
Chapter 9

Convex Functionals in Pp(X)

The importance of geodesically convex functionals in Wasserstein spaces was firstly
pointed out by McCann [97], who introduced the three basic examples we will
discuss in detail in 9.3.1, 9.3.4, 9.3.6. His original motivation was to prove the
uniqueness of the minimizer of an energy functional which results from the sum
of the above three contributions.

Applications of this idea have been given to (im)prove many deep functional
(Brunn-Minkowski, Gaussian, (logarithmic) Sobolev, Isoperimetric, etc.) inequal-
ities: we refer to Villani’s book [126, Chap. 6] (see also the survey [72]) for a
detailed account on this topic. Connections with evolution equations have also
been exploited [103, 107, 108, 1, 38], mainly to study the asymptotic decay of the
solution to the equilibrium.

From our point of view, convexity is a crucial tool to study the well posedness
and the basic regularity properties of gradient flows, as we showed in Chapters 2
and 4. Thus in this chapter we discuss the basic notions and properties related to
this concept: the first part of Section 9.1 is devoted to fixing the notion of con-
vexity along geodesics in Pp(X), avoiding any unnecessary restriction to regular
measures; a useful tool for the subsequent developments is the stability of convex-
ity with respect to Γ-convergence, a well known property in the more usual linear
theory.

Unfortunately, Example 9.1.5 shows that the squared 2-Wasserstein distance
is not convex along geodesics in P2(X): this fact and the theory of Chapter 4
motivate the investigation (of convexity properties) along different interpolating
curves, along which the squared 2-Wasserstein distance exhibits a nicer behavior;
the second part of Section 9.1 discusses this question and introduces the notion
of generalized geodesics. Lemma 9.2.7, though simple, provides a crucial link with
the metric theory of Chapter 4.

Section 9.3 discusses in great generality the main examples of geodesically
convex functionals, showing that they all satisfy also the stronger convexity along
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generalized geodesics. The last example is related to the semiconcavity properties
of the squared 2-Wasserstein distance, discussed in Theorem 7.3.2.

In the last section we give a closer look to the convexity properties of general
Relative Entropy functionals, showing that they are strictly related to the log-
concavity of the reference measures. Here we use the full generality of the theory,
proving all the significant results even in infinite dimensional Hilbert spaces.

9.1 λ-geodesically convex functionals in Pp(X)

In McCann’s approach, functionals are naturally defined on Pr
2 (Rd) so that for

each couple of measures µ1, µ2 ∈ Pr
2 (Rd) a unique optimal transport map t =

tµ2

µ1 (see (7.1.4)) always exists: in his terminology, a functional φ : Pr
2 (Rd) →

(−∞, +∞] is displacement convex if

setting µ1→2
t :=

(
i + t(t− i)

)
#

µ1, t = tµ2

µ1 ,

the map t ∈ [0, 1] �→ φ
(
µ1→2

t

)
is convex, ∀µ1, µ2 ∈ Pr

2 (Rd).
(9.1.1)

In Section 7.2 we have seen that the curve µ1→2
t is the constant speed geodesic

connecting µ1 to µ2; therefore the following definition seems natural, when we
consider functionals whose domain contains general probability measures.

Definition 9.1.1 (λ-convexity along geodesics). Let X be a separable Hilbert space
and let φ : Pp(X) → (−∞, +∞]. Given λ ∈ R, we say that φ is λ-geodesically
convex in Pp(X) if for every couple µ1, µ2 ∈ Pp(X) there exists an optimal
transfer plan µ ∈ Γo(µ1, µ2) such that

φ(µ1→2
t ) ≤ (1− t)φ(µ1) + tφ(µ2)− λ

2
t(1− t)W 2

p (µ1, µ2) ∀ t ∈ [0, 1], (9.1.2)

where µ1→2
t = (π1→2

t )#µ =
(
(1 − t)π1 + tπ2

)
#

µ is defined as in (7.2.2), π1, π2

being the projections onto the first and the second coordinate in X2, respectively.

Notice that this notion of convexity depends on the summability exponent p.

Remark 9.1.2 (The map t �→ φ(µ1→2
t ) is λ-convex). Actually this definition of

λ-convexity expressed through (9.1.2) implies that

the map t ∈ [0, 1] �→ φ(µ1→2
t ) is λW 2

p (µ1, µ2)-convex, (9.1.3)

thus recovering an (apparently) stronger and more traditional form.
This equivalence follows easily by the fact, proved in Section 7.2, that for t1 < t2
in [0, 1] with {t1, t2} �= {0, 1} the plan

(
π1→2

t1 × π1→2
t2

)
#

µ is the unique element of
Γo(µ1→2

t1 , µ1→2
t2 ).
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Notice that in Definition 9.1.1 we do not require (9.1.2) along all the optimal
plans of Γo(µ1, µ2). One of the advantage of this technical point is provided by the
following proposition, which will be useful to check convexity in many examples.

Proposition 9.1.3 (Convexity criterion). Let φ : Pp(X) → (−∞, +∞] be a l.s.c.
map such that for any µ ∈ D(φ) there exists (µh) ⊂ Pr

p(X) converging to µ in
Pp(X) with φ(µh) → φ(µ).
Then φ is λ-geodesically convex iff for each µ ∈ D(φ) ∩ Pr

p(X) and for each µ-
essentially injective map r ∈ Lp(µ; X) whose graph is | · |p-cyclically monotone the
map t �→ φ (((1− t)i + tr)#µ) is λ-convex in [0, 1].

Proof. If µ1 ∈ Pr
p(X) and r ∈ Lp(µ1; X) is | · |p-cyclically monotone, then(

(1 − t)i + tr
)
#

µ1 is the unique geodesic joining µ1 to µ2 := r#µ1. This shows
the necessity of the condition.

In order to show its sufficiency, we notice that if µ1, µ2 ∈ Pr
p(X) then

a unique optimal map tµ2

µ1 exists, it belongs to Lp(µ1; X) and it is µ1-essentially
injective (by Remark 6.2.11). Therefore the convexity inequality (9.1.2) holds when
the initial and final measure are regular. The general case can be recovered through
a standard approximation and compactness argument, as in the proof of the next
lemma. �

The following natural Γ-convergence result is well known for convex func-
tionals in linear spaces, see for instance Chapter 11 in [50].

Lemma 9.1.4 (Convexity and Γ-convergence). Let φh : Pp(X) → (−∞, +∞] be
λ-geodesically convex functionals which Γ

(
Pp(X)

)
-converge to φ as n →∞, i.e.

µh → µ in Pp(X) ⇒ lim inf
h→∞

φh(µh) ≥ φ(µ), (9.1.4)

∀µ ∈ Pp(X) ∃µh → µ in Pp(X) : lim
h→∞

φh(µh) = φ(µ). (9.1.5)

Then φ is λ-geodesically convex.
The same result holds for the Γ

(
P(X)

)
-convergence if λ ≥ 0, i.e. if we replace

convergence in Pp(X) with narrow convergence in P(X) (thus without assuming
the convergence of the p-moments of µh) in (9.1.4), (9.1.5).

Proof. Let us fix µ1, µ2 ∈ D(φ); by (9.1.5) we can find sequences µ1
h, µ2

h converging
to µ1, µ2 in Pp(X) such that

lim
n→∞φh(µ1

h) = φ(µ1), lim
n→∞ φh(µ2

h) = φ(µ2).

