents must adopt an
appropriate method for inaccessibility resolution, such as use of stand-ins (see
[18]), social knowledge or adopted interaction protocols.

Weather Agent maintains the model of the weather in the various parts of
the environment. The weather is generated once per each simulation day and
submitted to all Location containers. It is then used to adjust the production or
consumption of various resources.

Two additional modules are currently integrated with NodePod agent. The
3D visualizer module ensures the selection and formatting of the data for the
external visualizers. Besides the pure position data, this module receives the status
messages from agents and displays them in the appropriate visualizers. Due to the
intensive data flow between this module and external visualizers, we were forced
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to implement an efficient binary protocol for message sending. The time module
controls the speed at which the simulation runs. It maps the real time to physical
simulation step, therefore influencing the basic pace at which the system runs.
Besides this fundamental parameter, we can modify the second parameter, that
maps the simulation step to simulation day, used to trigger the recurrent agents’
actions, such as production or commercial exchanges.

Commercial Visualizer agent visualizes the auctions, including all bids and
selected winners, together with the coalitions of transporters that handle the trans-
portation, as shown in figure 17. It also presents the alliances and their formation
described above. In contrast to Sniffer or Communication analyzer agents, this
agent is scenario dependent. This makes its integration with other scenarios non-
trivial, but the specificity makes the presentation efficient and understandable.

Figure 17. The commercial visualizer GUI

Other ES agents may include for example a Bandit agent, implementing
the adversarial actions in the environment, or other various project dependent
simulators and visualizers.

4.3. Naimt – Naval Automation and Information Management Technology

Features of the A-globe platform were also verified on the simulation of iden-
tification/removal of mines situated in given area using a group of autonomous
robots. This simulation was developed within the Naval Automation and Infor-
mation Management Technology (NAIMT) project. This software simulation of
real-life hardware robots was required to enable scalability experiments and effi-
cient development and verification of embedded decision making algorithms.
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The goal of the group of robots is to search the whole area, detect and remove
all mines located there. To allow mine removal a video transmission path must be
established between the base (operated by human crew that gives the robot a
permission to remove the mine) and the robot who has found the mine. Typically,
relying via the other robots is necessary, because the video transmission range
is limited (e.g. wi-fi connection or acoustic modems in underwater environment).
Figure 19 shows an example of robots transmitting a video to base. In this scenario
two types of communication accessibility are included:

• High bandwidth accessibility, necessary for video transmissions, very restrained.
• Signaling accessibility, used for coordination messages and position informa-

tion, is higher than video accessibility, but remains limited.

Figure 18. Relayed communication (link between the robot and
base through 4 relays)

All robots in the simulation are autonomous and cooperative. Their dedicated
components (coordinators) negotiate in peer-to-peer manner when preparing the
transmission path. A-globe ES agent and GIS services are utilized during this
phase to inform the robot about others within its video transmission range.

Each robot consists of several components, implemented as A-globe agents
running within one agent container:

• Robot Pod simulator, computing robot moves and updating its position with
GIS server via GIS service.

• Mine Detector simulator, providing the decision-making components with
information about found mines.
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• Video data acquisition and transmission element. This subsystem creates the
data feed form the source provided by the simulation and prepares transmis-
sion path by remotely spawning one-use transmission agents along the path.
Video is then transmitted as a stream of binary encoded messages.

• Robot Coordinator implementing search algorithm, transmission coalition
establishment and negotiation.
We are using three different approaches to distributed coordination in fixing

the ad-hoc data transmission feed. The most straightforward are the approaches
relying on a single agent mastering the planning process. Upon finding the mine,
it requests the other visible robots to move to a specific positions so that a high-
bandwidth transmission link between the mine and the base is established. In two
variants of this approach, we may emphasize either the communication quality
or the minimization of other robots’ actions disturbance. When we optimize the
communication quality, relay robots tend to be placed on the join between the mine
and the base so that the distance between the relays is minimized and minimal
possible number of robots is used. On the other hand, when we try to minimize
the impact on relay robots’ own plans, relays are spread in the area between the
transmission origin and target, in the proximity of their original areas. In the
third approach, the control over the feed planning is not centralized, but rather
passed along the communication link relays when the connection is constructed.
This approach is well adopted for the environments where the communication is
limited and the knowledge necessary for feed building is not common, but rather
distributed among robots.

Generality of the A-globe technology has been proved when migrating the
technology to the robocup soccer environment. The GIS server and ES agents
managing the position of the robots have been replaced by the information from
the robocup soccer camera. Similarly the nodepod agent has been directly coupled
with the hardware of the robocup soccer robots.
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6. Conclusion

A-globe agent platform supports communication inaccessibility, agent migration
and deployment on remote containers. These features make A-globe a well suited
platform for simulation and implementation of physically distributed agent systems
with applications ranging from mobile robotics to environmental surveillance by
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Figure 19. Relayed communication as simulated by Robocup
soccer robots. Robot movements and positions are derived from
hardware inputs. Base is in the upper-left corner.

sensor networks. A-globe was designed as streamlined lightweight platform which
will operate on classical (PC) as well as mobile devices (PDA).

FIPA compliance was not considered a key feature for the simulation-oriented
platform the A-globe is. However, in the course of the embedding process we
are currently planning to implement a dedicated platform service providing FIPA
compliance for external communication to cover the gap. Key features the platform
currently presents are full mobility support (2.3) and environmental simulation
support and platform-level inaccessibility control (4.1). The main driving force of
the platform development is the emphasis on easy simulation support and sharp
separation between the simulation parts and agent code. Agents that are developed
and validated in the simulated environment can be then easily deployed in the real
environment, where the GIS service will provide access to the local sensors instead
of the simulated values.

The ACROSS scenario is currently exploited with the Agent Technology
Group for investigating diverse research concepts in collective decision-making.
We study primarily various techniques for coping with agents’ communication and
coordination in inaccessible and adversarial environments. The remote presence
techniques include primarily the stand-in agent technology [16], [12], [18], while the
remote awareness concept includes mainly the methods for agents social knowledge
maintenance and acquainted models (e.g. the Tri-base Acquaintance Model [14]).

The ACROSS scenario is used as a benchmark for testing the agents meta-
reasoning capacities. The meta-reasoning agents are monitoring the communica-
tion exchange in order to reconstruct agents private knowledge. Meta-reasoning
in collaborative environments is used mainly for optimization of agents collective
behavior [19], [20]. The tri-base acquaintance model has been extended recently
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for representation of agents’ mutual trust and used for formation of trusted and
semi-trusted coalitions.

Within the NAIMT scenario, the A-globe agents have been used mainly for
studying the concept of distributed coordination in partially inaccessible environ-
ment. Various techniques of distributed planning, coordination and ad-hoc data
transmission processes are currently being investigated [4].
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