
Chapter 1

Curves and Gradients in Metric
Spaces

As we briefly discussed in the introduction, the notion of gradient flows in a metric
space S relies on two elementary but basic concepts: the metric derivative of
an absolutely continuous curve with values in S and the upper gradients of a
functional defined in S . The related definitions are presented in the next two
sections (a more detailed treatment of this topic can be found for instance in
[15]); the last one deals with curves of maximal slope.
When S is a Banach space and its distance is induced by the norm, one can
expect that curves of maximal slope could also be characterized as solutions of
(doubly, if S is not Hilbertian) nonlinear (sub)differential inclusions: this aspect
is discussed in the last part of this chapter.
Throughout this chapter (and in the following ones of this first part)

(S , d) will be a given complete metric space; (1.0.1)

we will denote by (a, b) a generic open (possibly unbounded) interval of R.

1.1 Absolutely continuous curves and metric derivative

Definition 1.1.1 (Absolutely continuous curves). Let (S , d) be a complete metric
space and let v : (a, b) → S be a curve; we say that v belongs to ACp(a, b; S ), for
p ∈ [1, +∞], if there exists m ∈ Lp(a, b) such that

d(v(s), v(t)) ≤
∫ t

s

m(r) dr ∀ a < s ≤ t < b. (1.1.1)

In the case p = 1 we are dealing with absolutely continuous curves and we will
denote the corresponding space simply with AC(a, b; S ).
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We recall also that a map ϕ : (a, b) → R is said to have finite pointwise
variation if

sup

{
n−1∑
i=1

|ϕ(ti+1)− ϕ(ti)| : a < t1 < · · · < tn < b

}
< +∞. (1.1.2)

It is well known that any bounded monotone function has finite pointwise varia-
tion and that any function with finite pointwise variation can be written as the
difference of two bounded monotone functions.

Any curve in ACp(a, b; S ) is uniformly continuous; if a > −∞ (resp. b <
+∞) we will denote by v(a+) (resp. v(b−)) the right (resp. left) limit of v, which
exists since S is complete. The above limit exist even in the case a = −∞ (resp.
b = +∞) if v ∈ AC(a, b; S ). Among all the possible choices of m in (1.1.1) there
exists a minimal one, which is provided by the following theorem (see [7, 8, 15]).

Theorem 1.1.2 (Metric derivative). Let p ∈ [1, +∞]. Then for any curve v in
ACp(a, b; S ) the limit

|v′|(t) := lim
s→t

d(v(s), v(t))
|s− t| (1.1.3)

exists for L 1-a.e. t ∈ (a, b). Moreover the function t �→ |v′|(t) belongs to Lp(a, b),
it is an admissible integrand for the right hand side of (1.1.1), and it is minimal
in the following sense:

|v′|(t) ≤ m(t) for L 1-a.e. t ∈ (a, b),
for each function m satisfying (1.1.1).

(1.1.4)

Proof. Let (yn) ⊂ S be dense in v((a, b)) and let dn(t) := d(yn, v(t)). Since all
functions dn are absolutely continuous in (a, b) the function

d(t) := sup
n∈N

|d′n(t)|

is well defined L 1-a.e. in (a, b). Let t ∈ (a, b) be a point where all functions dn are
differentiable and notice that

lim inf
s→t

d(v(s), v(t))
|s− t| ≥ sup

n∈N

lim inf
s→t

|dn(s)− dn(t)|
|s− t| = d(t).

This inequality together with (1.1.1) shows that d ≤ m L 1-a.e., therefore d ∈
Lp(a, b). On the other hand the definition of d gives

d(v(s), v(t)) = sup
n∈N

|dn(s)− dn(t)| ≤
∫ t

s

d(r) dr ∀s, t ∈ (a, b), s ≤ t,

and therefore
lim sup

s→t

d(v(s), v(t))
|s− t| ≤ d(t)

at any Lebesgue point t of d. �
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In the next remark we deal with the case when the target space is a dual
Banach space, see for instance [12].

Remark 1.1.3 (Derivative in Banach spaces). Suppose that S = B is a reflex-
ive Banach space (respectively: a dual Banach space): then a curve v belongs to
ACp(a, b; S ) if and only if it is differentiable (resp. weakly∗-differentiable) at L 1-
a.e. point t ∈ (a, b), its derivative v′ belongs to Lp(a, b; B) (resp. to Lp

w∗(a, b; B))
and

v(t)− v(s) =
∫ t

s

v′(r) dr ∀ a < s ≤ t < b. (1.1.5)

In this case,
‖v′(t)‖B = |v′|(t) L 1-a.e. in (a, b). (1.1.6)

Lemma 1.1.4 (Lipschitz and arc-length reparametrizations). Let v be a curve in
AC(a, b; S ) with length L :=

∫ b

a
|v′|(t) dt.

