
3

Knowledge Representation and Ontologies
Logic, Ontologies and Semantic Web Languages

Stephan Grimm1, Pascal Hitzler2 and Andreas Abecker1

1 FZI Research Center for Information Technologies, University of Karlsruhe, Germany
{grimm,abecker}@fzi.de

2 Institute AIFB, University of Karlsruhe, Germany,
hitzler@aifb.uni-karlsruhe.de

Summary. In Artificial Intelligence, knowledge representation studies the formalisation of
knowledge and its processing within machines. Techniques of automated reasoning allow a
computer system to draw conclusions from knowledge represented in a machine-interpretable
form. Recently, ontologies have evolved in computer science as computational artefacts to pro-
vide computer systems with a conceptual yet computational model of a particular domain of
interest. In this way, computer systems can base decisions on reasoning about domain knowl-
edge, similar to humans. This chapter gives an overview on basic knowledge representation
aspects and on ontologies as used within computer systems. After introducing ontologies in
terms of their appearance, usage and classification, it addresses concrete ontology languages
that are particularly important in the context of the Semantic Web. The most recent and pre-
dominant ontology languages and formalisms are presented in relation to each other and a
selection of them is discussed in more detail.

3.1 Knowledge Representation

As a branch of symbolic Artificial Intelligence, knowledge representation and rea-
soning aim at designing computer systems that reason about a machine-interpretable
representation of the world, similar to human reasoning. Knowledge-based systems
have a computational model of some domain of interest in which symbols serve as
surrogates for real-world domain artefacts, such as physical objects, events, relation-
ships, etc. [45]. The domain of interest can cover any part of the real world or any
hypothetical system about which one desires to represent knowledge for computa-
tional purposes.

A knowledge-based system maintains a knowledge base which stores the sym-
bols of the computational model in form of statements about the domain, and it
performs reasoning by manipulating these symbols. Applications can base their deci-
sions on domain-relevant questions posed to a knowledge base.

{grimm,abecker}@fzi.de
hitzler@aifb.uni-karlsruhe.de

52 Stephan Grimm et al.

3.1.1 A Motivating Scenario

To illustrate principles of knowledge representation in this chapter, we introduce an
example scenario taken from a B2B travelling use case. In this scenario, companies
frequently book business trips for their employees, sending them to international
meetings and conference events. Such a scenario is a relevant use case for Semantic
Web Services, since companies desire to automate the online booking process, while
they still want to benefit from the high competition among various travel agencies
and no-frills airlines that sell tickets via the Internet. Automation is achieved by
computational agents deciding about whether an online offer of some travel agency
fits a request for a business trip or not, based on the knowledge they have about the
offer and the request. Knowledge represented in this domain of “business trips” is
about flights, trains, booking, companies and their employees, cities that are source
or destination for a trip, etc.

Knowledge-based systems use a computational representation of such knowledge
in form of statements about the domain of interest. Examples of such statements in
the business trips domain are “companies book trips for their employees”, “flights
and train rides are special kinds of trips” or “employees are persons employed at
some company”. This knowledge can be used to answer questions about the domain
of interest. From the given statements, and by means of automated deduction, a
knowledge-based system can, e.g., derive that “a person on a flight booked by a
company is an employee” or “the company that booked a flight for a person is the
person’s employer”.

In this way, a knowledge-based computational agent can reason about business
trips, similar to the way a human would. It could, e.g., tell apart offers for business
trips from offers for vacations, or decide whether the destination city for a requested
flight is close to the geographical region specified in an offer, or conclude that a
participant of a business flight is an employee of the company that booked the flight.

3.1.2 Forms of Representing Knowledge

If we look at current Semantic Web technologies and use cases, knowledge represen-
tation appears in different forms, the most prevalent of which are based on semantic
networks, rules and logic. Semantic network structures can be found in RDF graph
representations [30] or Topic Maps [41], whereas a formalisation of business knowl-
edge often comes in form of rules with some “if-then” reading, e.g., in business
rules or logic programming formalisms. Logic is used to realise a precise semantic
interpretation for both of the other forms. By providing formal semantics for knowl-
edge representation languages, logic-based formalisms lay the basis for automated
deduction. We will investigate these three forms of knowledge representation in the
following.

Semantic Networks

Originally, semantic networks stem from the “existential graphs” introduced by
Charles Peirce in 1896 to express logical sentences as graphical node-and-link

3 Knowledge Representation and Ontologies 53

diagrams [43]. Later on, similar notations have been introduced, such as conceptual
graphs [45], all differing slightly in syntax and semantics. Despite these differences,
all the semantic network formalisms concentrate on expressing the taxonomic struc-
ture of categories of objects and the relations between them. We use a general notion
of a semantic network, abstracting from the different concrete notations proposed.

A semantic network is a graph whose nodes represent concepts and whose arcs
represent relations between these concepts. They provide a structural representation
of statements about a domain of interest. In the business trips domain, typical con-
cepts would be “Company”, “Employee” or “Flight”, while typical relations would
be “books”, “isEmployedAt” or “participatesIn”. Figure. 3.1 shows an example of a
semantic network for the business trips domain.

Semantic networks provide a means to abstract from natural language, represent-
ing the knowledge that is captured in text in a form more suitable for computation.
The knowledge expressed in the network from Fig. 3.1 coincides with the content of
the following natural language text.

Employees of companies are persons, while both persons and companies are
legal entities. Companies book trips for their employees. These trips can be
flights or train rides which start and end in cities of Europe or the USA.
Companies themselves have locations which can be cities.
The company UbiqBiz books the flight FL4711 from London to New York
for Mister X.

Typically, concepts are chosen to represent the meaning of nouns in such a text, while
relations are mapped to verb phrases. The fragment Company books−−−−−→ Trip is

LegalEntity

Person Company

Employee

Trip City

Location

EUCity USCityFlight TrainRide

partic
ipatesIn

books

kindO
f

ki
nd

O
f

endsIn

startsFrom

ki
nd

O
f kindO

f

k
in

d
O

fkindO
f

ki
nd

O
f

isEmployedAt

k
in

d
O

f

isLocatedAt

UbiqBiz

MisterX FL4711

London

New York
endsIn

startsFromisEmployedAt books

participatesIn

is
A

is
A

is
A is

A

is
A

Fig. 3.1. A semantic network for business trips

54 Stephan Grimm et al.

read as “companies book trips”, expressed as a binary relation between two concepts.
However, this is not mandatory; the relation books−−−−−→ could also be “lifted” to a con-
cept Booking with relations hasActor−−−−−−−−→ , hasParticipant−−−−−−−−−−−−→ and hasObject−−−−−−−−→
pointing to Company , Employee and Trip , respectively. In this way, its ternary
character would be expressed more accurately than in the original network where the
information about an employee’s involvement in booking is implicit.