Let µh ∈ Γo(µ1
h, µ2

h) be an optimal plan such that (5.1.19) holds for φh; by
Lemma 5.2.2 the sequence (µh) is tight (resp. uniformly p-integrable), because
the sequences of their marginals are tight (resp. uniformly p-integrable). There-
fore, by Proposition 7.1.5 we can extract a suitable subsequence (still denoted by
µh) converging to µ in Pp(X×X): we want to show that φ is λ-convex along the
interpolation µ1→2

t induced by µ.
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Since (µh)1→2
t → µ1→2

t in Pp(X) as h →∞, (9.1.4) yields easily

φ(µ1→2
t ) ≤ lim inf

h→∞
φh

(
(µh)1→2

t

)
≤ lim inf

h→∞

(
(1− t)φ(µ1

h) + tφ(µ2
h)− λ

2
t(1− t)W 2

p (µ1
h, µ2

h)
)

= (1− t)φ(µ1) + tφ(µ2)− λ

2
t(1− t)W 2

p (µ1, µ2). (9.1.6)

In the case of narrow convergence, we can follow the same argument; (9.1.6) be-
comes an inequality, thanks to (7.1.11), if λ ≥ 0. �

λ-convexity of functionals along geodesics is the simplest condition which
allows us to apply the theory developed in Section 2.4. The semigroup generation
results of Chapter 4 involve the stronger 1-convexity property of the distance
function W 2

2 (µ1, ·) from an arbitrary base point µ1.
In the 1-dimensional case we already know by Theorem 6.0.2 and (7.2.8) that

P2(R1) is isometrically isomorphic to a closed convex subset of an Hilbert space:
precisely the space of nondecreasing functions in (0, 1) (the inverses of distribution
functions), viewed as a subset of L2(0, 1). Thus the 2-Wasserstein distance in R

satisfies the generalized parallelogram rule

W 2
2 (µ1, µ2→3

t ) = (1− t)W 2
2 (µ1, µ2) + tW 2

2 (µ1, µ3)− t(1− t)W 2
2 (µ2, µ3)

∀ t ∈ [0, 1], µ1, µ2, µ3 ∈ P2(R1).
(9.1.7)

If the space X has dimension ≥ 2 the following example shows that there is no
constant λ such that W 2

2 (·, µ1) is λ-convex along geodesics. We will see in the next
subsection how to circumvent this difficulty.

Example 9.1.5 (The distance function is not λ-convex along geodesics). Let

µ2 :=
1
2
(
δ(0,0) + δ(2,1)

)
, µ3 :=

1
2
(
δ(0,0) + δ(−2,1)

)
.

Using for instance Theorem 6.0.1 it is easy to check that the unique optimal map
r pushing µ2 to µ3 maps (0, 0) in (−2, 1) and (2, 1) in (0, 0), therefore there is a
unique constant speed geodesic joining the two measures, given by

µ2→3
t :=

1
2
(
δ(−2t,t) + δ(2−2t,1−t)

)
t ∈ [0, 1].

Choosing µ1 := 1
2

(
δ(0,0) + δ(0,−2)

)
, there are two maps rt, st pushing µ1 to µ2→3

t ,
given by

rt(0, 0) = (−2t, t), rt(0,−2) = (2− 2t, 1− t),
st(0, 0) = (2− 2t, 1− t), st(0,−2) = (−2t, t).

Therefore

W 2
2 (µ2→3

t , µ1) = min
{

5t2 − 7t +
13
2

, 5t2 − 3t +
9
2

}
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has a concave cusp at t = 1/2 and therefore is not λ-convex along the geodesic
µ2→3

t for any λ ∈ R.

9.2 Convexity along generalized geodesics

In dimension greater than 1, Example 9.1.5 shows that the squared Wasserstein
distance functional µ �→ W 2

2 (µ1, µ) is not 1-convex along geodesics (in fact, The-
orem 7.3.2 shows that it satisfies the opposite inequality).

On the other hand, the theory developed in Chapter 4 indicates that 1-
convexity of the squared distance is a quite essential property and that we can
exploit the flexibilty in the choice of the connecting curve, along which 1-convexity
should be checked. Therefore, here we are looking for such kind of curves (in the
case of the “Hilbertian-like” 2-Wasserstein distance) and for the related concept
of convexity for functionals.

Let us first suppose that the reference measure µ1 is regular, i.e. µ1 ∈ Pr
2 (X)

and let µ2, µ3 be given in P2(X); we can find two optimal transport maps t2 =
tµ2

µ1 , t3 = tµ3

µ1 as in (7.1.4) such that

W 2
2 (µ1, µi) =

∫
X

|ti(x)− x|2 dµ1(x), i = 2, 3. (9.2.1)

Equation (9.2.1) reduces the evaluation of the Wasserstein distance to an integral
with respect to the fixed measure µ1: it is therefore quite natural to interpolate
between µ2 and µ3 by using t2 and t3, i.e. setting

µ2→3
t = (t2→3

t )#µ1 where t2→3
t := (1− t)t2 + t t3, t ∈ [0, 1]. (9.2.2)

Since t2→3
t is obviously cyclically monotone, we have

W 2
2 (µ1, µ2→3

t ) =
∫

X

|t2→3
t (x)−x|2 dµ1(x) =

∫
X

|(1− t)t2(x)+ tt3(x)−x|2 dµ1(x),

and therefore an easy calculation shows

W 2
2 (µ1, µ2→3

t ) = (1− t)
∫

X

|t2(x)− x|2 dµ1(x) + t

∫
X

|t3(x)− x|2 dµ1(x)

− t(1− t)
∫

X

|t2(x)− t3(x)|2 dµ1(x) (9.2.3)

≤ (1− t)W 2
2 (µ1, µ2) + tW 2

2 (µ1, µ3)− t(1− t)W 2
2 (µ2, µ3),

since ∫
X

|t2(x)− t3(x)|2 dµ1(x) ≥ W 2
2 (µ2, µ3).

This calculation shows that 1
2W 2

2 (µ1, ·) is 1-convex along the new interpolating
curve µ2→3

t given by (9.2.2).
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When µ1 is not regular, we have to substitute the optimal maps tµ2

µ , tµ3

µ1 with
optimal plans µ1 2 ∈ Γo(µ1, µ2), µ1 3 ∈ Γo(µ1, µ3): in order to interpolate between
them, we shall also introduce a 3-plan

µ ∈ P2(X3) such that π1 2
# µ = µ1 2, π1 3

# µ = µ1 3 and we set

µ2→3
t := (π2→3

t )#µ, where π2→3
t := (1− t)π2 + tπ3.

(9.2.4)

Recalling that in (7.3.2) we set

W 2
µ(µ2, µ3) :=

∫
X3
|x3 − x2|2 dµ(x1, x2, x3) ≥ W 2

2 (µ2, µ3), (9.2.5)

we have

Lemma 9.2.1. Let µ1, µ2, µ3 ∈ P2(X) and let

µ ∈ Γ(µ1, µ2, µ3) such that µ1,i = π1 i
# µ ∈ Γo(µ1, µi), i = 2, 3. (9.2.6)

Then, defining µ2→3
t as in (9.2.4), we get

W 2
2 (µ1,µ2→3

t ) =
∫

X3
|(1− t)x2 + tx3 − x1|2 dµ(x1, x2, x3) (9.2.7a)

= (1− t)W 2
2 (µ1, µ2) + tW 2

2 (µ1, µ3)− t(1− t)W 2
µ(µ2, µ3) (9.2.7b)

≤ (1− t)W 2
2 (µ1, µ2) + tW 2

2 (µ1, µ3)− t(1− t)W 2
2 (µ2, µ3). (9.2.7c)

The inequality (9.2.7c) implies that 1
2W 2

2 (µ1, ·) is 1-convex along the curve µ2→3
t .

Proof. We argue as for (9.2.3), by introducing the transfer plan

µ1,2→3
t :=

(
(1− t)π1,2 + tπ1,3

)
#

µ ∈ Γ(µ1, µ2→3
t );

by the definition of the Wasserstein distance and the Hilbertian identity (12.3.3)
it is immediate to see that

W 2
2 (µ1, µ2→3

t ) ≤
∫

X×X

|y1 − y2|2 dµ1,2→3
t (y1, y2) (9.2.8)

=
∫

X3
|(1− t)x2 + tx3 − x1|2 dµ(x1, x2, x3)

=
∫

X3

(
(1− t)|x2 − x1|2 + t|x3 − x1|2 − t(1− t)|x2 − x3|2

)
dµ(x1, x2, x3).

