
WS2JADE: A Tool for Run-time Deployment 
and Control of Web Services as JADE Agent 
Services 

Xuan Thang Nguyen, Ryszard Kowalczyk,  
Mohan Baruwal Chhetri and Alasdair Grant 

Abstract. Web services and software agent technologies are two areas that have at-
tracted substantial research and industry interests in recent years. On the one hand, 
the Web services technology is gaining popularity because of its well-defined infra-
structure aiming at enabling interoperability among heterogenous applications. On 
the other hand, the agent technology aims at providing intelligent autonomous capa-
bilities for distributed components. A combination of these two technologies could 
create an environment where Web services and agents can employ and compliment 
each others’ strengths. In this chapter, we propose a framework called WS2JADE for 
integrating Web services and the JADE agent platform. In particular, the technical 
aspects of run-time deployment and control of Web services as agent services with 
WS2JADE are presented. We relate our framework to other solutions in the area and 
show how new emerging Web services management technologies can be used with 
WS2JADE for enabling Web services management with agents. The management 
capabilities are demonstrated with simple examples of using WS2JADE for service 
discovery, composition and deployment with JADE agents. 

1 Introduction 

With the emergence of Web service standards, the universal interoperability between 
distributed applications is fast becoming a reality. Web services follow a loosely cou-
pled integration model and use industry-standard protocols to facilitate the seamless 
integration of heterogeneous systems within and across organisations. While the Web 
service technology offers many distinctive advantages and benefits, it still has certain 
limitations potentially hindering its broader adoption in more complex applications. In 
particular it involves the limited support for the management of the discovery, composi-
tion and execution of Web services (e.g. [1, 18, 24, 25]).  
 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

224

The agent technology offers abilities of intelligent operations, interactions and coopera-
tion between autonomous components that can be used in automating management tasks 
and business processes, and has also been recognized as a promising technology for 
managing Web services [9, 10, 17, 25]. However, because Web services and agents 
were originally developed separately with different standards and specifications their 
integration is not straightforward. Realising the benefits of integrating these two tech-
nologies, significant research has been carried out in this direction. The Agentcities 
Web Service Working Group’s project [4] is an example of such an effort aiming at 
addressing the issue of Web services and agents integration. More recently, Agentcities 
has also created openNet [26] that provides a test-bed environment for integrating soft-
ware agents, Web services and Semantic Web services. The integration of software 
agents and services in general has been proposed by Luck et al. [20] as one of the major 
tasks for the agent community. The main obstacles in integrating Web services and 
agents are the mismatches in description and communication used by these two tech-
nologies. One way to overcome these obstacles can be a proxy-based integration ap-
proach that allows the two technologies to evolve in parallel without imposing any re-
strictions on either, providing the gateway to bridge the Web services and agents.  
 
Web services can work across organizations and be composed to create new Web ser-
vices. There are business scenarios in which many Web services from different admini-
stration domains need to be tied together in cross-organisational business processes or 
complex composite applications. Consequently, Web services management becomes a 
complex task that requires a high level of intelligent capabilities and automation sup-
port. The emerging Web services management technologies, such as WS-Management 
[1] and Web Services Distributed Management (WSDM-MUWS [24], WSDM-MOWS 
[25]), define additional interfaces for Web services needed for their management. How-
ever they do not specify the management mechanisms, i.e. ‘how’, ‘when’ or ‘why’ these 
Web services can be managed. The agent technology is well poised to fulfil this role and 
support Web services with the required management mechanisms. If agents were able to 
interact with Web services, the agent technology could be integrated into the Web ser-
vice management model effectively and used to manage Web services. 
 
In this paper, we propose a framework for integrating Web services and FIPA compliant 
software agents, which offers many advantages over previous solutions. Specifically it 
enables run-time deployment and control of Web services as agent services. The man-
agement of Web service discovery, composition and execution can be performed both at 
the agent service and the Web service levels. Section 2 overviews the related work in 
the area of integrating Web services and agent technologies. Section 3 presents the pro-
posed framework called WS2JADE and its technical aspects. Section 4 discusses the 
need for Web service management and current standards available for Web service 
management. It also discusses how and why agent technology, and in particular 
WS2JADE can support Web service management. Section 5 demonstrates the specific 
capabilities of WS2JADE with simple examples of Web service management including 
service discovery, composition and deployment with JADE agents. Finally, concluding 
remarks and an outline of the future work are presented in Section 6. 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

225 

2 Related Work 

The agents and Web services communication, and a synthesis of the agents and Web 
services have been addressed in a number of works. In [11], the authors discuss the 
“agentification” for Web services, in which the legacy systems could be re-engineered 
into agent-based Web services. In [10] an agent-based architecture is proposed for the 
selection and composition of Web services. The trend of using agents to monitor and 
control Web services composition has been increasing recently, evidenced by a number 
of other publications (e.g. [12, 27, 28]). In most of those works however, agents do not 
conform to any specific standard and details of using agents to invoke Web services are 
not formally described. The general assumption is that any agent can request any Web 
service by acting as the Web service’s client. In practice, if this assumption held then 
the agents’ code would need to contain the Web service invocation code. For FIPA-
compliant agent systems, this also means that in addition to agent communication lan-
guages, the agents’ programmer need to consider the low level details of Web services 
invocation. There have been attempts to provide a framework in which agents and Web 
services, with separation of concerns in their implementations, can communicate with 
each other. A symmetric integration of Web services and FIPA-compliant agent plat-
forms has been proposed in [4] as a high-level architectural recommendation from the 
Agentcities [3]. It is the fact that Web services were developed without the concept of 
agents (i.e. FIPA agents) and can exist without agents. The symmetric architecture takes 
this into consideration and also that many Web service clients may have autonomous 
characteristics of agents without conforming to the FIPA specifications. A proxy-based 
approach allows the two platforms to be evolved in parallel without imposing any re-
strictions on each other.  

FIPA Agent Service Environment Web service Environment

FIPA Agent

FIPA

Service

FIPA

Directory

Facilitator

UDDI

Registry

Web service

Client

Web service

FIPA Agent

Service to

Web service

Gateway

Web service

to FIPA

Agent

Service

Gateway

FIPA Agent Service Environment Web service Environment

FIPA Agent

FIPA

Service

FIPA

Directory

Facilitator

UDDI

Registry

Web service

Client

Web service

FIPA Agent

Service to

Web service

Gateway

Web service

to FIPA

Agent

Service

Gateway

 

Fig. 1.  FIPA Agents – Web services Integration Architecture [4] 

A FIPA agent service environment can exist in parallel with a Web service environment 
as depicted in Figure 1 [4]. The “FIPA Agent Service to Web service Gateway” on the 
border between the two environments allows a FIPA agent to access Web services by 
translating ACL messages into Web service invocations. In the other direction, the 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

226

“Web Service to FIPA Agent Gateway” exposes and registers agent services in UDDI 
Registry Server so that any Web service client can use them. Following the Agentcities 
recommendations, two separate solutions have been proposed to solve two ends of the 
problems for the FIPA compliant JADE agent system. One solution exposures Web 
services to JADE agents [19] and JADE agent services to Web services [7, 8, 33]. 
Whitestein Technology has proposed WSAI (Web Service agent Integration) [33] and 
WSIGS (Web Service Integration Gateway Service) [7], and has already released the 
tool WSAI as an open source code in its first version. WSIGS is under development and 
its architecture has been published in [7] and [8]. WSDL2JADE has been released by 
Sztaki [19] as an online program that converts WSDL file to JADE classes. It takes a 
Web service address as an input and generates outputs of JADE agent code and agent 
ontology for the Web service. However, there is no run-time deployment capability. 
 
