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Abstract. Decommitment is the action of foregoing of a contract for another
(superior) offer. It has been analytically shown that, using decommitment,
agents can reach higher utility levels in case of negotiations with uncertainty
about future opportunities. We study the decommitment concept for the novel
setting of a large-scale logistics setting with multiple, competing companies.
Orders for transportation of loads are acquired by agents of the (competing)
companies by bidding in online auctions. We find significant increases in profit
when the agents can decommit and postpone the transportation of a load to
a more suitable time. Furthermore, we analyze the circumstances for which
decommitment has a positive impact if agents are capable of handling multiple
contracts simultaneously. Lastly, we present a demonstrator of the developed
model in the form of a Java Applet.

1. Introduction

Multi-agent systems (MASs) have emerged as an important paradigm for mod-
elling decentralized, real-time optimization problems. Several lines of work have
addressed the application of multi-agent systems (MASs) [21, 8, 16, 27] in the logis-
tics of the transportation sector, a challenging area of application. The transporta-
tion sector is very competitive and profit margins are typically low. Furthermore,
the planning of operations is a computationally intensive task which classically
is centrally organized. Such centralized solutions can however quickly become a
bottleneck and do not lend themselves well to changing situations. For example,
a centralized planner may not be well suited for incident management, or exploit-
ing new profitable opportunities. This last issue is of great importance as a large
proportion of the orders for transportation originate in the course of operation.
MASs can overcome these challenging difficulties and offer new opportunities for
profit by the development of robust, distributed market mechanisms [5, 25]. In this
paper, we use as model online, decentralized auctions where agents bid for cargo
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in a MAS logistics setting. We study a bidding strategy which is novel for such a
large scale setting.

In [23, 2, 24], a leveled commitment protocol for negotiations between agents
is presented. Agents have the opportunity to unilaterally decommit contracts, at
the price of a prenegotiated penalty. That is, they can forgo a previous contract
for another (superior) offer. Sandholm et al. have shown formally using a game
theoretical analysis for a constrained number of agents that by incorporating this
decommitment option the degree of Pareto efficiency of the reached agreements
can increase. Agents can escape from premature local minima by adjusting their
contracts. In this work, decommitment is the possibility of an agent to forgo a
previously won contract for a transport in favor of a more profitable load.

We show in a series of computational experiments that significant increase in
performance (profit) can be realized by a company with agents who can decommit
loads, as opposed to a company with agents that only employ the option of regular,
binding bidding. As a necessary precondition for this gain, the experiments show
that decommitment is only a clearly superior strategy for an agent close to the
limit of its capacity. This is a new, general result for agents capable of handling
simultaneous tasks. Furthermore, we claim that the increase in performance for our
(abstract) model can be seen as a lower bound for expected increased performance
in practice. We substantiated this statement through experiments in [18] that show
that the relative impact of a decommitment strategy increases with the complexity
of the world. We hence expect a decommitment strategy to be very effective in
highly stochastic environments, i.e the real world.

The remainder of this paper is organized as follows. Section 2 presents the
transportation model that we use in this paper. The market mechanism is de-
scribed in Section 3. Section 4 briefly discussses other multi-agent systems applied
in logistics, focusing on market-based approaches. Section 5 presents a Java applet
build to visualize the problem domain and online bidding complexity as presented
in Sections 2 and 3. Section 3 details our application of decommitment in a mar-
ket setting. Section 7 discusses a required precondition for a successful decommit-
ment strategy by an agent capable of handling multiple tasks concurrently. The
computer experiments are presented in Section 8. Section 9 contains concluding
remarks.

2. The Logistics Model

In this section, we present the transportation model that is used in this paper. We
have kept the transportation model, the market mechanism, and the structure of
the bidding agents relatively simple to keep the analysis as transparent as possible.
Some extensions of the basic model are further discussed in Section 8, where we
show that performance can increase significantly when a decommitment strategy
is used. We expect the (positive) effect of decommitment to increase when the
complexity of the transportation model increases as the uncertainty of possible
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future events consequently increases. In [18] we investigated some venues to further
substantiate this claim.

2.1. Overview

The world is a simple n by n grid. This world is populated by trucks, depots with
cargo, and competing companies. The trucks move over the grid and transport
cargo picked up at the depots to destinations on the grid. Each truck is coupled
with an agent that bids for cargo for its “own” truck.1 The trucks are each owned
by one of the companies. The performance of a company is measured by the
total profits made by its fleet of owned trucks. We consider (for simplicity and
to facilitate the analysis of the model’s results) that all companies consist of the
same number of (identical) trucks.

