
Chapter 8

Absolutely Continuous Curves
in Pp(X) and the Continuity
Equation

In this chapter we endow Pp(X), when X is a separable Hilbert space, with a
kind of differential structure, consistent with the metric structure introduced in
the previous chapter. Our starting point is the analysis of absolutely continuous
curves µt : (a, b) → Pp(X) and of their metric derivative |µ′|(t): recall that these
concepts depend only on the metric structure of Pp(X), by Definition 1.1.1 and
(1.1.3). We show in Theorem 8.3.1 that for p > 1 this class of curves coincides with
(distributional, in the duality with smooth cylindrical test functions) solutions of
the continuity equation

∂

∂t
µt +∇ · (vtµt) = 0 in X × (a, b).

More precisely, given an absolutely continuous curve µt, one can find a Borel time-
dependent velocity field vt : X → X such that ‖vt‖Lp(µt) ≤ |µ′|(t) for L 1-a.e.
t ∈ (a, b) and the continuity equation holds. Conversely, if µt solve the continuity
equation for some Borel velocity field vt with

∫ b

a
‖vt‖Lp(µt) dt < +∞, then µt is

an absolutely continuous curve and ‖vt‖Lp(µt) ≥ |µ′|(t) for L 1-a.e. t ∈ (a, b).
As a consequence of Theorem 8.3.1 we see that among all velocity fields

vt which produce the same flow µt, there is a unique optimal one with smallest
Lp(µt; X)-norm, equal to the metric derivative of µt; we view this optimal field as
the “tangent” vector field to the curve µt. To make this statement more precise,
one can show that the minimality of the Lp norm of vt is characterized by the
property

vt ∈ {jq(∇ϕ) : ϕ ∈ Cyl(X))}Lp(µt;X)
for L 1-a.e. t ∈ (a, b), (8.0.1)
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where q is the conjugate exponent of p and jq : Lq(µ; X) → Lp(µ; X) is the duality
map, i.e. jq(v) = |v|q−2v (here gradients are thought as covectors, and therefore
as elements of Lq).

The characterization (8.0.1) of tangent vectors strongly suggests, in the case
p = 2, to consider the following tangent to P2(X)

TanµP2(X) := {∇ϕ : ϕ ∈ Cyl(X)}L2(µ;X) ∀µ ∈ P2(X), (8.0.2)

endowed with the natural L2 metric. Moreover, as a consequence of the charac-
terization of absolutely continuous curves in P2(X), we recover the Benamou–
Brenier (see [21], where the formula was introduced for numerical purposes)
formula for the Wasserstein distance:

W 2
2 (µ0, µ1) = min

{∫ 1

0

‖vt‖2L2(µt;X) dt :
d

dt
µt +∇ · (vtµt) = 0

}
. (8.0.3)

Indeed, for any admissible curve we use the inequality between L2 norm of vt and
metric derivative to obtain:∫ 1

0

‖vt‖2L2(µt;X) dt ≥
∫ 1

0

|µ′|2(t) dt ≥ W 2
2 (µ0, µ1).

Conversely, since we know that P2(X) is a length space, we can use a geodesic
µt and its tangent vector field vt to obtain equality in (8.0.3). Similar arguments
work in the case p > 1 as well, with the only drawback that a priori the Lp closure
of jq(∇ϕ) is not a vector space in general, so we are able only to define a tangent
cone. We also show that optimal transport maps belong to TanµPp(X) under
quite general conditions.

In this way we recover in a more general framework the Riemannian inter-
pretation of the Wasserstein distance developed by Otto in [107] (see also [106],
[83]) and used to study the long time behaviour of the porous medium equation.
In the original paper [107], (8.0.3) is derived in the case X = Rd using formally
the concept of Riemannian submersion and the family of maps φ �→ φ#µ (indexed
by µ � L d) from Arnold’s space of diffeomorphisms into the Wasserstein space.
In Otto’s formalism tangent vectors are rather thought as s = d

dtµt and these
vectors are identified, via the continuity equation, with −D · (vsµt). Moreover vs

is chosen to be the gradient of a function ψs, so that D · (∇ψsµt) = −s. Then the
metric tensor is induced by the identification s �→ ∇φs as follows:

〈s, s′〉µt
:=

∫
Rd

〈∇ψs,∇ψs′〉 dµt.

As noticed in [107], both the identification between tangent vectors and gradients
and the scalar product depend on µt, and these facts lead to a non trivial geometry
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of the Wasserstein space. We prefer instead to consider directly vt as the tangent
vectors, allowing them to be not necessarily gradients: this leads to (8.0.2).

Another consequence of the characterization of absolutely continuous curves
is a result, given in Proposition 8.4.6, concerning the infinitesimal behaviour of
the Wasserstein distance along absolutely continuous curves µt: given the tangent
vector field vt to the curve, we show that

lim
h→0

Wp(µt+h, (i + hvt)#µt)
|h| = 0 for L 1-a.e. t ∈ (a, b).

Moreover the optimal transport plans between µt and µt+h, rescaled in a suitable
way, converge to the transport plan (i× vt)#µt associated to vt (see (8.4.6)). This
proposition shows that the infinitesimal behaviour of the Wasserstein distance is
governed by transport maps even in the situations when globally optimal transport
maps fail to exist (recall that the existence of optimal transport maps requires
regularity assumptions on the initial measure µ). As a consequence, we will obtain
in Theorem 8.4.7 a formula for the derivative of the map t �→ W p

p (µt, ν).

8.1 The continuity equation in Rd

In this section we collect some results on the continuity equation

∂tµt +∇ · (vtµt) = 0 in Rd × (0, T ), (8.1.1)

which we will need in the sequel. Here µt is a Borel family of probability measures
on Rd defined for t in the open interval I := (0, T ), v : (x, t) �→ vt(x) ∈ Rd is a
Borel velocity field such that∫ T

0

∫
Rd

|vt(x)| dµt(x) dt < +∞, (8.1.2)

and we suppose that (8.1.1) holds in the sense of distributions, i.e.∫ T

0

∫
Rd

(
∂tϕ(x, t) + 〈vt(x),∇xϕ(x, t)〉

)
dµt(x) dt = 0,

∀ϕ ∈ C∞
c (Rd × (0, T )).

(8.1.3)

Remark 8.1.1 (More general test functions). By a simple regularization argument
via convolution, it is easy to show that (8.1.3) holds if ϕ ∈ C1

c

(
Rd × (0, T )

)
as well.

Moreover, under condition (8.1.2), we can also consider bounded test functions ϕ,
with bounded gradient, whose support has a compact projection in (0, T ) (that is,
the support in x need not be compact): it suffices to approximate ϕ by ϕχR where
χR ∈ C∞

c (Rd), 0 ≤ χR ≤ 1, |∇χR| ≤ 2 and χR = 1 on BR(0). This more general
choice of the test functions is consistent with the infinite-dimensional case, where
cylindrical test functions will be considered, see Definition 5.1.11 and (8.3.8).
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First of all we recall some (technical) preliminaries.

Lemma 8.1.2 (Continuous representative). Let µt be a Borel family of probability
measures satisfying (8.1.3) for a Borel vector field vt satisfying (8.1.2). Then there
exists a narrowly continuous curve t ∈ [0, T ] �→ µ̃t ∈ P(Rd) such that µt = µ̃t for
L 1-a.e. t ∈ (0, T ). Moreover, if ϕ ∈ C1

c (Rd × [0, T ]) and t1 ≤ t2 ∈ [0, T ] we have∫
Rd

ϕ(x, t2) dµ̃t2(x)−
∫

Rd

ϕ(x, t1) dµ̃t1(x)

=
∫ t2

t1

∫
Rd

(
∂tϕ + 〈∇ϕ, vt〉

)
dµt(x) dt.

(8.1.4)

Proof. Let us take ϕ(x, t) = η(t)ζ(x), η ∈ C∞
c (0, T ) and ζ ∈ C∞

c (Rd); we have

−
∫ T

0

η′(t)
(∫

Rd

ζ(x) dµt(x)
)

dt =
∫ T

0

η(t)
(∫

Rd

〈∇ζ(x), vt(x)〉 dµt(x)
)

dt,

so that the map

t �→ µt(ζ) =
∫

Rd

ζ(x) dµt(x)

belongs to W 1,1(0, T ) with distributional derivative

µ̇t(ζ) =
∫

Rd

〈∇ζ(x), vt(x)〉 dµt(x) for L 1-a.e. t ∈ (0, T ) (8.1.5)

with

|µ̇t(ζ)| ≤ V (t) sup
Rd

|∇ζ|, V (t) :=
∫

Rd

|vt(x)| dµt(x), V ∈ L1(0, T ). (8.1.6)

If Lζ is the set of its Lebesgue points, we know that L 1((0, T ) \ Lζ) = 0. Let us
now take a countable set Z which is dense in C1

c (Rd) with respect the usual C1

norm ‖ζ‖C1 = sup
Rd(|ζ|, |∇ζ|) and let us set LZ := ∩ζ∈ZLζ . The restriction of

the curve µ to LZ provides a uniformly continuous family of bounded functionals
on C1

c (Rd), since (8.1.6) shows

|µt(ζ)− µs(ζ)| ≤ ‖ζ‖C1

∫ t

s

V (λ) dλ ∀ s, t ∈ LZ .

Therefore, it can be extended in a unique way to a continuous curve {µ̃t}t∈[0,T ]

in [C1
c (Rd)]′. If we show that {µt}t∈LZ

is also tight, the extension provides a
continuous curve in P(Rd).

For, let us consider nonnegative, smooth functions ζk : Rd → [0, 1], k ∈ N,
such that

ζk(x) = 1 if |x| ≤ k, ζk(x) = 0 if |x| ≥ k + 1, |∇ζk(x)| ≤ 2.
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It is not restrictive to suppose that ζk ∈ Z. Applying the previous formula (8.1.5),
for t, s ∈ LZ we have

|µt(ζk)− µs(ζk)| ≤ ak := 2
∫ T

0

∫
k<|x|<k+1

|vλ(x)| dµλ(x) dλ,

with
∑+∞

k=1 ak < +∞. For a fixed s ∈ LZ and ε > 0, being µs tight, we can find
k ∈ N such that µs(ζk) > 1− ε/2 and ak < ε/2. It follows that

µt(Bk+1(0)) ≥ µt(ζk) ≥ 1− ε ∀ t ∈ LZ .

Now we show (8.1.4). Let us choose ϕ ∈ C1
c (Rd × [0, T ]) and set ϕε(x, t) =

ηε(t)ϕ(x, t), where ηε ∈ C∞
c (t1, t2) such that

0 ≤ ηε(t) ≤ 1, lim
ε↓0

ηε(t) = χ(t1,t2)(t) ∀ t ∈ [0, T ], lim
ε↓0

η′
ε = δt1 − δt2

in the duality with continuous functions in [0, T ]. We get

0 =
∫ T

0

∫
Rd

(
∂t(ηεϕ) + 〈∇x(ηεϕ), vt〉

)
dµt(x) dt

=
∫ T

0

ηε(t)
∫

Rd

(
∂tϕ(x, t) + 〈vt(x),∇xϕ(x, t)〉

)
dµt(x) dt

+
∫ T

0

η′
ε(t)

∫
Rd

ϕ(x, t) dµ̃t(x) dt.