(a) For every ε > 0 there exists a strictly increasing absolutely continuous map

sε : (a, b) → (0, Lε) with sε(a+) = 0, sε(b−) = Lε := L + ε(b− a), (1.1.7)

and a Lipschitz curve v̂ε : (0, Lε) → S such that

v = v̂ε ◦ sε, |v̂′ε| ◦ sε =
|v′|

ε + |v′| ∈ L∞(a, b). (1.1.8)

The map sε admits a Lipschitz continuous inverse tε : (0, Lε) → (a, b) with Lips-
chitz constant less than ε−1, and v̂ε = v ◦ tε.
(b) There exists an increasing absolutely continuous map

s : (a, b) → [0, L] with s(a+) = 0, s(b−) = L, (1.1.9)

and a Lipschitz curve v̂ : [0, L] → S such that

v = v̂ ◦ s, |v̂′| = 1 L 1-a.e. in [0, L]. (1.1.10)

Proof. Let us first consider the case (a) with ε > 0; we simply define

sε(t) :=
∫ t

a

(
ε + |v′|(θ)

)
dθ, t ∈ (a, b); (1.1.11)

sε is strictly increasing with s′ε ≥ ε, sε

(
(a, b)

)
= (0, Lε), its inverse map tε :

(0, Lε) → (a, b) satisfies a Lipschitz condition with constant ≤ ε−1, and

t′ε ◦ sε =
1

ε + |v′| L 1-a.e. in (a, b).

Setting v̂ε := v ◦ tε, for every choice of ti = tε(si) with 0 < s1 < s2 < Lε we have

d(v̂ε(s1), v̂ε(s2)) = d(v(t1), v(t2)) ≤
∫ t2

t1

|v′|(t) dt

≤ sε(t2)− sε(t1)− ε(t2 − t1) = s2 − s1 − ε(t2 − t1),
(1.1.12)
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so that v̂ε is 1-Lipschitz and can be extended to [0, Lε] since v̂ε(0+) = v(a+) and
v̂ε(Lε−) = v; dividing the above inequality by s2 − s1 and passing to the limit as
s2 → s1 we get the bound

|v̂′ε| ◦ sε ≤ 1− ε

ε + |v′| =
|v′|

ε + |v′| L 1-a.e. in (a, b). (1.1.13)

On the other hand,

d(v(t2), v(t1)) = d(v̂ε(s2), v̂ε(s1)) ≤
∫ s2

s1

|v̂′ε|(s) ds

=
∫ t2

t1

|v̂′ε|(sε(t)) s′ε(t) dt ≤
∫ t2

t1

(|v̂′ε| ◦ sε

) (
ε + |v′|) dt.

(1.1.14)

By (1.1.4) we obtain

|v′| ≤ (|v̂′ε| ◦ sε

) (
ε + |v′|) L 1-a.e. in (a, b),

which, combined with the converse inequality (1.1.13), yields (1.1.8).
(b) We define s := s0 for ε = 0 by (1.1.11) and we consider the left continuous,
increasing map

t(s) := min
{
t ∈ [a, b] : s(t) = s

}
, s ∈ [0, L],

which satisfies s(t(s)) = s in [0, L]. Moreover, still denoting by v its continuous
extension to the closed interval [a, b], we observe that

t(s(t)) ≤ t, v(t(s(t)) = v(t) ∀ t ∈ [a, b], (1.1.15)

since

d(v(t(s(t)), v(t)) =
∫ t

t(s(t))

|v′|(θ) dθ = s(t)− s(t) = 0.

Defining v̂ := v ◦ t as above, (1.1.12) (with ε = 0) shows that v̂ is 1-Lipschitz and
(1.1.15) yields v = v̂ ◦ s. Finally, (1.1.14) shows that |v̂′| ◦ s = 1 L 1-a.e. in (a, b).

�

1.2 Upper gradients

In this section we define a kind of “modulus of the gradient” for real valued
functions defined on metric spaces, following essentially the approach of [81, 41].

Let φ : S → (−∞, +∞] be an extended real functional, with proper effective
domain

D(φ) := {v ∈ S : φ(v) < +∞} �= ∅. (1.2.1)
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If S is a vector space and φ is differentiable, then |∇φ| has the following natural
variational characterization:

g ≥ |∇φ| ⇔
∣∣(φ ◦ v

)′∣∣ ≤ g(v)|v′|
for every regular curve v : (a, b) → S .

(1.2.2)

We want to define a notion of “upper gradient” g for φ modeled on (1.2.2). A first
possibility is to use an integral formulation of (1.2.2) along absolutely continuous
curves.