In principle, the concepts and relations in a semantic network are generic and
could stand for anything relevant in the domain of interest. However, some particu-
lar relations for some standard knowledge representation and reasoning cases have
evolved.

The semantic network in Fig. 3.1 illustrates the distinction between general con-
cepts, like Employee , and individual concepts, like MisterX . While the latter
represent concrete individuals or objects in the domain of interest, the former serve
as classes to group together such individuals that have certain properties in common,
as e.g. all employees. The particular relation which links individuals to their classes
is that of instantiation, denoted by isA−−−−→ . Thus, MisterX is called an instance of
the concept employee. The lower part of the network is concerned with knowledge
about individuals, reflecting a particular situation of the employee MisterX partic-
ipating in a certain flight, while the upper part is concerned with knowledge about
general concepts, reflecting various possible situations.

The most prominent type of relation in semantic networks, however, is that of
subsumption, which we denote by kindOf−−−−−−→ . A subsumption link connects two
general concepts and expresses specialisation or generalisation, respectively. In the
network in Fig. 3.1, a flight is said to be a special kind of trip, i.e. Trip subsumes
Flight . This means that any flight is also a trip; however, there might be other trips

which are not flights, such as train rides. Subsumption is associated with the notion
of inheritance in that a specialised concept inherits all the properties from its more
general parent concepts. For example, from the network one can read that a company
can be located in a European city, since locatedAt−−−−−−−−→ points from Company to
Location while EUCity is a kind of City which is itself a kind of Location . The

concept EUCity inherits the property of being a potential location for a company
from the concept Location .

Other particular relations that can be found in semantic network notations are,
e.g., partOf−−−−−−→ to denote part-whole relationships, etc.

Semantic networks are closely related to another form of knowledge representa-
tion called frame systems. In fact, frame systems and semantic networks can be iden-
tical in their expressiveness but use different representation metaphors [43]. While
the semantic network metaphor is that of a graph with concept nodes linked by rela-
tion arcs, the frame metaphor draws concepts as boxes, i.e. frames, and relations as
slots inside frames that can be filled by other frames. Thus, in the frame metaphor
the graph turns into nested boxes.

The semantic network form of knowledge representation is especially suitable for
capturing the taxonomic structure of categories for domain objects and for express-
ing general statements about the domain of interest. Inheritance and other rela-
tions between such categories can be represented in and derived from subsumption

3 Knowledge Representation and Ontologies 55

hierarchies. On the other hand, the representation of concrete individuals or even
data values, like numbers or strings, does not fit well the idea of semantic networks.

Rules

Another natural form of expressing knowledge in some domain of interest are rules
that reflect the notion of consequence. Rules come in the form of IF-THEN con-
structs and allow to express various kinds of complex statements. Rules can be found
in logic programming systems, like the language Prolog [31], deductive databases
[34] or business rules systems.

The following is an example of rules expressing knowledge in the business trips
domain, specified in their intuitive if-then reading.

(1) IF something is a flight THEN it is also a trip
(2) IF some person participates in a trip booked by some company

THEN this person is an employee of this company
(3) FACT the person MisterX participates in a flight booked by the company UbiqBiz
(4) IF a trip’s source and destination cities are close to each other

THEN the trip is by train

The IF part is also called the body of a rule, while the THEN part is also called
its head. Typically, rule-based knowledge representation systems operate on facts,
which are often formalised as a special kind of rule with an empty body. They start
from a given set of facts, like rule (3) above, and then apply rules in order to derive
new facts, thus “drawing conclusions”.

However, the intuitive reading with natural language phrases is not suitable for
computation, and therefore such phrases are formalised to predicates and variables
over objects of the domain of interest. A formalisation of the above rules in the
typical style of rule languages looks as follows.

(1) Trip(?t) :− Flight(?t)
(2) Employee(?p) ∧ isEmployedAt(?p, ?c) :−

Trip(?t) ∧ books(?c, ?t) ∧ Company(?c)∧
participatesIn(?p, ?t) ∧ Person(?p)

(3) Person(MisterX) ∧ participatesIn(MisterX,FL4711)∧
Flight(FL4711) ∧ books(UbiqBiz,FL4711) ∧ Company(UbiqBiz) :−

(4) TrainRide(?t) :−
Trip(?t) ∧ startsFrom(?t, ?s) ∧ endsIn(?t, ?d) ∧ close(?s, ?d)

In most logic programming systems, a rule is read as an inverse implication, starting
with the head followed by the body, which is indicated by the symbol : − that
resembles a backward arrow. In this formalisation, the intuitive notions from the text,
that were concepts and relations in the semantic network case, became predicates
linked through variables and constants that identify objects in the domain of interest.
Variables start with the symbol ? and take as their values the constants that occur in
facts such as (3).

Rule (1) captures inheritance – or subsumption – between trips and flights by
stating that “everything that is a flight is also a trip”. Rule (2) draws conclusions

56 Stephan Grimm et al.

about the status of employment for participants of business flights. From the facts
(3), these two rules are able to derive the implicit fact that “MisterX is an employee
of UbiqBiz”.

While the rules (1) and (2) express general domain knowledge, rule (4) can be
interpreted as part of some company’s travelling policy, stating that trips between
close cities shall be conducted by train. In business rules, e.g., rule-based formalisms
are used with the motivation to capture complex business knowledge in companies
like pricing models or delivery policies.

Rule-based knowledge representation systems are especially suitable
for reasoning about concrete instance data, i.e. simple facts of the form
Employee(MisterX). Complex sets of rules can efficiently derive implicit
facts from explicitly given ones. They are problematic if more complex and general
statements about the domain shall be derived which do not fit a rule’s head.