Passing to the limit as ε vanishes and invoking the continuity of µ̃t, we get (8.1.4).
�

Lemma 8.1.3 (Time rescaling). Let t : s ∈ [0, T ′] → t(s) ∈ [0, T ] be a strictly
increasing absolutely continuous map with absolutely continuous inverse s := t−1.
Then (µt, vt) is a distributional solution of (8.1.1) if and only if

µ̂ := µ ◦ t, v̂ := t′v ◦ t, is a distributional solution of (8.1.1) on (0, T ′).

Proof. By an elementary smoothing argument we can assume that s is continuously
differentiable and s′ > 0. We choose ϕ̂ ∈ C1

c (Rd × (0, T ′)) and let us set ϕ(x, t) :=
ϕ̂(x, s(t)); since ϕ ∈ C1

c (Rd × (0, T )) we have

0 =
∫ T

0

∫
Rd

(
s′(t)∂sϕ̂(x, s(t)) + 〈∇ϕ̂(x, s(t)), v̂t(x)〉) dµt(x) dt

=
∫ T

0

s′(t)
∫

Rd

(
∂sϕ̂(x, s(t)) + 〈∇xϕ̂(x, s(t)),

vt(x)
s′(t)

〉
)

dµt(x) dt

=
∫ T ′

0

∫
Rd

(
∂sϕ̂(x, s) + 〈∇xϕ̂(x, s), t′(s)vt(s)(x)〉

)
dµ̂s(x) ds.

�
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When the velocity field vt is more regular, the classical method of character-
istics provides an explicit solution of (8.1.1).

First we recall an elementary result of the theory of ordinary differential
equations.

Lemma 8.1.4 (The characteristic system of ODE). Let vt be a Borel vector field
such that for every compact set B ⊂ Rd∫ T

0

(
sup
B
|vt|+ Lip(vt, B)

)
dt < +∞. (8.1.7)

Then, for every x ∈ Rd and s ∈ [0, T ] the ODE

Xs(x, s) = x,
d

dt
Xt(x, s) = vt(Xt(x, s)), (8.1.8)

admits a unique maximal solution defined in an interval I(x, s) relatively open in
[0, T ] and containing s as (relatively) internal point.
Furthermore, if t �→ |Xt(x, s)| is bounded in the interior of I(x, s) then I(x, s) =
[0, T ]; finally, if v satisfies the global bounds analogous to (8.1.7)

S :=
∫ T

0

(
sup
Rd

|vt|+ Lip(vt, R
d)
)

dt < +∞, (8.1.9)

then the flow map X satisfies∫ T

0

sup
x∈Rd

|∂tXt(x, s)| dt ≤ S, sup
t,s∈[0,T ]

Lip(Xt(·, s), Rd) ≤ eS . (8.1.10)

For simplicity, we set Xt(x) := Xt(x, 0) in the particular case s = 0 and
we denote by τ (x) := sup I(x, 0) the length of the maximal time domain of the
characteristics leaving from x at t = 0.

Remark 8.1.5 (The characteristics method for backward first order linear PDE’s).
Characteristics provide a useful representation formula for classical solutions of the
backward equation (formally adjoint to (8.1.1))

∂tϕ + 〈vt,∇ϕ〉 = ψ in Rd × (0, T ), ϕ(x, T ) = ϕT (x) x ∈ Rd, (8.1.11)

when, e.g., ψ ∈ C1
b (Rd × (0, T )), ϕT ∈ C1

b (Rd) and v satisfies the global bounds
(8.1.9), so that maximal solutions are always defined in [0, T ]. A direct calculation
shows that

ϕ(x, t) := ϕT (XT (x, t))−
∫ T

t

ψ(Xs(x, t), s) ds (8.1.12)

solve (8.1.11). For Xs(Xt(x, 0), t) = Xs(x, 0) yields

ϕ(Xt(x, 0), t) = ϕT (XT (x, 0))−
∫ T

t

ψ(Xs(x, 0), s) ds,
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and differentiating both sides with respect to t we obtain[
∂ϕ

∂t
+ 〈vt,∇ϕ〉

]
(Xt(x, 0), t) = ψ(Xt(x, 0), t).

Since x (and then Xt(x, 0)) is arbitrary we conclude that (8.1.18) is fulfilled.

Now we use characteristics to prove the existence, the uniqueness, and a
representation formula of the solution of the continuity equation, under suitable
assumption on v.

Lemma 8.1.6. Let vt be a Borel velocity field satisfying (8.1.7), (8.1.2), let µ0 ∈
P(Rd), and let Xt be the maximal solution of the ODE (8.1.8) (corresponding to
s = 0). Suppose that for some t̄ ∈ (0, T ]

τ (x) > t̄ for µ0-a.e. x ∈ Rd. (8.1.13)

Then t �→ µt := (Xt)#µ0 is a continuous solution of (8.1.1) in [0, t̄].

Proof. The continuity of µt follows easily since lims→t Xs(x) = Xt(x) for µ0-a.e.
x ∈ Rd: thus for every continuous and bounded function ζ : Rd → R the dominated
convergence theorem yields

lim
s→t

∫
Rd

ζ dµs = lim
s→t

∫
Rd

ζ(Xs(x)) dµ0(x) =
∫

Rd

ζ(Xt(x)) dµ0(x) =
∫

Rd

ζ dµt.

For any ϕ ∈ C∞
c (Rd × (0, t̄)) and for µ0-a.e. x ∈ Rd the maps t �→ φt(x) :=

ϕ(Xt(x), t) are absolutely continuous in (0, t̄), with

φ̇t(x) = ∂tϕ(Xt(x), t) + 〈∇ϕ(Xt(x), t), vt(Xt(x))〉 = Λ(·, t) ◦Xt,

where Λ(x, t) := ∂tϕ(x, t) + 〈∇ϕ(x, t), vt(x)〉. We thus have∫ T

0

∫
Rd

|φ̇t(x)| dµ0(x) dt =
∫ T

0

∫
Rd

|Λ(Xt(x), t)| dµ0(x) dt

=
∫ T

0

∫
Rd

|Λ(x, t)| dµt(x) dt

≤ Lip(ϕ)
(
T +

∫ T

0

∫
Rd

|vt(x)| dµt(x) dt
)

< +∞

and therefore

0 =
∫

Rd

ϕ(x, t̄) dµt̄(x)−
∫

Rd

ϕ(x, 0) dµ0(x) =
∫

Rd

(
ϕ(Xt̄(x), t̄)− ϕ(x, 0)

)
dµ0(x)

=
∫

Rd

(∫ t̄

0

φ̇t(x) dt
)

dµ0(x) =
∫ t̄

0

∫
Rd

(
∂tϕ + 〈∇ϕ, vt〉

)
dµt dt,

by a simple application of Fubini’s theorem. �
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We want to prove that, under reasonable assumptions, in fact any solution
of (8.1.1) can be represented as in Lemma 8.1.6. The first step is a uniqueness
theorem for the continuity equation under minimal regularity assumptions on the
velocity field. Notice that the only global information on vt is (8.1.14). The proof,
based on a classical duality argument (see for instance [57, 9]), could be much
simplified by the assumption that the velocity field is globally bounded, but we
prefer to keep here a version of the lemma stronger than the one actually needed
in the proof of Theorem 8.3.1.

Proposition 8.1.7 (Uniqueness and comparison for the continuity equation). Let
σt be a narrowly continuous family of signed measures solving ∂tσt +∇· (vtσt) = 0
in Rd × (0, T ), with σ0 ≤ 0,∫ T

0

∫
Rd

|vt| d|σt|dt < +∞, (8.1.14)

and ∫ T

0

(
|σt|(B) + sup

B
|vt|+ Lip(vt, B)

)
dt < +∞

for any bounded closed set B ⊂ Rd. Then σt ≤ 0 for any t ∈ [0, T ].

Proof. Fix ψ ∈ C∞
c (Rd × (0, T )) with 0 ≤ ψ ≤ 1, R > 0, and a smooth cut-off

function

χR(·) = χ(·/R) ∈ C∞
c (Rd) such that 0 ≤ χR ≤ 1, |∇χR| ≤ 2/R,

χR ≡ 1 on BR(0), and χR ≡ 0 on Rd \B2R(0).
(8.1.15)

We define wt so that wt = vt on B2R(0)× (0, T ), wt = 0 if t /∈ [0, T ] and

sup
Rd

|wt|+ Lip(wt, R
d) ≤ sup

B2R(0)

|vt|+ Lip(vt, B2R(0)) ∀ t ∈ [0, T ]. (8.1.16)

Let wε
t be obtained from wt by a double mollification with respect to the space

and time variables: notice that wε
t satisfy

sup
ε∈(0,1)

∫ T

0

(
sup
Rd

|wε
t |+ Lip(wε

t , R
d)
)

dt < +∞. (8.1.17)

We now build, by the method of characteristics described in Remark 8.1.5, a
smooth solution ϕε : Rd × [0, T ] → R of the PDE

∂ϕε

∂t
+ 〈wε

t ,∇ϕε〉 = ψ in Rd × (0, T ), ϕε(x, T ) = 0 x ∈ Rd. (8.1.18)

Combining the representation formula (8.1.12), the uniform bound (8.1.17), and
the estimate (8.1.10), it is easy to check that 0 ≥ ϕε ≥ −T and |∇ϕε| is uniformly
bounded with respect to ε, t and x.
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We insert now the test function ϕεχR in the continuity equation and take
into account that σ0 ≤ 0 and ϕε ≤ 0 to obtain

0 ≥ −
∫

Rd

ϕεχR dσ0 =
∫ T

0

∫
Rd

χR
∂ϕε

∂t
+ 〈vt, χR∇ϕε + ϕε∇χR〉 dσtdt

=
∫ T

0

∫
Rd

χR(ψ + 〈vt − wε
t ,∇ϕε〉) dσtdt +

∫ T

0

∫
Rd

ϕε〈∇χR, vt〉 dσtdt

≥
∫ T

0

∫
Rd

χR(ψ + 〈vt − wε
t ,∇ϕε〉) dσtdt−

∫ T

0

∫
Rd

|∇χR||vt| d|σt| dt.

Letting ε ↓ 0 and using the uniform bound on |∇ϕε| and the fact that wt = vt on
supp χR × [0, T ], we get∫ T

0

∫
Rd

χRψ dσt dt ≤
∫ T

0

∫
Rd

|∇χR||vt| d|σt| dt ≤ 2
R

∫ T

0

∫
R≤|x|≤2R

|vt| d|σt| dt.

