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Continuum Models for Surface Growth

Martin Rost

Abstract. As an introductory lecture to the workshop an overview is given
over continuum models for homoepitaxial surface growth using partial dif-
ferential equations (PDEs). Their heuristic derivation makes use of inherent
symmetries in the physical process (mass conservation, crystal symmetry, . . . )
which determines their structure. Two examples of applications are given, one
for large scale properties, one including crystal lattice discreteness. These are:
(i) a simplified model for mound coarsening and (ii) for the transition from
layer-by-layer to rough growth. Virtues and shortcomings of this approach is
discussed in a concluding section.
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1. Introduction

Crystal growth by Molecular Beam Epitaxy (MBE) involves processes on quite
different physical scales, from atomic to micrometer scales. To capture the large
scale features it may be appropriate to represent the surface as a continuous height
field h(x, t) above a set of so called base points x where h : (x, t) ∈ R

2 × R → R.
The surface dynamics is then modeled by a parabolic PDE for h(x, t), which often
is a starting point for interesting mathematical problems, and in some cases for
rigorous results [1, 2], which were an important part of this workshop.

Their mathematical tractability somehow contrasts with the lack of rigor
in their derivations, as we shall see below. It would be nice to “prove” a certain
PDE to be the appropriate large scale model for some underlying more elementary
model, typically a stochastic model of the solid-on-solid type. This would connect
the result for large scales with the microscopic model which is much closer to
physical reality.

Nevertheless, often this chain can be closed in a heuristic sense, and this
lecture presents some examples. It is organised as follows: First, the heuristic pro-
cedure of deriving a continuum model is motivated and its structure is explained.
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Then, two examples of applications are presented, covering in some sense extreme
cases of applicability of continuum models; (i) coarsening of mound patterns in
homoepitaxy and (ii) damping of width oscillations in the transition from layer-
by-layer to rough growth. Last, the general applicability of continuum models to
MBE growth is discussed, in particular those features of discreteness of the un-
derlying process which can only be covered incompletely by a continuum model.
Open questions in the derivation which have not been addressed so far, but appear
to be solvable, are mentioned here.

The main purpose of this introductory lecture is to recollect the physical
motivation of the class of models which deal with the largest spatial and tem-
poral scales involved in MBE growth, and to give some intuition to other more
mathematical approaches.

2. Derivation and structure

2.1. General background

Continuum models for surface growth are comparable to the hydrodynamic limit of
microscopic models of fluid dynamics. Behind the continuous macroscopic height
field h(x, t) one has to imagine an ensemble of microscopic configurations. They
may be locally in a steady state or, in growth modes where the crystal layer
structure is relevant such as layer-by-layer or step flow growth, a sequence of states
may repeat itself periodically. On time scales larger than the layer completion time
also the latter case may be considered a quasi-steady state. Figure 1 illustrates this
relationship. The local state is subject to changes on time scales, ideally longer
than the relaxation times into those states, which leads to the dynamics of the
height field.

The structure of the PDE governing the dynamics of h(x, t) reflects differ-
ent elementary processes and their symmetries. In growth from molecular beam
epitaxy there is

• a deposition flux F{h}(x, t), i.e., the deposited volume per time and surface
area,
• possibly an evaporation loss E{h}(x, t), again volume per time and area,
• a surface current J{h}(x, t) on terraces and along steps, transported volume

per time and length, i.e., cross section on the surface.

Multiplied with a volume density ρ these quantities become mass fluxes and cur-
rents. All three depend on the actual surface configuration h, e.g., on local slopes,
their orientations and curvatures. Elastic interactions and terrace adatom detach-
ment with subsequent redeposition couple the dynamics at a surface point non-
locally to surface configurations at other places. There may also be an explicit
space dependence beyond the influence of the height configuration, e.g., for a non-
uniform deposition with pulsed flux.
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Figure 1. Sketch of the height field representation for surface config-
urations. Upper: one surface configuration out of an ensemble in local
steady states. Lower: a smooth height field h(x, t) as a representation.