Logic

Both forms, semantic networks as well as rules, have been formalised using logic
to give them a precise semantics. Without such a precise formalisation they are
vague and ambiguous, and thus problematic for computational purposes. From just
the graphical representation of the semantic network in Fig. 3.1, e.g., it is not
clear whether companies can only book flights for their own employees or for
employees of partner companies as well. Neither is it clear from the fragment
Company books−−−−−→ Trip whether every company books trips or just some com-

pany. Also for rules, despite their much more formal appearance, the exact meaning
remains unclear when, e.g., forms of negation are introduced that allow for potential
conflicts between rules. Depending on the choice of procedural evaluation or flavour
of formal semantics, different derivation results are being produced.

The most prominent and fundamental logical formalism classically used for
knowledge representation is the “first-order predicate calculus”, or first-order logic
for short, and we choose this formalism to present logic as a form of knowledge rep-
resentation here. First-order logic allows one to describe the domain of interest as
consisting of objects, i.e. things that have individual identity, and to construct logical
formulas around these objects formed by predicates, functions, variables and logical
connectives [43]. We assume that the reader is familiar with the notation of first-order
logic from formalisations of various mathematical disciplines.

Similar to semantic networks, most statements in natural language can be
expressed in terms of logical sentences about objects of the domain of interest with
an appropriate choice of predicate and function symbols. Concepts are mapped to
unary, relations to binary predicates. We illustrate the use of logic for knowledge
representation by axiomatising parts of the semantic network from Fig. 3.1 more
precisely.

Subsumption, e.g., can be directly expressed by a logical implication, which is
illustrated in the translation of the following fragment.

Employee kindOf−−−−−−→ Person ∀ x : (Employee(x)→ Person(x))

3 Knowledge Representation and Ontologies 57

Due to the universal quantifier, the variable x in the logical formula ranges over all
domain objects and its reading is “everything that is an employee is also a person”.

Other parts of the network can be further restricted using logical formulas, as
shown in the following example.

Company books−−−−−→ Trip ∀ x, y : (books(x, y)→ Company(x) ∧ Trip(y))
∀ x : ∃ y : (Trip(x)→ Company(y) ∧ books(y, x))

The graphical representation of the network fragment leaves some details open, while
the logical formulas capture the booking relation between companies and trips more
precisely. The first formula states that domain and range of the booking relation are
companies and trips, respectively, while the second formula makes sure that for every
trip there does actually exist a company that booked it.

In particular, more complex restrictions that range over larger fragments of a
network graph can be formulated in logic, where the intuitive graphical notation
lacks expressivity. As an example, consider the relations between companies, trips
and employees in the following fragment.

Company books−−−−−→ Trip participatesIn←−−−−−−−−−−− Employee
←−−−−−−−−−−−−−−−−−−−−−−−−

employedAt
∀ x : ∃ y : (Trip(x)→ Employee(y) ∧ participatesIn(y, x) ∧ books(employer(y), x))

The logical formula expresses additional knowledge that is not captured in the graph
representation. It states that, for every trip, there must be an employee that partici-
pates in this trip while the employer of this participant is the company that booked
the flight.

Rules can also be formalised with logic. An IF-THEN rule can be represented as
a logical implication with universally quantified variables. For example, a common
formalisation of the rule

IF a trip’s source and destination cities are close to each other
THEN the trip is by train

is the translation to the logical formula

∀ x, y, z:(Trip(x)∧startsFrom(x, y)∧endsIn(x, z)∧close(y, z)→TrainRide(x)).

However, the typical rule-based systems do not interpret such a formula in the clas-
sical sense of first-order logic but employ different kinds of semantics, which are
discussed in Sect. 3.2.

Since a precise axiomatisation of domain knowledge is a prerequisite for pro-
cessing knowledge within computers in a meaningful way, we focus on logic as
the dominant form of knowledge representation. Therefore, we investigate different
kinds of logics and formal semantics more closely in a subsequent section.

In the context of the Semantic Web, two particular logical formalisms have
gained momentum, reflecting the semantic network and rules forms of knowledge
representation. The graph notations of semantic networks have been formalised
through description logics, which are fragments of first-order logic with typical

58 Stephan Grimm et al.

Tarskian model-theoretic semantics but restricted to unary and binary predicates to
capture the notions of concepts, an relations. On the other hand, rules have been
formalised through logic programming formalisms with minimal model semantics,
focusing on the derivation of simple facts about individual objects. Both descrip-
tion logics and logic programming can be found as underlying formalisms in various
knowledge representation languages in the Semantic Web, which are addressed in
Sect. 3.4.

3.1.3 Reasoning about Knowledge

The way in which we, as humans, process knowledge is by reasoning, i.e. the process
of reaching conclusions. Analogously, a computer processes the knowledge stored in
a knowledge base by drawing conclusions from it, i.e. by deriving new statements
that follow from the given ones.

The basic operations a knowledge-based system can perform on its knowledge
base are typically denoted by tell and ask [43]. The tell operation adds a new
statement to the knowledge base, whereas the ask operation is used to query what
is known. The statements that have been added to a knowledge base via the tell
operation constitute the explicit knowledge a system has about the domain of interest.
The ability to process explicit knowledge computationally allows a knowledge-based
system to reason over a domain of interest by deriving implicit knowledge that fol-
lows from what has been told explicitly.

This leads to the notion of logical consequence or entailment. A knowledge base
KB is said to entail a statement α if α “follows” from the knowledge stored in KB,
which is written as KB |= α. A knowledge base entails all the statements that have
been added via the tell operation plus those that are their logical consequences.
As an example, consider the following knowledge base with sentences in first-order
logic.

KB={ Person(MisterX), participates(MisterX,FL4711),
Flight(FL4711), books(UbiqBiz,FL4711),
∀ x, y, z : (Flight(y) ∧ participates(x, y) ∧ books(z, y)→ employedAt(x, z)),
∀ x, y : (employedAt(x, y)→ Company(x) ∧ Employee(y)),
∀ x : (Person(x)→ ¬Company(x)) }

The knowledge base KB explicitly states that “MisterX is a person who participates
in the flight FL4711 booked by UbiqBiz”, that “participants of flights are employed
at the company that booked the flight”, that “the employment relation holds between
companies and employees” and that “persons are different from companies”. If we
ask the question “Is MisterX employed at UbiqBiz?” by saying

ask(KB, employedAt(MisterX,UbiqBiz))

the answer will be yes. The knowledge base KB entails the fact that “MisterX
is employed at UbiqBiz”, i.e. KB |= employedAt(MisterX,UbiqBiz), although

3 Knowledge Representation and Ontologies 59

it was not “told” so explicitly. This follows from its general knowledge about
the domain. A further consequence is that “UbiqBiz is a company”, i.e. KB |=
Company(UbiqBiz), which is reflected by a positive answer to the question

ask(KB,Company(UbiqBiz)).