2.2. Performance Indicators

Poot et al. [19] give an extensive list of performance measures for the transporta-
tion of cargo found in literature. The indicative performance measures from this
list that we consider are (i) the profit made as a function of the total number of
transported loads, (ii) the profit as a function of the bulk of the transported loads,
and (iii) the costs as a function of the distance traveled for the made deliveries.
We have used profit as the most important indicator for measuring the outcome
of our simulations. Here we assume that the raw profit made by a transporta-
tion company provides a good overall indication of how efficiently it organises its
operations.

2.3. Cargo

Loads for pickup prior to delivery by the trucks are locally aggregated at depots.
Such an aggregation procedure is for example used by UPS,2 where cargo is first
delivered to one of the nearby distribution centers. Warehousing, where goods
from multiple companies are collected for bundled transport, is another, growing
example. This aggregation can take place over relatively short distances or over
more substantial distances (e.g., in case of international transport). In general,
the origin of loads will not be randomly distributed but clustered, depending on
population centers and business locations [14]. We thus also consider depots as
abstractions of important population or business centers. Section 8 presents such
a model.

Like most regular mail services (e.g., UPS) and many wholesale suppliers,
we employ a model of “next day delivery”. In the simulations, each depot has a
number of loads available for transport at the start of the day. Furthermore, new
orders can also arrive for transport in the course of the day.

According to [29], transportation is dominantly limited in one dimension for
roughly 80% of the loads. In Europe, this dimension is volume; in the United

1In the text, we sometimes blur the line between the agent and its truck.
2See www.ups.com.
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States this dimension is weight.3 We hence use a model where we characterize the
cargo (and the carrying capacity of the trucks) in only one dimension, which we,
without loss of generality, call weight.

2.4. The Transporters

The trucks drive round trips in the course of a day. Each individual truck starts
from the same initial location each day, to return to this location at the end of the
day. Multiple round trips on the same day are allowed, and taken into consideration
in the planning, as long as sufficient time remains to complete each trip the same
day.

Alternative distributions of the trucks (e.g., dynamically changing over time)
can of course occur in practice. Such distributions, however, significantly compli-
cate the analysis of the model’s results, especially over multiple days. Furthermore,
a repeating pattern is common as population and business centers do not change
dramatically overnight. In our simulations, the trucks start their trips at the de-
pots. This is in line with the tendency of companies to base their trucks close to
the sources of cargo (to maximize operational profits).

Legal restrictions typically limit the number of hours that truck drivers can
work per day. There may also be a maximum distance which can be driven in one
day. In addition, speed limits need to be taken into account. We set the length of a
typical working day of eight hours. We also assume (for simplicity) that the trucks
travel with a constant “average” speed. These two assumptions determine that
the total distance on the grid which can be travelled by any truck in a simulation
“day” is limited.

2.5. Computing the Cost of Routing

The costs of the trucks, are in our model, strictly dependent on the distance which
the truck needs to cover in a day to deliver commited loads. Supposing a truck
agent is already commited to delivering n loads, the cost of a (n+1)th load is
computed as the additional cost of modifying its path to consider the new load.
In the general case, this problem is NP-complete, even for a single truck, since it
is equivalent to a Travelling Salesman Problem.

An insertion algorithm (where we attempt to insert the new load at each
point in the existing plan) provides a reasonably good heuristic for this problem
in many cases. However, it may be the case that after obtaining a new order, by
modifying the path for already existing loads, an agent may obtain lower costs. In
order to overcome this, we make the following choice: if the number of loads to plan
by the truck is at most 8, then we compute, by brute force, the best possibility for
the ordering of the load pickup and deliveries, which guarantees the most efficient
route. If the total number of cargo to consider in the route exceeds 8 loads, then

3Private communication with E. Tempelman, author of [29].
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the insertion heuristic is used for the current plan, since computing all re-ordering
possibilities becomes computationally prohibitive. 4

The value of the cost of acquiring a new load computed by the truck is an
important measure in our model, because it is used by the truck agent to compute
its bid in the distributed auctions (as shown in Section 3).

3. The Market Mechanism

Each piece of cargo is sold in a separate auction. Auctions for loads are held in
parallel and can continue over several rounds. The auctions continue until all cargo
is sold or until no further bids are placed by the agents in a round. After a load is
sold, it awaits pickup at its depot and is no longer available for bidding.