Definition 1.2.1 (Strong upper gradients, [81, 41]). A function g : S → [0, +∞]
is a strong upper gradient for φ if for every absolutely continuous curve v ∈
AC(a, b; S ) the function g ◦ v is Borel and

∣∣φ(v(t))− φ(v(s))
∣∣ ≤ ∫ t

s

g(v(r))|v′|(r) dr ∀ a < s ≤ t < b. (1.2.3)

In particular, if g ◦ v|v′| ∈ L1(a, b) then φ ◦ v is absolutely continuous and

|(φ ◦ v)′(t)| ≤ g(v(t))|v′|(t) for L 1-a.e. t ∈ (a, b). (1.2.4)

We also introduce a weaker notion, based on a pointwise formulation:

Definition 1.2.2 (Weak upper gradients). A function g : S → [0, +∞] is a weak
upper gradient for φ if every curve v ∈ AC(a, b; S ) such that

(i) g ◦ v|v′| ∈ L1(a, b);

(ii) φ ◦ v is L 1-a.e. equal in (a, b) to a function ϕ with finite pointwise variation
in (a, b);

we have
|ϕ′(t)| ≤ g(v(t))|v′|(t) for L 1-a.e. t ∈ (a, b). (1.2.5)

In this case, if φ ◦ v ∈ AC(a, b) then ϕ = φ ◦ v and (1.2.3) holds.

Remark 1.2.3 (Approximate derivative). Condition (ii) of Definition 1.2.2 is equiv-
alent to say that φ ◦ v has essential bounded variation in (a, b). Accordingly, con-
dition (1.2.5) could be stated without any reference to ϕ by replacing ϕ′(t) with
the approximate derivative of φ ◦ v (see Definition 5.5.1).

Among all the possible choices for an upper gradient of φ, we recall the
definition of the local and global slopes (see also [41], [52]):

Definition 1.2.4 (Slopes). The local and global slopes of φ at v ∈ D(φ) are defined
by

|∂φ|(v) := lim sup
w→v

(
φ(v)− φ(w)

)+
d(v, w)

, lφ(v) := sup
w �=v

(
φ(v)− φ(w)

)+
d(v, w)

. (1.2.6)
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Theorem 1.2.5 (Slopes are upper gradients). The function |∂φ| is a weak upper
gradient for φ. If φ is d-lower semicontinuous then lφ is a strong upper gradient
for φ.

Proof. In order to show that |∂φ| is a weak upper gradient we consider an ab-
solutely continuous curve v : (a, b) → S satisfying the assumptions of Definition
1.2.2; we introduce the set

A :=
{
t ∈ (a, b) : φ(v(t)) = ϕ(t), ϕ is differentiable at t, ∃ |v′|(t)}

and we observe that (a, b) \A is L 1-negligible.
If the derivative of ϕ vanishes at t ∈ A then (1.2.5) is surely satisfied, therefore

it is not restrictive to consider points t ∈ A such that ϕ′(t) �= 0. In order to fix
the ideas, let us suppose that t ∈ A and ϕ′(t) > 0; since d(v(s), v(t)) �= 0 when
s ∈ A \ {t} belongs to a suitable neighborhood of t we have

|ϕ′(t)| = ϕ′(t) = lim
s↑t,s∈A

φ(v(t))− φ(v(s))
t− s

= lim
s↑t,s∈A

φ(v(t))− φ(v(s))
d(v(s), v(t))

d(v(s), v(t))
t− s

≤ lim sup
s↑t,s∈A

φ(v(t))− φ(v(s))
d(v(s), v(t))

lim
s↑t,s∈A

d(v(s), v(t))
t− s

≤ |∂φ|(v(t)) |v′|(t).

In order to check the second part of the Theorem, we notice first that v �→ lφ(v) is
lower semicontinuous in S . Indeed, if w �= v and vh → v then w �= vh for h large
enough and therefore

lim inf
h→∞

lφ(vh) ≥ lim inf
h→∞

(
φ(vh)− φ(w)

)+
d(vh, w)

≥
(
φ(v)− φ(w)

)+

d(v, w)
.

By taking the supremum w.r.t. w the lower semicontinuity follows.
Let now v be a curve in AC(a, b; S ) satisfying lφ(v)|v′| ∈ L1(a, b) and notice

that lφ(v) is lower semicontinuous, therefore Borel. We apply Lemma 1.1.4 with
ε = 0, and for the increasing and absolutely continuous map s := s0 : [a, b] → [0, L]
defined by (1.1.11) we set

v̂(s) := v(t(s)), ϕ(s) := φ(v̂(s)), g(s) := lφ(v̂(s)) s ∈ (0, L)

and we observe that for each couple s1, s2 ∈ (0, L) we have (ϕ(s1) − ϕ(s2))+ ≤
g(s1)|s2 − s1|, hence

|ϕ(s1)− ϕ(s2)| ≤ max[g(s1), g(s2)] |s2 − s1|. (1.2.7)