This follows from the former consequence together with the fact that “employment
holds between companies and employees”.

Another important notion related to entailment is that of consistency or satisfia-
bility. Intuitively, a knowledge base is consistent or satisfiable if it does not contain
contradictory facts. If we would add the fact that “UbiqBiz is a person” to the above
knowledge base KB by saying

tell(KB,Person(UbiqBiz)),

it would become unsatisfiable because persons are said to be different from compa-
nies. We explicitly said that UbiqBiz is a person while at the same time it can be
derived that it is a company.

In general, an unsatisfiable knowledge base is not very useful, since in logical
formalisms it would entail any arbitrary fact. The ask operation would always return
a positive result independent from its parameters, which is clearly not desirable for a
knowledge-based system.

The inference procedures implemented in computational reasoners aim at real-
ising the entailment relation between logical statements [43]. They derive implicit
statements from a given knowledge base or check whether a particular statement is
entailed by a knowledge base.

An inference procedure that only derives entailed statements is called sound.
Soundness is a desirable feature of an inference procedure, since an unsound infer-
ence procedure would potentially draw wrong conclusions. If an inference procedure
is able to derive every statement that is entailed by a knowledge base then it is called
complete. Completeness is also a desirable property, since a complex chain of con-
clusions might break down if only a single statement in it is missing. Hence, for
reasoning in knowledge-based systems we desire sound and complete inference pro-
cedures.

3.2 Logic-Based Knowledge-Representation Formalisms

First-order (predicate) logic is the prevalent and single most important knowledge
representation formalism. Its importance stems from the fact that basically all current
symbolic knowledge representation formalisms can be understood in their relation
to first-order logic. Its roots can be traced back to the ancient Greek philosopher
Aristotle, and modern first-order predicate logic was created in the 19th century,
when the foundations for modern mathematics were laid.

First-order logic captures some of the essence of human reasoning by providing
a notion of logical consequence as already mentioned. It also provides a notion of
universal truth in the sense that a logical statement can be universally valid (and thus

60 Stephan Grimm et al.

called a tautology), meaning that it is a statement which is true regardless of any
preconditions.

Logical consequence and universal truth can be described in terms of model-
theoretic semantics. In essence, a model for a logical theory3 describes a state of
affairs which makes the theory true. A tautology is a statement for which all possible
states of affairs are models. A logical consequence of a theory is a statement which
is true in all models of the theory.

How to derive logical consequences from a theory – a process called deduction
or inferencing – is obviously central to the study of logic. Deduction allows to access
knowledge which is not explicitly given but implicitly represented by a theory. Valid
ways of deriving logical consequences from theories also date back to the Greek
philosophers, and have been studied since.

At the heart of this is what has become known as proof theory. Proof theory
describes syntactic rules which act on theories and allow to derive logical conse-
quences without explicit recurrence to models. The notion of universal truth can thus
be reduced to syntactic manipulations. This allows to abstract from model theory and
enables deduction by symbol manipulation, and thus by automated means.

Obviously, with the advent of electronic computing devices in the 20th century,
the automation of deduction has become an important and influential field of study.
The field of automated reasoning is concerned with the development of efficient
algorithms for deduction. These algorithms are usually required to be sound, and
completeness is a desired feature.

The fact that sound and complete deduction algorithms exist for first-order pred-
icate logic is reflected by the statement that first-order logic is semi-decidable. More
precisely, semi-decidability of first-order logic means that there exist algorithms
which, given a theory and a query statement, terminate with positive answer in finite
time whenever the statement is a logical consequence of the theory. Note that for
semi-decidability, termination is not required if the statement is not a logical con-
sequence of the theory and, indeed, termination (with the correct negative answer)
cannot be guaranteed in general for first-order logical theories.

For some kinds of theories, however, sound and complete deduction algorithms
exist which always terminate. Such theories are called decidable, and they have cer-
tain more-or-less obvious advantages, including the following.

• Decidability guarantees that the algorithm always comes back with a correct
answer in finite time.4 Under semi-decidability, an algorithm which runs for a
considerable amount of time may still terminate, or may not terminate at all, and
thus the user cannot know whether he has waited long enough for an answer.
Decidability is particularly important if we want to reason about the question of
whether or not a given statement is a logical consequence of a theory.

3 A logical theory denotes a set of logical formulas, seen as the axioms of some theory to be
modelled

4 It should be noted that there are practical limitations to this due to the fact that computing
resources are always limited. A theoretically sound, complete and terminating algorithms
may thus run into resource limits and terminate without an answer

3 Knowledge Representation and Ontologies 61

• Experience shows that practically efficient algorithms are often available for
decidable theories due to the effective use of heuristics. Often, this is even the
case if worst-case complexity is very high.

3.2.1 Description Logics

Description logics [3] are essentially decidable fragments of first-order logic,5 and
we have just seen why the study of these is important. At the same time, descrip-
tion logics are expressive enough such that they have become a major knowledge
representation paradigm, in particular for use within the Semantic Web.

We will describe one of the most important and influential description logics,
calledALC. Other description logics are best understood as restrictions or extensions
of ALC. We introduce the standard description logic notation and give a formal
mapping into standard first-order logic syntax.

The Description LogicALC

A description logic theory consists of statements about concepts, individuals and
their relations. Individuals correspond to constants in first-order logic, and concepts
correspond to unary predicates. In terms of semantic networks, description logic
concepts correspond to general concepts in semantic networks, while individuals
correspond to individual concepts. We deal with concepts first, and will talk about
individuals later.