Agents are not allowed to bid for bundles of cargo. Such a combinatorial
auction type is as yet beyond the scope of our research because the number of
different bidding options is huge (at peak 300 pieces of cargo are offered in the
experiments, yielding an intractable number of bundles for each of which traveling
salesman problems have to be solved.).5 We also do not allow agents to participate
simultaneously in multiple auctions with all implied complications [20, 4, 28]. An
agent’s valuation for a load is typically strongly dependent on which other loads are
won, and at what cost. For this reason, and for the sake of computational feasibility,
we allow each agent to place a bid for at most one load in each round of auctions.
Our agents can thus be seen as computationally and rationally bounded, although
they repair (some of) their non-optimal local decisions through a decommitment
strategy (see Section 3).

Each piece of cargo is sold in a separate Vickrey auction. In this auction
type, the highest bidder wins the contract but pays the second-highest price.6 In
our model, neither the number of participants nor the submitted bids are revealed
by the auctioneer.7 An attractive property of the one-shot (private-value) Vickrey
auction is that it, for certain restrictions, is a (weakly) dominating strategy to
bid the true valuation for the good [32, 10].8 Another attractive property of the
Vickrey auction is that a limited amount of communication between the auctioneer

4We acknowledge other heuristics for this problem could be implemented, but we leave this to

future research
5Determining the winners of a combinatorial auction is NP-complete. There has recently been a
surge of research in this area, however. A fast algorithm for winner determination has for instance

been proposed in [26].
6Ties are broken at random.
7We do not use or reveal sensitive business information in our market mechanism. When exten-

sions of the model are considered (e.g., models where companies receive information about their

competitors’ actions and behavior) privacy issues should be taken into account.
8It is important to note here that the Vickrey auction has some known deficiencies. Furthermore,

limitations of the protocol may arise when the Vickrey protocol is used for automated auctions

and bidding is done by computational agents [22]. These aspects deserve further attention for
future implementations.
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and the bidders is required (as opposed to, for example, the “open-cry” English
auction).

The agents use the following strategy in each bidding round. First, they
determine the valuation of each piece of cargo which is offered in an auction. The
valuation of an added load is equal to added profit for this load (the amount of
money which the truck receives when the load is delivered minus the additional
costs associated with the new path). The application of more elaborate valuation
functions can also be useful. For example, the value of a load can increase when
the truck, by transporting the extra load, can move cheaply to an area of the grid
with a high density of depots. Another venue of research is in the line of COIN [33],
where the aim would be to modify the agents’ valuation function to let them more
efficiently cooperate as one company. Such refinements of the agent’s valuation
function form an interesting topic for further studies.

There is however obviously an incentive for a company to avoid competition
between its own trucks. As part of its strategy, the agents of each company there-
fore makes a pre-selection that determines which agents are allowed to bid for the
company in each auction. In this pre-selection phase, the company compares the
valuations of the company’s agents for the available cargo. The agent with the
highest valuation (overall) then bids (its valuation) in the proper auction. This
auction is then closed for other agents of the same firm. In this manner, we elim-
inate the possibility that the no. 2 in the auction, who determines the price, is
an agent from the same company. The agents then repeat this procedure to select
a second agent, which is allowed to bid in another auction, etc. Using this strat-
egy, the agents of a company distribute themselves over a larger set of auctions
than would otherwise be the case. This, in general, also increases the competition
between the trucks of different companies.

4. Market-Based Approaches in Logistics Problems: A Review

Although there are many agent platforms have been proposed for automating
transportation logistics and supply chain management [9, 11, 13, 30], many con-
sider the problem from the perspective of software design or design of the com-
muication protocols used, while others take a more hierarchical approach to plan-
ning, using more conventional OR techniques. By contrast, our work is focused on
simulating bidding strategies and/or different market mechanisms which can be
present in such a setting. We provide a tool to simulate and visualise the effect of
market-based planning in a distributed transportation scenario.