WSAI [33] allows Web service clients to use JADE agents’ services. In order to do this, 
WSDL files are generated for these agent services. Technically, at this stage WSDL 
files are created manually from the agents’ behaviors. It also requires “interface agents” 
to communicate with a target agent. These “interface agents” are created and destroyed 
per Web service client invocation of the agent service. However it appears that the prac-
ticability of WSAI is limited. This is because of the default single-threaded mode of 
JADE agent, and the asynchronous and stateful nature of agent communication do not 
fit well in the current implementation stage of Web service communication model, 
which is stateless and mostly synchronous. There have been discussions of asynchrony 
versus synchrony in agents and Web services in [4]. WSIGS [7] is under development at 
the writing time of this paper. WSIGS proposes an architecture for the bi-directional 
integration without special agents, and provides a set of codecs that do the translation 
between the agents’ ACL (Agent Communication Language) and Web services’ calls.  
To be visible in both environments, WSIGS is registered as a special agent service in 
FIPA DF (Directory Facilitator) and as a special Web service endpoint in UDDI directo-
ries. When an agent wants to invoke a service (Web service) registered in WSIGS regis-
try, the request is passed on to WebServiceInvocation, a component of WSIGS, to per-
form the actual Web service invocation. There is no active discovery mechanism pro-
vided in WSIGS. Services in one environment need to be registered by their owners in a 
public directory before they can be seen in the other environment. 

 
The area of Web services management has attracted substantial effort from industry and 
significant research among academic communities. Web services-based applications can 
work across enterprise boundaries more now than any other types of applications. How-
ever, being distributed and dynamic in nature, Web services require an efficient man-
agement model that can integrate seamlessly and work dynamically in a distributed en-
vironment. There have been two main approaches in tackling this problem and they are 
complimentary to each other. In the first approach, management is done through Service 
Level Agreement (SLA) or service contracts. This approach assumes that control over 
Web services is not visible to external managers and service management is enforced 
through agreement terms (rewards, penalty, preference, etc) specified in the contracts. 
Current work on this approach can be found in [15] and [37]. In the second approach, 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

227 

external mangers can exert direct control over a Web service. For this to happen, the 
Web service that needs to be managed must expose some manageability interfaces. This 
approach is the latest emerging management model from industry, supported for exam-
ple by two specifications, Web Services Distributed Management (WSDM) [22] origi-
nally from HP and WS-Management [1] from Microsoft. At this initial stage, WS-
Management and WSDM appear to overlap in a number of aspects. 

 
WS2JADE proposed in this paper aims at enabling seamless and dynamic Web services 
and agent technology integration, and is geared for agent-based management of Web 
services. To do this, it utilizes useful features from emerging Web service management 
models; especially Web services based management models like WSDM and WS-
Management. It provides facilities to integrate with future implementation of WSDM 
and WS-Management, and offers the deployment of Web services as agent services at 
run-time. It is the first step towards the ultimate goal of automation of Web service 
management using agents. WS2JADE does not automatically provide intelligent algo-
rithms for Web services management. However, it provides a gateway for the existing 
management algorithms to be employed in the multi-agents environment. With 
WS2JADE, an overlay management network of agents can be formed to manage the 
Web services network and communicate with the underlying management of Web ser-
vices. 

3 WS2JADE: Web Services-Agents Integration 

This section describes the proposed approach for the integration of Web services and 
JADE agents with WS2JADE. From an architectural perspective, WS2JADE, in accor-
dance with [4], forms a gateway between a Web service and FIPA agent service. As 
depicted in Figure 2 there are two distinct layers in WS2JADE: the interconnecting 
layer and the management layer. These two layers provide facilities to connect the Ser-
vice Oriented Layer (Web services) and the JADE agent layer together. 

 
The layer which contains entities that directly and dynamically interconnect Web ser-
vices and agents is the Interconnecting Layer. The management layer, being static, cre-
ates and manages those dynamic interconnecting entities. In WS2JADE, the intercon-
necting entities consist of special agents, ontology and protocol specifications. We call 
these special agents WSAG (Web Service Agents). WSAG are the agents capable of 
communicating with and offering Web services as their own services.  The combination 
of the static and dynamic layers is a distinct feature of WS2JADE as compared to earlier 
tools mentioned in the previous section. The WS2JADE management layer is capable of 
active service discovery, and automatically generating and deploying WSAG at runtime.  
It is an improvement over WSDL2JADE since it can automate the agent deployment 
process. Instead of being passive like WSIG, the WS2JADE is designed to actively dis-
cover Web services and generate equivalent Web services if required. Also, each 
WSAG is multi-threaded to take an advantage of supporting concurrent requests of Web 
services and has its own Web service invocation module. 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

228

Agents

Onto protocols

Onto mapping

Mgmt

   Intrt Generator
      Service Asgmt

Mgmt

Web Service

Data types choreography

O
n

to
lo

g
y

C
a
rd

in
a
li

ty

Web Service

Layer

WS2JADE

Management Layer

WS2JADE

Interconnecting Layer

JADE layer

W
S

2
J
A

D
E

 

Fig. 2. WS2JADE layer mapping 

 
Figure 2 shows that WS2JADE management can be looked at from a different perspec-
tive as a layer which is capable of projecting the Web services (or any service-oriented 
environment) layer into the JADE agent layer. The result of this projection is repre-
sented by the interconnecting entities. As depicted in that figure, three mappings are 
carried out by WS2JADE during the projection: ontology mapping, interaction map-
ping, and assignment mapping. These mappings are handled by three main components  

 
 

JADE Platforms

W
e
b

 s
e
rv

ic
e
 E

n
v
ir

o
n

m
e
n

t

 

  

WS2JADE

In
te

ra
ti
o

n
 T

ra
n

s
la

to
r

O
n

to
lo

g
y
 G

e
n

e
ra

to
r

C
a

rd
in

a
lit

y
 M

a
n

a
g

e
r

DFClient

Agent

WSAG

UDDI

WSAG

In
te

ra
c
t 
P

ro
t

O
n

to

 
 

Fig. 3. WS2JADE components 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

229 

 
 
that form the WS2JADE management layer: ontology generation and management 
component, interaction translation component, and the service assignment management 
component. These components interact with each other and provide the WS2JADE 
management part as shown in Figure 3. 
 
Figure 3 presents the different components within WS2JADE system and how they are 
linked to JADE agent system. The vertical rectangular box depicts WS2JADE, the hori-
zontal one depicts JADE. Note that the overlap between WS2JADE and JADE consists 
of components in the WS2JADE interconnecting layer: generated interaction protocols, 
ontologies, and WSAG. Figure 3 also illustrates a scenario for WS2JADE operation, in 
which a client agent searches for some service on DF. The DF can trigger WS2JADE to 
look up for available services in the Web service environment. If some Web services are 
found, their corresponding ontology and interaction models are generated. Also, a 
WSAG capable of accessing the Web service is generated.  This WSAG registers the 
Web service as its service on DF, and communication between the client agent and this 
WSAG can start if the client agent wants the service.  The following subsections discuss 
each WS2JADE component in more details.  