Concepts can be named concepts or anonymous (composite) concepts. Named
concepts consist simply of a name, say “human”, which will be mapped to a unary
predicate in first-order logic. Composite concepts are formed from named concepts
by use of concept constructors, similar to the formation of complex formulas out of
atomic formulas in first-order logic. In ALC, we have the boolean constructors

• conjunction u, which is binary
• disjunction t, which is binary
• negation ¬ , which is unary.

Hence, if C and D are concepts, then CuD, CtD and ¬C are also concepts. Concept
constructors can be nested arbitrarily. The translation of boolean constructors to first-
order predicate logic is obvious. To give an example, the statement Cu¬D translates
to the formula C(x) ∧ ¬D(x).
ALC statements relate named or anonymous concepts by means of one of the

following:

• inclusion v
• inverse inclusion w
• equivalence ≡.

5 To be precise, there do exist some description logics which are not decidable. And there
exist some which are not straightforward fragments of first-order logics. But for this general
introduction, we will not concern ourselves with these

62 Stephan Grimm et al.

Their meaning in first-order logic are implication → inverse implication ← and
equivalence↔. Occurring free variables are universally quantified. To give an exam-
ple, the statement C v D t ¬E translates to ∀ x : (C(x)→ (D(x) ∨ ¬E(x))).
ALC provides two special classes as shortcuts, namely ⊥ and >. They are

defined by means of the equivalences ⊥ ≡ C u ¬C and > ≡ C t ¬C, where C
is some arbitrary concept. That is, ⊥ is the empty concept, and > is the concept
under which everything falls.
ALC allows the restricted further use of quantifiers by means of the so-called

role restrictions. A role is a named entity which translates to a binary predicate in
first-order logic. In the semantic network paradigm, roles are relations between con-
cepts. Given such a role r and a (named or anonymous) concept C, the composite
concepts ∀ r.C and ∃ r.C can be formed. Role restrictions and boolean constructors
can be nested arbitrarily with each other to form anonymous concepts. The compos-
ite concept ∀ r.C translates to ∀ y : (r(x, y)→ C(y)) in first-order logic, while ∃ r.C
translates to ∃ y : (R(x, y) ∧ C(y)).

An ALC TBox, finally, consists of a set of statements of the form C v D, C w D
or C ≡ D, where C and D are named or composite concepts. Obviously, any TBox
can be translated to first-order logic, and thus inherits a logical consequence relation
from it.

To give some examples for TBox statements from the business trips domain,

Employee v Person

encodes the knowledge that every employee is a person, while

Trip v ∃ bookedBy.(Company t Person)

states that every Trip is booked by a company or a person.
We now come to individuals, which correspond to constants in first-order logic.

ALC allows to state that some individuals belong to (named or composite) concepts,
e.g. C(a) states that the individual a belongs to concept C. Similarly, a statement
r(a, b), where r is a role, means that the individuals a and b stand in relation r. The
translation to first-order logic is obvious.

An ALC ABox consists of a set of statements of the form C(a) or R(a, b), where
C is a named or anonymous concept, R is a role and a, b are individuals. An ALC
knowledge base consists of an ALC ABox and an ALC TBox.

Examples for ABox statements are Flight(FL4711) and bookedBy(FL4711,
UbiqBiz), with the obvious meanings.
ALC allows to define a basic form of knowledge bases. We have already men-

tioned that it appears to be somewhat akin to semantic networks, but differs in two
important respects:ALC comes with a precise formal semantics via first-order logic,
and it is more expressive due to the use of concept constructors.

Nevertheless, ALC is very restricted in expressiveness in comparison with other
knowledge representation formalisms. This is apparent, e.g., by the very restricted
kinds of first-order logical statements which are expressible in ALC. In order to
meet the requirements of practice, it is therefore necessary to extend expressiveness

3 Knowledge Representation and Ontologies 63

of ALC. These extensions are not necessarily of a kind such that a larger fragment
of first-order logic is obtained. This is indeed just one of the ways of extendingALC
which we will examine.

Decidability-Preserving Extensions toALC

We have seen before that decidability is a desirable property, and so the natural ques-
tion arises, which extensions of ALC retain its decidability. Indeed, extending ALC
while staying within first-order logic on the one hand, and while retaining decidabil-
ity on the other, has been one of the driving forces behind description logic research
in the recent past. We briefly describe some of these extensions. For a comprehensive
treatment of description logics, see [3].

The following additions can be made to ALC while retaining decidability.6

• Roles (i.e. binary predicates) can have additional properties such as being transi-
tive, symmetric or inverse to other roles.

• A role can be described as the inverse of another role.
• Roles can be arranged hierarchically, i.e. a statement such as r v s is allowed

between roles, which translates to ∀ x, y : (r(x, y)→ s(x, y)) in first-order logic.
• Individuals can be compared, e.g. by stating explicitly that two individuals are

identical (a = b), or different (a 6= b).
• It is allowed to use the so-called nominals in the TBox. Nominals are classes

which consist of an enumeration of exactly those elements which are in the class.
For example, the statement C ≡ {a, b, c} says that the class C contains exactly
the elements a, b and c.

• Quantifiers can be generalised to number restrictions, which yields anonymous
concepts such as ≤ n r and ≥ n r, where r is a role, and n is a positive integer.
The first of these describes the set of all individuals x for which less than or
equal to n individuals y are in relation r(x, y) to x. The meaning of the second
construction is analogous. Note, e.g., that ≥ 1 r is equivalent to ∃ r.>.

• Roles such as the ones described so far are also called abstract roles. Some
description logics additionally allow the use of concrete roles, which allow to
assign datatype values such as integers or strings to individuals.

ALC, together with the above-mentioned additions, roughly constitutes the descrip-
tion logic SHOIN (D). The strange acronym comes from a certain agreed-upon
standard for naming description logics, where each letter stands for a specific (group
of) allowed constructor(s). The S stands forALC together with transitivity for roles.
H stands for role hierarchies. O and I stand for nominals and for the use of inverse
roles, respectively. N stands for number restrictions. The D, finally, stands for the
use of concrete roles and datatypes.

6 Some minor restrictions need to be respected, which we do not include here

64 Stephan Grimm et al.

Non-classical Semantics

SHOIN (D) is essentially still a decidable fragment of first-order predicate logic.7

Certain expressive features, however, cannot be conveniently described by means
of first-order logic. The study of such expressive features is motivated by Artificial
Intelligence applications and has a long history in knowledge representation and rea-
soning, and most recently corresponding extensions and alterations of description
logics are also being developed.