A line of work related to ours is that of holonic agent systems [3, 11]. In this
approach, the domain is modelled through holonic agents or holons, composed of
several sub-agents performing different tasks. The agent representing the head of
the holon has the task of coordinating the activities of the other sub-agents, nego-
tiating on behalf of the holon etc. (for example, a company agent can be modelled
to coordinate and optimize the plans of individual truck agents). By contrast, our
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approach is more decentralised: each truck agent is responsible for optimizing its
own plan based on local order information, while overall coordination between
these plans is assured though distributed market mechanism (i.e. the auctions).
The idea of using micro-markets to coordinate activities within a company (as
well as between companies) has also been employed in [15]. This paper succesfully
shows, in the context of the supply chain trading agent competition, that sub-
dividing decisions within a company into smaller agents and coordinating them
through internal markets can lead to better performance than more hierarchical
planning approaches. Another succesful application of market-based scheduling
[16] proposes an auction-based design applied to decentralized train scheduling.

Other lines of research related to ours are those which propose extensions of
the Contract Net Protocol (CNP) [8, 17, 1]. The work of Aknine et all [1] proposes
an extended multi-agent negotiation protocol (an extension of the original CNP),
and applies it to negotiations over tasks between managers and contractors. Pe-
rugini et al. [17] propose a decentralised approach to transportation scheduling in
military logistics. A Provisional Agreement Protocol (PAP) is proposed in order
to facilitate negotiation between manager agents, which contract out transporta-
tion tasks to actual transportation agents. There are some differences between the
approaches discussed above and the one discussed in this paper. First, these ap-
proaches (at least [8, 1]) refer mostly to the cooperative case, and in this setting
the problems of self-interest or strategic behaviour by the agents does not need to
be considered. Second their main focus is on bid syncronisation issues (which can
appear in distributed settings), while our approach is mostly focused on efficiency
of market mechanism and bidding strategies.

The next section introduces an applet demonstrator of the concepts intro-
duced in Section 2 and the online auctions. The behavior of the trucks and the
results of their bids can be interactively studied.

5. The Visualisation Environment

In order to get a more tangible impression of the complexity of the domain and
the routing decisions of the agents, we have developed a graphical front end for
our simulator, as depicted in Figure 1. This has the form of a Java Applet.

5.1. Overview

The visualisation space is partitioned into several panels (see Fig. 1):

• A central panel which shows the movement of all the trucks in the simulated
“world”.

• A side panel (leftmost) which shows detailed information about the route of
one of the trucks, as selected by the user.

• Two smaller information panels (rightmost), which provide details about the
general state of the simulation and the degree to which the trucks are filled
at any point from their existing capacity.
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Figure 1. Overview of the software visualisation environment.
The central panel shows the routes taken by 2 trucks during the
day, while the left side panel shows the detailed route calculation
performed for a truck selected by the user.

• A control panel, featuring a combination of buttons, check-boxes and drop-
boxes to control the simulation.
The demo can be run in one of two modes. The first of these is interactive:

the user explores the evolution of paths of different trucks through the buttons
provided. This allows a more fine-grained exploration of the strategies used by
the trucks. The second is more dynamic: the simulation runs independently in a
loop, controlled by a system timer. This allows a more general impression of the
functioning of the system.

5.2. The information panels

Figure 1 illustrates the whole visualisation tool, Figure 2 gives a view of the central
panel with paths for 3 trucks shown, while Figure 3 illustrates the evolution of
paths (i.e. re-routing) computations taken by a single truck, as a result of winning
several loads in auctions.
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Figure 2. The central panel showing the paths taken during a
turn by 2 trucks. The coloured dots represent the current positions
of the trucks.

All figures contain several elements. Small, green, open boxes represent the
basic location units (i.e. drop off points of cargo) available in the system. The
depots are represented by larger, filled in boxes. A depot is yellow by default
unless the agent is currently located at the depot in which case the box is colored
white.

Arrows are used to indicate pickup and delivery of items of cargo. As defined
in Section 2, all cargo originates at depots and pickup is represented by a green
arrow (pointing up). A drop off of a load is represented by a yellow arrow (pointing
down). The current location of each truck is given by a large coloured circle, which
also gives the percentage of filling capacity. The route of the agent during the course
of the day is depicted by an individually colored line (different for each truck) that
is either solid or dotted. A solid line represents a part of the path already traversed
during a simulation “day”. A dotted line represents the planned route (i.e. that
part of the route which the truck plans to still traverse, given the auctions it has
won so far).
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5.3. Evolution of the path for one truck

As described in Section 3, the agents acquire cargo by participating in a sequence
of online auctions. After each won auction the planned path of the truck evolves
(i.e. is expanded), to incorporate the newly won loads. The truck which has the
lowest cost of expanding its path in order to include a new load wins the respective
auction. In Figure 3, we show how a user can explore the evolution of the path
step by step, for one truck, after a number of loads (in this case 4) has been won.
The user can visualize how the truck computes the extension of its path - which
gives an important insight into the routing algorithm.