3.1 Ontology Generation and Management 

The ontology generator is responsible for ontology generation and ontology manage-
ment. It translates data and its structure from Web service WSDL interfaces into mean-
ingful information for agents. A detailed explanation of WSDL can be found in WSDL 
specification [9]. WSDL describes abstract concepts and concrete entities. The abstract 
concepts are port type, operation, message and data type. The concrete entities are data 
encoding style, transport protocol and network address. In WS2JADE, the abstract con-
cepts are relevant for the ontology mapping management as agents need to know how to 
invoke the operations of a Web service. The concrete entities are handled by the interac-
tion generator and management component. WS2JADE ontology generator and man-
agement component converts Web services’ data types, and the operation inputs and 
outputs into the agent ontologies. The corresponding WSDL port type is tagged in the 
structure of the ontologies. Since JADE is implemented in Java, JADE ontologies are 
often represented as Java classes, which are convenient for JADE agent’s manipulation 
and processing. Alternatively, it can be in other formats such as RDFS [34] and OWL 
[35] for interoperability with other FIPA compliant agent platforms provided that there 
are suitable codec plug-ins. Our WS2JADE toolkit supports JADE native ontology and 
OWL. To generate ontologies in Java, a WSDL data type is converted to a concept in 
agent ontologies. Two concepts are generated for each WSDL operation. One is for the 
operation input message and the other is for the output message. WSDL data types can 
be built-in XML types. The list of built-in simple XML data types are defined in the 
XML schema specification [29]. We map these built-in simple data types to Java primi-
tives that are supported by JADE ontology representation. For XML data types that are 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

230

not built-in, special customized Java classes are used, for examples, Beans, Enumera-
tion Holders and Facet classes.  
 
The following is an example of generated ontology for a XML type Enumeration de-
fined as: 

<s:simpleType name="Mode"> 

 <s:restriction base="s:string"> 

 <s:enumeration value="On" /> 

 <s:enumeration value="Off" /> 

 </s:restriction> 

</s:simpleType>

The generated ontology concept in a Mode class extends from JADE Concept class: 

public class Mode implements jade.content.Concept{ 

ModeFacet facet=null; 

java.lang.String enumEle; 

 public Mode(){} 

 public java.lang.String getEnumEle(){return enumEle;} 

 public void setEnumEle(java.lang.String enumIn){ 

  this.enumEle = enumIn; 

 } 

}

This Mode class has a facet defined as in ModeFacet class, which restricts the value of 
enumEle slot in Mode concept to one of values in the xml Enumeration.  

public class ModeFacet implements jade.content.schema.Facet{ 

public void validate(jade.content.abs.AbsObject abs, 
jade.content.onto.Ontology onto) throws 
jade.content.onto.OntologyException { 

try { 

 jade.content.abs.AbsPrimitive p = 
jade.content.abs.AbsPrimitive) abs; 

 boolean valid = false; 

 java.lang.String obj=p.getString(); 

 if(obj.equals("On")) 

 valid = true; 

 if(obj.equals("Off")) 

 valid = true; 

 if (!valid) { 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

231 

 throw new jade.content.onto.OntologyException("Facet 
restriction violated"); 

  } 

 } 

 catch (Exception e) { 

 throw new 
jade.content.onto.OntologyException("Invalid Facet Object", 
e);

  } 

 } 

}

Generating an ontology in the OWL format is simpler than in Java classes because 
OWL and WSDL both use XML. Similar to JADE ontology generation approach, data 
types and messages in WSDL are mapped to concepts in OWL. There is a one-to-one 
relationship between concepts in the ontologies generated in Java and OWL. OWL is 
still very new and subjected to changes; however we share the belief that it will con-
tinue to play an important role in Semantic Web with an increasing support from agent 
communities.  

 

In addition to the ontology generation, the ontology management is important in 
WS2JADE. WS2JADE organises generated ontologies in an efficient way. For data 
types that can be shared among different Web services, the corresponding generated 
ontology concepts are shared and form a common ontology base. This means that every 
time a new Web service is presented as an agent service, part of the existing ontology 
base and domain knowledge can be reused for this new service. Also, this allows the 
ontologies to be structured in a manageable way. 

3.2 Interaction Translation 

The interaction translation component handles the conversion from Web service com-
munication into agent communication. Specifically, it converts Web service transport 
messages into ACL envelopes, and Web service interaction patterns into agent proto-
cols. These correspond to two sub-functionalities: language translation and interaction 
pattern conversion.  

3.2.1 Language Translation 

 
To translate Web service transport messages (commonly SOAP) into agent ACL mes-
sages, the SOAP envelope is first projected into the Java language and then into ACL. 
We do not translate SOAP directly into ACL for two reasons. Firstly, we want to reuse 
our generated ontologies and the existing Java implementations of SOAP. Secondly, we 
want to make use of the agent’s capabilities to understand and process the messages 
according to its own logic (in addition to language translation) before forwarding them. 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

232

This is best done by translating SOAP and ACL into Java – the native language for 
JADE.  

 

SOAP - JAVA

BPEL - AUML

AUMLWSCL

ACL - JAVA

WSAG

SOAP ACL
WS

Agent Logic

ACL - SOAP

Language Translation

 

Fig. 4. Language Translation 

Figure 4 shows that when a WSAG receives a SOAP message, it uses the Language 
Translation component to convert this message directly to ACL and send to the client 
agent. It can also perform some reasoning and modification on the message by convert-
ing the message to Java classes before any translation into ACL. In the Language Trans-
lation part of the interaction translation component, Axis’ JAX-RPC (Java API for 
XML based Remote Procedure Call [30]) implementation and an extension of JADE 
ontology package are used to support SOAP to JAVA translation. Axis is one of the 
most popular open source implementations of SOAP today. On the one hand, JAX-
RPC, led by Sun, is a specification of Web Service Invocation framework in Java. In 
JAX-RPC specification, at the client side, Java to XML translation in remote method 
call is done through a mapping from Java client stubs to the SOAP message representa-
tion. On the other hand, in JADE, information represented in JADE ontology-supported 
classes (Java objects) can be converted to different ACL content languages, including 
SL and LEAP. We can see from Figure 4, that language translation is leveraged by the 
reuse of many existing technologies instead of reinventing the wheel. SOAP-ACL trans-
lation is done by piping SOAP-JAVA and ACL-JAVA translation together. The main 
task of the language translation component is to map the Axis stubs to JADE ontologies.  
However, due to the restrictions of JADE ontology and JAX-RPC classes it is not easy 
to convert data between them. In particular, an automation of the conversion process for 
any data types is difficult. Hence, we use special classes which represent the ontology 
facets to preserve precisions in the conversion process. There has been a similar discus-
sion in [19] for Sztaki’s WSDL2JADE. Complex data mapping in WS2JADE (for ex-
ample  mapping of Axis Holder and Enumeration types to JADE ontology concepts and 
classes)  is done recursively through simple data type. 

 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

233 

3.2.2 Interaction Pattern Translation 

  
In the interaction pattern translation component, WS2JADE focuses on choreography. 
By “choreography” we mean the required patterns of interactions among parties. It is in 
contrast to “orchestration” that describes how a composite Web service is constructed 
from other atomic services. For a composite Web Service, choreography is obtained by 
looking from an outsider’s perspective. It tells the Web service clients different steps of 
how to use a composite service. 

 
We have mapped simple interactions implicitly described in WSDL documents into 
standard FIPA interaction protocols [14]. Web service (WSDL version 1.2) provides 
four types of operations: one-way, request-response, solicit-response, and notification. 
In the one-way operation, a Web service client sends a request without receiving any 
response from the Web service. In the request-response, the client sends a request and 
receives a response synchronously. In the solicit-response, the Web service sends a so-
licit request to the client and receives a response. In the last type, notification, the Web 
service notifies the client without receiving any response. These four types of Web ser-
vice operations lead to three common interaction patterns in practice: request-response, 
solicit-response, and subscribe-notification. The request-response and solicit-response 
interaction patterns correspond to those of Web service operation types. The subscribe-
notification interaction describes the conversation style in which a client registers to the 
Web service in order to receive notifications when some event occurs.  Table 1 summa-
rizes the mapping of these interactions styles to agent protocols. More information on 
FIPA Request Interaction protocol and Subscribe Interaction protocol can be found in 
[14].  