The 1-dimensional change of variables formula gives∫ L

0

g(s) ds =
∫ b

a

lφ(v(t))|v′|(t) dt < +∞, (1.2.8)
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therefore g ∈ L1(0, L) and (1.2.7) shows that ϕ belongs to the metric Sobolev
space W 1,1

m (0, L) in the sense of Haj�lasz [80]. By a difference quotients argument
this condition implies (see Lemma 1.2.6 below and [15]) that ϕ belongs to the con-
ventional Sobolev space W 1,1(0, L) and we simply have to check that ϕ coincides
with its continuous representative. Since v̂ is a Lipschitz map we immediately see
that ϕ is lower semicontinuous in (0, L): therefore continuity follows if we show
that

lim sup
ε↓0

1
2ε

∫ ε

−ε

ϕ(s + r) dr ≤ ϕ(s) for all s ∈ (0, L). (1.2.9)

Invoking (1.2.7) we get

lim sup
ε↓0

1
2ε

∫ ε

−ε

(
ϕ(s + r)− ϕ(s)

)
dr ≤ lim sup

ε↓0

1
2ε

∫ ε

−ε

(
ϕ(s + r)− ϕ(s)

)+
dr

≤ lim sup
ε↓0

1
2ε

∫ ε

−ε

g(s + r) |r| dr ≤ lim sup
ε↓0

1
2

∫ ε

−ε

g(s + r) dr = 0.

Since φ(v(t)) = φ(v̂(s(t))) = ϕ(s(t)), we obtain the absolute continuity of φ ◦ v;
using the inequality lφ(v) ≥ |∂φ|(v) and the the fact that |∂φ| is an upper gradient
we conclude. �

Lemma 1.2.6. Let ϕ, g ∈ L1(a, b) with g ≥ 0 and assume that there exists a L 1-
negligible set N ⊂ (a, b) such that

|ϕ(s)− ϕ(t)| ≤ (g(s) + g(t)) |s− t| ∀s, t ∈ (a, b) \N.

Then ϕ ∈ W 1,1(a, b) and |ϕ′| ≤ 2g L 1-a.e. in (a, b).

Proof. For every ζ ∈ C∞
c (a, b) we have

T (ζ) : =
∫ b

a

ϕ(t) ζ ′(t) dt = lim
h→0

∫ b

a

ϕ(t)
ζ(t + h)− ζ(t)

h
dt

= lim
h→0

∫ b

a

ϕ(t− h)− ϕ(t)
h

ζ(t) dt ≤ lim sup
h→0

∫ b

a

(
g(t− h) + g(t)

)|ζ(t)| dt

= 2
∫ b

a

g(t)|ζ(t)| dt ≤ 2‖g‖L1(a,b) sup
[a,b]

|ζ|.

We obtain from Riesz representation theorem that T can be represented by a
signed measure λ in (a, b) having total variation less that 2‖g‖L1(a,b). Then, the
inequality ∣∣∣∣∣

∫ b

a

ζ(t) dλ

∣∣∣∣∣ ≤ 2
∫ b

a

|ζ(t)||g(t)| dt ∀ζ ∈ C∞
c (a, b)

immediately gives that |λ| ≤ 2|g|L 1. �
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1.3 Curves of maximal slope

The notion of curves of maximal slope have been introduced (in a slight different
form) in [52] and further developed in [53, 95]. Our presentation essentially follows
the ideas of [8], combining them with the “upper gradient” point of view.

In order to motivate the main Definition 1.3.2 of this section, let us initially
consider the finite dimensional case of the Euclidean space S := Rd with scalar
product 〈·, ·〉 and norm |·|. The gradient∇φ of a smooth real functional φ : S → R

can be defined taking the derivative of φ along regular curves, i.e.

g = ∇φ ⇔
(
φ ◦ v

)′ = 〈g(v), v′〉
for every regular curve v : (0, +∞) → S ,

(1.3.1)

and its modulus |∇φ| has the natural variational characterization (1.2.2). In this
case, a steepest descent curve u for φ, i.e. a solution of the equation

u′(t) = −∇φ(u(t)) t > 0, (1.3.2)

can be characterized by the following two scalar conditions in (0, +∞)(
φ ◦ u

)′ = −|∇φ(u)| |u′|, (1.3.3a)
|u′| = |∇φ(u)|; (1.3.3b)

in fact, (1.3.3a) forces the direction of the velocity u′ to be opposite to the gradi-
ent one, whereas the modulus of u′ is determined by (1.3.3b). (1.3.3a,b) are also
equivalent, via Young inequality, to the single equation

(
φ ◦ u

)′ = −1
2
|u′|2 − 1

2
|∇φ(u)|2 in (0, +∞). (1.3.3c)