Eventually letting R →∞ we obtain that
∫ T

0

∫
Rd ψ dσtdt ≤ 0. Since ψ is arbitrary

the proof is achieved. �

Proposition 8.1.8 (Representation formula for the continuity equation). Let µt,
t ∈ [0, T ], be a narrowly continuous family of Borel probability measures solving
the continuity equation (8.1.1) w.r.t. a Borel vector field vt satisfying (8.1.7) and
(8.1.2). Then for µ0-a.e. x ∈ Rd the characteristic system (8.1.8) admits a globally
defined solution Xt(x) in [0, T ] and

µt = (Xt)#µ0 ∀ t ∈ [0, T ]. (8.1.19)

Moreover, if ∫ T

0

∫
Rd

|vt(x)|p dµt(x) dt < +∞ for some p > 1, (8.1.20)

then the velocity field vt is the time derivative of Xt in the Lp-sense

lim
h↓0

∫ T−h

0

∫
Rd

∣∣∣∣Xt+h(x)−Xt(x)
h

− vt(Xt(x))
∣∣∣∣p dµ0(x) dt = 0, (8.1.21)

lim
h→0

Xt+h(x, t)− x

h
= vt(x) in Lp(µt; Rd) for L 1-a.e. t ∈ (0, T ). (8.1.22)

Proof. Let Es = {τ > s} and let us use the fact that, proved in Lemma 8.1.6,
that t �→ Xt#(χEs

µ0) is the solution of (8.1.1) in [0, s]. By Proposition 8.1.7 we
get also

Xt#(χEs
µ0) ≤ µt whenever 0 ≤ t ≤ s.
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Using the previous inequality with s = t we can estimate:∫
Rd

sup
(0,τ(x))

|Xt(x)− x| dµ0(x) ≤
∫

Rd

∫ τ(x)

0

|Ẋt(x)| dµ0(x)

=
∫

Rd

∫ τ(x)

0

|vt(Xt(x))| dµ0(x)

=
∫ T

0

∫
Et

|vt(Xt(x))| dµ0(x) dt

≤
∫ T

0

∫
Rd

|vt| dµt dt.

It follows that Xt(x) is bounded on (0, τ(x)) for µ0-a.e. x ∈ Rd and therefore Xt

is globally defined in [0, T ] for µ0-a.e. in Rd. Applying Lemma 8.1.6 and Proposi-
tion 8.1.7 we obtain (8.1.19).

Now we observe that the differential quotient Dh(x, t) := h−1(Xt+h(x) −
Xt(x)) can be bounded in Lp(µ0 ×L 1) by∫ T−h

0

∫
Rd

∣∣∣∣Xt+h(x)−Xt(x)
h

∣∣∣∣p dµ0(x) dt

=
∫ T−h

0

∫
Rd

∣∣∣∣∣ 1h
∫ h

0

vt+s(Xt+s(x)) ds

∣∣∣∣∣
p

dµ0(x) dt

≤
∫ T−h

0

∫
Rd

1
h

∫ h

0

|vt+s(Xt+s(x))|p ds dµ0(x) dt

≤
∫ T

0

∫
Rd

|vt(Xt(x))|p dµ0(x) dt < +∞.

Since we already know that Dh is pointwise converging to vt ◦Xt µ0 ×L 1-a.e. in
Rd × (0, T ), we obtain the strong convergence in Lp(µ0 ×L 1), i.e. (8.1.21).

Finally, we can consider t �→ Xt(·) and t �→ vt(Xt(·) as maps from (0, T ) to
Lp(µ0; Rd); (8.1.21) is then equivalent to

lim
h↓0

∫ T−h

0

∥∥∥∥Xt+h −Xt

h
− vt(Xt)

∥∥∥∥p

Lp(µ0;Rd)

dt = 0,

and it shows that t �→ Xt(·) belongs to ACp(0, T ; Lp(µ0; Rd)). General results for
absolutely continuous maps in reflexive Banach spaces (see 1.1.3) yield that Xt is
differentiable L 1-a.e. in (0, T ), so that

lim
h→0

∫
Rd

∣∣∣∣Xt+h(x)−Xt(x)
h

− vt(Xt(x))
∣∣∣∣p dµ0(x) = 0 for L 1-a.e. t ∈ (0, T ).

Since Xt+h(x) = Xh(Xt(x), t), we obtain (8.1.22). �
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Now we state an approximation result for general solution of (8.1.1) with
more regular ones, satisfying the conditions of the previous Proposition 8.1.8.

Lemma 8.1.9 (Approximation by regular curves). Let p ≥ 1 and let µt be a time-
continuous solution of (8.1.1) w.r.t. a velocity field satisfying the p-integrability
condition ∫ T

0

∫
Rd

|vt(x)|p dµt(x) dt < +∞. (8.1.23)

Let (ρε) ⊂ C∞(Rd) be a family of strictly positive mollifiers in the x variable,
(e.g. ρε(x) = (2πε)−d/2 exp(−|x|2/2ε)), and set

µε
t := µt ∗ ρε, Eε

t := (vtµt) ∗ ρε, vε
t :=

Eε
t

µε
t

. (8.1.24)

Then µε
t is a continuous solution of (8.1.1) w.r.t. vε

t , which satisfy the local regu-
larity assumptions (8.1.7) and the uniform integrability bounds∫

Rd

|vε
t (x)|p dµε

t (x) ≤
∫

Rd

|vt(x)|p dµt(x) ∀ t ∈ (0, T ). (8.1.25)

Moreover, Eε
t → vtµt narrowly and

lim
ε↓0

‖vε
t ‖Lp(µε

t ;Rd) = ‖vt‖Lp(µt;Rd) ∀t ∈ (0, T ). (8.1.26)

Proof. With a slight abuse of notation, we are denoting the measure µε
t and its

density w.r.t. L d by the same symbol. Notice first that |Eε|(t, ·) and its spatial
gradient are uniformly bounded in space by the product of ‖vt‖L1(µt) with a con-
stant depending on ε, and the first quantity is integrable in time. Analogously,
|µε

t |(t, ·) and its spatial gradient are uniformly bounded in space by a constant de-
pending on ε. Therefore, as vε

t = Eε
t /µε

t , the local regularity assumptions (8.1.7)
is fulfilled if

inf
|x|≤R, t∈[0,T ]

µε
t (x) > 0 for any ε > 0, R > 0.

This property is immediate, since µε
t are continuous w.r.t. t and equi-continuous

w.r.t. x, and therefore continuous in both variables.
Lemma 8.1.10 shows that (8.1.25) holds. Notice also that µε

t solve the conti-
nuity equation

∂tµ
ε
t +∇ · (vε

t µ
ε
t ) = 0 in Rd × (0, T ), (8.1.27)

because, by construction, ∇ · (vε
t µε

t ) = ∇ · ((vtµt) ∗ ρε) = (∇ · (vtµt)) ∗ ρε. Finally,
general lower semicontinuity results on integral functionals defined on measures of
the form

(E, µ) �→
∫

Rd

∣∣∣∣Eµ
∣∣∣∣p dµ

(see for instance Theorem 2.34 and Example 2.36 in [11]) provide (8.1.26). �
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Lemma 8.1.10. Let p ≥ 1, µ ∈ P(Rd) and let E be a Rm-valued measure in Rd

with finite total variation and absolutely continuous with respect to µ. Then∫
Rd

∣∣∣∣E ∗ ρ

µ ∗ ρ

∣∣∣∣p µ ∗ ρ dx ≤
∫

Rd

∣∣∣∣Eµ
∣∣∣∣pdµ

for any convolution kernel ρ.

Proof. We use Jensen inequality in the following form: if Φ : Rm+1 → [0, +∞] is
convex, l.s.c. and positively 1-homogeneous, then

Φ
(∫

Rd

ψ(x) dθ(x)
)
≤

∫
Rd

Φ(ψ(x)) dθ(x)

for any Borel map ψ : Rd → Rm+1 and any positive and finite measure θ in Rd

(by rescaling θ to be a probability measure and looking at the image measure ψ#θ
the formula reduces to the standard Jensen inequality). Fix x ∈ Rd and apply the
inequality above with ψ := (E/µ, 1), θ := ρ(x− ·)µ and

Φ(z, t) :=

⎧⎪⎪⎨⎪⎪⎩
|z|p
tp−1

if t > 0

0 if (z, t) = (0, 0)
+∞ if either t < 0 or t = 0, z �= 0,

to obtain∣∣∣∣E ∗ ρ(x)
µ ∗ ρ(x)

∣∣∣∣p µ ∗ ρ(x) = Φ
(∫

Rd

E

µ
(y)ρ(x− y) dµ(y),

∫
ρ(x− y)dµ(y)

)
≤

∫
Rd

Φ(
E

µ
(y), 1)ρ(x− y) dµ(y)

=
∫

Rd

∣∣∣∣Eµ
∣∣∣∣p(y)ρ(x− y) dµ(y).

An integration with respect to x leads to the desired inequality. �

8.2 A probabilistic representation of solutions of the

continuity equation

In this section we extend Proposition 8.1.8 to the case when the vector field fails to
satisfy (8.1.7) and is in particular not Lipschitz w.r.t. x. Of course in this situation
we have to take into account that characteristics are not unique, and we do that
by considering suitable probability measures in the space ΓT of continuous maps
from [0, T ] into Rd, endowed with the sup norm. The results presented here are not
used in the rest of the book, but we believe that they can have an independent



8.2. A probabilistic representation of solutions of the continuity equation 179

interest. Indeed, this kind of notion plays an important role in the uniqueness
and stability of Lagrangian flows in [10] and provides an alternative way to the
approach of [57].

Our basic representation formula for solutions µη
t of the continuity equation

(8.1.1) is given by∫
Rd

ϕ dµη
t :=

∫
Rd×ΓT

ϕ(γ(t)) dη(x, γ) ∀ϕ ∈ C0
b (Rd), t ∈ [0, T ] (8.2.1)

where η is a probability measure in Rd × ΓT . In the case when η is the push
forward under x �→ (x, X·(x)) of µ0 (here we are considering X as a function
mapping x ∈ Rd into the solution curve t �→ Xt(x) in ΓT ) we see that the measures
µη

t implicitly defined by (8.2.1) simply reduce to the standard ones considered in
Proposition 8.1.8, i.e. µη

t = Xt(·)#µ0.
By introducing the evaluation maps

et : (x, γ) ∈ Rd × ΓT �→ γ(t) ∈ Rd, for t ∈ [0, T ], (8.2.2)

(8.2.1) can also be written as
µη

t = (et)#η. (8.2.3)

Theorem 8.2.1 (Probabilistic representation). Let µt : [0, T ] → P(Rd) be a nar-
rowly continuous solution of the continuity equation (8.1.1) for a suitable Borel
vector field v(t, x) = vt(x) satisfying (8.1.20) for some p > 1. Then there exists a
probability measure η in Rd × ΓT such that

(i) η is concentrated on the set of pairs (x, γ) such that γ ∈ ACp(0, T ; Rd) is a
solution of the ODE γ̇(t) = vt(γ(t)) for L 1-a.e. t ∈ (0, T ), with γ(0) = x;

(ii) µt = µη
t for any t ∈ [0, T ], with µη

t defined as in (8.2.1).

Conversely, any η satisfying (i) and∫ T

0

∫
Rd×ΓT

|vt(γ(t))| dη(x, γ) dt < +∞, (8.2.4)

induces via (8.2.1) a solution of the continuity equation, with µ0 = γ(0)#η.

Proof. We first prove the converse implication, since its proof is much simpler.
Indeed, notice that due to assumption (i) the set F of all (t, x, γ) such that ei-
ther γ̇(t) does not exist or it is different from vt(γ(t)) is L 1 × η-negligible. As a
consequence, we have

γ̇(t) = vt(γ(t)) η-a.e., for L 1-a.e. t ∈ (0, T ).