(9.2.9)

(9.2.9) yields (9.2.7b) since by (9.2.6) we have∫
X3
|x2 − x1|2 dµ(x1, x2, x3) =

∫
X2
|x2 − x1|2 dµ1 2(x1, x2) = W 2

2 (µ1, µ2),∫
X3
|x3 − x1|2 dµ(x1, x2, x3) =

∫
X2
|x3 − x1|2 dµ1 3(x1, x3) = W 2

2 (µ1, µ3);



9.2. Convexity along generalized geodesics 207

(9.2.7c) follows directly from the inequality (9.2.5).
Moreover, it is possible to see that (9.2.8) is in fact an equality, i.e. µ1,2→3

t ∈
Γo(µ1, µ2→3

t ), by checking that the support of µ1,2→3
t is cyclically monotone; by

the density property (5.2.6), we can simply check that π1,2→3
t

(
supp µ

)
is cycli-

cally monotone. We choose points (ai, bi) ∈ π1,2→3
t

(
supp µ

)
, i = 1, . . . , N and set

(a0, b0) := (aN , bN ); we thus find points b′i, b′′i such that

(ai, b
′
i) ∈ supp µ1,2, (ai, b

′′
i ) ∈ supp µ1,3, bi = (1− t)b′i + tb′′i .

Therefore the cyclical monotonicity of supp µ1,i gives

N∑
i=1

〈ai − ai−1, bi〉 =
N∑

i=1

〈ai − ai−1, (1− t)b′i + tb′′i 〉

= (1− t)
N∑

i=1

〈ai − ai−1, b
′
i〉+ t

N∑
i=1

〈ai − ai−1, b
′′
i 〉 ≥ 0. �

Taking account of Lemma 9.2.1, we introduce the following definitions.

Definition 9.2.2 (Generalized geodesics). A “generalized geodesic” joining µ2 to
µ3 (with base µ1) is a curve of the type

µ2→3
t = (π2→3

t )#µ t ∈ [0, 1],

where

µ ∈ Γ(µ1, µ2, µ3) and π1,2
# µ ∈ Γo(µ1, µ2), π1,3

# µ ∈ Γo(µ1, µ3). (9.2.10)

Remark 9.2.3. Remember that if µ1 ∈ Pr
2 (X) then by Lemma 5.3.2 and Theorem

6.2.10 there exists a unique generalized geodesic connecting µ2 to µ3 with base
µ1, since there exists a unique plan µ ∈ Γ(µ1, µ2, µ3) satisfying the optimality
condition π1,i

# µ ∈ Γo(µ1, µi), i = 2, 3. In fact, denoting by ti the optimal maps

tµi

µ1 pushing µ1 to µi, i = 2, 3, µ is given by

µ := (i× t2 × t3)#µ1. (9.2.11)

We thus recover the expression µ2→3
t =

(
(1− t)t2 + t t3

)
#

µ1 given by (9.2.2).

Definition 9.2.4 (Convexity along generalized geodesics). Given λ ∈ R, we say
that φ is λ-convex along generalized geodesics if for any µ1, µ2, µ3 ∈ D(φ) there
exists a generalized geodesic µ2→3

t induced by a plan µ ∈ Γ(µ1, µ2, µ3) satisfying
(9.2.10) such that

φ(µ2→3
t ) ≤ (1− t)φ(µ2) + tφ(µ3)− λ

2
t(1− t)W 2

µ(µ2, µ3) ∀t ∈ [0, 1], (9.2.12)

where W 2
µ(·, ·) is defined in (9.2.5).
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µ1

µ2

µ3

µ ∈ Γ(µ1, µ2, µ3)

µ1 2

µ1 3

µ2→3
t

geodesic induced by Γo(µ2, µ3)

generalized geodesic induced by µ

Figure 9.1: Generalized geodesics

Remark 9.2.5 (The case of optimal transport maps). If φ is convex along any
interpolating curve µ2→3

t induced by µ ∈ Γ(µ2, µ3), then φ is trivially convex
along generalized geodesics.

Remark 9.2.6. When λ �= 0 Definition 9.2.4 slightly differs from the analogous
metric Definition 2.4.1 in the modulus of convexity, since

W 2
µ(µ2, µ3) ≥ W 2

2 (µ2, µ3). (9.2.13)

In particular, when λ > 0 this condition is stronger than 2.4.1, whereas for λ < 0
(9.2.12) is weaker. The next lemma motivates this choice.

Lemma 9.2.7 ((τ−1 + λ)-convexity of Φ(τ, µ1; ·)). Suppose that φ : P2(X) →
(−∞, +∞] is a proper functional which is λ-convex along generalized geodesics for
some λ ∈ R. Then for each µ1 ∈ D(φ) and 0 < τ < 1

λ− the functional

Φ(τ, µ1; µ) :=
1
2τ

W 2
2 (µ1, µ) + φ(µ) satisfies the convexity Assumption 4.0.1.

Proof. We consider a plan µ satisfying (9.2.10) and we combine (9.2.7b) and
(9.2.12) and use (9.2.13) to obtain

Φ(τ, µ1; µ2→3
t ) ≤ (1− t)Φ(τ, µ1; µ2) + tΦ(τ, µ1; µ3)− 1

2
( 1
τ

+ λ
)
W 2

µ(µ2, µ3)

≤ (1− t)Φ(τ, µ1; µ2) + tΦ(τ, µ1; µ3)− 1
2
( 1
τ

+ λ
)
W 2

2 (µ2, µ3)

whenever τ−1 > −λ. �
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Remark 9.2.8 (Comparison between the two notions of convexity). If φ is λ-con-
vex on generalized geodesics then it is also λ-geodesically convex according to
Definition 9.1.1: it is sufficient to notice if we choose µ1 = µ3, then any µ ∈
Γ(µ1, µ2, µ3) such that π1,3

# µ ∈ Γo(µ1, µ3) is of the form of the form

µ =
∫

X2
δx1(x3) dµ1 2(x1, x2) where µ1 2 ∈ Γ(µ1, µ2).

Therefore, if we impose also that µ1 2 = π1,2
# µ ∈ Γo(µ1, µ2), then µ2→3

t is the
canonical geodesic interpolation

(
tπ1 + (1− t)π2

)
#

µ1 2.
We already know by Example 9.1.5 that 1

2W2(·, µ1) is not λ-convex along geo-
desics, and therefore is not λ-convex along generalized geodesics. On the other
hand, if we choose generalized geodesics with base point µ1 as in (9.2.10), then
1
2W 2

2 (·, µ1) is indeed 1−convex along these curves by Lemma 9.2.1. As Lemma
9.2.7 shows, this property is the key point to apply the theory of Chapter 4.

For λ-convex functionals on generalized geodesics we present now two proper-
ties which are analogous to the ones stated in Lemma 9.1.4 and Proposition 9.1.3.
We omit the proofs, which are similar to the previous ones.

Lemma 9.2.9 (Convexity along generalized geodesics and Γ-convergence). Let
φh : P2(X) → (−∞, +∞] be λ-convex on generalized geodesics. If φh Γ

(
P2(X)

)
-

converge to φ as h → ∞ as in (9.1.4), (9.1.5), then φ is λ-convex on gener-
alized geodesics. If λ ≥ 0 the same result holds for Γ

(
P(X)

)
-convergence, i.e.

Γ-convergence with respect to the narrow topology of P(X).

Proposition 9.2.10 (A criterion for convexity along generalized geodesics). Let
φ : P2(X) → (−∞, +∞] be a l.s.c. map such that for any µ ∈ D(φ) there exist
(µh) ⊂ Pr

2 (X) converging to µ with φ(µh) → φ(µ).
Then φ is λ-convex on generalized geodesics iff for every µ ∈ Pr

2 (X) and
for every couple of µ-essentially injective maps r0, r1 ∈ L2(µ; X) whose graph is
cyclically monotone we have

φ
((

(1− t)r0 + tr1
)
#

µ
)
≤ (1− t)φ

(
r0

#µ
)

+ tφ
(
r1

#µ
)

− λ

2
t(1− t)

∫
X

|r0(x)− r1(x)|2 dµ(x) ∀ t ∈ [0, 1].
(9.2.14)

9.3 Examples of convex functionals in Pp(X)

In this section we introduce the main classes of geodesically convex functionals.