It is interesting to note that we can impose (1.3.3a,b) or (1.3.3c) as a system of
differential inequalities in the couple (u, g), the first one saying that the function
g is an upper bound for the modulus of the gradient (an “upper gradient”, as we
have seen in the previous section)∣∣(φ ◦ v

)′∣∣ ≤ g(v)|v′| for every regular curve v : (0, +∞) → S , (1.3.4a)

the second one imposing that the functional φ decreases along u as much as possible
compatibly with (1.3.4a), i.e.(

φ ◦ u
)′ ≤ −g(u)|u′| in (0, +∞), (1.3.4b)

and the last one prescribing the dependence of |u′| on g(u)

|u′| = g(u) in (0, +∞), (1.3.4c)



1.3. Curves of maximal slope 31

or even in a single formula(
φ ◦ u

)′ ≤ −1
2
|u′|2 − 1

2
g(u)2 in (0, +∞). (1.3.4d)

Whereas equations (1.3.1), (1.3.2) make sense only in a Hilbert-Riemannian frame-
work, the formulation (1.3.4a,b,c,d) is of purely metric nature and can be extended
to more general metric spaces (S , d), provided we understand |u′| as the metric
derivative of u. Of course, the concept of upper gradient provides only an up-
per estimate for the modulus of ∇φ in the regular case, but it is enough to define
steepest descent curves, i.e. curves which realize the minimal selection of d

dtφ(u(t))
compatible with (1.2.4).

Remark 1.3.1 (p, q variants). Instead of (1.3.2) we can consider more general
nonlinear coupling between time derivative and gradient, which naturally appears
when a non euclidean distance in S is considered: in the last section of the present
chapter we will briefly discuss the case of a Banach space.
In the easier Euclidean setting, the simplest generalization leads to an equation of
the type

j(u′(t)) = −∇φ(u(t)) t > 0, with j(v) = α(|v|) v

|v| (1.3.5)

for a continuous, strictly increasing and surjective map α : [0, +∞) → [0, +∞).
In this case, the velocity u′ still takes the opposite direction of ∇φ(u) yielding
(1.3.3a), but equation (1.3.3b) for its modulus is substituted by the monotone
condition

α(|u′|) = |∇φ(u)|. (1.3.6)

Introducing the strictly convex primitive function ψ of α and its conjugate ψ∗

ψ(z) :=
∫ z

0

α(r) dr, ψ∗(z∗) := max
x∈[0,+∞)

z∗x− ψ(x), z, z∗ ∈ [0, +∞), (1.3.7)

(1.3.5) is therefore equivalent to(
φ ◦ u

)′ ≤ −ψ(|u′|)− ψ∗(|∇φ(u)|) in (0, +∞), (1.3.8)

which, in the metric framework, could be relaxed to(
φ ◦ u

)′ ≤ −ψ(|u′|)− ψ∗(g((u)) in (0, +∞), (1.3.9)

for an upper gradient g satisfying (1.3.4a).
Even if many results could be extended to this general situation, for the sake of
simplicity in the present book we will consider only a p, q-setting, where p, q ∈
(1, +∞) are conjugate exponent p−1 + q−1 = 1, corresponding to the choices

α(z) := zp−1, ψ(z) =
1
p
zp, ψ∗(z∗) =

1
q
(z∗)q,
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and to the equation

jp(u′(t)) = −∇φ(u(t)), jp(v) :=

{
|v|p−2v for v �= 0,
0 if v = 0.

(1.3.10)

Thus the idea is that (1.3.3a) is still imposed and (1.3.3b) is substituted by

|u′|p−1 = |∇φ(u)| or, equivalently, |u′| = |∇φ(u)|q−1 (1.3.11)

and therefore, taking into account the strict convexity of | · |p, in the purely metric
framework we end up with the inequality(

φ ◦ u
)′ ≤ −1

p
|u′|p − 1

q
g(u)q in (0, +∞). (1.3.12)

Recalling (1.3.4a), (1.3.4d), and (1.3.12), we introduce the following defini-
tion:

Definition 1.3.2 (Curves of maximal slope). We say that a locally absolutely con-
tinuous map u : (a, b) → S is a p-curve of maximal slope, p ∈ (1, +∞) (we will
often omit to mention p in the quadratic case), for the functional φ with respect
to its upper gradient g, if φ ◦ u is L 1-a.e. equal to a non-increasing map ϕ and

ϕ′(t) ≤ −1
p
|u′|p(t)− 1

q
gq(u(t)) for L 1-a.e. t ∈ (a, b). (1.3.13)

Remark 1.3.3. Observe that (1.2.5) and (1.3.13) yield

|u′|p(t) = gq(u(t)) = −ϕ′(t) L 1-a.e. in (a, b), (1.3.14)

in particular u ∈ ACp
loc(a, b; S ) and g ◦ u ∈ Lq

loc(a, b). If u is a curve of maximal
slope for φ with respect to a strong upper gradient g, then φ(u(t)) ≡ ϕ(t) is a
locally absolutely continuous map in (a, b) and the energy identity

1
p

∫ t

s

|u′|p(r) dr +
1
q

∫ t

s

gq(r) dr = φ(u(s))− φ(u(t)) (1.3.15)

holds in each interval [s, t] ⊂ (a, b).