Table 1. Interaction pattern mapping 

Web Service Interaction Patterns Agent Protocols 
Request-Response FIPA Request Interaction Protocol 
Solicit-Response FIPA Request Interaction Protocol 
Subscribe-Notification FIPA Subscribe  Interaction Protocol 

3.3 Service Assignment Management and Service Discovery 

The Service Assignment Management component is responsible for the cardinality 
mapping and service deployment management. The cardinality mapping manages M:N 
relationship between Web services and WSAG. Offering the same Web services on dif-
ferent WSAG allows better load balancing and reduces probability of service access 
failure when some WSAG are down. Offering more than one Web service on a proxy 
agent allows related Web services to be grouped together. The cardinality mapping of 
M:N permits a number of Web services can be offered and duplicated as services of 
different WSAG. This relationship is managed through a registry that keeps records as 
triples of the Web service, a WSAG that offers this Web service, and a new name for 
the Web Service in the agent platform. The service assignment management also pro-



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

234

vides a tool for deploying and destroying WSAG. It assigns Web services to a WSAG 
informing it which ontologies should be used for the newly assigned Web Service. If an 
assigned Web service is reported to be no longer available, the service deployment 
management removes the service from the list of the offered services of WSAG and 
from the DF. 

 
The Service Discovery component is designed to discover Web services. It is essentially 
a piece of software that can use Web service discovery protocols and translate the re-
ceived information into agent service descriptions for the DF.  As mentioned earlier, we 
prefer an active discovery model rather than waiting for services to be registered.  At the 
time of this writing, Web service discovery protocol is complex and subject to change 
with the latest revised version of WS-Discovery [17] specification which uses multicast 
protocols. Traditional Web service discovery mechanism of UDDI shares a common 
model with agent DF in the sense of accessing the directory. However, UDDI has 
evolved away from the concept of a “Universal Business Directory” that represented a 
master directory of publicly available services as DF still is.  Most P2P based and mul-
ticast discovery protocols prove that requesting service providers to register the services 
is not always the case. Because UDDI implementations are widely available at this 
stage, in WS2JADE version 1.0 the Web services discovery is available as a UDDI 
proxy agent. This agents supports special discovery services which can be configured to 
proxy to any UDDI version 2 servers, including Microsoft and IBM UDDI inquiry serv-
ers.  

3.4 Remarks 

As mentioned earlier and discussed in [4], the main difficulties in integration of Web 
services and FIPA compliant agent platforms are the mismatches in communication and 
descriptions. These are summarized in Tables 2 and 3, respectively. For translation from 
a Web service to an agent service, WS2JADE handles these mismatches through its 
different components. Although the current version of WS2JADE is operational and 
offers many advantages over other tools, it can still be improved in a number of areas. 
 
For example to increase the ontology reuse and avoid redundancy, the semantic map-
ping management component can be extended to detect semantic equivalence of two 
syntactically different generated concepts and keep one of them only. In [14], the au-
thors focus on this topic and outline some approaches to achieve this. The current ver-
sion of WS2JADE has not yet implemented that specific feature but future versions will 
include it. 

Table 2. Communication Mismatch 

FIPA agent communication W3 Web Service communication 

ACL/IIOP+HTTP SOAP/HTTP 

Asynchronous Synchronous/Asynchornous 
Stateful Stateless 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

235 

 
Another area is the interaction pattern translations. Web Service Choreography Descrip-
tion Language (WS-CDL) [36] has been under development for some time. WS-CDL is 
considered as a layer above WSDL in the Web service technology layer hierarchy. It 
describes a set of rules to explain how different partners may act in a conversation. 
W3C recommends it as a necessary complement to BPEL and programming languages 
like Java that only describe one endpoint, and not the whole system of interaction. 

Table 3. Description Mismatch 

FIPA Agent Service W3 Web Service 

Name – Name of the service Names of services, port types, operations, etc. 
Type – Type of the service Type – Container of data type 

Protocols – List of supported proto-
cols 

Message – Abstract, typed definition of data 

Ontologies – List of supported on-
tologies 

Operation – Abstract description of action 

Languages – List of supported con-
tent languages 

Port Type – Abstract set of operations 

Ownership – The owner of the ser-
vice 

Binding – Protocol & data format specs for a port
type 

 Port – Single endpoint as combination of a binding
and a port type. 

 
In the WS2JADE approach, we plan to convert BPEL4WS and WS-CDL (however not 
at this stage of WS-CDL development) into agent Unified Modeling Language (AUML 
[5]) for the overall protocol representation in UML template. AUML is an extension of 
UML language for agents and has been used as a standard language to describe FIPA 
interaction protocols. The interaction translation will keep generated AUML documents 
in its protocol specification repository which can be looked up by client agents (or the 
client agents’ designers) before using the service. In this version of WS2JADE we have 
not implemented the translation of WSCL to AUML. One reason for this is the instabil-
ity and immaturity in Web Service Choreography as evidenced by the suppression of 
WSCI (Web Service Choreography Interface) and WSCL (Web Service Choreography 
Language) [2] by WS-CDL [36] which is still in the first draft version.   

4 Management of Web Services 

In this section we first discuss existing standards for the management of Web services 
and how these standards can be implemented. Then we discuss why agents are suited 
for Web service management and how agent systems, in particular JADE, can fit into 
emerging management models and take advantage of them by using WS2JADE. 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

236

4.1. Web Services Management Frameworks with Web Services  

Web services represent vital resources for any business organization and are prevalently 
used to carry out business processes and transactions between businesses or within an 
enterprise. When they interact with other Web services, they form a logical network 
which can be distributed across enterprises. From the business organization’s view 
point, the ability to manage such a logical network, and automate and integrate various 
internal functions is very critical in order to provide Web service security, usability and 
reliability. In order to achieve this, there is a need for standards and tools which allow 
the management of Web services. At present, there are very few standards which ad-
dress the management of business processes or the underlying application services they 
rely on. The very nature of Web services makes this task (of managing Web services) 
all the more challenging. Some of the characteristics of Web services which contribute 
to this challenge include distributed nature, extensibility, standardization and discovery 

[22]. 
 

Application

User

Application

Manager

Web

service

Endpoint A

Web

service

Endpoint B

Application Service

Implementation

Application

Manageability

Implementation

EPR

to A

uses

m
a
n

a
g
eM

an
ag

ea
bi
lit
y

 R
ef

er
en

ce

EPR

to B

 
 

Fig. 5. Management of a Web service or a resource exposed as a Web service using a Web service 
[22] 

Hewlett-Packard has proposed the Web Services Management Framework (WSMF) 
which is a logical architecture for the management of resources [22]. Extending this 
work further, with the support from other companies including IBM and DELL, HP has 
released the Web Services Distributed Management (WSDM) specification which de-
fines how the management of any resource can be accessed via web service protocols – 
Management Using Web Services (MUWS) [24] and how Web services can be man-
aged using Web services – Management of Web Services (MOWS) [25]. The specifica-
tion was submitted to Organization for the Advancement of Structured Information 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

237 

Standards (OASIS) and has been accepted as a standard. Microsoft, in collaboration 
with various IT companies has released its own SOAP-based protocol for managing 
systems (including Web services) called Web Services for Management (WS-
Management) [1]. WS-Management shares the basic idea with WSDM in identifying a 
manageable resource and communicating with it.  