Example 9.3.1 (Potential energy). Let V : X → (−∞, +∞] be a proper, lower
semicontinuous function whose negative part has a p-growth, i.e.

V (x) ≥ −A−B|x|p ∀x ∈ X for some A, B ∈ R. (9.3.1)
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In Pp(X) we define

V(µ) :=
∫

X

V (x) dµ(x). (9.3.2)

Evaluating V on Dirac’s masses we check that V is proper; since V − is uniformly
integrable w.r.t. any sequence (µn) converging in Pp(X) (see Proposition 7.1.5),
Lemma 5.1.7 shows that V is lower semicontinuous in Pp(X). If V is bounded
from below we have even, thanks to (5.1.15), lower semicontinuity w.r.t. narrow
convergence.

Recall that for functionals defined on a Hilbert space, λ-convexity means

V ((1− t)x1 + tx2) ≤ (1− t)V (x1) + tV (x2)− λ

2
t(1− t)|x1 − x2|2 ∀x1, x2 ∈ X.

(9.3.3)

Proposition 9.3.2 (Convexity of V). If V is λ-convex then for every µ1, µ2 ∈ D(V)
and µ ∈ Γ(µ1, µ2) we have

V(µ1→2
t ) ≤ (1− t)V(µ1) + tV(µ2)− λ

2
t(1− t)

∫
X2
|x1 − x2|2 dµ(x1, x2). (9.3.4)

In particular:

(i) If p = 2 then the functional V is λ-convex on generalized geodesics, according
to Definition 9.2.4 (in fact it is λ-convex along any interpolating curve, cf.
Remark 9.2.5).

(ii) If (p ≤ 2, λ ≥ 0) or (p ≥ 2, λ ≤ 0) then V is λ-geodesically convex in
Pp(X).

Proof. Since V is bounded from below by a continuous affine functional (if λ ≥ 0)
or by a quadratic function (if λ < 0) its negative part satisfies (9.3.1) for the
corresponding values of p considered in this lemma; therefore Definition (9.3.2)
makes sense.

Integrating (9.3.3) along any admissible transport plan µ ∈ Γ(µ1, µ2) with
µ1, µ2 ∈ D(V) we obtain (9.3.4), since

V(µ1→2
t ) =

∫
X2

V ((1− t)x1 + tx2) dµ(x1, x2)

≤
∫

X2

(
(1− t)V (x1) + tV (x2)− λ

2
t(1− t)|x1 − x2|2

)
dµ(x1, x2)

= (1− t)V(µ1) + tV(µ2)− λ

2
t(1− t)

∫
X2
|x1 − x2|2 dµ(x1, x2).

When p = 2 we obtain (9.2.12). When p �= 2 we choose µ ∈ Γo(µ1, µ2): for p > 2
we use the inequality∫

X2
|x1 − x2|2 dµ(x1, x2) ≤

(∫
X2
|x1 − x2|p dµ(x1, x2)

)2/p

= W 2
p (µ1, µ2),
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whereas, for p < 2, we use the reverse one∫
X2
|x1 − x2|2 dµ(x1, x2) ≥

(∫
X2
|x1 − x2|p dµ(x1, x2)

)2/p

= W 2
p (µ1, µ2).

�
Remark 9.3.3. Since V(δx) = V (x), it is easy to check that the conditions on V
are also necessary for the validity of the previous proposition.

Example 9.3.4 (Interaction energy). Let us fix an integer k > 1 and let us con-
sider a lower semicontinuous function W : Xk → (−∞, +∞], whose negative part
satisfies the usual p-growth condition. Denoting by µ×k the measure µ×µ×· · ·×µ
on Xk, we set

Wk(µ) :=
∫

Xk

W (x1, x2, . . . , xk) dµ×k(x1, x2, . . . , xk). (9.3.5)

If
∃x ∈ X : W (x, x, . . . , x) < +∞, (9.3.6)

then Wk is proper; its lower semicontinuity follows from the fact that

µn → µ in Pp(X) =⇒ µ×k
n → µ×k in Pp(Xk). (9.3.7)

Here the typical example is k = 2 and W (x1, x2) := W̃ (x1 − x2) for some W̃ :
X → (−∞, +∞] with W̃ (0) < +∞.

Proposition 9.3.5 (Convexity of W). If W is convex then the functional Wk is
convex along any interpolating curve µ1→2

t , µ ∈ Γ(µ1, µ2), in Pp(X) (cf. Remark
9.2.5).

Proof. Observe that Wk is the restriction to the subset

P×
p (Xk) :=

{
µ×k : µ ∈ Pp(X)

}
of the potential energy functional W on Pp(Xk) given by

W(µ) :=
∫

Xk

W (x1, . . . , xk) dµ(x1, . . . , xk).

We consider the linear permutation of coordinates P : (X2)k → (Xk)2 defined by

P
(
(x1, y1), (x2, y2), . . . , (xk, yk)

)
:=

(
(x1, . . . xk), (y1, . . . yk)

)
.

If µ ∈ Γ(µ1, µ2) then it is easy to check that P#µ×k ∈ Γ(µ×k
1 , µ×k

2 ) ⊂ P((Xk)2)
and

(π1→2
t )#P#(µ×k) = P#

(
(π1→2

t )#µ
)×k

.

Therefore all the convexity properties for Wk follow from the corresponding ones
of W . �
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In the next example we limit us to consider the finite dimensional case X :=
Rd, since the Lebesgue measure L d will play a distinguished role.

Example 9.3.6 (Internal energy). Let F : [0, +∞) → (−∞, +∞] be a proper, lower
semicontinuous convex function such that

F (0) = 0, lim inf
s↓0

F (s)
sα

> −∞ for some α >
d

d + p
. (9.3.8)

We consider the functional F : Pp(Rd) → (−∞, +∞] defined by

F(µ) :=

{∫
Rd F (ρ(x)) dL d(x) if µ = ρ ·L d ∈ Pr

p (Rd),
+∞ otherwise,

(9.3.9)

and its relaxed envelope F∗ defined as

F∗(µ) := inf
{

lim inf
n→+∞F(µn) : µn → µ in Pp(Rd)

}
. (9.3.10)

Remark 9.3.7 (The meaning of condition (9.3.8)). Condition (9.3.8) simply guar-
antees that the negative part of F (µ) is integrable in Rd. For, let us observe that
there exist nonnegative constants c1, c2 such that the negative part of F satisfies

F−(s) ≤ c1s + c2s
α ∀ s ∈ [0, +∞),

and it is not restrictive to suppose α ≤ 1. Since µ = ρ L d ∈ Pp(Rd) and αp
1−α > d

we have∫
Rd

ρα(x) dL d(x) =
∫

Rd

ρα(x)(1 + |x|)αp(1 + |x|)−αp dL d(x)

≤
(∫

Rd

ρ(x)(1 + |x|)p dL d(x)
)α(∫

Rd

(1 + |x|)−αp/(1−α) dL d(x)
)1−α

< +∞

and therefore F−(ρ) ∈ L1(Rd).

Remark 9.3.8 (Lower semicontinuity of F). General results on integral functionals
[11] show that [79, 31] F∗ = F on Pr

p(Rd) and that F∗ = F on the whole of
Pp(Rd) if F has a superlinear growth at infinity.

Proposition 9.3.9 (Convexity of F). If

the map s �→ sdF (s−d) is convex and non increasing in (0, +∞), (9.3.11)

then the functionals F , F∗ are convex along (generalized, if p = 2) geodesics in
Pp(Rd).