From a very general perspective, such expressive features are obtained by alter-
ing the notion of logical consequence. Recall that for first-order predicate logic a
statement is a logical consequence of a theory if it is true in all models of the theory.
Models of the theory, in turn, are interpretations (i.e. states of affairs) which make the
theory true. An alternative notion of logical consequence can thus be derived by not
selecting all interpretations which make the theory true, but only some, more or sim-
ply other such interpretations, and by calling those statements logical consequences,
which are true in all these selected interpretations.

This endeavour, although it appears to be somewhat dubious at first, provides
a general perspective on many expressive features in knowledge representation and
reasoning. Important for this is certainly that the corresponding selections of inter-
pretations are clearly defined and meaningful. Often, this selection is done most con-
veniently by means of additional syntax and, in the following, we will cover some
additional expressive features which are most important for the Semantic Web con-
text.

Let us remark that reasoning with expressive features is computationally expen-
sive, and this fact is a well-known obstacle for developments in symbolic Artificial
Intelligence. By means of description logics and the fact that they show reasonable
scalability despite high worst-case complexities, expressive knowledge representa-
tion features become attractive for practical purposes. Of obvious importance is thus
the identification of tractable description logics, as done e.g. in [18, 9, 2, 27].

3.2.2 Closed-World Assumption

The Closed-World Assumption (CWA) can be understood as a computational rein-
terpretation of negation. Roughly speaking, it is the assumption that what cannot be
proven is wrong. Assume, e.g., the statement “if an employee is not booked on a trip
at a certain date, then (s)he is available for internal meetings that day”, and assume
furthermore that there is no knowledge available whether the employee MisterX is
booked on a trip on a certain day. Then, under the CWA, we would conclude that
MisterX is available for an internal meeting on that particular day.

A CWA perspective is particularly natural from a database point of view. An
employee is assumed to be not booked on a trip, unless the booking can be found
in the database. Thus, the database describes a closed world, in which all statements
are either the case (if they are explicitly known) or not the case (otherwise).

7 More precisely, it corresponds to first-order predicate logic with equality. Care needs to be
taken with the encoding of number restrictions, and datatypes must be allowed as required

3 Knowledge Representation and Ontologies 65

Treating Semantic Web knowledge under CWA, however, is conceptually diffi-
cult in some cases. This comes from the open nature of the World Wide Web, where
data is constantly added and changing. Thus, if a particular piece of knowledge can-
not be retrieved from the Semantic Web, then it cannot safely be assumed to be
false: the information may be contained on a web page which has not been included
yet, but which will be crawled next. Such a situation should be treated under the
Open-World Assumption (OWA), which assumes that only such conclusions should
be drawn which will remain valid if new information is added.

The semantics of first-order predicate logic – and thus also of description logics –
operates under the OWA. If we have no knowledge about whether a person is booked
on a flight, then under the OWA we cannot conclude anything on this person’s avail-
ability for an internal meeting from the example statement given above.

It is safe to assume that knowledge from databases will play a natural role in
the realisation of the Semantic Web, and will come alongside knowledge from other
sources, like the open web. Restricting knowledge representation to pure OWA or
pure CWA settings is thus insufficient: while the basic framework for the open
Semantic Web should be based on the OWA, a restricted use of the CWA should
be possible at the same time. This integration has become known as Local Closed
World (LCW) [16], and is currently being researched from several perspectives. We
will say more about this in the next section on non-monotonicity.

3.2.3 Non-monotonicity

The original motivation for the study of non-monotonic reasoning comes from the
observation that humans tend to jump to conclusions when making every day prac-
tical and commonsense decisions. If we book a train trip, then we conclude that we
will not be arriving by bus, and in case we have to base further decisions on the
knowledge, we simply assume the conclusion to be true. However, our knowledge
about the real world is never complete. It may turn out, e.g., that there is a large power
outage on the day of the trip so that the trains will not run – and as a substitute, we
are being transported by bus on short notice.

When jumping to conclusions, it may be necessary to withdraw the conclusions
if further knowledge becomes available. In the example just given, we withdraw the
knowledge about not arriving by bus as soon as we learn about the special circum-
stances. In this sense, commonsense reasoning is non-monotonic.

More formally, a knowledge representation formalism is called monotonic if a
larger theory implies more conclusions or, in other words, if the addition of knowl-
edge never invalidates conclusions drawn before the addition. A knowledge repre-
sentation formalism is non-monotonic if it is not monotonic.

First-order predicate logic – and thus also description logics – are monotonic.
Formalisms operating under the CWA are usually non-monotonic: if a database does
not contain a booking information for MisterX being on a business trip at a certain
date, then it could be concluded that MisterX is available for internal meetings at this
date by an appropriate rule; if, however, such a booking information becomes known
and is added to the database, then the earlier conclusion must be withdrawn.

66 Stephan Grimm et al.

The strong relation between CWA and non-monotonicity is well known and has
inspired many lines of research in these areas. Historically, there are three major
approaches to non-monotonicity, which we briefly list in the following.

Default Logic [42] uses the so-called default rules of the form (α : β)/γ for express-
ing the following condition for formulas α, β and γ: if α is the case and β is possible,
then conclude γ. To give an example, α could be the statement “FL4711 is a trip to
a foreign country”, β could be the statement “FL4711 is not a train ride”, and γ
could be the statement “FL4711 is a flight”. We further assume that we indeed know
that FL4711 is a trip to a foreign country. Without any further knowledge whether
FL4711 is a flight or a train ride, we conclude by the default rule that FL4711 is
a flight. If we add further knowledge that FL4711 is indeed a train ride, then the
conclusion must be withdrawn. In this sense, a default rule is a rule that allows for
exceptions.

Circumscription [33] realises non-monotonicity by means of a condition over log-
ical predicates which ensures that in some cases truth or falsity of a statement is
enforced although this would not be the case in classical first-order predicate logic.
Circumscription is expressed by means of second-order logic (see Sect. 3.2.5), and
does not require any extension of syntax.

Autoepistemic Logic [35] employs a modal logic operator to represent that some-
thing is believed (but not necessarily known).