Deposition, evaporation, and surface current are combined into a continuity
equation

∂

∂t
h(x, t) = F{h}(x, t)−∇ · J{h}(x, t)− E{h}(x, t). (2.1)

Note that small local slopes are assumed, such that in front of the surface cur-
rent divergence nonlinear terms arising from the metric

√
1+(∇h)2 typically are

neglected.
A full derivation from local steady states in the sense postulated above is

of course impossible in almost any case, apart from some one-dimensional exam-
ples related to growth models, as, e.g., [3], which is however not of MBE type.
One therefore has to rely on heuristically justified (reasonable) assumptions for
the dynamic quantities involved. The connection to the more detailed models on
smaller scales is given by length scales which influence the surface morphology and
become visible. Explained more precisely in the other introductory lectures of this
conference [4, 5] they are
• a, the lattice spacing of the crystal.
• �D, the diffusion length, i.e., the “typical” distance of nucleation sites on a

terrace, with a non-trivial dependence on the deposition rate F and adatom
diffusivity D.
• �ES = a

[
exp εES−1

]
, the Ehrlich–Schwoebel length [6]. εES is the magnitude

of the Ehrlich–Schwoebel barrier in units of kBT . It is a measure for the
reflectivity of the barrier at a downward step. Roughly speaking, an adatom
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located right at a downward step is equally likely to hop downward as it is
to get caught by the next upward step at distance �ES.
• �step, the average distance between two truly ascending step without counting

islands etc. between them. So, a slope |m| of a vicinal surface is equivalent
to �step = a/|m|.

2.2. Surface current

Ehrlich–Schwoebel effect on terraces
As was realised quite early the most important ingredient of Eq. (2.1) is a non-
equilibrium current on surface terraces induced by Ehrlich–Schwoebel (ES) barriers
[7, 8, 9, 11].

For small average slopes m = ∇h with |m| � a/�D or �D � �step, the ES
barrier induces a net uphill current [25]

JEST =
F �D�ES

2a(1 + �ES/�D)
m. (2.2)

Inserted into the surface current in Eq. (2.1) this results in a destabilising term for
the height equation ∂th = −c ∇·∇h + · · · .

Of course one would like to know the functional dependence of the surface
current JEST beyond this approximation for small slopes. Following an argument
of Siegert for 1+1 dimensions [9] there must also be surface orientations with
stabilising surface current: Think of JEST as a vector field on the tangent bundle
of the unit sphere of possible surface orientations. By the ES instability all high
symmetry orientations have JEST pointing outward around a zero. By continuity
of JEST as a function of the orientation there must be zeroes with the current field
pointing inward to the zero, i.e., orientations stabilised by the surface current.

These qualitatively fundamental properties, the existence of unstable and
stable surface orientations, can be cast into a heuristically postulated function
JEST(m). Figure 2 shows two such examples, one isotropic within the crystal
terrace – a somewhat artificial but nevertheless theoretically interesting case, one
isotropic, with four-fold (π/2) rotational symmetry.

Ehrlich–Schwoebel effect at steps
The Ehrlich–Schwoebel effect also has an influence on adatom diffusion along
steps, allowing for attachment of atoms to kinks preferentially from one side, as
is sketched in Fig. 3. It is one important mechanism causing a step meandering
instability on growing vicinal surfaces [12, 13]. Politi and Krug derived the contri-
bution JESS of non-equilibrium current along steps to the total surface current for
a surface with given average slope which is assumed to be constant on a sufficiently
large region such that steps have a well defined average density and orientation
with respect to the underlying crystal lattice [14].