It is immediate to check using (8.2.1) that t �→ µη
t is narrowly continuous. Now

we check that t �→ ∫
ζ dµη

t is absolutely continuous for ζ ∈ C1(Rd) bounded and
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with a bounded gradient. Indeed, for s < t in I we have∣∣∣∣∫
Rd

ζ dµη
s −

∫
Rd

ζ dµη
t

∣∣∣∣ ≤
∫ t

s

∫
Rd×ΓT

|〈∇ζ(γ(τ )), γ̇(τ )〉| dη dτ

≤ ‖∇ζ‖∞
∫ t

s

∫
Rd×ΓT

|vτ (γ(τ ))| dη dτ.

By (8.2.4) this inequality immediately gives the absolute continuity of the map.
We have also

d

dt

∫
Rd

ζ dµη
t =

d

dt

∫
Rd×ΓT

ζ(γ(t)) dη

=
∫

Rd×ΓT

〈∇ζ(γ), γ̇(t))〉 dη =
∫

Rd

〈∇ζ, vt〉 dµη
t

for L 1-a.e. t ∈ (0, T ). Since this pointwise derivative is also a distributional one,
this proves that (8.1.4) holds for test function ϕ of the form ζ(x)ψ(t) and therefore
for all test functions.

Conversely, let µt, vt be given as in the statement of the theorem and let
us apply the regularization Lemma 8.1.9, finding approximations µε

t , vε
t satisfying

the continuity equation, the uniform integrability condition (8.1.2) and the local
regularity assumptions (8.1.7). Therefore, we can apply Proposition 8.1.8, obtain-
ing the representation formula µε

t = (Xε
t )#µε

0, where Xε
t is the maximal solution

of the ODE Ẋε
t = vε

t (Xε
t ) with the initial condition Xε

0 = x (see Lemma 8.1.4).
Thinking Xε as a map from Rd to ΓT , we thus define

ηε := (i×Xε
· )#µε

0 ∈ P(Rd × ΓT ).

Now we claim that the family ηε is tight as ε ↓ 0 and that any limit point η fulfills
(i) and (ii). The tightness of the family can be obtained from Lemma 5.2.2, by
choosing the maps r1, r2 defined in Rd × ΓT

r1 : (x, γ) �→ x ∈ Rd, r2 : (x, γ) �→ γ − x ∈ ΓT , (8.2.5)

and noticing that r : r1 × r2 : Rd × ΓT → Rd × ΓT is proper, the family r1
#ηε is

given by the first marginals µε
0 which are tight (indeed, they narrowly converge to

µ0), while βε := r2
#ηε satisfy∫

ΓT

∫ T

0

|γ̇|p dt dβε =
∫

Rd

∫ T

0

|Ẋε
t (x)|p dt dµε

0(x)

=
∫

Rd

∫ T

0

|vε
t (X

ε
t )|p dt dµε

0(x) =
∫ T

0

∫
Rd

|vε
t (x)|p dµε

t (x) dt

≤
∫ T

0

∫
Rd

|vt(x)|p dµt(x) dt.



8.2. A probabilistic representation of solutions of the continuity equation 181

Since for p > 1 the functional γ �→ ∫ T

0
|γ̇|p dt (set to +∞ if γ /∈ ACp((0, T ); Rd) or

γ(0) �= 0) has compact sublevel sets in ΓT , also βε is tight, due to Remark 5.1.5.
Let now η be a narrow limit point of ηε, along some infinitesimal sequence

εi. Since∫
Rd

ϕ dµηεi

t =
∫

Rd×ΓT

ϕ(γ(t)) dηεi =
∫

Rd

ϕ(Xεi
t ) dµεi

0 =
∫

Rd

ϕ dµεi
t

for any ϕ ∈ C0
b (Rd), we can pass to the limit as i →∞ to obtain that µη

t = µt, so
that condition (ii) holds.

Finally we check condition (i). Let w(t, x) = wt(x) be a bounded uniformly
continuous function, and let us prove the estimate∫

Rd×ΓT

∣∣∣∣γ(t)− x−
∫ t

0

wτ (γ(τ )) dτ

∣∣∣∣p dη(x, γ) ≤ (2T )p−1

∫ T

0

∫
Rd

|vτ−wτ |p dµτ dτ.

(8.2.6)
Indeed, we have∫

Rd×ΓT

∣∣∣∣γ(t)− x−
∫ t

0

wτ (γ(τ )) dτ

∣∣∣∣p dηε(x, γ)

=
∫

Rd

∣∣∣∣Xε
t (x)− x−

∫ t

0

wτ (Xε
τ (x)) dτ

∣∣∣∣p dµ0(x)

=
∫

Rd

∣∣∣∣∫ t

0

(vε
τ − wτ )(Xε

τ (x)) dτ

∣∣∣∣p dµ0(x) ≤ tp−1

∫ t

0

∫
Rd

|vε
τ − wτ |p dµε

t dτ

≤ (2t)p−1

∫ t

0

∫
Rd

|vε
τ − wε

τ |p dµε
t dτ + (2t)p−1

∫ t

0

∫
Rd

|wε
τ − wτ |p dµε

t dτ

≤ (2T )p−1

∫ T

0

∫
Rd

|vτ − wτ |p dµτ dτ + (2T )p−1

∫ T

0

sup
x∈Rd

|wε
τ (x)− wτ (x)|p dτ,

where in the last two inequalities we have added and subtracted wε
τ := wτ ∗ ρε

and then used Lemma 8.1.10. Setting ε = εi and passing to the limit as i →
∞ we recover (8.2.6), since the function under the integral is a continuous and
nonnegative test function in Rd × ΓT .

Now let µ :=
∫ T

0
µt dL 1(t) the Borel measure on Rd × (0, T ) whose disin-

tegration with respect to L 1 is {µt}t∈(0,T ) and let wn ∈ C0
c (Rd × (0, T ); Rd) be

continuous functions with compact support converging to v in Lp(µ; Rd). Using
the fact that µt = µη

t we have∫
Rd×ΓT

∫ T

0

|wn
τ (γ(τ ))− vτ (γ(τ ))|p dτ dη =

∫ T

0

∫
Rd

|wn
τ − vτ |p dµτ dτ → 0,

as n → ∞ so that, using the triangular inequality in Lp(η), we can pass to the
limit as n →∞ in (8.2.6) with w = wn to obtain∫

Rd×ΓT

∣∣∣∣γ(t)− x−
∫ t

0

vτ (γ(τ )) dτ

∣∣∣∣p dη(x, γ) = 0 ∀ t ∈ [0, T ], (8.2.7)
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and therefore

γ(t)− x−
∫ t

0

vτ (γ(τ )) dτ = 0 for η-a.e. (x, γ)

for any t ∈ [0, T ]. Choosing all t’s in (0, T )∩Q we obtain an exceptional η-negligible
set that does not depend on t and use the continuity of γ to show that the identity
is fulfilled for any t ∈ [0, T ]. �

Notice that due to condition (i) the measure η in the previous theorem can
also be identified with a measure σ in ΓT whose projection on Rd via the map
e0 : γ �→ γ(0) is µ0 and whose corresponding disintegration σ =

∫
Rd σx dµ0(x) is

made by probability measures σx concentrated on solutions of the ODE starting
from x at t = 0. In this case (8.2.1) takes the simpler equivalent form∫

Rd

ϕ dµσ
t :=

∫
ΓT

ϕ(γ(t)) dσ(γ) ∀ϕ ∈ C0
b (Rd), t ∈ [0, T ]. (8.2.8)

Finally we notice that the results of this section could be easily be extended
to the case when Rd is replaced by a separable Hilbert space, using a finite dimen-
sional projection argument (see in particular the last part of the proof of Theorem
8.3.1).

8.3 Absolutely continuous curves in Pp(X)

In this section we show that the continuity equation characterizes the class of
absolutely continuous curves in Pp(X), with p > 1 and X separable Hilbert space
(see [9] for a discussion of the degenerate case p = 1 when X = Rd).

Let us first recall that the map jp : Lp(µ; X) → Lq(µ; X) defined by (here
q = p′ is the conjugate exponent of p)

v �→ jp(v) :=

{
|v|p−2v if v �= 0,

0 if v = 0,
(8.3.1)

provides the differential of the convex functional

v ∈ Lp(µ; X) �→ 1
p

∫
X

|v(x)|p dµ(x), (8.3.2)

for every measure µ ∈ P(X); in particular it satisfies

‖jp(v)‖q
Lq(µ,X) = ‖v‖p

Lp(µ,X) =
∫

X

〈jp(v), v〉 dµ(x), (8.3.3)

w = jp(v) ⇐⇒ v = jq(w), (8.3.4)
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1
p
‖v‖p

Lp(µ;X) −
1
p
‖w‖p

Lp(µ;X) ≥ 〈jp(w), v − w〉 ∀ v, w ∈ Lp(µ; X). (8.3.5)

Recall that the space of smooth cylindrical functions Cyl(X) has been introduced
in Definition 5.1.11; the space Cyl(X × I), I = (a, b) being an open interval, is
defined analogously considering functions ψ ∈ C∞

c (Rd×I) and functions ϕ(x, t) =
ψ(π(x), t).

Theorem 8.3.1 (Absolutely continuous curves and the continuity equation). Let I
be an open interval in R, let µt : I → Pp(X) be an absolutely continuous curve
and let |µ′| ∈ L1(I) be its metric derivative, given by Theorem 1.1.2. Then there
exists a Borel vector field v : (x, t) �→ vt(x) such that

vt ∈ Lp(µt; X), ‖vt‖Lp(µt;X) ≤ |µ′|(t) for L 1-a.e. t ∈ I, (8.3.6)

and the continuity equation

∂t µt +∇ · (vtµt) = 0 in X × I (8.3.7)

holds in the sense of distributions, i.e.∫
I

∫
X

(
∂tϕ(x, t) + 〈vt(x),∇xϕ(x, t)〉

)
dµt(x) dt = 0 ∀ϕ ∈ Cyl(X × I). (8.3.8)

Moreover, for L 1-a.e. t ∈ I jp(vt) belongs to the closure in Lq(µt, X) of the
subspace generated by the gradients ∇ϕ with ϕ ∈ Cyl(X).
Conversely, if a narrowly continuous curve µt : I → Pp(X) satisfies the continuity
equation for some Borel velocity field vt with ‖vt‖Lp(µt;X) ∈ L1(I) then µt : I →
Pp(X) is absolutely continuous and |µ′|(t) ≤ ‖vt‖Lp(µt;X) for L 1-a.e. t ∈ I.

Proof. Taking into account Lemma 1.1.4 and Lemma 8.1.3, we will assume with
no loss of generality that |µ′| ∈ L∞(I) in the proof of the first statement. To fix
the ideas, we also assume that I = (0, 1).