1.4 Curves of maximal slope in Hilbert and Banach

spaces

We conclude this chapter dedicated to slopes and upper gradients by giving a
closer look to the case when

S = B is a Banach space with norm ‖ · ‖; (1.4.1)
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we denote by 〈·, ·〉 the duality between B and its dual B′ and by ‖ · ‖∗ the dual
norm in B′.
Let us first consider a C1 functional φ : B → R: the chain rule (1.3.1) characterizes
the Frèchet differential Dφ : B → B′, which is defined by

g = Dφ(v) ⇔ lim
w→v

φ(w)− φ(v)− 〈g, w − v〉
‖w − v‖ = 0 ∀ v ∈ B.

Since the metric derivative |v′| of a regular curve v coincides with the norm of the
velocity vector ‖v′‖, it is easy to show that upper gradients involve the dual norm
of Dφ(v): by (1.2.2) g is an upper gradient for φ iff

g ≥ ‖Dφ(v)‖∗ ∀ v ∈ B. (1.4.2)

In this case, the steepest descent conditions (1.3.3a), (1.3.4b) become

〈Dφ(u), u′〉 =
(
φ ◦ u

)′ ≤ −‖u′‖ g(u) ≤ −‖u′‖ ‖Dφ(u)‖∗, (1.4.3)

whereas (1.3.3b) could take the more general p, q form (1.3.11) (but see also (1.3.6))

‖u′‖p−1 = ‖Dφ(u)‖∗. (1.4.4)

Combining (1.4.3) and (1.4.4) we end up with the doubly nonlinear differential
inclusion

Jp(u′(t)) � −Dφ(u(t)) t > 0, (1.4.5)

where Jp : B → 2B′
is the p-duality map defined by

ξ ∈ Jp(v) ⇔ 〈ξ, v〉 = ‖v‖p = ‖ξ‖q
∗ = ‖v‖ ‖ξ‖∗, (1.4.6)

which is single valued if the norm ‖ · ‖ of B is differentiable.
We want now to extend the previous considerations to a non-smooth setting.

Recall that the Fréchet subdifferential ∂φ(v) ⊂ B′ of a functional φ : B →
(−∞, +∞] at a point v ∈ D(φ) is defined by

ξ ∈ ∂φ(v) ⇐⇒ lim inf
w→v

φ(w)− (φ(v) + 〈ξ, w − v〉)
‖w − v‖B

≥ 0. (1.4.7)

As usual, D(∂φ) denotes the subset of B given by all the elements v ∈ D(φ) such
that ∂φ(v) �= ∅; ∂φ(v) is a (strongly) closed convex set and we will suppose that

∂φ(v) is weakly∗ closed ∀ v ∈ D(∂φ); (1.4.8)

(1.4.8) is surely satisfied if e.g. B is reflexive or φ is convex (see the next Propo-
sition 1.4.4). ∂◦φ(v) is the subset of elements of minimal (dual) norm in ∂φ(v),
which reduces to a single point if the dual norm of B is strictly convex. Notice
that

|∂φ|(v) = lim sup
w→0

φ(v)− φ(v + w)
‖w‖ ≤ lim sup

w→0
〈ξ, w

‖w‖〉 ≤ ‖ξ‖∗ ∀ ξ ∈ ∂φ(v).



34 Chapter 1. Curves and Gradients in Metric Spaces

Therefore, if we extend the function v �→ ‖∂◦φ(v)‖∗ to +∞ outside of D(∂φ) we
have

|∂φ|(v) ≤ ‖∂◦φ(v)‖∗ ∀ v ∈ B, (1.4.9)

and we obtain from Theorem 1.2.5 that

the map v �→ ‖∂◦φ(v)‖∗ is a weak upper gradient for φ. (1.4.10)

In the next proposition we characterize the (L 1-a.e. differentiable) curves of max-
imal slope with respect to the upper gradient (1.4.10) as the solution of a suitable
doubly nonlinear differential inclusion: in the case when S is a reflexive Banach
space and φ is convex, these kind of evolution equations have been studied in
[43, 42]; we refer to these contributions and to [127] for many examples of partial
differential equations which can be studied by this abstract approach.