Curvature relaxation
Clearly on small scales the destabilising ES effects encountered in this section so
far are balanced. Too thin protrusions are forbidden by their cost in surface free
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Figure 2. Examples of heuristic choices for nonequilibrium terrace
Ehrlich–Schwoebel surface current JEST(m). Left: in-plane isotropy,
JEST(m) = (1− |m|2) m, continuous set of stable slopes {m | |m|=1}.
Right: anisotropy, four-fold symmetry, JEST,i(m) = (1 −m2

i ) mi with
i = x, y, discrete set of stable slopes at (±1,±1).

Figure 3. The ES effect at step kinks favors adatom incorporation
from one side and induces a net current along the step.

energy. For thermal relaxation towards equilibrium the corresponding continuum
dynamics are straightforward to derive. The surface free energy

F =
∫

γ(∇h)
√

1 + (∇h)2 ddx (2.3)

weights each surface element by its orientation dependent contribution γ(∇h). The
gradient in chemical potential µ = δF/δh drives the relaxational surface current
which is also proportional to the (tensorial and orientation dependent) adatom
mobility σ(∇h). A linear expansion around a surface of constant slope h = m · x
small enough to again neglect geometric effects [10, 11] yields

JCURV = σ ·∇ ∇·[γ 1 + (∇m∇mγ)]·∇h. (2.4)

The expression in square brackets is generally called the surface stiffness

γ̃ = γ 1 +∇m∇mγ (2.5)
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where ∇m denotes derivation with respect to the slope dependence of γ and 1 is
the unity matrix.

Strictly speaking this derivation applies only to equilibrium relaxation. For a
far from equilibrium process like MBE growth it does not make sense to define a
surface free energy per area γ(∇h), although the “true” contribution of the surface
current due to relaxation by curvature most likely has a functional form of that
type. Some attempts to identify these contributions have been made [15], but the
correct derivation of the corresponding continuum form remains an open question.

2.3. Deposition, desorption and noise

For most applications it will be correct to assume a deposition intensity F constant
in time and space. Interesting cases with explicit space and time dependence are
(i) pulsed molecular beams, used to decrease the second layer island nucleation
rate, and (ii) geometric inhomogeneities if the beam does not reach every part
of the surface under the same angle. The most important mechanism for implicit
deposition heterogeneity is steering, where the incident atoms are deflected by
attractive interaction with surface features such as islands and mounds, an effect
which is of course most prominent under grazing incidence [16, 17].

At sufficiently high temperatures desorption may become an important ef-
fect. Terrace adatoms then will be most susceptible to desorption at a rate 1/τ ,
during their diffusion time before they reach the stronger binding steps. To a first
approximation the desorption rate depends on the average distance to the next
reachable step and therefore on the surface slope: the higher the slope, the more
steps are present and the lower the desorption loss. Within an ansatz à la Burton–
Cabrera–Frank [18] one can relate the desorption length xs = 2a

√
Dτ , diffusion

length �D, and slope ∇h = a/� [19, 11] to an expression for the desorption loss in
volume per time and surface area

E{h}(x, t) = F [(xs/�) tanh(�/xs)− 1] ≈ F
(�D/xs)2/3
1 + (∇h)2

. (2.6)

There are three sources for noise in MBE growth [21]: (i) Deposition is a
stochastic process of single events, so F has to be complemented by a “shot noise”
term ξ(x, t) with statistics

〈ξ(x, t)〉 = 0 and 〈ξ(x, t)ξ(x′, t′)〉 = a3F δ(x−x′) δ(t−t′). (2.7)

(ii) Adatom diffusion also consists of single events, and to a first approximation
surface currents are blurred by a “diffusion noise” term η(x, t) with statistics

〈η(x, t)〉 = 0 and 〈η(x, t) · η(x′, t′)〉 = �DF ∇2δ(x−x′) δ(t−t′). (2.8)

(iii) Nucleations also occur at random but the precise form of this contribution
remains an open question. There are nontrivial correlations in time, as new islands
tend to nucleate close to centers of previously nucleated islands. The space depen-
dence of the nucleation noise correlator 〈ν(x, t)ν(x′, t′)〉 is expected to have the
form (∇2)2δ(x−x′) [22].
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2.4. Structure and symmetry of continuum equations for MBE

Heuristic surface currents as in the example in Fig. 2 lead to a symmetry in the
resulting dynamical equation which can be used for evaluation, but is too strong
a restriction compared to the “real” dynamics and may lead to erroneous results.