First of all we show that for every ϕ ∈ Cyl(X) the function t �→ µt(ϕ) is
absolutely continuous, and its derivative can be estimated with the metric deriva-
tive of µt. Indeed, for s, t ∈ I we have, for µst ∈ Γo(µs, µt) and using the Hölder
inequality,

|µt(ϕ)− µs(ϕ)| =
∣∣∣∣∫

X×X

(
ϕ(y)− ϕ(x)

)
dµst

∣∣∣∣ ≤ Lip(ϕ)Wp(µs, µt),

whence the absolute continuity follows. In order to estimate more precisely the
derivative of µt(ϕ) we introduce the upper semicontinuous and bounded map

H(x, y) :=

⎧⎪⎪⎨⎪⎪⎩
|∇ϕ(x)| if x = y,

|ϕ(x)− ϕ(y)|
|x− y| if x �= y,
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and notice that, setting µh = µ(s+h)s, we have

|µs+h(ϕ)− µs(ϕ)|
|h| ≤ 1

|h|
∫

X×X

|x− y|H(x, y) dµh

≤ Wp(µs+h, µs)
|h|

(∫
X×X

Hq(x, y) dµh

)1/q

,

where q is the conjugate exponent of p. If t is a point where s �→ µs is metri-
cally differentiable, using the fact that µh → (x, x)#µt narrowly (because their
marginals are narrowly converging, any limit point belongs to Γo(µt, µt) and is
concentrated on the diagonal of X ×X) we obtain

lim sup
h→0

|µt+h(ϕ)− µt(ϕ)|
|h| ≤ |µ′|(t)

(∫
X

|H|q(x, x) dµt

)1/q

= |µ′|(t)‖∇ϕ‖Lq(µt;X).

(8.3.9)
Set Q = X × I and let µ =

∫
µt dt ∈ P(Q) be the measure whose disintegration

is {µt}t∈I . For any ϕ ∈ Cyl(Q) we have∫
Q

∂sϕ(x, s) dµ(x, s) = lim
h↓0

∫
Q

ϕ(x, s)− ϕ(x, s− h)
h

dµ(x, s)

= lim
h↓0

∫
I

1
h

(∫
X

ϕ(x, s) dµs(x)−
∫

X

ϕ(x, s) dµs+h(x)
)

ds.

Taking into account (8.3.9), Fatou’s Lemma yields∣∣∣∣∫
Q

∂sϕ(x, s) dµ(x, s)
∣∣∣∣ ≤ ∫

J

|µ′|(s)
(∫

X

|∇ϕ(x, s)|q dµs(x)
)1/q

ds

≤
(∫

J

|µ′|p(s) ds
)1/p(∫

Q

|∇ϕ(x, s)|q dµ(x, s)
)1/q

,

(8.3.10)
where J ⊂ I is any interval such that supp ϕ ⊂ J ×X. If V denotes the closure
in Lq(µ; X) of the subspace V :=

{
∇ϕ, ϕ ∈ Cyl(Q)

}
, the previous formula says

that the linear functional L : V → R defined by

L(∇ϕ) := −
∫

Q

∂sϕ(x, s) dµ(x, s)

can be uniquely extended to a bounded functional on V . Therefore the minimum
problem

min
{

1
q

∫
Q

|w(x, s)|q dµ(x, s)− L(w) : w ∈ V

}
(8.3.11)

admits a unique solution w ∈ V such that v := jq(w) satisfies∫
Q

〈v(x, s),∇ϕ(x, s)〉dµ(x, s) = 〈L,∇ϕ〉 ∀ϕ ∈ Cyl(Q). (8.3.12)
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Setting vt(x) = v(x, t) and using the definition of L we obtain (8.3.8). Moreover,
choosing a sequence (∇ϕn) ⊂ V converging to w in Lq(µ; X), it is easy to show
that for L 1-a.e. t ∈ I there exists a subsequence n(i) (possibly depending on t)
such that ∇ϕn(i)(·, t) ∈ Cyl(X) converge in Lq(µt; X) to w(·, t) = jp(v(·, t)).

Finally, choosing an interval J ⊂ I and η ∈ C∞
c (J) with 0 ≤ η ≤ 1, (8.3.12)

and (8.3.10) yield∫
Q

η(s)|v(x, s)|p dµ(x, s) =
∫

Q

η〈v, w〉 dµ = lim
n→∞

∫
Q

η〈v,∇ϕn〉 dµ

= lim
n→∞ 〈L,∇(ηϕn)〉 ≤

(∫
J

|µ′|p(s) ds
)1/p

lim
n→∞

(∫
X×J

|∇ϕn|q dµ
)1/q

=
(∫

J

|µ′|p(s) ds
)1/p(∫

X×J

|w|q dµ
)1/q

=
(∫

J

|µ′|p(s) ds
)1/p(∫

X×J

|v|p dµ
)1/q

.

Taking a sequence of smooth approximations of the characteristic function of J
we obtain ∫

J

∫
X

|vs(x)|p dµs(x) ds ≤
∫

J

|µ′|p(s) ds, (8.3.13)

and therefore
‖vt‖Lp(µt,X) ≤ |µ′|(t) for L 1-a.e. t ∈ I.

Now we show the converse implication, assuming first that X = Rd. We apply the
regularization Lemma 8.1.9, finding approximations µε

t , vε
t satisfying the continu-

ity equation, the uniform integrability condition (8.1.2) and the local regularity
assumptions (8.1.7). Therefore, we can apply Proposition 8.1.8, obtaining the rep-
resentation formula µε

t = (T ε
t )#µε

0, where T ε
t is the maximal solution of the ODE

Ṫ ε
t = vε

t (T ε
t ) with the initial condition T ε

0 = x (see Lemma 8.1.4).
Now, taking into account Lemma 8.1.10, we estimate∫

Rd

|T ε
t2(x)− T ε

t1(x)|p dµε
0 ≤ (t2 − t1)p−1

∫
Rd

∫ t2

t1

|Ṫ ε
t (x)|p dt dµε

0(8.3.14)

= (t2 − t1)p−1

∫ t2

t1

∫
Rd

|vε
t (x)|p dµε

t dt

≤ (t2 − t1)p−1

∫ t2

t1

∫
Rd

|vt|p dµtdt,

therefore the transport plan γε := (T ε
t1 × T ε

t2)#µε
0 satisfies

W p
p (µε

t1 , µ
ε
t2) ≤

∫
R2d

|x− y|p dγε ≤ (t2 − t1)p−1

∫ t2

t1

∫
Rd

|vt|p dµt dt.

Since for every t ∈ I µε
t converges narrowly to µt as ε → 0, Lemma 7.1.3 shows

that for any limit point γ of γε we have

W p
p (µt1 , µt2) ≤

∫
R2d

|x− y|p dγ ≤ (t2 − t1)p−1

∫ t2

t1

∫
Rd

|vt|p dµtdt.
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Since t1 and t2 are arbitrary this implies that µt is absolutely continuous and that
its metric derivative is less than ‖vt‖Lp(µt;X) for L 1-a.e. t ∈ I.

We conclude the proof considering the general infinite-dimensional case and
following a typical reduction argument, by projecting measures on finite dimen-
sional subspaces. Let πd : X → Rd be the canonical maps, given by (5.1.28) for an
orthonormal basis (en) of X, let µd

t := πd
#µt ∈ P(Rd), and let {µty}y∈Rd be the

disintegration of µt with respect to µd
t as in Theorem 5.3.1. Notice that considering

test functions ϕ = ψ ◦ πd in (8.1.3), with ∇ϕ = (πd)∗ ◦ ∇ψ ◦ πd, gives

d

dt

∫
X

ϕ dµt(x) =
∫

X

〈πd(vt),∇ψ ◦ πd〉 dµt(x)

=
∫

Rd

(∫
(πd)−1(y)

〈πd(vt),∇ψ ◦ πd〉 dµty(x)
)

dµd
t (y)

=
∫

Rd

〈
∫

(πd)−1(y)

πd
(
vt(x)

)
dµty(x),∇ψ(y)〉 dµd

t (y) =
∫

Rd

〈vd
t (y),∇ψ(y)〉 dµd

t (y),

with vd
t (y) :=

∫
(πd)−1(y)

πd
(
vd

t (x)
)
dµty(x), and therefore

∂t µd
t +∇ · (vd

t µd
t ) = 0 in Rd × I.

Notice also that, by similar calculations,∣∣∣∣∫
Rd

〈vd
t (y), χ(y)〉 dµd

t (y)
∣∣∣∣ =

∣∣∣∣∫
X

〈πd(vt(x)), χ(πd(x))〉 dµt

∣∣∣∣
≤ ‖vt‖Lp(µt;X)‖χ‖Lq(µd

t ;Rd)

for any χ ∈ L∞(µd
t ; Rd), hence ‖vd

t ‖Lp(µd
t ;Rd) ≤ ‖vt‖Lp(µt;X). Therefore t �→ µd

t is
an absolutely continuous curve in Pp(Rd) and

Wp(µd
t1 , µ

d
t2) ≤

∫ t2

t1

‖vd
t ‖Lp(µd

t ;Rd) dt ≤
∫ t2

t1

‖vt‖Lp(µt;X) dt ∀t1, t2 ∈ I, t1 ≤ t2.

Let now
µ̂d

t = (πd)∗#µd
t = π̂d

#µt,

be the image of the measures µd
t under the isometries (πd)∗ : y �→∑d

1 yiei. Passing
to the limit as d →∞ and using the narrow convergence of µ̂d

t to µt and (7.1.11)
we obtain

Wp(µt1 , µt2) ≤
∫ t2

t1

‖vt‖Lp(µt,X) dt ∀t1, t2 ∈ I, t1 ≤ t2.

This proves that µt is absolutely continuous and that its metric derivative can be
estimated with ‖vt‖Lp(µt;X). �



8.3. Absolutely continuous curves in Pp(X) 187

In the case when the measures are constant in time, by combining the previ-
ous finite dimensional projection argument and the smoothing technique of Lemma
8.1.9, one obtains an important approximation property. Let us first collect some
preliminary useful properties of orthogonal projections of measures and vector
fields, some of which we already proved in the last part of the above proof.

Lemma 8.3.2 (Finite dimensional projection of vector fields). Let µ ∈ Pp(X),
v ∈ Lp(µ; X), and let {en}∞n=1 be a complete orthonormal system of X, with the
associated canonical maps πd, (πd)∗, π̂d given by (5.1.28), (5.1.29), and (5.1.30).
We consider the finite dimensional subspaces Xd := span(e1, . . . , ed), the measures
µ̂d := π̂d

#µ, the disintegration {µx}x∈Xd of µ w.r.t. µ̂d given by Theorem 5.3.1,
and the vector field

v̂d(x) :=
∫

(π̂d)−1(x)

π̂d(v(y)) dµx(y) for µ̂d-a.e. x ∈ Xd. (8.3.15)

The following properties hold:

(i) supp µ̂d ⊂ Xd, µ̂d → µ in Pp(X) as d →∞. If µ is regular then also µ̂d|Xd

is regular;

(ii) v̂d ∈ Lp(µ̂d; Xd) with

‖v̂d‖Lp(µ̂d;Xd) ≤ ‖v‖Lp(µ;X); (8.3.16)

(iii) v̂d is characterized by the following identity∫
X

〈ζ(x), v̂d(x)〉 dµ̂d(x) =
∫

X

〈π̂dζ(π̂d(x)), v(x)〉dµ(x), (8.3.17)

for every bounded Borel vector field ζ : X → X;

(iv) If ∇ · (vµ) = 0 (in the duality with smooth cylindrical maps), then also
∇ · (v̂dµ̂d) = 0;

(v) for every continuous function f : X × X → R with p-growth according to
(5.1.21) we have

lim
d→∞

∫
X×X

f(x, v̂d(x)) dµ̂d(x) =
∫

X×X

f(x, v(x)) dµ(x). (8.3.18)

In particular, v̂dµ̂d → vµ in the duality with C0
b (X; X) and

lim
d→∞

‖v̂d‖Lp(µd;X) = ‖v‖Lp(µ;X). (8.3.19)

Proof. (i) is immediate and we have seen in the previous proof that (ii) is a direct
consequence of (iii); in order to check this point we simply use the Definition
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(8.3.15) of v̂d obtaining∫
X

〈ζ(x), v̂d(x)〉 dµ̂d(x) =
∫

X

〈ζ(x),
∫

(π̂d)−1(x)

π̂dv(y) dµx(y)〉 dµ̂d(x)

=
∫

X

∫
(π̂d)−1(x)

〈ζ(π̂d(y)), π̂dv(y)〉 dµx(y) dµ̂d(x)

=
∫

X

〈ζ(π̂d(x)), π̂dv(x)〉 dµ(x) =
∫

X

〈π̂dζ(x), v(x)〉 dµ(x).