All three historic approaches are being studied in the context of description log-
ics, and central references are [4], [6] and [14], respectively. It is still an open quest
to find out which of these is most suitable for Semantic Web applications. Of partic-
ular importance – besides the obvious scalability requirements – is the question how
the formalism realises LCW reasoning in a practically useful way.

Historically, the area of non-monotonic reasoning received decisive impulses in
the 1980s and 1990s from logic programming research, which we discuss next.

3.2.4 Logic Programming

Logic programming was originally conceived as a way to use (first-order predicate)
logic as a programming language. In order to allow for efficient computation, for-
mulas were syntactically restricted to the so-called Horn clauses. Additionally, only
certain kinds of logical consequences are being considered.

Syntactically, Horn clauses can be understood as rules. For example, the expres-
sion Trip(t) ∨ ¬ Flight(t) is a Horn clause, which is semantically equivalent (with
respect to FOL) to ∀ t : Trip(t) ← Flight(t). This, in turn, can also be interpreted as
the rule Trip(?t) :− Flight(?t) from page 55.

Note, however, that the semantics of the Horn clause is given by means of
first-order logic semantics, whereas logic programming rules are usually under-
stood in a different sense. One of the differences stems from the fact that in a
logic programming system only certain types of logical consequences are being

3 Knowledge Representation and Ontologies 67

considered, namely ground8 instances of predicates. In the example, the addition
of a fact Flight(FL4711) would allow to conclude Trip(FL4711) both in
FOL and in a logic programming system. A conclusion such as Trip(FL4711) ∨
¬ Flight(FL4711), however, would be possible only in FOL, and not derivable
using logic programming semantics.

The second difference between the semantics concerns the handling of negative
information. In the example above, we could be interested in whether the statement
Trip(FL2306) holds. In FOL, neither truth nor falsity of this statement is deriv-
able. In logic programming, however, the statement would be considered false. The
handling of negative information in logic programming in this sense is based on the
CWA: as no information on FL2306 is available, it is considered to be not a trip.

Logic programming semantics is thus non-monotonic: just consider adding the
single fact Flight(FL2306) to the knowledge base, by which Trip(FL2306)
turns true. This insight triggered substantial research efforts on relating logic pro-
gramming and non-monotonic reasoning, which led to the introduction of non-
monotonic kinds of negation into the logic programming paradigm, see [1].

How to combine logic programming or other rules formalisms with description
logics constitutes a recent research issue. Prominent approaches include the creation
of hybrid systems by interfacing logic programming systems with description logic
systems, as e.g. in [15]. Other approaches simply go back to Horn clauses and add
them as FOL statements to description logic knowledge bases [26].

3.2.5 Higher-Order Logic

Another feature which is considered important for knowledge representation in the
Semantic Web is what has become known as metamodelling. This occurs, e.g., when-
ever description logic classes should be considered as individual members of other
(meta-)classes, or if properties shall be attached to entire classes by means of roles.
Logically, this corresponds to using high-order logics, and generally results in the
loss of decidability. Decidable fragments, however, can be described, as in [36].

To give an example, consider an international company using a semantics-based
knowledge management system for business trips, which requires that different
languages spoken within the company are supported by the system. It may thus
be necessary to represent the knowledge that the concept Flight is called “Flug”
in German. This could be represented by using a concrete role statement like
germanName(Flight, “Flug”). Here, “Flug” would be a data value of type string,
while the concept Flight actually appears syntactically as an individual. Notice that
here a data value is directly assigned to a concept rather than to its instances.

3.2.6 Treatment of Inconsistencies

A point of particular importance for the Semantic Web lies in a sensible treatment
of inconsistencies in knowledge bases. This comes from the fact that in Semantic

8 A ground (instance of a) predicate is an atomic formula which does not contain any variable
symbols

68 Stephan Grimm et al.

Web applications it is very often necessary to merge different knowledge bases from
different sources, and it can be expected that in many cases some parts of the respec-
tive knowledge bases may conflict with each other, resulting in inconsistency. In a
classical FOL setting, a single inconsistency causes a knowledge base to be entirely
useless. For practical purposes, however, it should be possible to rescue at least some
of the knowledge in a constructive way in order to draw meaningful conclusions
from the knowledge.

There exist two basic approaches to dealing with inconsistency. The first one is
based on the intuition that inconsistencies point to mistakes in modelling, and thus
should be repaired. Technically, such repairs can be done by identifying, e.g., max-
imal consistent subsets of the knowledge base and using those for drawing conclu-
sions, see e.g. [48]. The other approach is based on using the so-called paraconsistent
logics with an additional truth value which represents contradiction, see e.g. [50].

3.2.7 Uncertainty

Knowledge is often acquired by machine learning techniques. Knowledge base state-
ments obtained this way are usually uncertain, e.g. in a probabilistic sense or in the
sense of fuzzy logic. Recent efforts are thus under way to provide methods and tools
for the representation and the reasoning with uncertainty in description logics.

To give an example, consider a business trips booking Internet portal which uses
a knowledge base for providing personalised content to the user. From the usage pat-
terns of UbiqBiz customers the knowledge base knows with a probability of 80%
that a UbiqBiz customer browsing the portal will be interested in booking a flight,
and is thus able to provide appropriate personalised content. As part of a sophisti-
cated personalisation knowledge base, the treatment of such probabilities and other
uncertainty values becomes important.

3.3 Ontologies in Information Systems

Recently, the notion of ontologies as computational artefacts has appeared in Arti-
ficial Intelligence and Computer Science, while “ontology” originally denotes the
study of existence in philosophy. In information systems, ontologies are conceptual
models of what “exists” in some domain, brought into machine-interpretable form by
means of knowledge representation techniques. In this section we start from a gen-
eral definition of the notion of ontology and elaborate on its appearance and usage in
computer science.

3.3.1 Ontology

In its original meaning in philosophy, ontology is a branch of metaphysics and
denotes the philosophical investigation of existence. It is concerned with the fun-
damental questions of “what is being?” and “what kinds of things are there?” [11].

3 Knowledge Representation and Ontologies 69

Dating back to Aristotle, the question of “what exists?” lead to studying general cat-
egories for all things that exist. Ontological categories provide a means to classify all
existing things, and the systematic organisation of such categories allows to analyse
the world that is made up by these things in a structured way. In ontology, categories
are also referred to as universals, and the concrete things that they serve to classify
are referred to as particulars.