If JEST uniquely depends on the slope m and not on derivative of its func-
tions then a fourfold or sixfold crystal symmetry in the terrace layers imposes
JEST(m) = −JEST(−m). (A threefold symmetry plays a special role [23]). The
resulting term of surface dynamics is invariant under the transformation h→ −h
and so will be the surface configurations obtained from that. Breaking of this sym-
metry, e.g., by terms as ∇f

(
(∇h)2

)
in J or an evaporation term e(

(
(∇h)2

)
do in

fact change the characteristics of the dynamics substantially [19].
One can take advantage of this simple slope dependence if there is a scalar

function V (m) such that JEST = −∇mV (m). Stable zeroes of JEST then are
minima of V (m). If additionally the curvature relaxation is of a simple “scalar”
form σ · γ̃ = K1 there is a Lyapunov functional of the dynamics

F{m} =
∫ [

K

2
(∇m)2 + V (m)

]
d2x (2.9)

and the surface dynamics Eq. (2.1) can be written for the field of slopes m = ∇h as

∂tm = ∂t(∇h) = ∇ ∇ · δF
δm

. (2.10)

If m is interpreted as a two-dimensional magnetic order parameter this form com-
pares to conserved (model B) relaxational dynamics, with the only restriction that
it remains a conservative field at all times, ∇ ∧m = 0. Facets in the surface are
regions of constant slope, and appear as domains of constant “magnetisation”,
edges between them are domain walls. As compared to its magnetic analogon,
here the parallel component of m remains constant across a domain wall, which
in the case of discrete stable zeroes of the current function (right panel of Fig. 2)
restricts the possible domain wall orientations and imposing constraints on the
relaxational dynamics [24, 9, 23].

3. Examples of applications

Continuum equations are now applied in two examples of very basic choices in
Eq. (2.1). In some sense they highlight two opposite regimes, (i) on very long
length and time scales coarsening of mounds in homoepitaxy, and (ii) on short
scales resolving the lattice structure in the transition from layer-by-layer to rough
growth.

3.1. Coarsening

The simplest example of a surface dynamics equation is the analogon to the clas-
sical XY-model in the sense of Eq. (2.10)

∂th = −(∇2)2h−∇ ·
[(

1− (∇h)2
)
∇h

]
, (3.1)
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Figure 4. Coarsening of surface mounds, between subsequent panels
time advances by a factor of 10. The local surface slope is represented
by colors, facets appear as regions of uniform color. Spontaneous facet
formation, although no anisotropy is imposed, JEST(m) = (1−|m|2) m
(c.f. left panel in Fig. 2).

i.e., with the current function depicted in the left panel of Fig. 2. An initially
flat surface h = const is linearly unstable to fluctuations of wave lengths λ > 2π
which therefore initially grow exponentially. Once slopes of O(1) are reached the
surface organise itself into a pattern of regular mounds and troughs which keep
the symmetry h↔ −h of Eq. (3.1). The in-plane isotropy of (3.1) is locally broken
by the need to arrange the mounds and troughs into a regular pattern and facets
with sharp wedges form [25].