(iv) follows by (iii) simply choosing ζ := ∇(χ̂d
Rϕ), for ϕ ∈ Cyl(X) and χ̂d

R :=
χR ◦ πd as in (8.1.15), and observing that

π̂d
(∇(χ̂d

R(π̂d)ϕ(π̂d))
)

= ∇(
(χ̂d

Rϕ) ◦ π̂d
)
, (χ̂d

Rϕ) ◦ π̂d ∈ Cyl(X).

Therefore we get∫
X

〈∇ϕ, v̂d〉 dµ̂d = lim
R↑+∞

∫
X

〈∇(χ̂d
Rϕ), v̂d〉 dµ̂d = lim

R↑+∞

∫
X

〈∇(
(χ̂d

rϕ) ◦ π̂d
)
, v〉 dµ=0.

Finally, (8.3.17) easily yields

lim
d→∞

∫
X

〈ζ, v̂d〉 dµ̂d =
∫

X

〈ζ, v〉 dµ ∀ ζ ∈ C0
b (X; X); (8.3.20)

taking into account of (8.3.16), of Definition 5.4.3, and of Theorem 5.4.4, we
conclude. �
Proposition 8.3.3 (Approximation by regular measures). For any µ ∈ Pp(X),
any v ∈ Lp(µ; X) such that ∇ · (vµ) = 0 (in the duality with smooth cylindrical
functions), and any complete orthonormal system {en}n≥1, there exist measures
µh ∈ Pp(X) and vectors vh ∈ Lp(µh; X), h ∈ N, such that

i. supp µh ⊂ Xh := span(e1, . . . , eh) (in the finite dimensional case we simply
set Xh = X),

ii. µh|Xh
∈ Pr

p(Xh),

iii. vh(x) ∈ Xh(x) ∀x ∈ X, ∇ · (vhµh) = 0,

iv. µh → µ in Pp(X) as h →∞,

v. for every continuous function f : X × X → R with p-growth according to
(5.1.21) we have

lim
h→∞

∫
X×X

f(x, vh(x)) dµh(x) =
∫

X×X

f(x, v(x)) dx. (8.3.21)

In particular, vhµh → vµ in the duality with C0
b (X; X) and

lim
h→∞

‖vh‖Lp(µh;X) = ‖v‖Lp(µ;X).
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Proof. To each finite dimensional measure and vector field provided by Lemma
8.3.2 we apply the smoothing argument of Lemma 8.1.9; the proof is achieved by
a simple diagonal argument. �

8.4 The tangent bundle to Pp(X)

Notice that the continuity equation (8.3.7) involves only the action of vt on ∇ϕ
with ϕ ∈ Cyl(X). Moreover, Theorem 8.3.1 shows that the minimal norm among
all possible velocity fields vt is the metric derivative and that jp(vt) belongs to the
Lq closure of gradients of functions in Cyl(X). These facts suggest a “canonical”
choice of vt and the following definition of tangent bundle to Pp(X).

Definition 8.4.1 (Tangent bundle). Let µ ∈ Pp(X). We define

TanµPp(X) := {jq(∇ϕ) : ϕ ∈ Cyl(X)}Lp(µ;X)
,

where jq : Lq(µ; X) → Lp(µ; X) is the duality map defined in (8.3.1) .

Notice also that TanµPp(X) can be equivalently defined as the image under
jq of the Lq closure of gradients of smooth cylindrical functions in X. The choice of
TanµPp(X) is motivated by the following variational selection principle (nonlinear
in the case p �= 2):

Lemma 8.4.2 (Variational selection of the tangent vectors). A vector v ∈ Lp(µ; X)
belongs to the tangent cone TanµPp(X) iff

‖v + w‖Lp(µ;X) ≥ ‖v‖Lp(µ;X) ∀w ∈ Lp(µ; X) such that ∇ · (wµ) = 0. (8.4.1)

In particular, for every v ∈ Lp(µ; X) there exists a unique Π(v) ∈ TanµPp(X) in
the equivalence class of v modulo divergence-free vector fields, Π(v) is the element
of minimal Lp-norm in this class, and∫

X

〈jp(v), w −Π(w)〉 dµ(x) = 0 ∀ v ∈ TanµPp(X), w ∈ Lp(µ; X). (8.4.2)

Proof. By the convexity of the Lp norm, (8.4.1) holds iff∫
X

〈jp(v), w〉 dµ = 0 for any w ∈ Lp(µ; X) s.t. ∇ · (wµ) = 0 (8.4.3)

(here the divergence is understood making the duality with smooth cylindrical test
functions) and this is true iff jp(v) belongs to the Lq closure of {∇φ : φ ∈ Cyl(X)}.
Therefore v = jq(jp(v)) belongs to TanµPp(X). (8.4.2) follows from (8.4.3) since
w −Π(w) is divergence free. �
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Observe that the projection Π is linear and TanµPp(X) is a vector space
only in the Hilbertian case p = q = 2.

The remarks above lead also to the following characterization of divergence-
free vector fields:

Proposition 8.4.3. Let w ∈ Lp(µ; X). Then ∇ · (wµ) = 0 iff ‖v − w‖Lp(µ;X) ≥
‖v‖Lp(µ;X) for any v ∈ TanµPp(X). Moreover equality holds for some v iff w = 0.

Proof. We already proved that ∇ · (wµ) = 0 implies ‖v −w‖Lp(µ;X) ≥ ‖v‖Lp(µ;X)

for any v ∈ TanµPp(X). Let us prove now the opposite implication. Indeed, being
TanµPp(X) a cone, a differentiation yields∫

X

〈jp(v), w〉 dµ = 0 ∀v ∈ TanµPp(X),

and choosing v = jq(∇ϕ), with ϕ ∈ Cyl(X), we obtain
∫

X
〈∇ϕ, w〉 dµ = 0 for any

ϕ ∈ Cyl(X).
We give now an elementary proof of the fact that if equality holds for some

v, then w = 0. If equality holds for some v the convexity of the Lp norm gives
‖v + tw‖Lp(µ;X) = ‖v‖Lp(µ;X) for any t ∈ [0, 1], and differentiation with respect to
t gives ∫

X

|v + tw|p−2〈v + tw, w〉 dµ = 0 ∀t ∈ (0, 1).

Differentiating once more (and using the monotone convergence theorem and the
convexity of the map t �→ |a + tb|p) we eventually obtain∫

X

|v + tw|p−2

[
|w|2 + (p− 2)

(〈v + tw, w〉)2
|v + tw|2

]
dµ = 0 ∀t ∈ (0, 1).

Since the integrand is nonnegative it immediately follows that w = 0. �
In the particular case p = 2 the map j2 is the identity and (8.4.3) gives

Tan⊥
µ P2(X) =

{
v ∈ L2(µ, X) : ∇ · (vµ) = 0

}
. (8.4.4)

Remark 8.4.4 (Cotangent space, duality, and quotients). Since tangent vectors
acts naturally only on gradient vector fields, one could also define the cotangent
space as

CoTanµPp(X) := {∇ϕ : ϕ ∈ Cyl(X)}Lq(µ;X)
, (8.4.5)

and therefore the tangent space by duality. If ∼ denotes the equivalence relation
which identifies two vector fields in Lp(µ; X) if their difference is divergence free,
the tangent space could be identified with the quotient space Lp(µ; X)/ ∼. Def-
inition 8.4.1 and the related lemma 8.4.2 simply operates a canonical (though
nonlinear) selection of an element Π(v) in the class of v by using the duality map
between the Cotangent and the Tangent space. This distinction becomes super-
fluous in the Hilbertian case p = q = 2, since in that case the tangent and the
cotangent spaces turn out to be the same, by the usual identification via the Riesz
isomorphism.
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The following two propositions show that the notion of tangent space is con-
sistent with the metric structure, with the continuity equation, and with optimal
transport maps (if any).

Proposition 8.4.5 (Tangent vector to a.c. curves). Let µt : I → Pp(X) be an
absolutely continuous curve and let vt ∈ Lp(µt; X) be such that (8.3.7) holds.
Then vt satisfies (8.3.6) as well if and only if vt = Π(vt) ∈ Tanµt

Pp(X) for
L 1-a.e. t ∈ I. The vector vt is uniquely determined L 1-a.e. in I by (8.3.6) and
(8.3.7).

Proof. The uniqueness of vt is a straightforward consequence of the linearity with
respect to the velocity field of the continuity equation and of the strict convexity
of the Lp norm.

In the proof of Theorem 8.3.1 we built vector fields vt ∈ Tanµt
Pp(X) sat-

isfying (8.3.6) and (8.3.7). By uniqueness, it follows that conditions (8.3.6) and
(8.3.7) imply vt ∈ Tanµt

Pp(X) for L 1-a.e. t. �

In the following proposition we recover the tangent vector field to a curve
through the infinitesimal behaviour of optimal transport maps, or plans, along the
curve. Notice that in the limit we recover a plan (i×vt)#µt associated to a classical
transport even in the situation when µt are not necessarily absolutely continuous.
It is for this reason that we don’t need, at least for differential calculus along
absolutely continuous curves, the more general notions of tangent space, made by
plans instead of maps, discussed in the Appendix.

µt

µt+h

µh

o(h)

(Id + tv)#µt

Proposition 8.4.6 (Optimal plans along a.c. curves). Let µt : I → Pp(X) be an
absolutely continuous curve and let vt ∈ Tanµt

Pp(X) be characterized by Propo-
sition 8.4.5. Then, for L 1-a.e. t ∈ I the following property holds: for any choice
of µh ∈ Γo(µt, µt+h) we have

lim
h→0

(
π1,

1
h

(π2 − π1)
)
#

µh = (i× vt)#µt in Pp(X ×X) (8.4.6)

and

lim
h→0

Wp(µt+h, (i + hvt)#µt)
|h| = 0. (8.4.7)
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In particular, for L 1-a.e. t ∈ I such that µt ∈ Pr
p(X) we have

lim
h→0

1
h

(tµt+h
µt

− i) = vt in Lp(µt; X), (8.4.8)

where t
µt+h
µt is the unique optimal transport map between µt and µt+h.