Proof. By Proposition 9.1.3 we can limit us to check the geodesic convexity of F :
thus we consider two regular measures µi = ρiL d ∈ D(F) ⊂ Pr

p(Rd), i = 1, 2,
and the optimal transport map r for the p-Wasserstein distance Wp such that
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r#µ1 = µ2. Setting rt := (1 − t)i + tr, by Theorem 7.2.2 we know that rt is
an optimal transport map between µ1 and µt := rt#µ1 for any t ∈ [0, 1], and
Lemma 7.2.1 (for t ∈ [0, 1)) and the assumption µ2 ∈ Pr

p(Rd) (for t = 1) show
that (i × rt)#µ1 = (st × i)#µt for some optimal transport map st, therefore
st ◦ rt = i µ1-a.e. in Rd. This proves that rt is µ1-essentially injective for any
t ∈ [0, 1].

By Theorem 6.2.7 we know that r is approximately differentiable µ1-a.e. and
∇̃r is diagonalizable with nonnegative eigenvalues; since µ2 is regular, by Lemma
5.5.3 det ∇̃r(x) > 0 for µ1-a.e. x ∈ Rd. Therefore ∇̃rt is diagonalizable, too,
with strictly positive eigenvalues: applying Lemma 5.5.3 again we get µ1→2

t :=
(rt)#µ1 ∈ Pr

p(Rd) and

µ1→2
t = ρtL

d with ρt(rt(x)) =
ρ1(x)

det ∇̃rt(x)
for µ1-a.e. x ∈ Rd.

By (5.5.3) it follows that

F(µt) =
∫

Rd

F (ρt(y)) dy =
∫

Rd

F
( ρ(x)

det ∇̃rt(x)

)
det ∇̃rt(x) dx.

Since for a diagonalizable map D with nonnegative eigenvalues

t �→ det((1− t)I + tD)1/d is concave in [0, 1], (9.3.12)

the integrand above may be seen as the composition of the convex and non-
increasing map s �→ sdF (ρ(x)/sd) and of the concave map in (9.3.12), so that
the resulting map is convex in [0, 1] for µ1-a.e. x ∈ Rd. Thus we have

F
( ρ1(x)

det ∇̃rt(x)

)
det ∇̃rt(x) ≤ (1− t)F (ρ1(x)) + tF (ρ2(x))

and the thesis follows by integrating this inequality in Rd.
In order to check the convexity along generalized geodesics in the case p = 2,

we apply Proposition 9.2.10: we have to choose µ ∈ Pr
2 (X) and two optimal

transport maps r0, r1 ∈ L2(µ; X), setting rt := (1−t)r0+tr1. We know that r0, r1

are approximately differentiable, µ-essentially injective, and that ∇̃r0, ∇̃r1 are
symmetric (since p = 2) and strictly positive definite for µ-a.e. x ∈ Rd; moreover,
by applying (6.2.9) to r0 and r1 we get

〈rt(x)− rt(y), x− y〉 = (1− t)〈r0(x)− r0(y), x− y〉+ t〈r1(x)− r1(y), x− y〉 > 0

for x, y ∈ Rd \ N , for a suitable µ-negligible subset N of Rd. It follows that rt

are µ-essentially injective as well and we can argue as before by exploiting the
symmetry of ∇̃r0, ∇̃r1, obtaining

F(µt) ≤ (1− t)F(µ0) + tF(µ1) for µt := (rt)#µ. �
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In order to express (9.3.11) in a different way, we introduce the function

LF (z) := zF ′(z)− F (z) which satisfies − LF (e−z)ez =
d

dz
F (e−z)ez; (9.3.13)

denoting by F̂ the modified function F (e−z)ez we have the simple relation

L̂F (z) = − d

dz
F̂ (z), L̂2

F (z) = − d

dz
L̂F (z) =

d2

dz2
F̂ (z), where

L2
F (z) := LLF

(z) = zL′
F (z)− LF (z).

(9.3.14)

The nonincreasing part of condition (9.3.11) is equivalent to say that

LF (z) ≥ 0 ∀ z ∈ (0, +∞), (9.3.15)

and it is in fact implied by the convexity of F . A simple computation in the case
F ∈ C2(0, +∞) shows

d2

ds2
F (s−d)sd =

d2

ds2
F̂ (d · log s) = L̂2

F (d · log s)
d2

s2
+ L̂F (d · log s)

d

s2
,

and therefore

(9.3.11) is equivalent to L2
F (z) ≥ −1

d
LF (z) ∀ z ∈ (0, +∞), (9.3.16)

i.e.

zL′
F (z) ≥ (

1− 1
d

)
LF (z), the map z �→ z1/d−1LF (z) is non increasing. (9.3.17)

Observe that the bigger is the dimension d, the stronger are the above conditions,
which always imply the convexity of F .

Remark 9.3.10 (A “dimension free” condition). The weakest condition on F yield-
ing the geodesic convexity of F in any dimension is therefore

L2
F (z) = zL′

F (z)− LF (z) ≥ 0 ∀ z ∈ (0, +∞). (9.3.18)

Taking into account (9.3.14), this is also equivalent to ask that

the map s �→ F (e−s)es is convex and non increasing in (0, +∞). (9.3.19)

Among the functionals F satisfying (9.3.11) we quote:

the entropy functional: F (s) = s log s, (9.3.20)

the power functional: F (s) =
1

m− 1
sm for m ≥ 1− 1

d
. (9.3.21)
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Observe that (9.3.20) and (9.3.21) with m > 1 also satisfy (9.3.19) and F = F∗,
by Remark 9.3.8; on the other hands, if m < 1, F∗ is given by [79, 31]

F∗(µ) :=
1

m− 1

∫
Rd

F (ρ(x)) dL d(x) with µ = ρ ·L d + µs, µs ⊥ L d. (9.3.22)

In this case the functional takes only account of the density of the absolutely
continuous part of µ w.r.t. L d and the domain of F∗ is the whole Pp(Rd), which
strictly contains Pr

p(Rd).

Example 9.3.11 (The opposite Wasserstein distance). In the separable Hilbert
space X let us fix a base measure µ1 ∈ P2(X) and let us consider the functional

φ(µ) := −1
2
W 2

2 (µ1, µ). (9.3.23)

Proposition 9.3.12. For each couple µ2, µ3 ∈ P2(X) and each transfer plan µ2 3 ∈
Γ(µ2, µ3) we have

W 2
2 (µ1, µ2→3

t ) ≥ (1− t)W 2
2 (µ1, µ2) + tW 2

2 (µ1, µ3)

− t(1− t)
∫

X2
|x2 − x3|2 dµ2 3(x2, x3) ∀ t ∈ [0, 1].

(9.3.24)

In particular, by Remark 9.2.5, the map φ : µ �→ −1
2W 2

2 (µ1, µ) is (−1)-convex
along generalized geodesics.

Proof. We argue as in Theorem 7.3.2: by Proposition 7.3.1, for µ2, µ3 ∈ P2(X)
and µ2 3 ∈ Γ(µ2, µ3) we can find a plan µ ∈ Γ(µ1, µ2, µ3) such that

(π1,2→3
t )#µ ∈ Γo(µ1, µ2→3

t ), (π2,3)#µ = µ2 3. (9.3.25)

Therefore

W 2
2 (µ1, µ2→3

t ) =
∫

X3
|(1− t)x2 + tx3 − x1|2 dµ(x1, x2, x3)

=
∫

X3

(
(1− t)|x2 − x1|2 + t|x3 − x1|2 − t(1− t)|x2 − x3|2

)
dµ(x1, x2, x3)

≥ (1− t)W 2
2 (µ1, µ2) + tW 2

2 (µ1, µ3)− t(1− t)
∫

X2
|x2 − x3|2 dµ2 3(x2, x3).