Subsequently the pattern of mounds and troughs coarsens keeping a single
typical length scale and a statistically self similar pattern at every time. The
average mound size is found to increase with time as L ∼ t1/3 [24, 23]. In a weak
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L

Figure 5. Sketch of facets and wedges, i.e., domains of constant slope
and their separating boundaries, as obtained in the simulations shown
in Fig. 4. The only macroscopic length scale is the domain size L.

sense this can be proved as an upper bound for an appropriate time average of
the length scales L observed up to a give time t [2]. Here only a quick handwaving
argument is given following [26]:

The spatial average of the interface width W ≡ 〈h2〉 (where 〈h〉 = 0) increases
due to Eq. (3.1) as

1
2

∂tW
2 =

1
2

∂t〈h2〉 = −〈(∆h)2〉+ 〈(∇h)2〉 − 〈|∇h|4〉. (3.2)

By the sketch of Fig. 5 the contributions of these terms are estimated to be of
order 1/L: The facets are flat and the curvature is restricted to narrow strips of
width O(1) at the domain boundaries, which have a relative weight of 1/L. Also,
here the slopes are smaller than the stable value |∇h| = 1 attained at the facets.
So all terms give a contribution of O(1/L) and because of the stable slope W ∼ L
the increase in width leads to the estimate

∂tL
2 ∼ ∂tW

2 ∼ 1/L, integrated to L ∼ t1/3. (3.3)

The same rough heuristic argument holds for anisotropic surface currents with
discrete minima, i.e., a discrete set of preferential surface orientations, but the
four-fold symmetry (right panel of Fig. 2) plays a special role because two kinds
of edges occur, such that in general the assumption of a single length scale L in
the system is wrong [23].

Clearly, Equation (3.1) is far from experimental realisations, and it is inter-
esting by its challenge for mathematical, analytic and numerical methods.

Numerically, the coarsening exponent is found correctly only if one goes to
very late times, when asymptotic mound sizes of at least 10 times the initial most



204 M. Rost

unstable wave length are reached [24]. Following [23], it may be interesting to
verify the absence of any macroscopic length scales other than the mound size,
e.g., to check possible orientational long range ordering of the mounds. This may
require quite involved methods to avoid any artificial anisotropy from numerical
lattices.

Mathematically, an improvement on the analysis of [2] is desirable but prob-
ably difficult to obtain. Physical intuition would call for a bound on the length
scale L(t) itself rather than its “history average”

∫ t

0 L(s)ds. It may be possible to
obtain dynamical equations for the movements and merging of the singular points
in the pattern of Fig. 4), for its maxima, minima, and saddle points. Such anal-
ysis has proven very helpful in 1+1 dimensions, e.g., [1, 27], and for anisotropic
(2+1)-dimensional models, e.g., [23].

As the dynamics of these singular features play a crucial role, it is important
to study their change in the presence of additional terms in Eq. (3.1). Based on
analytic arguments assisted by simulations, noise is known to cause coarsening or
to determine its properties [28]. Other additional nonlinear terms influence the
morphology of the mound pattern, such as slope dependent evaporation [19], or
other terms breaking up-down symmetry as ∇2(∇h)2 [20]. A more difficult task
may be the study of nonlinearities in prefactors to the smoothing term −∆2h of
Eq. (3.1).

3.2. Roughening

Layer by layer growth is technologically interesting because one can monitor the
subsequent deposition of layers by oscillations in the surface width. It is nearly
flat around integer fillings and the roughness takes maxima at half integer fillings.
During growth the interface roughens and the width oscillations decay [29]. The
Ehrlich–Schwoebel barrier and mounding instability is one prominent mechanism
destroying layer-by-layer growth, and so can be any inhomogeneity in the deposi-
tion intensity F{h}(x, t). Although weaker, even the fluctuations of shot noise have
this effect, and it can be captured by a simple renormalisation group calculation.

The simplest way to implement layer lattice effects into an continuum surface
equation like Eq. (2.1) is pursued by the conserved sine-Gordon-equation

∂th(x, t) = −K∆2h(x, t)− V ∆ sin
2πh(x, t)

a⊥
+ F + ξ(x, t). (3.4)

Among other the surface current is driven to regions of incomplete fillings such
that h(x, t)/a⊥ is favored to take integer values [30]. The notation distinguishes
between the lattice constant normal (a⊥) and parallel (a‖) to the surface terraces
which will be used in the following analysis.