Figure 3. Exploring step-by-step the evolution of the route for
one truck

6. The Decommitment Strategy

Contracts are typically binding in traditional multi-agent negotiation protocols
with self interested agents. In [23, 25, 2], a more general protocol with continuous
levels of commitment is proposed and analyzed. The key ingredient of this protocol
is the option to break an agreement, in favor of, hopefully, a better deal, at the
possible cost of a prenegotiated penalty. We refer the interested reader to [31] for an
execellent overview of the literature on the decommitment concept. Furthermore,
this work addresses an interesting application of the decommitment concept in a
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collaborative setting, as opposed to the more competitive setting we consider, for
a multi-agent sytem where decommitment is used to repair use of detectors to
reflect new conditions.

In our experiments, an agent with a decommitment strategy can improve
its immediate profits by bidding for a new load with the additional possibility to
discard a load to which it committed earlier. The agent is hence more flexible in
the choice of loads to choose to bid on, at the cost of discarding a previously won
bid. This allows an agent to avoid delivery of a previously won load which has
become less than optimal due to results of continuing auctions. Furthermore, it
allows an agent to consider loads earlier not available for auction while an agent
without the decommitment option may not be able to adapt to new opportunities.
Figure 4 illustrates such a situation, visualised by our software. This shows both
the original path planned by a truck agent, and the extended path computed in
order to reach a new load. The load to be delivered at the location shown in a red
double circle was decommitted.

Trust and reputation are however of importance in the world of (electronic)
contract negotiation [12, 6]. A bad track-record can, for example, lead to the
shunning of a party in negotiations. How an auctioneer or a client will change its
attitude towards a party which in the past has decommitted from a negotiated con-
tract has to be quantified for specific areas of application. For example, for many
bulk transports, a delayed delivery is not too detrimental as another transporter
can easily be found and the transport does not have a tight delivery schedule. This
is however not the case for expensive, quickly perishable goods.

In our market mechanism, we circumvent the above quantification issue. We
achieve this by delivering decommitted cargo by a truck of the same company as
the truck that decommitted the load (with consideration of delivery constraints).
We thus “hide” the process of rejecting deals from the customer who offered the
load at auction: a truck only postpones the transport of decommitted cargo until
another truck of the same company becomes available. A company that uses a de-
commitment strategy in this fashion retains its reputation and performs according
to the contract. For more complex scenario’s (not considered here) where there
is no “hiding” the decommitment and where a good cost function is available to
quantify the impact of decommitment on trust, we however expect the benefits of
a decommitment strategy to increase. The agents then have more options available
to optimize their choice of loads.

The “hiding” of the decommitment strategy is achieved by internal reauc-
tioning of loads. Decommitted cargo is once again offered in a Vickrey auction.
This auction is, however, only accessible for agents of the company which should
deliver the load. The auctions for decommitted cargo thus serve as internal re-sale
markets for companies. Effectively, through a “hidden” decommitment strategy,
tasks are redistributed between the agents of one company. Implicitly, the agents
renegotiate their concurrent plans.

The bids for decommitted cargo, calculated as for “regular” auctions, are
made in terms of “blue”(i.e., fake) money as the contract for transportation has
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Figure 4. View of a decommitment situation. The truck agent
decommits from the load shown through a red circle in favour of
another opportunity further away (the direction marked by green
arrow)

already been won by the company. Full competition between all agents of one com-
pany is allowed and all agents of the same company can enter a bid for transporting
the previously decommitted load. This system ensures that the most viable agent
of the company transports the load. A high bid price is not an issue as the internal
auctions for decommitted loads are held with “blue” money, and the costs are fic-
tional. We however require that new bids for decommitted cargo (in terms of blue
money) exceed the original bid costs (in terms of real or “green” money). This rule
is used to ensure that the original bidding costs for winning the decommitted load
in the original auction are covered. The internal resale auctions of decommitted
loads are held in parallel with the public auctions as experiments showed that
this as a good approach to maintain a sufficient degree of competition with the
other companies on the auctions for publicly available loads. As an alternative,
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a decommitted load could be offered in a public auction to other companies, i.e.
outsourcing, a common practice in the transportation world.