Proof. Let Dd ⊂ C∞
c (Rd) be a countable set with the following property: for any

integer R > 0 and any ψ ∈ C∞
c (Rd) with supp ψ ⊂ BR there exist (ϕn) ⊂ Dd with

supp ϕn ⊂ BR and ϕn → ϕ in C1(Rd). Let also Πd ⊂ Πd(X) be a a countable
set with the following property: for any π ∈ Πd(X) there exist πn ∈ Πd such that
πn → π uniformly on bounded sets of X (the existence of Πd follows easily by the
separability of X).

We fix t ∈ I such that Wp(µt+h, µt)/|h| → |µ′|(t) = ‖vt‖Lp(µt) and

lim
h→0

µt+h(ϕ)− µt(ϕ)
h

=
∫

Rd

〈∇ϕ, vt〉 dµt ∀ϕ = ψ ◦ π, ψ ∈ Dd, π ∈ Πd.

(8.4.9)
Since Dd and Πd are countable, the metric differentiation theorem implies that
both conditions are fulfilled for L 1-a.e. t ∈ I. Let µh ∈ Γo(µt, µt+h), set

νh :=
(

π1,
1
h

(π2 − π1)
)

#

µh,

and fix ϕ as in (8.4.9) and a limit point ν0 =
∫

ν0x dµt(x) of νh as h → 0 (w.r.t.
the narrow convergence). We use the identity

µt+h(ϕ)− µt(ϕ)
h

=
1
h

∫
X×X

ϕ(y)− ϕ(x) dµh

=
1
h

∫
X×X

ϕ(x + h(y − x))− ϕ(x) dνh =
∫

X×X

〈∇ϕ(x), y − x〉+ ωx,y(h) dνh

with ωx,y(h) bounded and infinitesimal as h → 0, to obtain∫
X

〈∇ϕ, vt〉 dµt =
∫

X

∫
X

〈y,∇ϕ(x)〉 dν0x(y) dµt(x).

Denoting by ṽt(x) =
∫

X
y dν0x(y) the first moment of ν0x, by a density argument

it follows that
∇ · ((ṽt − vt)µt) = 0. (8.4.10)

We now claim that ∫
X

∫
X

|y|p dν0x(y)dµt(x) ≤ [|µ′|(t)]p. (8.4.11)
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Indeed ∫
X

∫
X

|y|p dν0x(y)dµt(x) ≤ lim inf
h→0

∫
X×X

|y|p dνh

= lim inf
h→0

1
hp

∫
X×X

|y − x|pdµh

= lim inf
h→0

W p
p (µt+h, µt)

hp
= |µ′|p(t).

From (8.4.11) we obtain that

‖ṽt‖p
Lp(µt;X) ≤

∫
X

∫
X

|y|p dν0xdµt(x) ≤ [|µ′|(t)]p = ‖vt‖p
Lp(µt;X).

Therefore Proposition 8.4.3 entails that ṽt = vt. Moreover, the first inequality
above is strict if ν0x is not a Dirac mass in a set of µt-positive measure. Therefore
ν0x is a Dirac mass for µt-a.e. x and ν0 = (i × vt)#µt. This proves the narrow
convergence of the measures in (8.4.6). Together with convergence of moments,
this gives convergence in the Wasserstein metric.

Now we show (8.4.7). Let µh =
∫

X
µhx dµt(x) and let us estimate the distance

between µt+h and (i + hvt)#µt with π2,3
#

(∫
δx+hvt

× νhx dµt(x)
)
. We have then

W p
p (µt+h, (i + hvt)#µt)

hp
≤

∫
X×X

1
hp
|x + hvt(x)− y|p dµh

=
∫

X×X

|vt(x)− y|p dνh = o(1)

because of (8.4.6).
In the case when µt ∈ Pr

p(X), the identity(
π1,

1
h

(π2 − π1)
)

#

µh =
(

i× 1
h

(tµt+h
µt

− i)
)

#

µt

and the weak convergence at the level of plans give that 1
h(tµt+h

µt − i)µt narrowly
converge to vtµt. On the other hand our choice of t ensures that the Lp norms
converge to the Lp norm of the limit, therefore the convergence of the densities of
these measures w.r.t. µt is strong in Lp. �

As an application of (8.4.7) we are now able to show the L 1-a.e. differen-
tiability of t �→ Wp(µt, σ) along absolutely continuous curves µt. Recall that for
constant speed geodesics more precise results hold, see Chapter 7.

Theorem 8.4.7 (Generic differentiability of Wp(µt, σ)). Let µt : I → Pp(X) be
an absolutely continuous curve, let σ ∈ Pp(X) and let vt ∈ Tanµt

Pp(X) be its
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tangent vector field, characterized by Proposition 8.4.5. Then

d

dt
W p

p (µt, σ) =
∫

X2
p|x1 − x2|p−2〈x1 − x2, vt(x1)〉 dγ ∀γ ∈ Γo(µt, σ) (8.4.12)

for L 1-a.e. t ∈ I.

Proof. We show that the stated property is true at any t where (8.4.7) holds
and the derivative of t �→ Wp(µt, σ) exists (recall that this map is absolutely
continuous). Due to (8.4.7), we know that the limit

L := lim
h→0

W p
p ((i + hvt)#µt, σ)−W p

p (µt, σ)
h

exists and coincides with d
dtW

p
p (µt, σ), and we have to show that it is equal to

the left hand side in (8.4.12). Choosing any γ ∈ Γo(µt, σ) we can use the plan
η := (π1 + hvt ◦ π1, π2)#γ ∈ Γ((i + hvt)#µt, σ) to estimate from above W p

p ((i +
hvt)#µt, σ) as follows:

W p
p ((i + hvt)#µt, σ) ≤

∫
X2
|x1 − x2|p dη =

∫
X2
|x1 + hvt(x1)− x2|p dγ

= W p
p (µt, σ) + h

∫
X2

p〈 x1 − x2

|x1 − x2|2−p
, vt(x1)〉 dγ + o(h).

Dividing both sides by h and taking limits as h ↓ 0 or h ↑ 0 we obtain

L ≤
∫

X2
p|x1 − x2|p−2〈x1 − x2, vt(x1)〉 dγ ≤ L. �

The argument in the previous proof leads to the so-called superdifferentia-
bility property of the Wasserstein distance, a theme that we will explore more in
detail in Chapter 10 (see in particular Theorem 10.2.2).

Remark 8.4.8 (Derivative formula with an arbitrary velocity vector field). In fact,
Proposition 8.5.4 will show that formula (8.4.12) holds for every Borel velocity
vector field vt satisfying the continuity equation in the distribution sense (8.3.8)
and the Lp-estimate ‖vt‖Lp(µt;X) ∈ L1(I).

8.5 Tangent space and optimal maps

In this section we compare the tangent space arising from the closure of gradients
of smooth cylindrical function with the tangent space built using optimal maps;
the latter one is also compared in the Appendix with the geometric tangent space
made with plans (see Theorem 12.4.4).

Proposition 8.4.6 suggests another possible definition of tangent cone to a
measure in Pp(X) (see also Section 12.4 in the Appendix): for any µ ∈ Pp(X)
we define

Tanr
µPp(X) :=

{
λ(r − i) : (i× r)#µ ∈ Γo(µ, r#µ), λ > 0

}Lp(µ;X)
. (8.5.1)
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The main result of this section shows that the two notions in fact coincide.

Theorem 8.5.1. For any p ∈ (1, +∞) and any µ ∈ Pp(X) we have

TanµPp(X) = Tanr
µPp(X).

We split the (not elementary) proof of this result in various steps, which are
of independent interest.

The first step provides an inclusion between the tangent cones when the base
measure µ is regular.

Proposition 8.5.2 (Optimal displacement maps are tangent). If p ∈ (1, +∞) and
µ ∈ Pr

p(X), then Tanr
µPp(X) ⊂ TanµPp(X), i.e. for every measure σ ∈ Pp(X),

if tσ
µ is the unique optimal transport map between µ and σ given by Theorem 6.2.4

and Theorem 6.2.10, we have tσ
µ − i ∈ TanµPp(X).

Proof. Assume first that supp σ is contained in BR(0) for some R > 0. Theo-
rem 6.2.4 ensures the representation tσ

µ − i = jq(∇ϕ), where ϕ is a locally Lips-
chitz and | · |p-concave map whose gradient ∇φ = jp(tσ

µ − i) has (p − 1)-growth
(according to (5.1.21)), since tσ

µ takes its values in a bounded set.
We consider the Euclidean case X = Rd first and the mollified functions

ϕε. A truncation argument enabling an approximation by gradients with compact
support gives that jq(∇ϕε) belong to TanµPp(X) (notice also that ∇ϕε have still
(p− 1)-growth, uniformly with respect to ε). Due to the absolute continuity of µ
it is immediate to check using the dominated convergence theorem that jq(∇ϕε)
converge to jq(∇ϕ) in Lp(µ; Rd), therefore jq(∇ϕ) ∈ TanµPp(X) as well.

In the case when X is an infinite dimensional, separable Hilbert case we argue
as follows. Let πd, (πd)∗, π̂d be the canonical maps given by (5.1.28), (5.1.29), and
(5.1.30) for an orthonormal basis {en}n≥1 of X. We set

µd := πd
#µ, νd := πd

#ν ∈ P(Rd), µ̂d := π̂d
#µ, ν̂d := π̂d

#ν ∈ P(X),

observing that, by (6.2.1) and (5.2.3), µd is absolutely continuous with respect to
the d-dimensional Lebesgue measure. Therefore there exists an optimal transporta-
tion map rd ∈ Lp(µd; Rd) defined on Rd such that rd

#µd = νd and rd−i = jq(∇ψd)
in Rd for some locally Lipschitz and |·|p-concave map ψd : Rd → R. By the previous
approximation argument, setting ϕd := ψd ◦ πd and

r̂d :=(πd)∗ ◦ (rd ◦ πd) = (πd)∗ ◦ (jq(∇ψd ◦ πd) + πd
)

=jq

(
(πd)∗ ◦ ∇ψd ◦ πd

)
+ (πd)∗ ◦ πd = jq

(∇ϕd
)

+ π̂d

(here we used the commutation property jq ◦ (πd)∗ = (πd)∗ ◦ jq), we get r̂d− π̂d ∈
TanµPp(X); moreover, being (πd)∗ an isometry, it is immediate to check that r̂d

is an optimal map pushing µ̂d on ν̂d.
Letting d → +∞, since

lim
d↑+∞

‖π̂d − i‖Lp(µ;X) = 0,
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we conclude by applying the following Lemma.
Finally, when σ has not a bounded support, we can approximate σ in Pp(X)

by measures σn with bounded support and we can apply again the following
lemma. The details are left to the reader. �

Lemma 8.5.3. Let µ, ν ∈ Pp(X) such that Γo(µ, ν) = {(i×r)#µ} contains only an
optimal transportation map r ∈ Lp(µ; X), let tn ∈ Lp(µ; X) be a family of maps
converging to the identity in Lp(µ; X) with µn := (tn)#µ, and let νn ∈ Pp(X) be
converging to ν as n → ∞. Suppose that rn ∈ Lp(µn; X) is an optimal transport
map from µn to νn. Then

lim
n→∞ ‖rn ◦ tn − r‖Lp(µ,X) = 0. (8.5.2)