In a momentum shell renormalisation one can average over the fluctuations
caused by the short wavelength components of the noise, ξ = ξ̄ + δξ, where ξ̄
only contains modes of wavenumber smaller than some cutoff Λ and δξ the others.
One now tries to approximate the dynamic equation for the averaged height field
h̄ = 〈h〉δξ by an equation like (3.4) with suitably adjusted parameters. After
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rescaling, an effective renormalised equation is obtained. Three important physical
interpretations can be obtained from the renormalised parameters of Eq. (3.4).

(i) by the interplay of the driving force F and the lattice potential the up-down
symmetry (h↔ −h) is broken and a term −λ∆(∇h)2 is created.

(ii) The strength of the lattice potential V is damped out and decays exponen-
tially with coverage θ = Ft like ∝ exp

(
−a2

‖/�
2
D

√
θ
)

(iii) In a sample of finite size Λ momentum shell renormalisation stops at minimal
wavenumbers |k| = 2π/Λ and corresponding coverages θ = (Λ/�D)4. The
lattice potential therefore remains present in the renormalised large scale
description if Λ� �̃ = �2

D/a‖, where �̃ is called layer coherence length [29, 30].
Expressed in more physical terms: shot noise fluctuations cannot accumulate
to the point where width oscillations are completely blurred.

4. Discussion

In presenting the model derivations and examples of their application it becomes
clear that continuum models are a good tool for questions where the inherent sim-
plifications are justified. The insight gained from partial differential equations is
different from results of more microscopic model. Last not least continuum equa-
tions can handle larger systems and longer times than Monte Carlo simulations or
Molecular Dynamics.

In many cases the phenomena of particular technological interest cannot be
captured by continuum equations of the type described in this lecture. Magic
island shapes, surface reconstruction, certain aspects of step bunching, formation
of quantum dots and wires are just a few examples.

Even if one is not interested in these inherently discrete phenomena them-
selves they nevertheless carry over to the behavior on larger scales and a naive
straightforward derivation of large scale continuum models may be wrong. The im-
plementation of noise for some questions, such as roughening, is one such example.
Also, the effective “large scale” Ehrlich–Schwoebel barrier of a step is influenced by
kinks along the step which may serve as channels for downward incorporation of a
terrace adatom. Obtaining the correct effective barrier, dependent on orientation
and curvature of the step certainly is a nontrivial task.

An important part of the surface current J flows along steps, as has become
clear in the above derivation. In Ref. [14] the step current due to kink ES barriers
is derived as a function of the surface orientation or slope. An open question is the
role of step curvature and therefore of surface curvature on the step current.

Also on the surface itself, the regularising term as it is derived in Eq. (2.4),
should be derived from true nonequilibrium arguments. To do so, one would have
to incorporate island nucleations, the creation and annihilation of steps. One pos-
sible approach is to introduce fields for the densities of adatoms, advacancies,
steps, kinks, and for their orientations. Locally they could be treated as mean
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field densities with certain effective “reaction” rates, but in their spatial interac-
tion, by diffusion and advective transport, one could obtain a conceptually more
fundamental continuum model for surface growth.

5. Conclusion

In this lecture an overview of continuum models for MBE surface growth has been
given which includes
• the conceptual foundation of continuum models as a limit of more detailed

small scale approaches,
• heuristic derivations due to lack of rigorous or even exact ways to obtain

them,
• the structure and the symmetry of the equations obtained in that way,
• two examples emphasizing two opposite time limits in the growth process

with the application of two contrary methods,
• criticism of weak points in continuum modelling, open questions and some

speculations about answers to them.
The main purpose was to highlight the physical background and give some in-
tuition of possible approaches to it as a basis for mathematical treatments, both
rigorous and numerical. It should be seen as a complement of the lectures [4] and
[5] which give a similar introduction to lattice and Burton–Cabrera–Frank models
respectively. Although continuum models seem to fail in some important physical
aspects they nevertheless are a good tool and subject for mathematical approaches.
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