For simplicity and from a computational viewpoint, we allow agents to discard
only one load in each round of bidding. Furthermore, only loads which have been
won but are not yet picked up can be discarded, to avoid the possible extra cost
of unloading. Decommitment is hence an administrative action.

Furthermore, we do not allow agents to decommit cargo which must be de-
livered today (see Section 2.1) to minimize the chance of a too-late delivery. Ad-
ditionally, we have constrained the possible backlog of decommitted loads by only
allowing a decommitment by an individual truck if the total number of currently
unassigned, decommitted loads does not exceed the number of trucks in the com-
pany.9 This approach leads to good results: In the computational experiments less
than 0.2% of the decommitted loads were delivered too late. Penalties for too-
late delivery will hence have to be exorbitant in order to offset the benefits of
decommitment presented in Section 8.

7. Conditions for Decommitment

We observe in the computational experiments that decommitment of a load oc-
curs predominantly when trucks are close to filling their maximum capacity. To
understand this result, it is useful to first consider two extreme situations: (i) an
extreme shortage of available cargo and (ii) an extreme excess of available cargo
(relative to the carrying capacity of the trucks).

In case of an extreme shortage of loads, a truck will not decommit a load as
it has a large excess capacity: it is more profitable to add a load to a relatively
empty truck than to replace one load by another one. In the other case of a large
selection of loads to choose from, a new load, which (closely) fills the remaining
capacity of the truck is mostly available. Again, decommitment does not occur as
adding a load which fits is more profitable than fine tuning profits at the cost of
another load which is dropped.

Figure 5 illustrates the impact of decommitment for a range of offered loads
for a single truck to bid on. We plot the number of transported loads as a function
of the number of loads presented. On the far left, the number of available loads is
low. As a consequence, the available loads are almost all picked up and transported.
If the production rate increases, we move to the right in Figure 5. The (positive)
effect of decommitment then increases, until the trucks reach their capacity limits.
On the far right in Figure 5, the number of offered loads is very high. In this
case (an excess of cargo), the added value of decommitment also decreases as
the maximum number of tasks that the truck is able to handle can be achieved.
Note that for specific scenario’s a slightly higher performance can be reached than
without the use of a decommitment strategy, but in the limit of available loads
(tasks) the added benefit of decommitment will disappear.

9Alternative, more sophisticated heuristics are a topic of research.
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Figure 5. The added value of decommitment for a wide range of
number of offered loads for one truck. The decommitment strategy
only has a strong impact for a subset of the range of number of
offered loads.

Hence, we hypothesize a decommitment strategy is most beneficial when a
truck is close to reaching its maximum capacity and has a limited number of extra
tasks to choose from. We believe this is a general result for an agent capable
of doing multiple tasks in parallel. This hypothesis must be kept in mind when
evaluating whether to apply a decommitment strategy in novel settings.

In our experiments, we observe for a company with multiple trucks, the use
of a decommitment strategy only has a strongly positive effect when a significant
fraction of its trucks actually decommit loads. When the supply of loads during
one day approximately matches the carrying capacity of the trucks, the above
condition is met. We note in real-life situations that there are often economic
incentives which drive the market to such a balanced situation, if supply and
demand do not match. Hence, a decommitment strategy can be expected to have
an impact in real markets.

In our simulations, we keep the number of companies and trucks constant
when observing the performance of the companies over a number of days. In case
of a balanced market, this implies that the amount of cargo which is transported
per day is relatively constant. To this end, we search for an equilibrium “produc-
tion” of new cargo. In a sense, this is a reversion of the normal market operation.
The addition or removal of a truck is however an operation with a large impact. It
is not straightforward to formulate criteria in terms of profits which make the addi-
tion/removal of a truck an issue, especially over a short time period. Furthermore,
differentiation between the various companies in composition makes evaluation of
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the experiments non trivial. We hence set the production level at a good initial
estimate and adapt towards the equilibrium for the strategy used.

In our experiments, this equilibrium of supply and demand is achieved by
setting the production level of loads to match the approximate carrying capacity
of the trucks, while as yet not using a decommitment strategy. An initial number
of loads is generated and new loads are produced in the course of the day. The level
of production is chosen so as to arrive at a constant number of loads available for
transport the next day (within 5% of the initial number of loads available). When
this constraint is met, the number of loads and the carrying capacity of the trucks
on the grid are in equilibrium over the days of the simulation. With the derived
production schedules, we rerun the experiments, but with the additional possibility
of a truck to decommit an earlier won bid. The performance of the regular bidding
strategy versus the decommitment strategy can then be calculated.