Proof. Let ϕ : X × X → R any continuous function with p-growth. Since
W p

p (µn, µ) → 0, W p
p (νn, ν) → 0 as n → ∞, by applying Proposition 7.1.3 and

Lemma 5.1.7 we get

lim
n→∞

∫
X

ϕ(tn(x), rn(tn(x))) dµ(x) = lim
n→∞

∫
X

ϕ(y, rn(y)) dµn(y)

=
∫

X

ϕ(y, r(y)) dµ(y).
(8.5.3)

Choosing ϕ(x1, x2) := |x2|p we get that rn ◦ tn is bounded in Lp(µ; X) and its
norm converges to the norm of r; therefore we can assume that rn ◦ tn is weakly
convergent to some map s ∈ Lp(µ; X) and we should prove that s = r. Thus
we choose ϕ(x1, x2) := ζ(x1)〈x2, z〉 with ζ continuous and bounded and z ∈ X:
(8.5.3) yields

lim
n→∞

∫
X

ζ(tn(x))〈z, rn(tn(x))〉 dµ(x) =
∫

X

ζ(x)〈z, r(x)〉 dµ(x),

whereas weak convergence provides

lim
n→∞

∫
X

ζ(tn(x))〈z, rn(tn(x))〉dµ(x) = lim
n→∞

∫
X

ζ(x)〈z, rn(tn(x))〉 dµ(x)

=
∫

X

ζ(x)〈z, s(x)〉 dµ(x).

It follows that 〈z, s(x)〉 = 〈z, r(x)〉 for µ-a.e. x ∈ X, ∀ z ∈ X, and therefore being
X separable s = r µ-a.e. in X. �

Proposition 8.5.4. Let µ, ν ∈ Pp(X) and let γ ∈ Γo(µ, ν). For every divergence-
free vector field w ∈ Lp(µ; X) we have∫

X×X

〈jp(x2 − x1), w(x1)〉 dγ(x1, x2) = 0. (8.5.4)
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In particular, if r is an optimal transport map between µ and ν = r#µ we have∫
X

〈jp(r(x)− x), w(x)〉dµ(x) = 0 ∀w ∈ Lp(µ; X) s.t. ∇ · (wµ
)

= 0. (8.5.5)

Recalling (8.4.3) we get that r − i ∈ TanµPp(X).

Proof. We can assume (possibly replacing γ by (π1,1→2
t )#γ with t close to 1) that

γ is the unique optimal transport plan between µ and ν (see Lemma 7.2.1).
By the approximation result stated in Proposition 8.3.3 we can find finite

dimensional subspaces Xh, measures µh ∈ Pp(X) with support in Xh and regular
restriction to Xh converging to µ in Pp(X), and vectors wh ∈ Lp(µh; Xh) such
that ∇ · (whµh) = 0, (i × wh)#µh → (i × w)#µ in Pp(X2). Denoting by th

the unique optimal transport map between µh and νh := π̂h
#ν (as usual, π̂h is

the orthogonal projection of X onto Xh and we identify µh and νh with their
restriction to Xh), we know by Proposition 8.5.2 that th− i ∈ Tanr

µh
Pp(Xh), and

therefore ∫
X

〈jp(th − i), wh〉 dµh = 0 ∀h ∈ N.

Moreover, the uniqueness of γ yields that the transport plans (i× th)#µh narrowly
converge in P(X ×X) to γ. Since the marginals of the plans converge in Pp(X)
we have also that the plans are uniformly p-integrable, therefore

lim
h→∞

∫
X

〈jp(th − i), w̃〉 dµh = lim
h→∞

∫
X×X

〈jp(x2 − x1), w̃(x1)〉 d(i× th)#µh

=
∫

X×X

〈jp(x2 − x1), w̃(x1)〉 dγ

for any continuous function w̃ with linear growth. By Proposition 8.3.3 again (with
f(x1, x2) = |x2 − w̃(x1)|p) we know that

lim
w̃∈C0

b (X), w̃→w in Lp(µ;X)
lim sup

h→∞

∫
X

|wh − w̃|p dµh = 0. (8.5.6)

Since

0 =
∫

X

〈jp(th − i), w̃〉 dµ +
∫

X

〈jp(th − i), wh − w̃〉 dµh for any w̃ ∈ C0
b (X),

passing to the limit as h →∞ and using Hölder inequality we obtain∣∣∣∣∫
X

〈jp(x2 − x1), w̃(x1)〉 dγ

∣∣∣∣ ≤ sup
h
‖th − i‖1/q

Lp(µh;X) lim sup
h→∞

‖wh − w̃‖Lp(µh;X).

Taking into account (8.5.6) we conclude that
∫

X
〈jp(x2 − x1), w(x1)〉 dγ = 0. �

The above proposition shows that for general measures µ ∈ Pp(X)

Tanr
µPp(X) ⊂ TanµPp(X). (8.5.7)
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Now we want to prove the opposite inclusion: let us first mention that the case
p = 2 is particularly simple.

Corollary 8.5.5. For any µ ∈ P2(X) we have TanµP2(X) = Tanr
µP2(X).

Proof. We should only check the inclusion ⊂: if ϕ ∈ Cyl(X) it is always possible to
choose λ > 0 such that x �→ 1

2 |x|2 + λ−1φ(x) is convex. Therefore r := i + λ−1∇ϕ
is cyclically monotone, thus an optimal map between µ and r#µ; by (8.5.1) we
obtain that ∇φ = λ(r − i) belongs to Tanr

µP2(X). �
In the general case p ∈ (1, +∞) the desired inclusion follows by the following

characterization:

Proposition 8.5.6. Let µ ∈ Pp(X), v ∈ Lp(µ; X), and µε := (i + εv)#µ for ε > 0.
If v ∈ TanµPp(X) then

lim
ε↓0

Wp(µ, µε)
ε

= ‖v‖Lp(µ;X), (8.5.8)

and denoting by γε ∈ Γo(µ, µε) a family of optimal plans, we have

lim
ε↓0

∫
X×X

∣∣∣∣x2 − x1 − εv(x1)
ε

∣∣∣∣p dγε(x1, x2) = 0. (8.5.9)

Proof. Let us consider the rescaled plans

µε :=
(
π1, ε−1(π2 − π1)

)
#

γε for γε ∈ Γo(µ, µε), (8.5.10)

observing that

π1
#µε = µ,

∫
X2
|x2|p dµε(x1, x2) =

W p
p (µ, µε)

εp
≤ ‖v‖p

Lp(µ;X), (8.5.11)

∫
X×X

∣∣∣∣x2 − x1 − εv(x1)
ε

∣∣∣∣p dγε(x1, x2) =
∫

X×X

|x2 − v(x1)|p dµε(x1, x2).

For every vanishing sequence εk → 0 we can find a subsequence (still denoted by
εk) and a limit plan µ such that µεk

is narrowly converging to µ in P(X ×X�).
In particular, for every smooth cylindrical function ζ ∈ Cyl(X) we have

ε−1

∫
X

(
ζ(x + εv(x))− ζ(x)

)
dµ(x) = ε−1

(∫
X

ζ(x2) dµε(x2)−
∫

X

ζ(x1) dµ(x1)
)

=
∫

X×X

ζ(x2)− ζ(x1)
ε

dγε(x1, x2) =
∫

X×X

ζ(x1 + εx2)− ζ(x1)
ε

dµε(x1, x2)

=
∫ 1

0

∫
X×X

〈∇ζ(x1 + εtx2), x2〉 dµε(x1, x2) dt (8.5.12)

and
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ε−1

∫
X

(
ζ(x + εv(x))− ζ(x)

)
dµ(x) =

∫ 1

0

∫
X

〈∇ζ(x + tεv(x)), v(x)〉 dµ(x) dt.

(8.5.13)
Choosing ε = εk in (8.5.12) and in (8.5.13) and passing to the limit as k →∞, a
repeated application of Lebesgue dominated convergence theorem yields∫

X

〈∇ζ(x), v(x)〉 dµ(x) (8.5.14)

= lim
k→∞

∫ 1

0

∫
X

〈∇ζ(x + tεkv(x)), v(x)〉dµ(x) dt

= lim
k→∞

∫ 1

0

∫
X×X

〈∇ζ(x1 + tεkx2), x2〉 dµεk
(x1, x2) dt

=
∫

X×X

〈∇ζ(x1), x2〉 dµ(x1, x2). (8.5.15)

It follows that the limit plan µ satisfies∫
X×X

〈∇ζ(x1), x2 − v(x1)〉 dµ(x1, x2) = 0 ∀ ζ ∈ Cyl(X), (8.5.16)

and the same relation holds if ∇ζ is replaced by any element ξ of the “cotangent
space” CoTanµPp(X) (i.e. the closure in Lq(µ; X) of the gradient vector fields)
introduced by (8.4.5).

If v ∈ TanµPp(X) and p ≥ 2, by the p-inequality (10.2.4), we can find a
suitable vanishing subsequence εk → 0 and a limit plan µ such that

0 ≤ cp lim sup
ε→0

∫
X×X

|x2 − v(x1)|p dµε(x1, x2)

≤ lim sup
ε→0

∫
X×X

|x2|p − |v(x1)|p − p〈jp(v(x1)), x2 − v(x1)〉 dµε(x1, x2)

= lim
k→∞

W p
p (µ, µεk

)
εp
k

− ‖v‖p
Lp(µ;X) −

∫
X×X

p〈jp(v(x1)), x2 − v(x1)〉 dµεk
(x1, x2)

≤ −
∫

X×X

p〈jp(v(x1)), x2 − v(x1)〉 dµ(x1, x2) = 0

by (8.5.11) and (8.5.16), since v ∈ TanµPp(X) is equivalent to jp(v) ∈
CoTanµPp(X). The case p < 2 is completely analogous. �

When µ is regular, the opposite inclusion

TanµPp(X) ⊂ Tanr
µPp(X),

which completes the proof of Theorem 8.5.1, follows easily from the previous propo-
sition: keeping the same notation, we know that γε is induced by an optimal
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transport map rε so that ε−1(rε − i) ∈ Tanr
µPp(X) and (8.5.9) yields

lim
ε→0

∫
X

∣∣∣∣rε(x)− x

ε
− v(x)

∣∣∣∣p dµ(x) = 0. (8.5.17)

Therefore v belongs to Tanr
µPp(X).

In the general case, by disintegrating γε with respect to the first variable x1,
a measurable selection theorem [39] allows us to select rε(x1) such that rε(x1) ∈
supp (γε)x1 and∣∣∣∣rε(x1)− x1

ε
− v(x1)

∣∣∣∣p ≤ 2
∫

X

∣∣∣∣rε(y)− y

ε
− v(y)

∣∣∣∣p d(γε)x1(y).

Then, since the graph of rε is contained in the support of γε, we obtain that rε

is | · |p-monotone (so that ε−1(rε − i) ∈ Tanr
µPp(X)) and (8.5.17) still holds.