�

9.4 Relative entropy and convex functionals of

measures

In this section we study in detail the case of relative entropies, which extend even
to infinite dimensional spaces the example (9.3.20) discussed in 9.3.6: for more
details and developments we refer to [67].
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Definition 9.4.1 (Relative entropy). Let γ, µ be Borel probability measures on a
separable Hilbert space X; the relative entropy of µ w.r.t. γ is

H(µ|γ) :=

⎧⎨⎩
∫

X

dµ

dγ
log

(
dµ

dγ

)
dγ if µ � γ,

+∞ otherwise.
(9.4.1)

As in Example 9.3.6 we introduce the nonnegative, l.s.c., (extended) real,
(strictly) convex function

H(s) :=

⎧⎪⎨⎪⎩
s(log s− 1) + 1 if s > 0,

1 if s = 0,

+∞ if s < 0,

(9.4.2)

and we observe that

H(µ|γ) =
∫

X

H
(dµ

dγ

)
dγ ≥ 0; H(µ|γ) = 0 ⇔ µ = γ. (9.4.3)

Remark 9.4.2 (Changing γ). Let γ be a Borel measure on X and let V : X →
(−∞, +∞] a Borel map such that

V + has p-growth (5.1.21), γ̃ := e−V · γ is a probability measure. (9.4.4)

Then for measures in Pp(X) the relative entropy w.r.t. γ is well defined by the
formula

H(µ|γ) := H(µ|γ̃)−
∫

X

V (x) dµ(x) ∈ (−∞, +∞] ∀µ ∈ Pp(X). (9.4.5)

In particular, when X = Rd and γ is the d-dimensional Lebesgue measure, we find
the standard entropy functional introduced in (9.3.20).

More generally, we can consider a

proper, l.s.c., convex function F : [0, +∞) → [0, +∞]
with superlinear growth

(9.4.6)

and the related functional

F(µ|γ) :=

⎧⎨⎩
∫

X

F
(dµ

dγ

)
dγ if µ � γ,

+∞ otherwise.
(9.4.7)

Lemma 9.4.3 (Joint lower semicontinuity). Let γn, µn ∈ P(X) be two sequences
narrowly converging to γ, µ in P(X�). Then

lim inf
n→∞ H(µn|γn) ≥ H(µ|γ), lim inf

n→∞ F(µn|γn) ≥ F(µ|γ). (9.4.8)
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The proof of this lemma follows easily from the next representation formula;
before stating it, we need to introduce the conjugate function of F

F ∗(s∗) := sup
s≥0

s · s∗ − F (s) < +∞ ∀ s∗ ∈ R, (9.4.9)

so that
F (s) = sup

s∗∈R

s∗ · s− F ∗(s∗); (9.4.10)

if s0 ≥ 0 is a minimizer of F then

F ∗(s∗) ≥ s∗s0 − F (s0), s ≥ s0 ⇒ F (s) = sup
s∗≥0

s∗ · s− F ∗(s∗). (9.4.11)

In the case of the entropy functional, we have H∗(s∗) = es∗ − 1.

Lemma 9.4.4 (Duality formula). For any γ, µ ∈ P(X) we have

F(µ|γ) = sup
{∫

X

S∗(x) dµ(x)−
∫

X

F ∗(S∗(x)) dγ(x) : S∗ ∈ C0
b (X�)

}
. (9.4.12)

Proof. This lemma is a particular case of more general results on convex integrals
of measures, well known in the case of a finite dimensional space X, see for instance
§2.6 of [11]. We present here a brief sketch of the proof for a general Hilbert space;
up to an addition of a constant, we can always assume F ∗(0) = −mins≥0 F (s) =
−F (s0) = 0.

Let us denote by F ′(µ|γ) the right hand side of (9.4.12). It is obvious that
F ′(µ|γ) ≤ H(µ|γ), so that we have to prove only the converse inequality.

First of all we show that F ′(µ|γ) < +∞ yields that µ � γ. For let us fix
s∗, ε > 0 and a Borel set A with γ(A) ≤ ε/2. Since µ, γ are tight measures (recall
that B(X) = B(X�), compact subset of X are compact in X�, too, and X� is
a separable metric space) we can find a compact set K ⊂ A, an open set (in X�)
G ⊃ A and a continuous function ζ : X� → [0, s∗] such that

µ(G \K) ≤ ε, γ(G) ≤ ε, ζ(x) = s∗ on K, ζ(x) = 0 on X \G.

Since F ∗ is increasing (by Definition (9.4.9)) and F ∗(0) = 0, we have

s∗µ(K)− F ∗(s∗)ε ≤
∫

K

ζ(x) dµ(x)−
∫

G

F ∗(ζ(x)) dγ(x)

≤
∫

X

ζ(x) dµ(x)−
∫

X

F ∗(ζ(x)) dγ(x) ≤ F ′(µ|γ)

Taking the supremum w.r.t. K ⊂ A and s∗ ≥ 0, and using (9.4.11) we get

εF
(
µ(A)/ε

) ≤ F ′(µ|γ) if µ(A) ≥ εs0.

Since F (s) has a superlinear growth as s → +∞, we conclude that µ(A) → 0 as
ε ↓ 0.
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Now we can suppose that µ = ρ · γ for some Borel function ρ ∈ L1(γ), so
that

F ′(µ|γ) = sup
{∫

X

(
S∗(x)ρ(x)− F ∗(S∗(x))

)
dγ(x) : S∗ ∈ C0

b (X�)
}

and, for a suitable dense countable set C = {s∗n}n∈N ⊂ R

F(µ|γ) =
∫

X

sup
s∗∈C

(
s∗ρ(x)− F ∗(s∗)

)
dγ(x)

= lim
k→∞

∫
X

sup
s∗∈Ck

(
s∗ρ(x)− F ∗(s∗)

)
dγ(x)

where Ck = {s∗1, · · · , s∗k}. Our thesis follows if we show that for every k∫
X

max
s∗∈Ck

(
s∗ρ(x)− F ∗(s∗)

)
dγ(x) ≤ F ′(µ|γ). (9.4.13)

For we call

Aj =
{

x ∈ X : s∗jρ(x)− F ∗(s∗j ) ≥ s∗i ρ(x)− F ∗(s∗i ) ∀ i ∈ {1, . . . , k}
}

,

and

A′
1 = A1, A′

j+1 = Aj+1 \
( j⋃

i=1

Ai

)
.

Since γ is Radon, we find compact sets Kj ⊂ A′
j , X�-open sets Gj ⊃ Aj with

Gj ∩Ki = ∅ if i �= j, and X�-continuous functions ζj such that

k∑
j=1

γ(Gj \Kj) + µ(Gj \Kj) ≤ ε, ζj ≡ s∗j on Kj , ζj ≡ 0 on X \Gj .

Denoting by ζ :=
∑k

j=1 ζj , M :=
∑k

j=1 |s∗j |, since the negative part of F ∗(s∗) is
bounded above by |s∗|s0 we have∫

X

max
s∗∈Ck

(
s∗ρ(x)− F ∗(s∗)

)
dγ(x) =

k∑
j=1

∫
A′

j

(
s∗jρ(x)− F ∗(s∗j )

)
dγ(x)

≤
k∑

j=1

∫
Kj

(
s∗jρ(x)− F ∗(s∗j )

)
dγ(x) + ε(M + Ms0)

=
k∑

j=1

∫
Kj

(
ζ(x)ρ(x)− F ∗(ζ(x))

)
dγ(x) + ε(M + Ms0)

≤
∫

X

(
ζ(x)ρ(x)− F ∗(ζ(x))

)
dγ(x) + ε(M + Ms0 + M + F ∗(M)).

Passing to the limit as ε ↓ 0 we get (9.4.13). �
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Lemma 9.4.5 (Entropy and marginals). Let π : X → X be a Borel map. For every
couple of probability measures γ, µ ∈ P(X) we have

H(π#µ|π#γ) ≤ H(µ|γ), F(π#µ|π#γ) ≤ F(µ|γ). (9.4.14)

Proof. It is not restrictive to assume that µ � γ: we denote by ρ a Borel map
γ-a.e. equal to the density dµ

dγ ; applying the disintegration theorem we can find a
Borel family of probability measures γx in X such that γ =

∫
X

γx d π#γ(x) and
γx(X \ π−1(x)) = 0 for π#γ-a.e. x.