8. Experimental Results

In this section, we study the performance of companies that use a decommitment
strategy relative to companies which do not. Section 8.1 contains results for a
Sugarscape-like model. In this model, the edges of the transportation grid are
connected (to suppress boundary effects). In Section 8.2 we consider a finite-size
model with a Gaussian distribution of the production. In Sections 8.1–8.3, we fur-
ther investigate the effect of decommitment for these two models (as a function
of the number of depots and the number of trucks per depot. Special cases of
the models are further presented in [18]. We conclude with Section 8.4 on perfor-
mance of the decommitment strategy for domains with larger uncertainty. Similar
results for the above two models were also found using benchmark data from
www.opsresearch.com and
www.sintef.no/static/am/opti/projects/top/vrp/ for
location of depots and scheduling of loads. We feel that our results hence hold
for a wide scheme of settings as long as the number of offered loads meets the
requirements given in Section 7.

In the experiments, the performance of the bidding strategies is tested over a
period of days (15) in order to measure not only immediate performance but also
the effect of a bid (or decommitment) over a longer time period. All companies
place an equal number of trucks at each depot for fair competition. Unless stated
otherwise, we use one truck per depot per company. We refer to the full paper [18]
for the experimental setting details.

8.1. A Sugarscape-like Model

We first consider a “Sugarscape-like”grid [7]. Like in Sugarscape, we connect the
edges of the grid (to suppress boundary effects). In addition, trucks can only
move along the grid lines (i.e., they cannot move diagonally). We place the depots
with equal spacing on the grid (the distance is 2 nodes); each depot also has
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the same production rate. With these assumptions, we obtain a highly symmetric
“transportation world”.

The performance of the Sugarscape model for one company without and with
a decommitment strategy is summarized in Table 1 for respectively 4, 9, and 25
depots. We consider two companies in these experiments of which only one can
use a decommitment strategy. In Table 1, we report the number of transported
loads and the profit that is generated (in 1000 monetary units), with and without
use of a decommitment strategy. Note that the grid is already filled densely in
case of 25 depots (out of 100 possible locations). Competition between the two
companies then becomes intense and profit margins drop as competition in the
auctions increases.

Table 1. Results for a Sugarscape model.

depots decommitment? loads profit
4 no 940 91
4 yes 987 99

increase 5% 8.7%
9 no 1826 420
9 yes 1920 446

increase 5.1% 10.6%
25 no 3704 585
25 yes 4197 627

increase 10.6% 7.1%

8.2. A Gaussian Distribution Model

The Sugarscape transportation model of Section 8.1 is highly stylized. For exam-
ple, boundary effects are suppressed by using a toroidal grid, depots are equally
spaced, production is uniform, and trucks can only move along the grid lines. We
investigate in this section whether the decommitment strategy also works for a
transportation model which does not make these limiting assumptions.

This alternative model consists of a plain square grid. The trucks can move in
arbitrary directions on the grid, as long as they do not exceed the grid’s boundaries.
The depots are placed at random locations on the grid. Furthermore, we do no
longer assume that production is uniform. Instead, we assume that the spatial
production rate follows a Gaussian distribution (with its peak in the center of the
grid) and then assign each new load to the nearest depot for transportation10.
Such a model is representative of a large city or a major business center which
is surrounded by smaller cities or businesses [14]. The remainder of this paper
discusses results obtained for this model.

Figure 6 shows the profits made by a company (with and without the use of
a decommitment strategy) as a function of the number of depots on the grid. Note

10Production is maximized by maximizing the standard deviation of the Gaussian.
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Figure 6. Profits made by a company (with and without decom-
mitment) as a function of the number of depots on the grid.

the positive effect of decommitment on a company’s profit. This effect becomes
especially large in case of a densely filled grid. In the experiments, we observed
on average one decommitment per truck per day, increasing to a maximum of
three per day for a densely filled grid. Results for more than two companies show
similar trends for the decommitting company. Figure 7 shows that the number of
transported loads also increases when a company uses a decommitment strategy.

It is also important to note that the use of decommitment by one company
can decrease the performance of the non-decommitting companies. This loss can
amount to half the increase in profit of the company who uses a decommitment
strategy. This effect is of importance when the margin for survival is small and
under-performing companies may be removed from the field.