Proposition 1.4.1 (Doubly nonlinear differential inclusions). Let us consider a
proper l.s.c. functional φ : B → (−∞, +∞] satisfying (1.4.8) and a curve u ∈
ACp(a, b; B) which is differentiable at L 1-a.e. point of (a, b) (see Remark 1.1.3).
If u is a p-curve of maximal slope for φ with respect to the weak upper gradient
(1.4.10), then

Jp(u′(t)) ⊃ −∂◦φ(u(t)) �= ∅ for L 1-a.e. t ∈ (a, b); (1.4.11)

in particular, if the norm of B is differentiable, we have

Jp(u′(t)) = −∂◦φ(u(t)) for L 1-a.e. t ∈ (a, b). (1.4.12)

Conversely, if u satisfies (1.4.11) and φ ◦ u is (L 1-a.e. equal to) a non increasing
function, then u is a p-curve of maximal slope.

Proof. Let us suppose that u is a p-curve of maximal slope for φ with respect to
the upper gradient (1.4.10) and let ϕ be a non increasing map L 1-a.e. equal to
φ ◦ u satisfying (1.3.13).
Then we can find a L 1-negligible subset N ⊂ (a, b) such that for every t ∈ (a, b)\N
u and ϕ are differentiable at t, φ(u(t)) = ϕ(t), the inequality of (1.3.13) holds,
and Definition (1.4.13) yields the chain rule

ϕ′(t) = 〈ξ, u′(t)〉 ∀ ξ ∈ ∂◦φ(u(t)). (1.4.13)

It follows that for t ∈ (a, b) \N

〈ξ, u′(t)〉 = ϕ′(t) ≤ −1
p
‖u′(t)‖p − 1

q
‖ξ‖q

∗ ∀ ξ ∈ ∂◦φ(u(t)), (1.4.14)

which yields (1.4.11). When the norm of B is differentiable the duality map Jp is
single-valued and the dual norm ‖ · ‖∗ is strictly convex, so that ∂◦φ contains at
most one element: therefore (1.4.11) reduces to (1.4.12).
The converse implication follows by the same argument, since (1.4.11) and the
chain rule (1.4.13) yields (1.3.13). �
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Corollary 1.4.2 (Gradient flows in Hilbert spaces). If S = B = B′ is an Hilbert
space, usually identified with its dual through the Risz isomorphism J2, any 2-curve
of maximal slope u ∈ AC2

loc(a, b; B) with respect to ‖∂◦φ(v)‖ satisfies the gradient
flow equation

u′(t) = −∂◦φ(u(t)) for L 1-a.e. t ∈ (a, b). (1.4.15)

Remark 1.4.3 (Non reflexive Banach spaces). The previous Proposition 1.4.1
strongly depends on the L 1-a.e. differentiability of the considered curve and we
have seen in Remark 1.1.3 that absolutely continuous curves enjoy this property
if the underlying Banach space B satisfies the Radon-Nikodým property, e.g. if
it is reflexive. One of the advantage of the purely metric formulation (1.3.13) is
that it does not require any vector differentiability property of those curves and
therefore it can be stated in any Banach space.

The next section will provide general existence and approximation results for
curves of maximal slope with respect to the upper gradient |∂φ|: it is therefore
important to know if ‖∂◦φ(v)‖∗ = |∂φ|(v). In the following Proposition we deal
with the case when φ is convex and l.s.c., proving in particular that ‖∂◦φ(v)‖∗ is
a strong upper gradient and coincides with |∂φ|(v) and lφ(v).

Proposition 1.4.4 (Slope and subdifferential of convex functions). Let B be a
Banach space and let φ : B → (−∞, +∞] be convex and l.s.c. Then

ξ ∈ ∂φ(v) ⇐⇒ φ(w)− (φ(v) + 〈ξ, w − v〉) ≥ 0 ∀w ∈ B (1.4.16)

for any v ∈ D(φ), the graph of ∂φ in B ×B′ is strongly-weakly∗ closed (in par-
ticular (1.4.8) holds), with

ξn ∈ ∂φ(vn), vn → v, ξn ⇀∗ ξ =⇒ ξ ∈ ∂φ(v), φ(vn) → φ(v), (1.4.17)

and

|∂φ|(v) = min
{
‖ξ‖∗ : ξ ∈ ∂φ(v)

}
= ‖∂◦φ(v)‖∗ ∀ v ∈ B. (1.4.18)

Moreover
|∂φ|(v) = lφ(v) ∀ v ∈ B, (1.4.19)

so that, by Theorem 1.2.5, |∂φ|(v) is a strong upper gradient.

Proof. The equivalence (1.4.16) and the identity (1.4.19) are simple consequence
of the monotonicity of difference quotients of convex functions.