It follows that µ and π#µ admit the representation

µ =
∫

X

ργx d π#γ(x) and π#µ = ρ̃ · π#γ with ρ̃(x) :=
∫

π−1(x)

ρ(y) dγx(y)

since for each Borel set A ⊂ X one has∫
π−1(A)

dµ(x) =
∫

A

(∫
π−1(x)

ρ(y) dγx(y)
)

d π#γ(x).

Jensen inequality yields

F (ρ̃(x)) ≤
∫

π−1(x)

F (ρ(y)) dγx(y),

and therefore

F(π#µ|π#γ) =
∫

X

F (ρ̃(x)) d π#γ(x) ≤
∫

X

(∫
π−1(x)

F (ρ(y)) dγx(y)
)

d π#γ(x)

≤
∫

X

F (ρ(x)) dγ(x) = F(µ|γ).
�

Corollary 9.4.6. Let πk : X → X be Borel maps such that

lim
k→∞

πk(x) = x ∀x ∈ X.

For every γ, µ ∈ P(X), setting γk := πk
#γ, µk := πk

#µ, we have

lim
k→∞

H(µk|γk) = H(µ|γ), lim
k→∞

F(µk|γk) = F(µ|γ). (9.4.15)

Proof. Lebesgue’s dominated convergence theorem shows that γk, µk narrowly
converge to γ, µ respectively. Combining Lemma 9.4.3 and 9.4.5 we conclude. �
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9.4.1 Log-concavity and displacement convexity

We want to characterize the probability measures γ inducing a geodesically con-
vex relative entropy functional H(·|γ) in Pp(X). The following lemma provides
the first crucial property; the argument is strictly related to the proof of the
Brunn-Minkowski inequality for the Lebesgue measure, obtained via optimal trans-
portation inequalities [126]. See also [25] for the link between log-concavity and
representation formulae like (9.4.23).

Lemma 9.4.7 (γ is log-concave if H(·|γ) is displacement convex). Suppose that
for each couple of probability measures µ1, µ2 ∈ P(X) with bounded support,
there exists µ ∈ Γ(µ1, µ2) such that H(·|γ) is convex along the interpolating curve
µ1→2

t =
(
(1−t)π1+tπ2

)
#

µ, t ∈ [0, 1]. Then for each couple of open sets A, B ⊂ X

and t ∈ [0, 1] we have

log γ((1− t)A + tB) ≥ (1− t) log γ(A) + t log γ(B). (9.4.16)

Proof. We can obviously assume that γ(A) > 0, γ(B) > 0 in (9.4.16); we consider

µ1 := γ(·|A) =
1

γ(A)
χA · γ, µ2 := γ(·|B) =

1
γ(B)

χB · γ,

observing that

H(µ1|γ) = − log γ(A), H(µ2|γ) = − log γ(B). (9.4.17)

If µ1→2
t is induced by a transfer plan µ ∈ Γ(µ1, µ2) along which the relative entropy

is displacement convex, we have

H(µ1→2
t |γ) ≤ (1− t)H(µ1|γ) + tH(µ2|γ) = −(1− t) log γ(A)− t log γ(B).

On the other hand the measure µ1→2
t is concentrated on (1−t)A+tB = π1→2

t (A×
B) and the next lemma shows that

− log γ((1− t)A + tB) ≤ H(µ1→2
t |γ). �

Lemma 9.4.8 (Relative entropy of concentrated measures). Let γ, µ ∈ P(X); if
µ is concentrated on a Borel set A, i.e. µ(X \A) = 0, then

H(µ|γ) ≥ − log γ(A). (9.4.18)

Proof. It is not restrictive to assume µ � γ and γ(A) > 0; denoting by γA the
probability measure γ(·|A) := γ(A)−1χA · γ, we have

H(µ|γ) =
∫

X

log
(dµ

dγ

)
dµ =

∫
A

log
( dµ

dγA
· 1
γ(A)

)
dµ

=
∫

A

log
( dµ

dγA

)
dµ−

∫
A

log
(
γ(A)

)
dµ = H(µ|γA)− log

(
γ(A)

)
≥ − log

(
γ(A)

)
. �
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The previous results justifies the following definition:

Definition 9.4.9 (log-concavity of a measure). We say that a Borel probability
measure γ ∈ P(X) on X is log-concave if for every couple of open sets A, B ⊂ X
we have

log γ((1− t)A + tB) ≥ (1− t) log γ(A) + t log γ(B). (9.4.19)

In Definition 9.4.9 and also in the previous theorem we confined ourselves to
pairs of open sets, to avoid the non trivial issue of the measurability of (1−t)A+tB
when A and B are only Borel (in fact, it is an open set whenever A and B are
open). Observe that a log-concave measure γ in particular satisfies

log γ(Br((1− t)x0 + tx1)) ≥ (1− t) log γ(Br(x0)) + t log γ(Br(x1)), (9.4.20)

for every couple of points x0, x1 ∈ X, r > 0, t ∈ [0, 1].
We want to show that in fact log concavity is equivalent to the geodesic

convexity of the Relative Entropy functional H(·|γ).
Let us first recall some elementary properties of convex sets in Rd. Let C ⊂ Rd

be a convex set; the affine dimension dim C of C is the linear dimension of its
affine envelope

aff C =
{
(1− t)x0 + tx1 : x0, x1 ∈ C, t ∈ R

}
, (9.4.21)

which is an affine subspace of Rd. We denote by int C the relative interior of C as
a subset of aff C: it is possible to show that

int C �= ∅, int C = C, H k(C \ int C) = 0 if k = dimC. (9.4.22)

Theorem 9.4.10. Let us suppose that X = Rd is finite dimensional and γ ∈ P(X)
satisfies the log-concavity assumptions on balls (9.4.20). Then supp γ is convex
and there exists a convex l.s.c. function V : X → (∞, +∞] such that

γ = e−V ·H k|aff(supp γ)
, where k = dim(supp γ). (9.4.23)

Conversely, if γ admits the representation (9.4.23) then γ is log-concave and the
relative entropy functional H(·|γ) is convex along any (generalized, if p = 2)
geodesic of Pp(X).

Proof. Let us suppose that γ satisfies the log-concave inequality on balls and
let k be the dimension of aff(supp γ). Observe that the measure γ satisfies the
same inequality (9.4.20) for the balls of aff(supp γ): up to an isometric change of
coordinates it is not restrictive to assume that k = d and aff(supp γ) = Rd.

Let us now introduce the set

D :=
{

x ∈ Rd : lim inf
r↓0

γ(Br(x))
rd

> 0
}
. (9.4.24)
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Since (9.4.20) yields

γ(Br(xt))
rk

≥
(

γ(Br(x0))
rk

)1−t (
γ(Br(x1))

rk

)t

t ∈ (0, 1), (9.4.25)

it is immediate to check that D is a convex subset of Rd with D ⊂ supp γ.
General results on derivation of Radon measures in Rd (see for instance

Theorem 2.56 in [11]) show that

lim sup
r↓0

γ(Br(x))
rd

< +∞ for L d-a.e. x ∈ Rd (9.4.26)

and

lim sup
r↓0

rd

γ(Br(x))
< +∞ for γ-a.e. x ∈ Rd. (9.4.27)

Using (9.4.27) we see that actually γ is concentrated on D (so that supp γ ⊂ D)
and therefore, being d the dimension of aff(supp γ), it follows that d is also the
dimension of aff(D).