8.3. Multiple Trucks at Depots

In the previous experiments, only one truck per company was stationed at each
depot. Figure 8 shows how a firm’s profit depends on the number of trucks per
depot, with and without decommitment. Note that the effect of the decommitment
strategy clearly increases as the number of trucks on the grid increases.

8.4. Decommitment With Larger Uncertainty

In this final section, we investigate two changes in the transportation model which
further increase the impact of the decommitment strategy. We first consider a price
function for which the correct prediction of future loads becomes more important
due to a greater difference in the price of individual loads. Secondly, we investigate
the impact of restricting the available information to the agents by limiting the
distance over which an agent can sample the grid for available loads.
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Figure 7. Number of transported loads as a function of the num-
ber of depots on the grid. Decommitment has a clear positive
effect: the number of carried loads increases significantly.
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Figure 8. Influence of the number of trucks per depot on the
profit made by a company, with and without decommitment. The
number of trucks per depot is indicated in the figure’s key.

In Figure 9, we show the strong relative increase in profits when a quadratic
price function is used.11 A similar effect as visible in Figure 9 occurs if the price

11The price for a load l is 40+weight(l)2+ distance(l) as opposed to the usual 40+weight(l)+
distance(l).
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Figure 9. The effect of decommitment in case of linear and non-
linear (quadratic) price functions.

for delivery increases sharply as the deadline for delivery approaches. In both cases
there is a strong incentive for agents to correctly anticipate which profitable loads
will still appear.

Additional experiments also show that the effect of decommitment increases
if the truck’s agents are more “myopic”. Truck agents can decide to limit their
bidding range due to communication overhead or a lack of computational resources.
In Figure 10, we show the impact of decommitment when an agent only considers
loads for pickup which are not too far away from its current location.12 This figure
shows that the absolute and relative impact of decommitment increases in this
case, as an agent is less able to observe the available loads and thus makes less
optimal choices in the course of time, which need to be repaired.

9. Conclusions and Discussion

We study the use of a decommitment strategy in case of on-line bidding for cargo
by agents in a multi-company, multi-depot transportation setting. In our model,
an agent bidding for a truck can decommit a load in lieu of a more favorable
item of cargo. We observe significant increases in profit that scale with the size of
operations and uncertainty of future prospects. The observed profit margins are
significant in the competitive market of transport where a 4% profit is considered
exceptional. For example, the average profit margin before taxes for the Dutch
road transport sector (from 1989 to 1999) was only 1.6% [29]. Adoption of a
decommitment strategy can thus give a company a significant edge.

12We use an operating range of one quarter of the size of the grid.
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Figure 10. The role of decommitment in case of “myopic” bid-
ding agents.

For specific applications beyond that of our model and for novel areas, the
added value of decommitment, and the circumstances where it can be applied
successfully should be studied further. However, based upon our computational
experiments, we hypothesize that the positive impact of a decommitment strat-
egy increases with the complexity of the operating domain, as it then becomes of
greater importance to have the opportunity to roll-back a previous sub optimal
decision [24]. Furthermore, we currently shield the reputation of a company by
hiding the decommitment strategy by internal resale of decommitted loads. With-
out this hiding, the impact of a decommitment strategy can further increase, of
course dependent upon the possible penalties incurred for specific domains.

We also observe that decommitment has the highest impact when an agent
is close to its maximum capacity for handling multiple contracts in parallel. With
sufficient capacity, it is often more beneficial to add an extra contract than to
replace a won contract in favor of a superior offer. Hence, for multi-agent systems
where agents are capable of handling several tasks simultaneously, a decommitment
strategy can be expected to have its largest impact when the agents are operated
at (almost) full capacity.

The efficient routing of cargo has a long history within Operational Research
(OR). Classical OR techniques with their centralized coordination and computa-
tion are however not as well suited to cope with the dynamics of incidence manage-
ment or for exploiting new opportunities on-line as an agent-based approach can
be. A non trivial, but fruitful line of future research is a full combination of both
worlds. Issues which then to be addressed are the intertwining of optimizations by
individual agents and the capabilities of OR to (re)calculate efficient schedules for
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(a subset of) the agents. We expect the application of a decommitment strategy
in such a complex world to have a clear, added benefit.
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Software is available on the Internet as
( ) prototype version
( ) full fledged software (freeware), version no.:
( ) full fledged software (for money), version no.:
( ) Demo/trial version
(*) not (yet) available

Internet address for description of software:
http://homepages.cwi.nl/ robu/netobjectdays2004/NetObjectDaysPresentation.ppt
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