For every w ∈ B the map (v, ξ) �→ φ(w) − φ(v) − 〈ξ, w − v〉 is upper-
semicontinuous with respect to the strong-weak∗-topology in the product B×B′;
thus by (1.4.16) the graph of ∂φ is closed in this topology; this shows the first
implication of (1.4.17). the second one follows from (1.4.16), which yields

|φ(v)− φ(vn)| ≤ ‖vn − v‖(‖ξn‖∗ + ‖ξ‖∗
)
.
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The inequality

φ(v)− φ(v + w)
‖w‖ ≤ 〈ξ, w

‖w‖〉 ∀w ∈ B \ {0}

yields that lφ(v) can be estimated from above by ‖ξ‖B′ for any ξ ∈ ∂φ. Assuming
that lφ(v) is finite, to conclude the proof we need only to show the existence of
ξ ∈ ∂φ(v) such that ‖ξ‖B′ ≤ lφ(v). By definition we know that

−lφ(v)‖w‖ ≤ φ(v + w)− φ(v) ∀w ∈ B, (1.4.20)

i.e. the convex epigraph{
(w, r) ∈ B × R : r ≥ φ(v + w)− φ(v)

}
of the function w �→ φ(v + w)− φ(v) is disjoint from the open convex hypograph
in B × R {

(w, r) ∈ B × R : r < −lφ(v)‖w‖}
Therefore we can apply a geometric version of Hahn-Banach theorem to obtain
ξ ∈ B′, α ∈ R such that

−lφ(v)‖w‖ ≤ 〈ξ, w〉+ α ≤ φ(v + w)− φ(v) ∀w ∈ B.

Taking w = 0 we get α = 0; the first inequality shows that ‖ξ‖B′ ≤ lφ(v) and the
second one, according to (1.4.16), means that ξ ∈ ∂φ(v). �

The above results can be easily extended to C1 perturbations of convex
functions.

Corollary 1.4.5 (C1-perturbations of convex functions). Let us suppose that φ :
B → (−∞, +∞] admits the decomposition φ = φ1+φ2, where φ1 is a proper, l.s.c.,
and convex functional, whereas φ2 : B → R is of class C1. Then ∂φ = ∂φ1 + Dφ2

satisfies (1.4.17) and (1.4.18), and |∂φ|(v) is a strong upper gradient for φ.

Proof. The sum rule ∂φ = ∂φ1 + Dφ2 follows directly from Definition (1.4.7) and
the differentiability of φ2.
In order to check the closure property (1.4.17), we observe that if ξn ∈ ∂φ(vn) and
(vn, ξn) → (v, ξ) in the strong-weak∗ topology of B ×B′ then

ξn −Dφ2(vn) ∈ ∂φ1(vn), ξn −Dφ2(vn) ∗
⇀ ξ −Dφ2(v) ∈ ∂φ2(v),

since Dφ2 is continuous and φ1 is convex: we obtain ξ ∈ ∂φ(v) and φ1(vn) → φ1(v)
which yield (1.4.17) being φ2 continuous.

Finally, since we can add to φ1 and subtract to φ2 an arbitrary linear and
continuous functional, in order to prove (1.4.18) it is not restrictive to suppose
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that Dφ2(v) = 0; it follows that

|∂φ|(v) = lim sup
w→v

(
φ(w)− φ(v)

)+

‖w − v‖

≥ lim sup
w→v

(
φ1(w)− φ1(v)

)+

‖w − v‖ − lim sup
w→v

|φ2(w)− φ2(w)|
‖w − v‖

= |∂φ1|(v) = ‖∂◦φ1(v)‖∗ = ‖∂◦φ(v)‖∗.

Combining this inequality with the opposite one (1.4.9), we conclude. �
Let us rephrase the last conclusion of the previous Corollary, which is quite

interesting in the case B does not satisfy the Radon-Nikodým property.

Remark 1.4.6 (“Upper” chain rule for (even non reflexive) Banach spaces).
If φ : B → (−∞, +∞] is lower semicontinuou convex function (or a C1 perturba-
tion as in Corollary 1.4.5), v is a curve in AC(a, b; B) with ‖∂◦φ‖x∗ |v′| ∈ L1(a, b),
then φ◦v is absolutely continuous in (a, b); if B has the Radon-Nikodým property,
then

d

dt
φ ◦ v(t) = 〈∂◦φ(v(t)), v′(t)〉 for L 1-a.e. t in (a, b);

for general Banach spaces, one can always write the upper estimate∣∣∣ d

dt
φ ◦ v(t)

∣∣∣ ≤ ‖∂◦φ(v(t))‖∗|v′|(t) for L 1-a.e. t in (a, b). (1.4.21)

In the next chapter we will see how the last two proposition can be extended
to a general class of functions defined on metric spaces and satisfying suitable
geometric convexity conditions.