 

As shown in Figure 5, each time a resource is exposed as a Web service or a Web ser-
vice is made available, it also provides a reference to its manageability endpoint. The 
Application Manager can find this reference to the Application Manageability Imple-
mentation, and then performs management actions on the application by exchanging 
messages with Web service endpoint B (manageability endpoint). In more complex sce-
narios, the Application Manager can find out the relationships among different applica-
tion processes from their manageability interfaces and use them as the inputs for a more 
dynamic management algorithm. 

4.2 Enabling Web Service Management with WS2JADE 

This part discusses the application of agent technology for Web service management 
and WS2JADE capability in integrating with emerging Web services based manage-
ment models. This discussion is a significant departure from previous discussions on 
how Web services can be accessed and used by agents since management functionalities 
discussed so far are on the agent service level. In this part, we discuss how agent-based 
management can be carried out on the Web services level. 

 
A management system, in general, requires some level of automation. In an ideal situa-
tion, it should be able to diagnose faults and take appropriate correction actions. A soft-
ware agent is an autonomous software entity or computer system situated in some envi-
ronment. Therefore a management system itself or its sub-components shares the fun-
damental characteristic of an agent. As a result, modelling management systems as 
agents or agent systems is a natural choice. There have been many management systems 
with agents. Examples are Sun’s Java Management Extension (JMX) [31]-a new feature 
in version 5.0 of Java 2 platform and McAfee’s ePolicy Orchestrator [21] software. In 
JMX, a given resource is instrumented by Java objects known as Managed Beans, or 
MBeans. These MBeans are registered and managed by management agents, known as 
JMX agents. The specification provides a set of services for JMX agents to manage 
MBeans. In ePolicy Orchestrator, Anti-Virus software on client PCs are monitored by a 
set of agents for possible virus outbreaks. In these examples, the management environ-
ments in which the managed objects (MBeans, Anti-Virus software) reside do not scale 
up globally. In particular, the environment is limited to Java programming languages for 
JMX and to a local computer for ePolicy Orchestrator. Consequently, the management 
agents in these local environments do not need to follow well-defined standards. How-
ever, Web services environment can span organizational boundaries, and hence, its 
management agents, if implemented, should exhibit social capabilities with a common 
global standard such as FIPA specifications so that coordination can take place at a 
level. web services management is a broad term which covers different areas such as 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

238

                

  

Resource-
WS

Resource-

WS
Resource-

WS

Mgmt-WS
Mgmt-WS

  

W
S

2
J
A

D
E

F
IP

A
 c

o
m

p
li
a

n
t

M
A

S

W
S

M
g

m
t

W
e

b
 s

e
rv

ic
e

E
n

v
ir

o
n

m
e

n
t

 

Fig. 6. WS2JADE for WS Management 

access mechanism (authentication, authorization, etc), provisioning (SLA management, 
execution monitoring, etc), and composition (composition structure, conversation rela-
tionships, etc). As mentioned before, the MUWS 1.0 specifications define how to repre-
sent and access manageability interfaces of resources as Web services. The MOWS 1.0 
specification defines how to consider Web services as resources and how to describe 
and access that manageability interfaces using MUWS. They together provide the Web 
services managers with one set of protocols and semantic instrumentation to manage 
Web services based applications and processes across enterprise and organizational 
boundaries. However, to what extent a manageability interface can be exposed to exter-
nal managers and how the Web services managers coordinate and manage their Web 
services efficiently and intelligently are not in the scopes of these specifications. In 
other words, while these web service management standards define the interfaces 
needed for managing a web service, they do not specify ‘how, ‘when’ or ‘why’ a web 
service should be managed. If we look at the attributes of software agents, we can see 
that they are often characterized by their ‘intelligent and social capabilities’ and exhibit 
autonomous, goal-driven behaviour. Hence multi-agent systems fit into the web service 
management picture provided they can use the manageability interface. The agents can 
coordinate, cooperate and negotiate on how much visibility of a management interface 
should be exposed, and make plans of how to manage Web services. Direct Web service 
manipulations are supported by management infrastructures which implement WSDM 
or WS-Management. Figure 6 presents this Web services management model with the 
support from WS2JADE. In the top layer of WS2JADE and FIPA compliant MAS, 
available AI techniques can be implemented and distributed among FIPA compliant 
agents, these agents communicate with WS2JADE agents to get access to the manage-
ability interfaces of manageable Web services in the second layer of Web service Man-
agement. They then coordinate and manage the Web services in the bottom layer. Note 
that these are logical layers. In some implementation, services in the Web service man-
agement layer can be the same with services in the bottom layer. 

 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

239 

AgentActionConcept

WSResource

WSResourceInspection

WSResourceManagementAction

WSManagement

WSRelationship

WSResourceGet

WSResourceEnumerate WSResourcePull

WSManagementAction

WSResourceDelete

WSResourceCreate

WSResourceUpdate

WSManagementAction

WSStop

WSStart

RelationshipGet

 

Fig. 7. WS Management Ontology Model 

 
We believe a Web based management of Web services model, such as WSDM or WS-
Management, has a great potential to be widely adopted by software vendors in the fu-
ture. Hence, we have implemented an ontology base for Web services management in 
WS2JADE. The ontology structure was designed after a careful review of both WSDM 
and WS-Management specifications to combine common and important management 
elements in these specifications. Figure 7 partially presents this ontology structure. As 
illustrated from the figure, WSResource and WSRelationship are important concepts for 
Web service management. They extend from the WSManagement concept which serves 
as a root concept of all other content elements. WSResource defines a distinct type of 
management attributes exposed by a manageable Web service. WSRelationship class 
represents relationships between two Web services or two Web services resources.  At 
the lowest level, three types of relationships are defined: includesOf, dependsOn (be-
tween two Web services), and correlatesWith (between two Web services resources). 
“includesOf” relationship between two Web services means that the first Web service is 
composite and it has the second Web service in its composition structure. “dependsOn” 
relationship keeps track of relationships hidden by virtualization process. A “corre-

latesWith” relationship indicates a correlation between property values of two Web ser-



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

240

vices’ resources. WSManagementAction is the root concept where all other manage-
ment actions subclass from. These management actions include WSResourceCreate, 
WSResourceDelete, and WSResourceUpdate which correspond to resource manage-
ment functions of creating, deleting, and setting a resource in WSDM and WS-
Management. Also, for resource enumerations, WSResourceEnumerate establishes the 
resource enumeration context and WSResourcePull iterates over an enumeration result 
set. Depending on how much control over a service that a manageability interface has, 
the Web service management ontology can be further extended. FIPA compliant agents 
and WS2JADE agents use the ontology to communicate on Web service management 
related information. Whether a direct control of Web service is required, WS2JADE 
agents translate the control information into management actions available in WSDM or 
WS-Management. With the help of Web service management ontology and the man-
agement model outlined in Figure 6, management reasoning and access for Web service 
control can be decoupled and handled separately. 

5 Demonstration 

This section demonstrates the Web service - agent integration capabilities of WS2JADE 
with simple examples of Web service management including service discovery, compo-
sition and deployment with JADE agents. It describes how Web services can be ac-
cessed and used by JADE agents and how other agents can use this advantage to build 
value-added services in composition.  
 
The Find-and-Bind example demonstrates Web services discovery and deployment by 
JADE agents. A client agent searches for Web services on the UDDI agent in 
WS2JADE and then accesses and uses these Web services through a newly generated 
agent. The new agent is created, deployed, and registered in the DF (Directory Facilita-
tor) by WS2JADE at run time.  It offers services equivalent to the Web services in terms 
of functionalities except that they can be used by other agents. Then we demonstrate an 
example for building a composite service from different Web services with the use of 
WS2JADE.  In our scenario, three agents have a plan on how to compose different Web 
services to form a valued-added service. It uses WS2JADE to discover Web services 
and then bind these Web services to the abstract services in the plan. Sample Web ser-
vices used in this demonstration are Amazon Web Service, PayFriend and GlobalTrans-
ports Web service. A client agent can search for and view different items from Amazon, 
pay for them through PayFried service and order with GlobalTransports Web service.   