If a point x̄ ∈ Rd exists such that

lim sup
r↓0

γ(Br(x̄))
rd

= +∞,

then (9.4.25) forces every point of int(D) to verify the same property, but this
would be in contradiction with (9.4.26), since we know that int(D) has strictly
positive L d-measure. Therefore

lim sup
r↓0

γ(Br(x))
rd

< +∞ for all x ∈ Rd (9.4.28)

and we obtain that γ � L d, again by the theory of derivation of Radon measures
in Rd. In the sequel we denote by ρ the density of γ w.r.t. L d and notice that by
Lebesgue differentiation theorem ρ > 0 L d-a.e. in D and ρ = 0 L d-a.e. in Rd \D.

By (9.4.20) the maps

Vr(x) = − log
(γ(Br(x))

ωdrd

)
are convex on Rd, and (9.4.28) gives that the family Vr(x) is bounded as r ↓ 0 for
any x ∈ D. Using the pointwise boundedness of Vr on D and the convexity of Vr

it is easy to show that Vr are locally equi-bounded (hence locally equi-continuous)
on int(D) as r ↓ 0. Let W be a limit point of Vr, with respect to the local uniform
convergence, as r ↓ 0: W is convex on int(D) and Lebegue differentiation theorem
shows that

∃ lim
r↓0

Vr(x) = − log ρ(x) = W (x) for L d-a.e. x ∈ int(D), (9.4.29)
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so that γ = ρL d = e−W χint(D)L
d. In order to get a globally defined convex and

l.s.c function V we extend W with the +∞ value out of int(D) and define V to
be its convex and l.s.c. envelope. It turns out that V coincides with W on int(D),
so that still the representation γ = e−V L d holds.

Conversely, let us suppose that γ admits the representation (9.4.23) for a
given convex l.s.c. function V and let µ1, µ2 ∈ Pp(X); if their relative entropies
are finite then they are absolutely continuous w.r.t. γ and therefore their sup-
ports are contained in aff(supp γ). It follows that the support of any optimal plan
µ ∈ Γo(µ1, µ2) in Pp(X) is contained in aff(supp γ) × aff(supp γ): up to a linear
isometric change of coordinates, it is not restrictive to suppose aff(supp γ) = Rd,
µ1, µ2 ∈ Pp(Rd), γ = e−V ·L d ∈ P(Rd).

In this case we introduce the density ρi of µi w.r.t. L d observing that

dµi

dγ
= ρieV i = 1, 2,

where we adopted the convention 0 · (+∞) = 0 (recall that ρi(x) = 0 for L d-a.e.
x ∈ Rd \D(V )). Therefore the entropy functional can be written as

H(µi|γ) =
∫

Rd

ρi(x) log ρi(x) dx +
∫

Rd

V (x) dµi(x), (9.4.30)

i.e. the sum of two geodesically convex functionals, as we proved discussing Ex-
amples 9.3.1 and Examples 9.3.6. Lemma 9.4.7 yields the log-concavity of γ; the
case of generalized geodesics in P2(X) is completely analogous. �

The previous theorem shows that in finite dimensions log-concavity of γ is
equivalent to the convexity of H(µ|γ) along (even generalized, if p = 2) geodesics
of anyone of the Wasserstein spaces Pp(X): the link between these two concepts
is provided by the representation formula (9.4.23).

When X is an infinite dimensional Hilbert space, (9.4.23) is no more true in
general, but the equivalence between log-concavity and geodesic convexity of the
relative entropy still holds. In particular all Gaussian measures, defined in Defini-
tion 6.2.1, induce a geodesically convex relative entropy functional (see condition
(5) in the statement below).

Theorem 9.4.11. Let X be a separable Hilbert space and let γ ∈ P(X). The fol-
lowing properties are equivalent:

(1) H(·|γ) is geodesically convex in Pp(X) for every p ∈ (1, +∞).

(2) H(·|γ) is convex along generalized geodesics in P2(X).

(3) For every couple of measures µ1, µ2 ∈ P(X) with bounded support there
exists a connecting plan µ ∈ Γ(µ1, µ2) along with H(·|γ) is displacement
convex.

(4) γ is log-concave.



224 Chapter 9. Convex Functionals in Pp(X)

(5) For every finite dimensional orthogonal projection π : X → X, π#γ is rep-
resentable as in (9.4.23) for a suitable convex and l.s.c. function V .

Proof. The implications (1) ⇒ (3) and (2) ⇒ (3) are trivial, and (3) ⇒ (4) follows
by Lemma 9.4.7.
Now we show that (4) ⇒ (5), using Theorem 9.4.10: if A, B are (relatively) open
subsets of π(X) and t ∈ [0, 1] we should prove that

log
(
π#γ

(
(1− t)A + tB

)) ≥ (1− t) log
(
π#γ

(
A
))

+ t log
(
π#γ

(
B
))

. (9.4.31)

By definition π#γ
(
A
)

= γ
(
π−1A

)
, π#γ

(
B
)

= γ
(
π−1B

)
, and it is immediate to

check that
π#γ

(
(1− t)A + tB

)
= γ

(
(1− t)π−1A + tπ−1B

)
since π−1

(
(1 − t)A + tB

)
= (1 − t)π−1A + tπ−1B. Thus (9.4.31) follows by the

log-concavity of γ applied to the open sets π−1A, π−1B.
(5) ⇒ (1): we choose a sequence πh of finite dimensional orthogonal projections
on X such that πh(x) → x for any x ∈ X as h →∞, set γh := πh

#γ and

φh(µ) := H(µ|γh), φ(µ) := H(µ|γ) ∀µ ∈ P(X).

Since each functional φh is geodesically convex in Pp(X), by Theorem 9.4.10, the
thesis follows by Lemma 9.1.4 if we show that φ is the Γ-limit of φh as h → ∞:
thus we have to check conditions (9.1.4) and (9.1.5).

(9.1.4) follows immediately by Lemma 9.4.3; in order to check (9.1.5) we
simply choose µh := πh

#µ and we apply Corollary 9.4.6.
The implications (5) ⇒ (2) follows by the same approximation argument, invoking
Lemma 9.2.9. �

If γ is log-concave and F satisfies (9.3.19), then all the integral functionals
F(·|γ) introduced in (9.4.7) are geodesically convex in Pp(X) and convex along
generalized geodesics in P2(X).

Theorem 9.4.12 (Geodesical convexity for relative integral functionals). Suppose
that γ is log-concave and F : [0, +∞) → [0, +∞] satisfies conditions (9.4.6) and
(9.3.19). Then the integral functional F(·|γ) is geodesically convex in Pp(X) and
convex along generalized geodesics in P2(X).

Proof. The same approximation argument of the proof of the previous theorem
shows that it is sufficient to consider the final dimensional case X := Rd. Arguing
as in the final part of the proof of Theorem 9.4.10 we can assume that γ := e−V L d

for a convex l.s.c. function V : Rd → (−∞, +∞] whose domain has not empty
interior. For every couple of measure µ1, µ2 ∈ D(F(·|γ)) we have

µi = ρieV · γ, F(µi|γ) =
∫

Rd

F (ρi(x)eV (x))e−V (x) dx i = 1, 2. (9.4.32)
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As in Proposition 9.3.9, we denote by r the optimal transport map for the p-
Wasserstein distance pushing µ1 to µ2 and we set rt := (1−t)i+tr, µt := (rt)#µ1;
arguing as in that proposition, we get

F(µt|γ) =
∫

Rd

F
(ρ(x)eV (rt(x))

det ∇̃rt(x)

)
det ∇̃rt(x)e−V (rt(x)) dx, (9.4.33)

and the integrand above may be seen as the composition of the convex and non-
increasing map s �→ F (ρ(x)e−s)es with the concave curve

t �→ −V (rt(x)) + log(det ∇̃rt(x)),

since D(x) := ∇̃r(x) is a diagonalizable map with nonnegative eigenvalues and

t �→ log det
(
(1− t)I + tD(x)

)
is concave in [0, 1].

The case of convexity along generalized geodesics in P2(Rd) follows by the same
argument, recalling the final part of the proof of Proposition 9.3.9 once again.

�


