
Tracy: An Extensible Plugin-Oriented Software
Architecture for Mobile Agent Toolkits

Peter Braun, Ingo Müller, Tino Schlegel, Steffen Kern,
Volkmar Schau and Wilhelm Rossak

Abstract. In this chapter we propose a software architecture for mobile agent
toolkits and describe our Tracy toolkit as a reference implementation of this
architecture. Agent toolkits mainly consist of a software system that forms an
agency, which is responsible to host mobile and stationary software agents. In
contrast to most architectures developed so far, which already define a large
set of services for agent migration, communication, and security, we propose
to employ a kernel-based approach. The kernel only provides fundamental
concepts common to all agent toolkits and abstracts from any of these ser-
vices. In particular, although Tracy was developed as a mobile agent toolkit,
its kernel abstracts from all issues related to agent mobility, delegating this to
an optional service implementation. This makes it possible to replace Tracy’s
migration service with another implementation and even to have two differ-
ent migration services in parallel. Service implementations are developed as
plugins that can be started and stopped during run-time. We have already
developed almost a dozen plugins for agent migration, communication, au-
thentication and authorization, and security solutions, only to name a few.
We believe that this architecture is a useful foundation for research on agent-
related topics as it allows research groups to implement their own results as
a service which can be used by other groups running an agent system based
on the same architecture.

1. Introduction

Mobile agents have been introduced as a design paradigm for distributed appli-
cations [35]. A mobile agent is a program that can migrate from host to host in
a network of heterogeneous computer systems and fulfill a task specified by its
owner. It works autonomously and can communicate with other agents and host
systems. During the self-initiated migration, the agent carries its code and some
kind of execution state with it. What comprises the execution state depends on the

358 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

underlying programming language and is, in the case of most Java-based toolkits
for example only the serialized agent (an agent is an object of a specific class)
and does not contain information about the state of the Java virtual machine. On
each host they visit, mobile agents need a special software that we name agency,
which is responsible to execute agents, provides a safe execution environment, and
offers several services for agents residing on this host. A mobile agent system is
the set of all agencies together with agents running on these agencies as part of
an agent-based application. To refer to a specific project or product, for example
Aglets [23] or Grasshopper [3], we use the notion agent toolkit.

For some years, mobile agents have been a hot topic in the domain of dis-
tributed systems. Reasons were problems more traditionally designed distributed
systems, especially client/server systems, might have to handle work-load, the
trend to open large numbers of customers direct access to services and goods, and
user mobility. Mobile agent technology can help to design innovative solutions in
these domains by complementing other approaches, simply by adding mobility of
code, machine based intelligence, and improved network- and data-management
capabilities. We have seen tremendous research effort, for example, in the area of
mobile agent security, where sophisticated security protocols were developed to
solve the problem of malicious agencies (that try to attack visiting agents) and
malicious agents (that try to attack hosting agencies) [17]. Other research topics
are, for example, performance aspects of mobile agents [6], in which inherent draw-
backs of mobile agents are tackled using sophisticated migration strategies, mobile
agent communication [2], or control issues [1], which targets at the development
of algorithms to trace mobile agents while roaming the Internet.

However, the interest in mobile agents as a design paradigm for distributed
systems seems to have dwindled over the last years. The number of research groups
working on mobile agent related topics is becoming smaller, some conferences and
workshops cease to exist or are aligned with more general topics regarding mobility
of code or mobility of devices. It is argued that mobile agents were not able to
satisfy some of the main expectations, for example regarding their ability to reduce
network traffic overhead. Vigna [34] states that mobile agents are very expensive
and provide worse performance in the general case than other design paradigms,
as for example remote procedure call or remote evaluation. Compare Vigna’s early
work regarding network load of different design paradigms [33] and a discussion
of his approach in [6]. He also points to security problems, which are unlikely to
be solved completely and will, therefore, impede the acceptance of mobile agents.
Other authors try to get to the bottom of the problem of decreasing acceptance
and discuss whether mistakes of the research community have caused the current
disappointing situation. For example, Roth [29] questions Java to be the best
programming language to cope with unresolved security problems. Johansen [19]
points out that far too many groups have focused on the development of yet
another prototype of a mobile agent toolkit with only small contributions to the
fundamental research questions. In fact, the current situation is characterized by
a few tens toolkits. Although this number reflects an enormous research output

Tracy: A Software Architecture for Mobile Agent Toolkits 359

by different groups all over the world, it also reveals premature status of research
and a not-existent coordination between projects.

We agree with Johansen about the high number of research prototypes and
their negative effect to the research community. However, many research groups
were obliged to develop their own prototype because of the lack of any reference
architecture for mobile agent toolkits as well as the absence of an open and ex-
tendable implementation of a mobile agent toolkit. Therefore, each research group
working on core research problems rather than application development was com-
pelled to develop its own prototype and due to the high complexity and limited
resources this prototype is more a proof-of-concept implementation focusing on a
single research issue and leaving out elementary functional components necessary
for a full mobile agent toolkit. Only to name two examples, we mention Semoa [30]
as a system with a very strong focus on security issues and our first implementation
of Tracy [7] which was designed around early ideas regarding high-performance mi-
gration protocols. At first, agent communication was not in the focus of neither
of these systems–but added later in both of them. Other groups focused on agent
tracing and communication problems, for example [25], but their algorithms are
not adopted in other toolkits so far. We see these isolated islands of research as
another obstacle for the acceptance of mobile agents as there is no single mobile
agent toolkit available that provides at least an almost up-to-date set of features
and research results.

To amend this situation, one of the most important challenges of our Tracy
project is to develop a reference architecture for mobile agent toolkits. This archi-
tecture is leveraging off of previous work done by the Tracy team in designing the
first Tracy architecture [7] and benefits from experiences learned when porting it
to mobile platforms and investigating feasibility to use Tracy within an electronic
commerce application [22]. Our model for agencies consists of a very small kernel
which defines only imperative functions of an agency and the concept as well as the
life-cycle of agents. As part of our model, we define the concept of services, which
implement additional functionality on top of the kernel. The model does not de-
fine anything related to specific services, for example agent communication, agent
migration, or agent tracing, except of an interface for services to communicate to
the kernel.

The Tracy toolkit, which is the reference implementation of our new agency
model, has a plugin-oriented software architecture. Each service in the meaning
of our model is implemented as a plugin, which can be dynamically started and
stopped at runtime. As part of the Tracy implementation, we have developed more
than a dozen plugins for various services. An interesting result regarding mobile
agent toolkits was that it is possible to design an agency without considering
mobility of agents–and later to plugin this new service without any modification
of the kernel.

The remainder of this book chapter is structured as follows: We start by
giving a state-of-the-art overview of other approaches to build interoperable and
component-oriented mobile agent toolkits. After that we introduce our agency

360 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

model and describe the Tracy mobile agent toolkit, which is a reference implemen-
tation of our model. We will also introduce some of the most important software
components that come along with Tracy already. Finally, we describe our expe-
rience with our agency model and the Tracy toolkit in building a mobile agent
based application for mobile users.

2. Related Work

In this section, we will give a concise overview of the development of software
architectures of mobile agent toolkits in the past few years. We choose this presen-
tation style to demonstrate our kernel-based software architecture as the evolution
of current mobile agent toolkit design.

In our opinion, the timely development of mobile agent toolkits can be
roughly distinguished into an early, a current, and a next generation phase. The
early phase from the mid 1990s till the end of the 1990s is characterized by the de-
velopment of first complex mobile agent toolkits, such as AgentTcl [15], Aglets [23],
and Grasshopper [3]. The main goal of these systems was to provide a basic set
of functions and features for the development of mobile agent based applications.
Therefore, early toolkits offer only a small but inflexible interface via a mobile
agent class, which encapsulated access to the functionality of the toolkit. It is dif-
ficult to add (e.g. a tracking mechanism) or to change functionality (e.g. replace
the existing mobility or communication model), or to adapt the toolkit to specific
requirements (e.g. to downsize it for resource-limited mobile devices).

After the mobile agent community recognized the drawbacks from the early
mobile agent toolkits, the current phase begun at the end of the 1990s [18,30]. Now
mobile agent toolkits are developed using a component-oriented architecture. Most
systems still use a layered architecture, with a migration layer and communication
layer below, a layer for agent management functionality in the middle, and a basic
service layer on top [5, 20]. Each layer consists of a set of components, which im-
plement the layer’s functionality. Following this, the problems of first mobile agent
toolkits with respect to flexibility, extensibility, and adaptability were improved.
However, only for each mobile agent toolkit itself. For, the problem of exchanging
functionality and interaction between different mobile agent toolkits still remains
unresolved. The main reason for this problem is a high coupling between internal
components and different definitions of component interfaces in these mobile agent
toolkits.

Some mobile agent toolkits even implement standards to amend the inter-
operability problems, such as MASIF [24] or FIPA [26], originally developed for
multi agent systems. Both standards do not solve the given problems in a suitable
manner. MASIF has not been accepted because it relies too much on further OMG
specifications such as CORBA and IDL, increasing the effort for the development of
a mobile agent toolkit with aspects not belonging to the basic principles of mobile
agents. FIPA, implemented for example by Jade [4], is also too complex because

Tracy: A Software Architecture for Mobile Agent Toolkits 361

it defines a large set of system internal architectural and design constraints, for
example regarding agent communication. This is a problem especially with respect
to researchers who have their main focus on a single problem in the mobile agent
domain not willing to implement all mandatory parts of the specification.

Thus, we are still looking for an approach that might solve the problems
identified in the introductory section. This is the reason why we believe that mobile
agent toolkits should enter a next generation phase in which the focus changes
from trying to uniform system design to specify only a very small set of kernel
functionality accessed through a lean interface, reducing the coupling between
system components. Functionality can be added in a very flexible way with software
components.

3. JAM – A New Model for Agencies

In this section we will introduce JAM (Java Agency Model), which is a new Java-
based model for agencies for mobile and intelligent software agents. Our goal is
to define a model that consists of the smallest number of interfaces and classes
and only defines an imperative set of functional and non-functional requirements
in order to execute software agents. In the following, we restrict ourselves to Java-
based mobile agent toolkits, because Java has become the de-facto standard for
programming mobile agents; almost all new toolkits developed in the last six years
are programmed in Java. The reasons for this are many built-in functions, for ex-
ample object serialization, dynamic class loading, and the sand-box security mech-
anism, which simplify the development of mobile agent toolkits. The restriction to
Java makes sense, since we focus on the exchangeability of service components and
the exchangeability of software agents on the level of implementations. Therefore,
our model must be seen orthogonally to other models and standards, for example
FIPA [26] and MASIF [24], which specify communication protocols and migration
protocols, respectively.

Current models for agencies and collections of design issues for mobile agent
toolkits [16, 21], already include design decisions for several high-level services.
This notion will be used in the rest of this book chapter as synonym for optional
functions offered by an agency and used by agents in order to fulfill their task.
Services are for example migration, communication, agent tracking, persistency,
region management, etc. We see as major drawback of these current agency model
that they create many dependences between actually independent services. The
resulting agency implementation is more monolithic, because services are not rep-
resented by independent software components. In fact, our model abstracts from
these services and in contrast attempts to move as many functional requirements
of a mobile agent toolkit into optional services.

As motivated in the introduction, we want to address the possibility to ex-
change research results between research projects in form of software components
and software agents. Therefore, we propose to split an agency into a single kernel

362 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

(compare [11] for an introduction to kernel-based software architectures) and sev-
eral optional service components, each implementing a single service. The kernel
only provides the basic environment for running agents, maintaining a directory of
agents currently residing at this agency, defines and monitors an agent’s life-cycle
and defines a basic interaction model for agents and services. It might even be
argued that maintaining an agent directory should not be part of the kernel but
provided as a service. However, the kernel must maintain such a directory in any
way, because it has to wait cooperatively for all agents to terminate, if the agency
shuts down.

Upon that kernel, each software component provides an additional service
that extends the functionality of the agency. The resulting model for an agency
has, therefore, a layered design, where the kernel can be seen as lowest layer. On
top of the kernel, all service components form the middle layer. Finally, agents are
executed as part of the agency and form the topmost layer, where they can only
access services but not the kernel anymore. Actually, it must be stressed that our
model does not distinguish between mobile and stationary software agents. As a
consequence, our system could be seen to be more a multi-agent toolkit instead of
a mobile agent toolkit.

In the rest of this section we will define the basic concepts and functions of
a kernel and we will define interfaces for services to communicate to the kernel.
Finally, we will also explain how agents can communicate to services. We start
with the description of the basic abstractions that form an agency, i.e. kernel,
services, and agents. For the following, compare Fig. 1.

3.1. Kernel

We assume that every agency has a name, which comprises of a logical agency
name and the full qualified domain name of the underlying host. For example, if the
logical agency name is goldeneye and the host name is fleming.cs.uni-jena.de, then
the full agency name is goldeneye.fleming.cs.uni-jena.de. The name of an agency
must not change during runtime. It must be allowed to start multiple agencies on
a single host but the model does not define how this is done in practice.

The kernel consists of two classes. Class Kernel is responsible to maintain a
directory of all agents currently residing at this agency and all services currently
connected to the kernel. Class Context is used as mediator for agents to access
the agency and services (compare Sec. 3.2 and Sec. 3.3 for more information).
The kernel retains several information about agents, for example name, time of
creation, permissions, and owner.

The kernel is responsible to start and stop agents and to control an agent’s
life-cycle (which is explained later). The kernel is also responsible to generate agent
names, which must be globally unique in the whole agent system. The model
does not define how agent names are computed but enforces that they can be
represented as String objects. The kernel must create a new class loader for each
agent to ensure that agents cannot access each other via direct method calls and
to assign each agent an individual set of permissions. In Java terms this is named

Tracy: A Software Architecture for Mobile Agent Toolkits 363

IContext

Context

Kernel

ServiceComponent

Services

*

Agents

*

*

Runnable

m
ai

nt
ai

ns

m
ai

nt
ai

ns

IServiceContext

IAgentContext

us
es

uses

delegates context requests

*

ob
se

rv
es

 a
nd

 u
se

s

Kernel

Figure 1. Design of our agency model as UML class diagram.
For sake of simplicity, we omit methods and stereotypes.

a sandbox. Each agent is assigned an own thread of control when it is executed,
which must be placed in an own thread group in order to prevent illicit access of
agents to each other.

3.2. Services

On top of the kernel there are several service components that can be plugged into
an agency. Each service component provides a specific service (which is identified
by a service name) and extends the functionality of the agency. It bears a unique
name, which is used to unambiguously identify a service component, if necessary.
Usually, agents and other service components only use the service name to select a
single component that provides this service. Assume for example the case, that an
agency provides two migration components, both accessible under service name
migration. To disambiguate components with the same service name, it is also
allowed to address a service by its full service name, which is name.servicename.

364 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

When a service component is started, it is loaded using a new class loader in
order to separate it from other components and agents. Note that the model does
not define when a service component is started. It is possible to launch an agency
with a predefined set of services or to allow to start dynamically on demand. Each
service component obtains a reference to the kernel.

Service components can start and stop agents (simply by calling the corre-
sponding kernel methods), request a list of all agents currently residing at this
agency and a list of all services and service components. Our agency model also
defines the reverse communication direction using the observer pattern. A service
component can register with the kernel to become notified in case of specific events.
A description of the most important events follows in the next section.

Our agency model defines a loose coupling between services components
among each other and between agents and services. Direct method calls are pro-
hibited and replaced by so-called context objects, comparable to proxies. Each
service component has to provide two interfaces: an agent context interface and a
service context interface. The first interface must extend interface IAgentContext
(defined as part of the kernel package) and defines methods of this service to be
used by agents, whereas the second interface must extend interface IServiceCon-
text (part of the kernel package) and defines methods to be used by other service
components. For example, a service for agent migration defines an agent context
interface with methods to set the migration destination and a communication
service defines an agent context interface with methods to post a message. The
communication service also enables other service components to send messages to
agents and, therefore, defines a service context interface, which includes a method
to send a message.

The main advantage of this concept is that agents and service components do
not hold strong references to another service component, which makes it possible
to invalidate a context object, if a client must not use this service any more and
to even exchange a service during runtime without giving notice to the agent or
other services. In contrast to other agency models, we propose to use method
calls rather than asynchronous messages as convenient means of communication
between service components as well as between agents and service components.
Our agency model is open to enable communication via asynchronous messages
using an appropriate service component.

Finally, we have to describe how services and agents can obtain such a context
object to access a service. For services this is straightforward, because the kernel
provides a method to request a service context object of another service. In case
of agents this is more complex, because agents do not have any reference to the
kernel. We give an example of an agent requesting a service context object in the
following section.

3.3. Agents

As common to all agency models, each agent must have a globally unique name or
id which must not change during the life-time of an agent. As already mentioned

Tracy: A Software Architecture for Mobile Agent Toolkits 365

above, our model does not define how to create such a name, but we recommend
to use a combination of user given agent nick names and implicit names that are
computed by the agency and that guarantee uniqueness. The full agent name must
be representable as a String object.

Agents are represented by objects of a specific class, as in every agency model.
However, in our model, agent classes must only implement interface Runnable, i.e.
they must provide at least a single public method run, which serves as central
starting point. Mobile agents must implement the Serializable interface too. We
abstain from defining any base class for all agents, as for example class Agent or
MobileAgent as done for example in the Aglets model. Such a base class already
defines several methods to access services, for example methods to communicate
or methods to initiate the migration process. Although this might simplify agent
programming, it also creates a dependence between agents and services that we
want to avoid. Such a base class also prevents to add new services for agents as
this would entail to modify the base class which would then lead into an incom-
patibility between agents migrating to other agencies. The consequence of agents
as Runnables is of course, that an agent is unaware of itself and its environment. It
does know neither its name nor its hosting agency and must use services to obtain
these information.

The life-cycle of an agent actually consists only of two states. The first one is
Running which is characterized by assigning a thread to this agent that executes
agent’s run method. After this method has terminated, the agent might switch to
state Waiting where no thread is assigned to this agent or the agent’s thread is
waiting to become activated again. Thus, the agent is now only a passive object
that is waiting for a message or another external signal or event. Details about the
life-cycle will be presented in the following section, when we introduce the basic
functions of an agency.

If an agent wants to communicate to a service, a similar technique is used
as for services. As an agent object does not have a reference to any object of the
agency, there must be a static method which is provided by class Context and
which is named getContext. Consider the following example:

public class MyAgent implements Runnable
{

public void run()
{
IAgentMessageContext cxt;

cxt = (IAgentMessageContext)Context.getContext("message");

cxt.sendMessage(...);
}

}

366 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

The agent requests a context object of a service that has registered itself under
service name message and uses it to send a message. We omit to discuss problems
that arise from many service components providing the same service and we also
omit to print parameters of method sendMessage for sake of simplicity.

Method getContext delegates the task of requesting an agent context object
to class Kernel, which first identifies the agent that has requested a context by
determining the current thread (the kernel maintains a directory for this). Second,
the kernel asks the agency, which itself selects the service component that provides
the requested service message and asks this component for an agent context object,
which is then returned to the agent. If the agent requests a context object from this
service component for the first time, it is created. In the other case, the component
must return the same object as before.

We face two problems with this first example. First, if there is no service com-
ponent providing a service under the given name, then class IAgentMessageContext
does not exist. Second, the service registered under the given name message does
return a context object that is not assignable to variable cxt. The first problem can
be solved by Java’s dynamic class loading concept. The class of type IAgentMes-
sageContext is not loaded until it is accessed, which is in the above example not
before the type cast. If the agent first verifies that a service with the given name
exists, then this problem can be solved. The second problem can be solved by
comparing class names. The following example shows the resulting code sequence:

public class MyAgent implements Runnable
{

public void run()
{
IAgentMessageContext cxt;

if(Context.existsContext("message", "IAgentMigrationContext"))
{

cxt = (IAgentMessageContext)Context.getContext("message");

cxt.sendMessage(...);
}

}
}

We omit to print full qualified package names in this example. First, the agent
verifies that there is (i) a component providing service message and (ii) this com-
ponent has created a context object which is assignable to an object of class
IAgentMessageContext (we omit package names here).

Tracy: A Software Architecture for Mobile Agent Toolkits 367

3.4. Functions of an Agency

In this section we will define how kernel, service components, and agents interact
with each other. We will describe the basic functions according to the agent’s
life-cycle.

3.4.1. Registering an Agent. Registering an agent can be done by services in two
ways. In the first case, an agent (as Java object) has not been instantiated yet. To
register an agent, a nick name, the name of the agent’s main class and a URL where
the agent’s classes can be found must be specified. The agent object is instantiated
and a full agent name is computed. In the second case, the agent has already been
instantiated by a service component and must now be registered with the kernel.
In this case, the agent already has a full name. In both cases, the agent is finally
enrolled with the agent directory and then started (explained below).

Before an agent is registered, all service components are informed that have
been registered a listener for this event. Each service can access all information
about the agent and is now able to vote against registering. For example, a service
that scans an agent’s code for pattern of malicious behavior, is able to prevent
registering and starting of this agent. If no service has voted against, the agent is
registered with the local agent directory. Finally, a second event is fired, by which
registered services are informed about the finalization of the registering process.
For example, a graphical user interface can now update its list of agents.

Finally, the agent switches to state Running, which is described in the next
section.

3.4.2. Running an Agent. When an agent is started, its run method is invoked
within an own thread of control. The model does not define, whether it must be
same thread that executes the agent during its whole life-time, or thread-pooling
is allowed. The latter technique is preferred due to performance reasons. As agents
must be strongly separated from each other, no two agent threads must be member
of the same thread group. While the agent is running, it can request context objects
from services as shown above.

3.4.3. Termination of Agent’s Main Method. Every time, an agent’s method run
terminates, it is decided whether the agent should be killed (i.e. deleted from the
agent directory and finally garbage collected) or remain as passive object. It is
important to note that this decision is not only up to agents but is influenced
by the service components. The protocol that is proposed for this can be seen
as a voting protocol that works as follows (compare Fig. 2). The kernel asks all
service components sequentially about the local status of the agent by calling
method getState. A component might announce that it wants the agent to be
immediately restarted again (return value restart), or to continue to live without
restart (passivate), or raise no objection to kill the agent (terminate).

If there is at least one service component that wants the agent to be re-started,
then agent’s method run is invoked immediately again. If no service component
wants the agent to be restarted, but there is at least a single one that wants the

368 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

agent to continue to live, then the agent’s thread might terminate or wait and the
agent continues to live as passive object waiting to become started again. For ex-
ample, as long as an agent has pending messages, a communication service should
prevent the agent from being terminated. If no component raises an objection to
kill the agent, the agent is removed from the agency and is eventually garbage
collected.

Agency

getState
Survival

Migration

getState

Restart

getState

Passivate

Communication

TerminateK
er

ne
l

Figure 2. This figure illustrates the voting protocol that is used
by the kernel to decide on the next state of an agent. The figure
shows three service components to show the three different agent
status results. In this case, the result of the voting protocol will
be restart.

We want to mention two consequences of this protocol. First of all, if an agent
wants to survive termination of its run method, then it must have registered with
some service by requesting a context object. Second, as long as an agent possesses
at least a single context interface, it cannot die.

3.4.4. Agent Termination. If the voting protocol results in terminating an agent,
all registered observers are notified about this event to perform some final clear-
ance and then de-register the agent. This notification process is implemented as
a transaction using a two-phase commit protocol. In the first phase, each service
component is preparing to delete the agent’s context object. Only if all service
components are ready to delete, the agent’s context is deleted and the transaction
is committed. Otherwise, if any component raises an exception, the transaction is
rolled back and the agent is re-started again.

Figure 3 shows as an example the case of three service components, amongst
others a migration component. During the first phase of the two-phase commit
protocol, the migration component starts the migration process, if the agent has
defined a migration destination in its context object. It uses the information stored
in the agent’s context object in order to open a network connection to the migra-
tion destination. After that, the agent’s code and data are sent to the destination
agency. On the destination site, the migration component might inform the kernel

Tracy: A Software Architecture for Mobile Agent Toolkits 369

(named lock in the figure) about the in-migration, for example to let the kernel
validate the agent name. During this first phase of the protocol, the migration
process is not finalized and the network connection between sender and receiver
agency is not closed. In case of any error during the migration process, this service
throws an exception. When the transaction is then committed, the migration com-
ponent sends a command to the destination which finalizes the migration process
and starts the agent. Otherwise, in case of an error during the first phase of the
protocol, a different command is sent to roll back the whole migration process at
the destination agency.

Agency

K
er

ne
l

Migration

Place
Commit

Prepare

Prepare

Commit

Start Migration

Commit Migration

Lock

Run

K
er

ne
l

Place

Migration

Agency

Figure 3. This figure illustrates the two-phase commit protocol
that is used to stop agents.

3.5. Summary

In this section we have defined basic principles of our new agency model. Our aim
was to identify the smallest common denominator of typical functions of an agency.
The model specifies that an agency consists of three entities, i.e. the kernel that is
responsible to execute agents and control their life-cycle, service components that
provide high-level functions of the agency, and finally defines the main interface
that all agents have to implement. Further, the model defines how these entities
communicate to each other. The model does deliberately not define any high-level
functions of an agency, as for example migration or communication and it does
define only basic requirements related to security.

We see as main advantages of our new approach the following aspects.
1. Agent toolkits that conform to our new agency model are compatible to each

other which actually has two aspects. First, it means that service components
developed for one toolkit are applicable in all other agent toolkits too. We
believe that it will be possible to enable exchange of research results on the
basis of such software components in future. Second, agents and therefore
complete agent-based applications are executable on every other toolkit too.
The only requirement is that both toolkits provide the same set of high-level
services.

2. A second advantage of our approach is that agent toolkits become very mod-
ular, as there is only a very small imperative kernel which forms the basis for

370 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

many service components to be added on. This modular architecture makes it
very easy to port an agent toolkit to other devices, as components no longer
needed can be simply removed. If it is too heavy-weighted for a resource lim-
ited mobile device for example, it can replaced by another component with
less functionality and of less size.

3. Finally, every research group working on core research problems of mobile
agents can implement their research results, for example new protocols for
location-transparent communication as a service component and distribute it
with other research groups. It is not necessary for them to implement other
service components or even a complete agent toolkit by themselves.

4. The Tracy Toolkit

Tracy is a mobile agent toolkit designed according to the model defined in the
last section. In this section, we will mention details of the Tracy implementation
and especially describe several service components that have already been imple-
mented.

4.1. The Tracy Kernel

The kernel of Tracy mainly consists of an implementation of the Context class men-
tioned in the previous section, classes for agent and service management (ASM),
and a thread pool. In total, the kernel only consist of about 3000 lines of Java
code.

If an agent switches from state Waiting to state Running, a sleeping thread
from the thread pool is activated to execute the agent. After agent’s method run
has terminated, this thread is responsible to carry out the voting protocol. If the
agent is not started immediately again (transition back to state Waiting), the
thread is given back to the thread pool. The thread pool is initialized with a pre-
defined number of threads (this number can be configured) and adapts dynamically
to load variances.

The ASM classes are responsible to maintain a directory of all agents and
service components. These classes communicate with the thread pool in order to
execute agents. Agent names are defined to consist of the agent’s nick name and
a hash value that is computed over the agent’s classes, the home agency’s name,
and the start time, to which the name of the home agency is appended. The ASM
classes are also responsible to initiate the start of service components, which are
named plugins in Tracy, because they can be started and stopped dynamically dur-
ing runtime. Important functions of the kernel are guarded using Java permissions,
so that it is possible, for example to prohibit plugins to start or kill agents.

4.2. Tracy Plugins

As part of the Tracy project, we have already defined several high-level service
components and correspondent interfaces for context objects. They range from
very simple plugins that provide agents access to the hosting agency to complex

Tracy: A Software Architecture for Mobile Agent Toolkits 371

services to manage overlay networks of agencies. In our opinion, this makes Tracy
a comprehensive agent toolkit that can be used for the development of real-world
applications yet. For each of these services, Tracy provides a default implementa-
tion as plugin. In Tracy, a plugin is deployed as JAR file, which contains a manifest
to define the service name, version and author information, and dependences on
other plugins, which are then started automatically before. In the following, we
describe some of the most important plugins.

4.2.1. Place. The Place plugin provides agents an interface to the hosting agency
to obtain information about themselves, their environment, and other agents. As
already mentioned above, agents are innately blind, i.e. they are not aware of their
environment and do not even know their name. Using this plugin, an agent can
retrieve its name, name of its home and current agency and a list of all other
agents and services currently residing on this agency.

4.2.2. Survival. The most important feature of the Survival plugin is to prevent
an agent from being disposed after its run method has terminated. This plugin can
also be used to schedule agent execution in the future. For example, an agent can
define that it wants to be started once at a specific time or after some time interval.
Additionally, an agent can also define that it wants to be started periodically.

4.2.3. Migration. The migration plugin that is used in Tracy is based on the
Kalong migration component that is the result of a research project on high-
performance mobility models and migration protocols [6, 9]. The main difference
of Kalong as compared to other mobility models is that it provides a flexible and
fine-grained migration protocol, which leads to a higher migration performance of
mobile agents and to a flexible implementation of security protocols.

Current mobility models only offer a single migration strategy. For example,
in Grasshopper the agent migrates only with its data but without any code, which
is then dynamically loaded on demand (pull migration strategy). Other systems
always transmit the agent as a package of code and data to the next destination
agency (push migration strategy). In [8], we proofed that none of these simple
migration strategies leads to an optimized network load and transmission time and
proposed in the thesis that mobile agents should be able to adapt their migration
strategies according to specific environmental parameters, as for example, the code
size of each class, the probability that a class is used at the next destination,
network bandwidth and latency, etc.

Therefore, Kalong defines a virtual machine for agent migration with a small
set of methods to fully conduct the migration process by the agent or by the
agent programmer. A program for this virtual machine is called migration strategy
and we have already implemented several migration strategies, where the simplest
ones just implement the simple migration techniques of Aglets and Grasshopper
and the most sophisticated ones take several parameters into account, for example
code execution probability, which is determined by static program analysis, and
network bandwidth and latency information. In [6] we presented results of several

372 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

experiments, where mobile agents migrate in wide-area networks using Kalong and
need about 30% to 50% less execution time for a complete round-trip than using
simple push or pull-based strategies.

The Kalong component defines hot spots within the migration protocol,
where each message that is sent or received via network is processed by a pipeline
of so-called protocol extensions. Every protocol extension can modify network mes-
sages, for example compress, sign, or encrypt it. In [6] we already presented first
protocol extensions for agent authentication, code signing and protecting data
items against illicit tampering. We are currently working on adapting more so-
phisticated security protocols, especially path history [27], execution tracing [32],
environmental key generation [28], and state appraisal [14].

The migration plugin also provides the possibility to use various network
transmission protocols and we have already implemented support for TCP and
SSL. As a feature provided in order to make programming of mobile agents more
convenient, we have implemented transparent agency name resolution. The pro-
grammer of a mobile agent can address a destination agency using the full agency
name without a port number on which the destination agency is listening for in-
coming request–instead of the full qualified domain name together with a port
number as it is used in most other agent toolkits.

4.2.4. Agent Authorization. Security is a non-functional requirement of software
systems and therefore cannot be implemented in a single software component,
but is distributed over the kernel and several services. Some basic requirements
concerning agent security were already introduced in the kernel and we mentioned
that some security protocols can be implemented as extensions of the migration
component.

Another component that is considered with security is agent authorization,
which defines which permissions are granted to an agent. This service is an example
of a component that might vote against starting an agent, if, for example, the agent
is included on some black-list of possibly malicious agents. Otherwise, this service
assigns permissions to the agent with regard to the agent’s name and owner, its
path history [12] and the result of code inspections done in the Kalong component.

4.2.5. Communication. The communication service developed as part of the Tracy
toolkit supports the transfer of asynchronous messages between agents and ser-
vices. Every agent has a message box in which new messages are stored. The agent
can decide on its own how to handle these messages. It can decide to accept mes-
sages or not by closing its message box (even temporarily). So, the autonomy of
an agent can be preserved. To send a message, the agent needs to know the name
of the receiving agent.

This service does not support any kind of remote communication, i.e. an
agent cannot send messages to another agent residing on a different agency. Even
if both agencies were to reside on the same host sending messages between them
would not be possible. We are currently working on an extension of this plugin

Tracy: A Software Architecture for Mobile Agent Toolkits 373

Figure 4. Example of two Tracy domains: Each contains a do-
main server and several domain nodes. Each node is registered
at exactly one domain server. Agent server dagobert resides in
the intersection of two domains and could be either registered at
pluto, or at james.

which also allows remote communication using a forwarding pointer concept as
already proposed by [25].

4.2.6. Tracy Domain Service. To manage logical Tracy networks we implemented
the domain management service, which is completely implemented using station-
ary and mobile agents. A domain is a set of agencies that are connected in a
local subnetwork. All agencies in one domain must be pairwise reachable by a
UDP multicast. However, not all pairs of agencies in one local subnetwork must
be member of the same domain–several logical Tracy networks can exist in one
subnetwork independently. The domain management service is the basis for a com-
prehensive directory service in which each agency publishes services it offers for
mobile agents [13].

A logical Tracy network consists of several agencies, which can either be in
the role of the unique domain server, or in the role of a domain node. A domain
server is responsible to manage a list of all registered domain nodes, whereas a
domain node only knows its domain server. When a domain service is started, it
first sends a UDP multicast message to all computers in the local subnetwork, see
Fig. 4. If there already exists a domain server, this one will answer by sending
a UDP package to the sender. This package contains the name of the agency on
which the domain server resides. In a second step, the new agency sends a mobile
agent to the domain server with the task to register it over there. If no domain
server exists in the local subnetwork the new agency will become a domain server
itself. As can be seen in Fig. 4, an agency (dagobert) can be in the intersection
of two domains. The UDP multicast would be answered by more than one domain
server. In this case the new agency is registered at the domain server which has
answered the UDP multicast first. This makes sense, because Tracy domains should

374 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

Figure 5. The screen shot shows an example of the Tracy Web
interface, showing the list of agents currently residing at agency
MainAgency.

contain servers that are situated locally and request time is a good indicator for
this metric.

To build larger Tracy networks, domain servers can be connected dynamically.
At the time, this process must be performed manually. For the future, we plan to
build up larger Tracy networks by using mobile agents that explore the agent
system and connect domain servers according to quality of services and quality
of network connections. Note, that for an agent it is not necessary to follow this
domain server connections to migrate to another agency–this can be done directly,
as in a peer-to-peer network. The structure of a Tracy network is only important to
explore new agencies in an unknown environment. The Tracy system contains all
agencies, even if they could not find each other because they are in different logical
Tracy networks–nevertheless it is possible for them to exchange mobile agents.

4.2.7. Other Services. Other services that are already defined and implemented
as part of the Tracy project allow

• to send emails to arbitrary users using the SMTP protocol,
• to send short messages via a SMSC (using a SOAP Web service),
• multi-user management including dynamic permission management,
• to administrate an agency using a text-based user interface via Telnet proto-

col,

Tracy: A Software Architecture for Mobile Agent Toolkits 375

• to load public keys from a LDAP server (this is used by some security en-
hancements of the migration plugin),

• to launch agents automatically when an agency starts,
• to administrate an agency using the SOAP protocol.

As an application of the last service, we have already implemented a Web-
based user interface, where Java servlets communicate to an agency using SOAP.
Fig. 5 shows a screen shot of the Tracy Web interface.

5. Proof-of-Concept

This section describes an application scenario to mainly express two things: First
and most significant to give evidence that our service-based approach does work
and second to emphasize the applicability of well-structured mobile agent frame-
works in production.

Thus, we have designed and implemented an application offering mobile ser-
vices for customers of a fictive railway company on top of our mobile agent toolkit
Tracy. The main goal of that application is to provide a passenger while travel-
ing with in-time information about schedules and state of potential or prospective
trains he is going to use during his journey. That passenger can use mainly two
functions with our application directly from his mobile device. On the one hand
he is able to compose complete time tables including departure and arrival times,
transfers, platform numbers, etc., and on the other hand the application can be
configured to observe train states to provide the passenger with latest information
regarding train delays or breakdowns giving a passenger an opportunity to react
on those incidents and to keep his journey efficient.

When we have a closer look at our application it can be recognized that two
different types of agencies are needed. On the railway company’s side we need a
high performance and high scaling agency able to host thousands of concurrent
agents, each represents a single user. Additionally, the company’s agency offers
services for mobile agents to access the time table database and to compose sched-
ules. Finally, it offers a service for mobile agents to register with some kind of
notification manager in order to retrieve information about train latencies.

In contrast, a small agency is needed on the customer’s side, which easily
adapts to the restricted resources, such as low processor performance and limited
memory. That client agency has to provide also additional services, i.e. to connect
to other local applications (e.g. PIMs) and to enable communication with the
user via a graphical interface. We have chosen a PDA as basic hardware for our
application in the first phase because it offers sufficient resources for running Java
programs and hosting mobile agents. In a next step our client agency could be
further downsized to another version which can be executed on even smaller Java-
capable devices, for example mobile phones.

376 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

Mobile agents are used as information carriers between passenger and com-
pany agency in order to transmit schedules and delay information from the com-
pany agency to the client agency and to transmit schedule requests and observation
configurations from the client agency. Additionally, mobile agents offer additional
functionality to passengers, such as the opportunity to re-plan a journey if a train
delays. Following this, both agencies need to implement a migration service.

At this point the advantages of a fully service-based approach for designing
agent toolkits are brought to bear. Obviously we have two different implementa-
tions of our agency model both able to run the same migration service. The only
service running on the PDA agency is the migration service that we were able to
adopt to the restrictions of the mobile device and new Java version successfully.

Let’s have a look at a concrete scenario. Imagine a salesman to plan a busi-
ness trip by train from Jena to Hamburg. We presume he is already a customer of
our fictive railway company and has yet a Tracy agency installed on his PDA. A
day before traveling the salesman assigns a mobile agent via the graphical interface
of our application to obtain the schedule for his journey. Therefore, he parame-
terizes the mobile agent with details about start location and destination, date,
and prospective departure and arrival time. Then the mobile agent migrates to the
railway company’s agency, interacts there with appropriate services for composing
the schedule, and returns back onto the PDA for presenting the information to its
owner. We assume the salesman has got a connection with two transfers.

The salesman creates a mobile agent and configures it to observe the state
of all trains involved in his journey and starts it in the morning before the travel
begins. The mobile agent determines the unique train identifiers and migrates again
to the railway company’s agency. This time the mobile agent subscribes to a certain
service for being provided with information regarding to all incidents influencing
the salesman’s trip. If an event occurs, for example the second train delays 15
minutes, the mobile agent receives a notification from the service, migrates back
onto the PDA and presents that information audio-visually. Thus, the salesman
can react on this event, for example by notifying his business partners about his
delay or even by looking for other transport opportunities to keep the time loss
to a minimum. Of course, the scenario is a simple one. However, behind that idea
there is much potential for further more sophisticated services for mobile users.

6. Conclusions

The main motivation for the work presented in this chapter was the lack of any
widely accepted implementation of a mobile agent toolkit that can be used by
researchers to implement and test their own research results. Our thesis is that
research on mobile agents will benefit from our kernel-based approach, in which we
only define basic concepts and functions common to all toolkits. Core services, for
example agent migration, communication, management of logical agency networks,
and parts of security issues are implemented as software components. All research

Tracy: A Software Architecture for Mobile Agent Toolkits 377

groups still working on core research topics related to mobile agents are invited to
contribute to our idea by implementing their own research results as plugins for
Tracy.

In our opinion, our Tracy approach differs from already existing models for
mobile agent toolkits in the following aspects: Current models for agencies [3, 16]
include design decisions for several core services already. We see as major draw-
back of such an agency model that it creates many dependences between actually
independent services. In fact, our model abstracts from these services and in con-
trast attempts to move as many functional requirements of a mobile agent toolkit
into such services. To extend the discussion of related work started in Sec. 2, we
mention two mobile agent toolkit that also claim to employ a kernel-based ap-
proach, namely JavaSeal [10] and MobileSpaces [31]. In both toolkits a kernel is
defined comprising of core functionality and additional basic services. In JavaSeal
these services are migration, communication, and security–in MobileSpaces it is
mainly migration, as services are implemented as mobile agents in this toolkit. Our
approach goes a step further by defining core services such as migration and com-
munication as exchangeable components that are not part of the kernel. Besides,
services are clearly distinguished from agents.

Finally, we mention Semoa [30] as an example of another extendable toolkit.
Agents are also represented as Runnables in Semoa and the concept to decouple
agents and services using context objects is comparable to our approach. Agents
offer application-specific services by registering a service object with the single
environment. We see as main difference to our approach that Semoa handles
application-specific services and the two core services for agent migration and
communication differently. Whereas the first class of services can be plugged into
the system during runtime, core services seem to be strongly coupled into the de-
sign of the whole toolkit. In Tracy, we do not distinguish between these two classes
of services and migration and communication are both optional services.

References

[1] Joachim Baumann. Mobile Agents: Control Algorithms, volume 1658 of Lecture Notes
in Computer Science. Springer-Verlag, 2000.

[2] Joachim Baumann, Fritz Hohl, Nikolaos Radouniklis, Kurt Rothermel, and Markus
Straßer. Communication concepts for mobile agent systems. In Kurt Rothermel and
Radu Popescu-Zeletin, editors, Proceedings of the First International Workshop on
Mobile Agents (MA’97), Berlin (Germany), April 1997, volume 1219 of Lecture Notes
in Computer Science, pages 123–135. Springer-Verlag, 1997.

[3] Christoph Bäumer, Markus Breugst, Sang Choy, and Thomas Magedanz. Grasshop-
per — A universal agent platform based on OMG MASIF and FIPA standards.
In Ahmed Karmouch and Roger Impey, editors, Mobile Agents for Telecommunica-
tion Applications, Proceedings of the First International Workshop (MATA 1999),
Ottawa (Canada), October 1999, pages 1–18. World Scientific Pub., 1999.

378 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

[4] Fabio Bellifimine, Giovanni Caire, Agostino Poggi, and Giovanni Rimassa. Jade – A
White Paper. EXP in search of innovation, 3(3):6–19, 2003.

[5] Diego Bonura, Leonardo Mariani, and Emanuela Merelli. Designing modular agent
systems. In Proceedings of Net.ObjectDays, Erfurt (Germany), September 2003,
pages 22–25, 2003.

[6] Peter Braun. The Migration Process of Mobile Agents–Implementation, Classifica-
tion, and Optimization. PhD thesis, Friedrich-Schiller-Universität Jena, Computer
Science Department, May 2003.

[7] Peter Braun, Jan Eismann, Christian Erfurth, and Wilhelm R. Rossak. Tracy – A
Prototype of an Architected Middleware to Support Mobile Agents. In Proceedings
of the 8th Annual IEEE Conference and Workshop on the Engineering of Computer
Based Systems (ECBS), Washington D.C. (USA), April 2001, pages 255–260. IEEE
Computer Society Press, 2001.

[8] Peter Braun, Christian Erfurth, and Wilhelm R. Rossak. Performance Evalua-
tion of Various Migration Strategies for Mobile Agents. In Ulrich Killat and Win-
fried Lamersdorf, editors, Kommunikation in verteilten Systemen (KiVS 2001), 12.
Fachkonferenz der Gesellschaft für Informatik (GI), Fachgruppe Kommunikation und
verteilte Systeme (KuVS) unter Beteiligung der VDE/ITG, Hamburg (Germany),
February 2001, Informatik Aktuell, pages 315–324. Springer Verlag, February 2001.

[9] Peter Braun, Ingo Müller, Sven Geisenhainer, Volkmar Schau, and Wilhelm R.
Rossak. Agent migration as an optional service in an extendable agent toolkit archi-
tecture. In Ahmed Karmouch, Larry Korba, and Edmundo Madeira, editors, Pro-
ceedings of the First International Workshop on Mobility Aware Technologies and
Applications (MATA 2004), Florianopolis (Brazil), October 2004, volume 3284 of
Lecture Notes in Computer Science, pages 127–136. Springer Verlag, 2004.

[10] Ciaran Bryce and Jan Vitek. The JavaSeal mobile agent kernel. In Dejan S. Miloji-
cic, editor, Proceedings of the First International Symposium on Agent Systems and
Applications (ASA’99)/Third International Symposium on Mobile Agents (MA’99),
Palm Springs (USA), October 1999, pages 103–116. IEEE Computer Society Press,
1999.

[11] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-oriented Software Architecture: A System of Pattern. John Wiley and
Sons, 1996.

[12] Guy Edjlali, Anurag Acharya, and Vipin Chaudhary. History-based access control for
mobile code. In Jan Vitek and Christian D. Jensen, editors, Internet Programming
– Security Issues for Mobile and Distributed Objects, volume 1603 of Lecture Notes
in Computer Science, pages 413–432. Springer-Verlag, 1999.

[13] Christian Erfurth, Peter Braun, and Wilhelm R. Rossak. Migration Intelligence for
Mobile Agents. In Artificial Intelligence and the Simulation of Behaviour (AISB)
Symposium on Software mobility and adaptive behaviour. University of York (United
Kingdom), March 2001, pages 81–88, 2001.

[14] William M. Farmer, Joshua D. Guttman, and Vipin Swarup. Security for mobile
agents: Authentication and state appraisal. In Elisa Bertino, Helmut Kurth, Gian-
carlo Martella, and Emilio Montolivo, editors, Proceedings of the Fourth European

Tracy: A Software Architecture for Mobile Agent Toolkits 379

Symposium on Research in Computer Security (ESORICS 1996), Rome (Italy), Sep-
tember 1996, volume 1146 of Lecture Notes in Computer Science, pages 118–130.
Springer-Verlag, 1996.

[15] Robert S. Gray, George Cybenko, David Kotz, and Daniela Rus. Agent Tcl. In
William R. Cockayne and Michael Zyda, editors, Mobile Agents: Explanations and
Examples, pages 58–95. Manning Publications, 1997.

[16] Dieter K. Hammer and Ad T. M. Aerts. Mobile Agent Architectures: What are
the Design Issues? In Proceedings International Conference and Workshop on
Engineering of Computer-Based Systems (ECBS’98), Maale Hachamisha (Israel),
March/April 1998, pages 272–280. IEEE Computer Society Press, 1998.

[17] Wayne A. Jansen. Countermeasures for mobile agent security. Computer Communi-
cations: Special Issue on Advances in Research and Application of Network Security,
23(17):1667–1676, 2000.

[18] Mehdi Jazayeri and Wolfgang Lugmayr. Gypsy: A component-based mobile agent
system. In Proceedings of the 8th Euromicro Workshop on Parallel and Distributed
Processing (PDP), Rhodos (Greece), January 2000, 2000.

[19] Dag Johansen. Mobile agents: Right concept, wrong approach (panel). In Anupam
Joshi and Hui Lei, editors, IEEE International Conference on Mobile Data Manage-
ment (MDM’04), Berkeley (USA), January 2004, pages 300–301. IEEE Computer
Society Press, 2004.

[20] Neeran M. Karnik. Security in Mobile Agent Systems. PhD thesis, Univeristy of
Minnesota, Department of Computer Science, 1998.

[21] Neeran M. Karnik and Anand R. Tripathi. Design Issues in Mobile Agent Program-
ming Systems. IEEE Concurrency, 6(6):52–61, 1998.

[22] Ryszard Kowalczyk, Bogdan Franczyk, Andreas Speck, Peter Braun, Jan Eismann,
and Wilhelm R. Rossak. InterMarket: Towards Intelligent Mobile Agent-based e-
Marketplaces. In Proceedings of the 9th Annual Conference and Workshop on the
Engineering of Computer-based Systems (ECBS-2002), Lund (Sweden), April 2002,
pages 268–275. IEEE Computer Society Press, 2002.

[23] Danny B. Lange and Mitsuru Oshima. Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998.

[24] Dejan S. Milojicic, Markus Breugst, Ingo Busse, John Campbell, Stefan Covaci,
Barry Friedman, Kazuya Kosaka, Danny Lange, Kouichi Ono, Mitsuru Oshima,
Cynthia Tham, Sankar Virdhagriswaran, and Jim White. MASIF: The OMG Mo-
bile Agent System Interoperability Facility. In Kurt Rothermel and Fritz Hohl, edi-
tors, Proceedings of the Second International Workshop on Mobile Agents (MA’98),
Stuttgart (Germany), September 1998, volume 1477 of Lecture Notes in Computer
Science, pages 50–67. Springer-Verlag, 1999.

[25] Luc Moreau. A Fault-Tolerant Directory Service for Mobile Agents based on For-
warding Pointers. In The 17th ACM Symposium on Applied Computing (SAC’2002)
— Track on Agents, Interactions, Mobility and Systems, Madrid (Spain), March
2002, pages 93–100, 2002.

[26] Paul O’Brien and Richard Nicol. FIPA – towards a standard for software agents. BT
Technology Journal, 16(3):51–59, 1998.

380 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

[27] Joann J. Ordille. When agents roam, who can you trust? In Proceedings of the
First Conference on Emerging Technologies and Applications in Communications,
Portland, Oregon (USA), May 1996, 1996.

[28] James Riordan and Bruce Schneier. Environmental key generation towards clueless
agents. In Giovanni Vigna, editor, Mobile Agents and Securtiy, volume 1419 of Lec-
ture Notes in Computer Science, pages 15–24. Springer-Verlag, 1998.

[29] Volker Roth. Obstracles to the adoption of mobile agents (panel). In Anupam Joshi
and Hui Lei, editors, IEEE International Conference on Mobile Data Management
(MDM’04), Berkeley (USA), January 2004, pages 296–297. IEEE Computer Society
Press, 2004.

[30] Volker Roth and Mehrdad Jalali. Concepts and architecture of a security-centric
mobile agent server. In Proceedings of the Fifth International Symposium on Au-
tonomous Decentralized Systems (ISADS 2001), Dallas, (USA), March 2001, pages
435–442. IEEE Computer Society Press, 2001.

[31] Ichiro Satoh. An architecture for next generation mobile agent infrastructure. In Pro-
ceedings of International Symposium on Multi-Agent and Mobile Agents in Virtual
Organizations and E-Commerce (MAMA’2000), pages 281–287, 2000.

[32] Giovanni Vigna. Protecting mobile agents through tracing. In Christian Tschudin,
Joachim Baumann, and Marc Shapiro, editors, 3rd ECOOP Workshop on Mobile
Object Systems: Operating System support for Mobile Object Systems, Jyvälskylä
(Finland), June 1997, 1997.

[33] Giovanni Vigna. Mobile Code Technologies, Paradigms, and Applications. PhD the-
sis, Politecnico di Milano (Italy), February 1998.

[34] Giovanni Vigna. Mobile agents: Ten reasons for failure (panel). In Anupam Joshi
and Hui Lei, editors, IEEE International Conference on Mobile Data Management
(MDM’04), Berkeley (USA), January 2004, pages 298–299. IEEE Computer Society
Press, 2004.

[35] James E. White. Mobile agents. In Jeffrey Bradshaw, editor, Software Agents, pages
437–472. The MIT Press, Menlo Park, CA, 1996.

Information about Software

Software is available on the Internet as
() prototype version
(x) full fledged software (freeware), version no.: 1.0.1-40
() full fledged software (for money), version no.:
() Demo/trial version
() not (yet) available

Internet address: http://www.mobile-agents.org
Description of software: Tracy mobile agent toolkit
Download: http://www.mobile-agents.org
Contact point for question about the software:
Name: Peter Braun
Email: braun@mobile-agents.org

Tracy: A Software Architecture for Mobile Agent Toolkits 381

Peter Braun
Faculty of Information and Communication Technologies
Swinburne University of Technology
Hawthorn, Victoria 3122, Australia
e-mail: pbraun@ict.swin.edu.au

Ingo Müller
Faculty of Information and Communication Technologies
Swinburne University of Technology
Hawthorn, Victoria 3122, Australia
e-mail: imueller@ict.swin.edu.au

Tino Schlegel
Faculty of Information and Communication Technologies
Swinburne University of Technology
Hawthorn, Victoria 3122, Australia
e-mail: tschlegel@ict.swin.edu.au

Steffen Kern
Friedrich Schiller University Jena, Computer Science Department
Ernst-Abbe-Platz 2, 07743 Jena, Germany
e-mail: steffen.kern@informatik.uni-jena.de

Volkmar Schau
Friedrich Schiller University Jena, Computer Science Department
Ernst-Abbe-Platz 2, 07743 Jena, Germany
e-mail: volkmar.schau@informatik.uni-jena.de

Wilhelm Rossak
Friedrich Schiller University Jena, Computer Science Department
Ernst-Abbe-Platz 2, 07743 Jena, Germany
e-mail: rossak@informatik.uni-jena.de