5.1. Deployment of Web Services as JADE Agent Services 

WS2JADE provides a tool for deploying and controlling Web services as agent ser-
vices. This tool is provided through the combination of the service assignment mapping 
and the interaction pattern management components. It allows JADE agents to deploy 
Web services on the fly. The libraries which enable this tool are found in the cia-



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

241 

mas.wsjade.management package while the main class for the graphical user interface is 
ciamas.wsjade.management.utils.Admin. The deployment of Web services with 
WS2JADE is explained in the remainder of this section. 

 

 

Fig. 8. WS2JADE Admin Console showing service deployment interfaces. 

At first, the gateway agent container is started and the WSAG agents are deployed on it. 
Once the WSAG agents have been created, they are ready to deploy Web services as 
agent services. After the Web services have been deployed as agent services, they are 
ready for use by client agents. Each time a Web service is deployed as a JADE agent 
service, ontology packages are generated and compiled. These ontology packages can 
then be sent to a public Web server where they are available for download and use by 
the client agents. As mentioned before, at this stage ontologies are available as Java 
classes (JADE native ontology) and as OWL files. 
  
Since the WSAG (essentially JADE) agents are multithreaded, they can offer/service 
multiple Web services at the same time. During the deployment of these Web services, 
each service is assigned a different agent-service name. The agent-service name can be 
the same as the Web service. If two WSAG agents deploy the same Web service, they 
must use different names. The screen shots in Figure 8 show two WS2JADE consoles: 
one is for local and the other is for remote management. Local management means that 
WS2JADE’s WSAG agents are deployed to run on the local machine. Remote man-
agement allows an administrator to activate/deactivate the WSAG agents and control 
their services remotely. Remote management also requires correct authentications. Au-
thentication details are stored in .authen file under WS2JADE root folder. As can be 
seen from the screenshot, in the left console for the local management, the agentList tab 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

242

shows the deployed WSAG agents named EbookSearcher, StockQouteagent along with 
the services they provide namely Ebook (hidden) and GetQoute services. The WSList 
tab (its content is invisible in the screenshot) shows the list of deployed Web services 
along with their WSDL address. The generated ontology for each Web service in OWL 
format can be viewed by clicking on the agent providing the service.  In the right con-
sole for the remote management, the Google Web service at 
http://api.google.com/GoogleSearch.wsdl is deployed as a service of a WSAG agent 
named GoogleAgent.  

5.2 Discovery of Web Services 

The Universal Description, Discovery and Integration (UDDI) specifications define a 
way to publish and discover information about Web services. Actually the UDDI itself 
is a Web service which provides SOAP interfaces for publishing Web services and que-
rying about Web services. The UDDI inquiry interface in WSDL format is published by 
UDDI.org and can be found at http://www.uddi.org. The UDDI registry can be used to 
search for services, service providers or tModels by name or by browsing categoriza-
tions. Since the UDDI itself is a Web service, it can be deployed as an agent service 
with WS2JADE. Once this is done, JADE agents can then query this agent service for 
services or service providers dynamically. Whenever a new Web service is registered 
with the UDDI registry, it can be discovered by the WSAG agent upon inquiry by a 
client JADE agent.  
 
The interaction flow is illustrated in the Figure 9. From the client agent side, it needs to 
do a search on UDDI agent (step 1) for a wanted Web service (e.g. Google). After get-
ting search results back (step 2) from UDDI agent, the client agent, based on its own 
reference, determines a service it wants to use and queries the WSManager agent on 
how to use this Web service. The WSManager agent informs the client the address of 
the agent which can offer a proxy service of this Web service (step 4). The client now 
can start to use the service (step 5 and 6). To examine what happen inside WS2JADE, 
as mentioned before, WS2JADE proxies the MS UDDI (step 1A) through UDDI agent 
as default to fulfil the client request at step 1. After step 3, the WS Manager creates a 
new agent and deploys a new agent service that is a proxy of the wanted Web service. 
The WS Manager also registers this agent on the DF. The address of this agent is re-
turned back to the client agent. WS invocation is again done indirectly through the 
proxy service of the newly generated agent. The UDDI agent can also be configured to 
use UDDI servers different than Microsoft’s one. 
  
The screenshots in Figure 10 show the interface for a client Agent which can do the 
search for a service with key words for the service name, business name, or tModel. 
This WSAG agent has deployed the Microsoft test UDDI which is available at 
http://test.uddi.microsoft.com and hence, clients can query this UDDI agent for details 
about different services and service providers. As can be seen, a search for services 
starting with Google returned 4 results.  

 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

243 

 

   

Client

Agent

UDDI

Agent

MS

UDDI

Google

WS

G
o
o

g
le

 P
ro

x
y

A
g
e

n
t WS

Manager

1
. S

e
a
rc

h
 fo

r G
o
o

g
le

2
. 
S

e
a

rc
h

R
e
s
u
lt

3
. A

s
k
 fo

r u
s
e

4
. 

In
fo

rm
 a

d
d

re
s
s

o
f 
 A

G

1
A

. S
e

a
rc

h
 M

S
 U

D
D

I

1
B

. 
S

e
a

rc
h
 R

e
s
u
lt

Register

3A. Create
& Register

5
. R

e
q

u
e
s
t

6. Reply

5
A

. R
e
q

u
e

s
t

5
B

. 
R

e
s
p

o
n

s
e W

S
2

J
A

D
E

 

Fig. 9. Find and Bind 

The client agent now can use the remote service deployment capability of WS2JADE to 
request for a wanted Web service to be deployed as an agent service. This can be done 
by making a request to the Manager agent as shown in figure 8 as explained previously. 
The Manager agent, after successfully deploying the Web service, informs the client 
agent the address of the targeted agent and the location of the ontology used to access 
the service.  

5.3 Composition of Web Services  

A user can enter keywords that are used in search requests on Amazon and can add 
items returned in the search results to a remote shopping cart. When they have finished 
adding items to the shopping cart they can pay for the items and organize delivery. This 
demonstration is a next step of the previous one. We have a scenario in which three 
agents: P , A, and G, have a composition plan for offering online item purchase. Such a 
plan needs to take into account online payment transaction and product delivery. In the 
plan, P is responsible for client payment. A is responsible for shopping cart. G is re-
sponsible for item delivery. The interaction sequence is depicted in Figure 11. First, the 
client agent searches for the products and add them to its shopping cart (step 1 and 2, 
repeated). Once the client agent does a checkout, agent A informs it payment details 
with agent P. The client agent then contacts P to do payment. After the payment is 
made, agent P informs agent A whether the payment is successful (step 6.1). If it is, 
agent A sends a message to agent G and asks for item delivery. 
 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

244

 

Fig. 10. Screenshot of a client interface querying the UDDI WSAG agent to search for services 

    

   

 
Client Agent

A

 AgentP

Agent
G

Agent

1
. S

e
a

rc
h
 Ite

m
s

2
. 

S
e

a
rc

h
 R

e
s
u

lt
s

3
. 
C

h
e

ck
 o

u
t

4
. P

a
y
m

e
n
t D

e
ta

ils

5
. P

a
y

6
. 
R

e
c
e
ip

t

6.1. Inform Payment 7. Inform Transport

 

Fig. 11. Composition Plan 

At the abstract level, no concrete implementation of services is described in the plan. 
Because the main purpose of this demonstration is to show how Web services can be 
invoked and composed by agents, we focus on the interaction sequences only and as-
sume that the plan is encoded in some format that the agents can understand. The ser-
vices these agents are going to use are Web services. The agents P, A, and G, based on 
the requirements of their own services, try to find and bind Web services.  How this can 
be done with WS2JADE is explained in the first demonstration. Hence, we skip these 
steps and assume that after find-and-bind steps, agent P becomes a proxy of PayFriend 
Web service, agent A becomes a proxy of Amazon Web service, and agent G becomes a 
proxy of GlobalTransport Web service as depicted in Figure 12. The composite service 
now can now be executed. Since this is merely a demonstration, transactions are pref-
erably not committed. PayFriend Web service and GlobalTransport Web service are 
developed by us to emulate essential functionalities in the interfaces of PayPal and 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

245 

Global Transport Web services, however, without real transactions to any banks. Pay-
Friend and GlobalTransport Web services and Amazon Web service can be found at: 

 

W
S

2
J
A

D
E

   

   

 
Client Agent

Amazon

 ClientPayFriend

 Client GlobalTransports

Client

PayFriend WS Amazon WS GlobalTranpsorts WS

1
. S

e
a

rc
h
 Ite

m
s

2
. 

S
e

a
rc

h
 R

e
s
u

lt
s

3
. 
C

h
e
c
k
 o

u
t

4
. P

a
y
m

e
n
t D

e
ta

ils

5
. P

a
y

6
. 
R

e
c
e
ip

t

6.1. Inform Payment 7. Inform Transport

 

Fig. 12. Composition Service 

PayFriend Address: 
 http://mercury.it.swin.edu.au:8080/axis/services/PayFriend?wsdl  

GlobalTransport Address: 
 http://mercury.it.swin.edu.au:8080/axis/services/GlobalTransports?wsdl  
Amazon Web Service Address:  
 http://soap.amazon.com/schemas2/AmazonWebServices.wsdl 

 
Additional information of PayPal and GlobalTransport Web services are provided in the 
links below. To use the PayPal service, users need to subscribe to PayPal developer 
network for a developer key.  
 
PayPal Web service: 
 https://www.paypal.com/cgi-bin/webscr?cmd=p/pdn/devcentral_landing-outside 

Global Transport Web service:  
 http://transportal.russia.webmatrixhosting.net/default.aspx?static=webservices 
 
The screenshots in Figure 13 show the enactment of a composite Web service. The se-
quences can be explained as following. A user can enter keywords that are used in 
search requests on Amazon and can add items returned in search results to a remote 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

246

shopping cart. When they have finished adding items to the shopping cart they can pay 
for the items and organize delivery. The screenshots in Figure 13 and 14 show the result 
of a composite service invocation by the Client agent. The user clicks ‘Search’ trigger-
ing the Client to send a request to the Amazonagent to search Amazon. The Amazona-
gent then forwards the request to AmazonProvider who handles the Web service invoca-
tion calls. A list of results is then returned to the client via the Amazon agent. A user 
can then add items to the shopping cart, which triggers another request to the Amazon 
Web service resulting in the contents of a remote shopping cart being updated with the 
selected item. Clicking ‘Checkout’ causes the Client to send a request message to the 
PayFriend agent. After PayFriend has completed the payment transaction it sends an 
acknowledgement to the Amazon agent that forwards a request to the GlobalTransports 
agent who invokes the web service call that organises delivery of the purchased items. 
A receipt message from the PayFriend agent and delivery acknowledgment message 
from the GlobalTransports agent are then sent to the Client agent and the GUI updated 
with dialogs indicating to the user that the transaction is complete. 

 
 

Fig. 13. Screenshot showing a composite service offered by different WSAG agents 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

247 

 

Fig. 14. Screenshot showing the result of a composite service invocation by the Client 
agent 

6. Conclusion 

The paper presents a framework and toolkit called WS2JADE for integrating Web ser-
vices and JADE agents. In contrast to other solutions like WSDL2JADE or WSIGS, 
WS2JADE provides facilities to deploy and control Web services as agent services at 
run time for deployment flexibility and active service discovery. WS2JADE also pro-
vides a management ontology base for integrating with any future implementations of 
emerging distributed WS management standards which employ Web services such as 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

248

OASIS’s WSDM. The future of intelligent agents with autonomous capabilities, which 
manage and access the widespread Web services infrastructure, is promising. 
WS2JADE demonstration with simple examples of service discovery, composition and 
deployment with agents shows how the toolkit achieves first steps in that direction. It 
demonstrates how Web services can be accessed and used by JADE agents and how 
other agents can take this advantage to build value-added services.  
 
Since Web services is a volatile area with rapid changes and many specifications in WS-
* domain (such as WS-Agreement Specification, WS-Resource Framework) need to be 
implemented and tested out, WS2JADE has been designed to accommodate future plug-
in components. However, there are still software features and design areas that require 
new solutions, implementations or further improvements. In particular, Web services 
negotiation, semantic processing, and full integration with WSDM specification will be 
our next focus for WS2JADE. Web services negotiation will give WS2JADE agents the 
ability to read, understand contracts, and employ negotiation mechanisms to contract 
Web services and their compositions according to WS-Agreement specification. Seman-
tic processing capability will improve the ontology management component in structur-
ing ontology trees and possibly merging related ontologies. We are looking forward for 
a wide adoption of WSDM or WS-Agreement specifications for a global level of WS 
management with FIPA compliant agent systems. We hope that WS2JADE can be ap-
plied in more real-world examples to make contribution into agent-based Web services 
and business process management in particular and practical applications of multi-agent 
systems in general. 

Acknowledgments 

This work is part of the Adaptive Service Agreement and Process Management in Ser-
vices Grid project CG060081. This project is proudly supported by the Innovation Ac-

cess Programme - International Science and Technology established under the Austra-
lian Government’s innovation statement, Backing Australia's Ability. 

References 

1 A., Arora, et al, Web Services for Management (WS-Management) available at  
http://www.intel.com/technology/manage/downloads/ws_management.pdf  accessed on 6th 
April 2005. 

2 A., Banerji, et al, Web Services Conversation Language (WSCL) 1.0, available at 
http://www.w3.org/TR/2002/NOTE-wscl10-20020314/ accessed on 25th April 2005 

3 agentLink, European Co-ordination Action for agent-based computing, available at 
http://www.agentlink.org/ accessed on 25th April 2005 

4 Agentcities Web Services Working Group, “Integrating Web services into agentCities”, 
Technical Recommendation available at http://www.agentcities.org/rec/00006/ accessed on 
25th April 2005 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

249 

5 B. Bauer, J.P Muller, and J. Odell, agent UML: formalism for specifying multiagent soft-
ware systems, in agent-Oriented Software Engineering, Ciancarini, P. and Wooldridge, M., 
Editors. LNCS, Vol 1957, 2001, Springer, pp. 207-221. 

6 WS2JADE, Web services to agents http://www.it.swin.edu.au/centres/ciamas, accessed on 
24th April 2005.  

7 D. Greenwood, M. Calisti, “An Automatic, Bi-Directional Service Integration Gateway”, In 
The 1st International workshop on Web Services Agent-Based Engineering (WSABE’ 
2004) held in conjunction with The 3rd  International Joint Conference on Autonomous 
Agents and Multi-Agent Systems, New York, USA, 2004. Available at  
www.agentus.com/WSABE2004/program/, accessed on 25th April 2005. 

8 D. Greenwood, M. Calisti, “Engineering web service - agent integration”, IEEE Systems, 
Cybernetics and Man Conference, the Hague, Netherlands, Oct, 2004, pp.1918-1925 

9 E. Christensen et al., Web Service Description Language (WSDL 1.1), available at 
http://www.w3.org/TR/wsdl , accessed on 5th April 2005. 

10 E.M. Maximilien and M.P. Singh, “Agent-based architecture for autonomic web service 
selection”. In The 1st International Workshop on Web Services and Agent-based Engineer-
ing (WSABE’2003) held in conjunction with The 2nd International Joint Conference on 
Autonomous Agents and Multi-Agent Systems, Melbourne, Australia, 2003. Available at 
www.agentus.com/WSABE2003/program/maximilien.pdf, accessed on 25th April 2005. 

11 F., Cheng, H., Guo, B., Xu, “Agentification for Web Services”, Proc. 28th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC'04) ,Hong Kong, Sept 
2004, pp.514-519  

12 F., Ishikawa, N., Yoshioka, Y., Tahara, S., Honiden, “Mobile agent System for Web Ser-
vices Integration in Pervasive Networks”, International Workshop on Ubiquitous Comput-
ing (IWUC 2004), April, 2004, Porto, Portugal, pp.38-47 

13 F., Ishikawa, N., Yoshioka, Y., Tahara, S., Honiden, “Toward Synthesis of Web Services 
and Mobile agents”, In Proc. of the 2st International Workshop on Web Services and agent 
Based Engineering (WSABE’04), New York, 2004. Available at 
http://www.agentus.com/WSABE2004/program/. 

14 Foundation for Intelligent and Physical agents. Interaction Protocol Specification, 
http://www.fipa.org/repository/ips.php3  

15 H. Ludwig, “Web Services QoS: External SLAs and Internal Policies: Or, How Do We 
Deliver What We Promise?”, Proc. 4th IEEE Int’l Conf. Web Information Systems Eng. 
Workshops, IEEE CS Press, 2003, pp. 115–120. 

16 I., Foster, N.R., Jennings, C., Kesselman, “Brain Meets Brawn: Why Grid and agents Need 
Each Other”,  The Third International Joint Conference on Autonomous agents and Multi 
agent Systems, AAMAS’04, July, 2004, New York, USA, pp.8-15.  

17 J.,Beatty, et al., Web Services Dynamic Discovery (WS-Discovery) available at 
http://msdn.microsoft.com/ws/2004/10/ws-discovery/, accessed on 24th April 2005. 

18 J., Cao, et al., Composing Web Services Based on agents and Workflow, M. Li et al., 
(Eds.), GCC2003, Springer-Velag Berlin Heidelberg, 2004, pp 948-955. 

19 L. Zs. Varga,Á. Hajnal, "Engineering Web Service Invocations from agent Systems". Pro-
ceedings of the 3rd International Central and Eastern European Conference on Multi-agent 
Systems, CEEMAS 2003, Prague, Czech Republic, June, 2003, pp. 626-635. 

20 M., Luck, P., McBurney, C., Preist, “Agent Technology: Enabling in Next Generation 
Computing”, Sections 4.5.2, agentLink, 2003, pp. 23-26. 

21 McAfee, McAfee® ePolicy Orchestrator®, available at  
http://www.mcafeesecurity.com/au/products/mcafee/mgmt_solutions/epo.htm, accessed on 
24th April 2005. 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

250

22 N., Catania et al. An Introduction to WSDM-MOWS and WSDM-MUWS available at 
http://devresource.hp.com/drc/specifications/wsdm/index.jsp, accessed on 24th April 2005. 

23 N. Cavantzas et al. Web Services Choreography Description Language Version 1.0, 
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041012/, accessed on 24th April 2005. 

24 OASIS TC, Web Services Distributed Management: Management Using Web Service 
(MUWS 1.0) Part 1 & 2, OASIS standard at 
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm, accessed on 24th 
April 2005.  

25 OASIS TC, Web Service Distributed Management: Management of Web Services (WSDM-
MOWS) 1.0, OASIS standard at 
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm, accessed on 24th 
April 2005.  

26 OpenNet Test-bed Initiatives: http://x-opennet.org/  
27 P. Buhler, J.N. Vidal, and H. Verhagen, "Adaptive workflow= web services + agents",   In 

Proc. of the International Conference on Web Services, Las Vegas, U.S.A, July 2003, pp. 
131-137. 

28 P. Buhler, J.N. Vidal, and H. Verhagen, "Enacting BPEL4WS Specified Workflows with 
Multi-agent Systems" , In Proc. of the 2st International Workshop on Web Services and 
agent Based Engineering, New York, 2004. Available at  
www.agentus.com/WSABE2004/program/, accessed on 24th April 2005. 

29 P. V. Biron, K. Permanente, and A. Malhotra, XML Schema Part 2: Data types Second 
Edition, http://www.w3.org/TR/xmlschema-2/, accessed on 24th April 2005. 

30 Sun Microsystems, Inc. Java API for XML-Based RPC (JAX-RPC), available at  
http://java.sun.com/xml/jaxrpc/index.jsp  

31 Sun Microsystems, Inc. Java Management Extension (JMX), available at  
http://java.sun.com/products/JavaManagement/, accessed on 24th April 2005. 

32 Telecom Italia Lab. JADE (Java Agent Development Framework), available at  
http://sharon.cselt.it/projects/jade/, accessed on 24th April 2005.  

33 Whitestein Information Technology Group AG. Web services agent Integration Project 
available at http://wsai.sourceforge.net/index.html, accessed on 24th April 2005.  

34 World Wide Web Consortium, RDF Vocabulary Description Language 1.0: RDF Schema, 
available at http://www.w3.org/TR/rdf-schema/, accessed on 24th April 2005. 

35 World Wide Web Consortium, OWL Web Ontology Language Overview available at 
http://www.w3.org/TR/owl-features/, accessed on 24th April 2005. 

36 World Wide Web Consortium, Web Services Choreography Description Language Version 
1.0, available at http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/, accessed on 24th 
April 2005. 

37 X., Gu, Klara N.N., Chang, C., Ward, “QoS-Assured Service Com-position in Managed 
Service Overlay Networks”, in Proc. of 23rd IEEE International Conference on Distributed 
Computing Systems (ICDCS 2003), Providence, Rhode Island, May, 2003, p.194.  



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

251 

Information about Software 

Software is available on the Internet as 
(x)   prototype version 
(  )   full fledged software (freeware), version no.: 
(  )   full fledged software (for money), version no.: 
(  )   Demo/trial version 
(  )   not (yet) available 

 
Internet address: 

Description of software: 
  http://www.it.swin.edu.au/centres/ciamas/tiki-index.php?page=ws2jade-proj  
Download address:  
 http://www.it.swin.edu.au/centres/ciamas/tiki-index.php?page=ws2jade  

 
Contact person for question about the software: 

Name: Xuan Thang Nguyen 
Email: xnguyen@ict.swin.edu.au 

 
Xuan Thang Nguyen 
Faculty of Information and Communication Technologies  
Swinburne University of Technology 
Melbourne VIC 3122, Australia. 
e-mail: xnguyen@ict.swin.edu.au 
 
Ryszard Kowalczyk 
Faculty of Information and Communication Technologies  
Swinburne University of Technology 
Melbourne VIC 3122, Australia. 
e-mail: rkowalczyk@ict.swin.edu.au 
 
Mohan Baruwal Chhetri  
Faculty of Information and Communication Technologies  
Swinburne University of Technology 
Melbourne VIC 3122, Australia. 
e-mail: mchhetri@ict.swin.edu.au 
 
Alasdair Grant 
Faculty of Information and Communication Technologies  
Swinburne University of Technology 
Melbourne VIC 3122, Australia. 
e-mail: 4103515@swin.edu.au 