Philosophers have mostly been concerned with general top-level hierarchies of
universals that cover the entire physical world. Examples of universals occurring in
such top-level hierarchies are most general and abstract concepts like “substance”,
“physical object”, “intangible object”, “endurant” or “perdurant”. Philosophers have
argued about the appropriateness of different such abstract categorisations and about
the general properties of everything existing. Transferred to knowledge representa-
tion and computer science, information systems can benefit from the idea of onto-
logical categorisation. When applied to a limited domain of interest in the scope of
a concrete application scenario, ontology can be restricted to cover a special subset
of the world. Examples of ontological categories in the business trips domain are
“Person”, “Company”, “Trip” or “Flight”, whereas examples for particular individ-
uals that are classified by these categories are the person “MisterX”, the company
“UbiqBiz” or the particular flight “FL4711”.

In general, the choice of ontological categories and particular objects in some
domain of interest determines the things about which knowledge can be represented
in a computer system [45]. In this sense, ontology provides the labels for nodes and
arcs in a semantic network or the names for predicates and constants in rules or log-
ical formulas that constitute an ontological vocabulary. By defining “what exists”
it determines the things that can be predicated about. The terms of the ontologi-
cal vocabulary are then used to represent knowledge, forming statements about the
domain.

3.3.2 Ontologies

While “ontology” studies what exists in a domain of interest, “an ontology” as a com-
putational artefact encodes knowledge about this domain in a machine-processable
form to make it available to information systems.

Definition of an Ontology

In various application contexts, and within different communities, ontologies have
been explored from different points of view, and there exist several definitions of
what an ontology is. Within the Semantic Web community the dominating definition
of an ontology is the following, based on [19].

An ontology is a formal explicit specification of a shared conceptualisation
of a domain of interest.

This definition captures several characteristics of an ontology as a specification of
domain knowledge, namely the aspects of formality, explicitness, being shared, con-
ceptuality and domain-specificity, which require some explanation.

70 Stephan Grimm et al.

• Formality
An Ontology is expressed in a knowledge representation language that provides a
formal semantics. This ensures that the specification of domain knowledge in an
ontology is machine-processable and is being interpreted in a well-defined way.
The techniques of knowledge representation help to realise this aspect.

• Explicitness
An ontology states knowledge explicitly to make it accessible for machines.
Notions that are not explicitly included in the ontology are not part of the
machine-interpretable conceptualisation it captures, although humans might take
them for granted by common sense.9

• Being shared
An ontology reflects an agreement on a domain conceptualisation among people
in a community. The larger the community the more difficult it is to come to an
agreement on sharing the same conceptualisation. Thus, an ontology is always
limited to a particular group of people in a community, and its construction is
associated with a social process of reaching consensus.

• Conceptuality
An ontology specifies knowledge in a conceptual way in terms of symbols that
represent concepts and their relations. The concepts and relations in an ontology
can be intuitively grasped by humans, as they correspond to the elements in our
mental model. (In contrast to this, the weights in a neural network or the probabil-
ity measures in a Bayesean network would not fit such a conceptual and symbolic
approach.) Moreover, an ontology describes a conceptualisation in general terms
and does not only capture a particular state of affairs. Instead of making state-
ments about a specific situation involving particular individuals, an ontology tries
to cover as many situations as possible, that can potentially occur [21].

• Domain specificity
The specifications in an ontology are limited to knowledge about a particular
domain of interest. The narrower the scope of the domain for the ontology, the
more an ontology engineer can focus on axiomatising the details in this domain
rather than covering a broad range of related topics. In this way, the explicit spec-
ification of domain knowledge can be modularised and expressed using several
different ontologies with separate domains of interest.

Technically, the principal constituents of an ontology are concepts, relations and
instances. Concepts map to the generic nodes in semantic networks, or to unary

9 Notice that this notion of explicitness is different from the distinction between explicit and
implicit knowledge, introduced earlier. Implicit knowledge that can be derived by means
of automated deduction does not need to be included in an ontology for a computer system
to access it. However, knowledge that is neither explicitly stated nor logically follows from
what is stated can by no means be processed within the machine, although it might be
obvious to a human. Such knowledge remains implicit in the modeller’s mind and is not
represented in the machine

3 Knowledge Representation and Ontologies 71

predicates in logic, or to concepts as in description logics. They represent the onto-
logical categories that are relevant in the domain of interest. Relations map to arcs in
semantic networks, or to binary predicates in logic, or to roles in description logics.
They semantically connect concepts, as well as instances, specifying their interre-
lations. Instances map to individual nodes in semantic networks, or to constants in
logic. They represent the named and identifiable concrete objects in the domain of
interest, i.e. the particular individuals which are classified by concepts.

These elements constitute an ontological vocabulary for the respective domain
of interest. An ontology can be viewed as a set of statements, expressed in terms of
this vocabulary, which are also referred to as axioms. A simple axiom would, e.g.,
state that “Mister X is an employee”, involving an instance and a concept. A more
complex axiom could state that “only employees of a particular company can be
on trips booked by this company”, imposing a restriction on a relation between two
concepts.

Conceptual modelling with ontologies seems to be very similar to modelling in
object-oriented software development or to designing entity-relationship diagrams
for database schemas. However, there is a subtle twofold difference. First, ontol-
ogy languages usually provide a richer formal semantics than object-oriented or
database-related formalisms. They support encoding of complex axiomatic informa-
tion due to their logic-based notations. Hence, an ontology specifies a semantically
rich axiomatisation of domain knowledge rather than a mere data or object model.
Second, ontologies are usually developed for a different purpose than object-oriented
models or entity-relationship diagrams. While the latter mostly describe components
of an information system to be executed on a machine and a schema for data storage,
respectively, an ontology captures domain knowledge as such and allows to reason
about it.

In summary, an ontology used in an information system is a conceptual yet exe-
cutable model of an application domain. It is made machine-interpretable by means
of knowledge representation techniques and can therefore be used by applications to
base decisions on reasoning about domain knowledge.

Appearance of Ontologies

When engineered for or processed by information systems, ontologies appear in dif-
ferent forms related to the forms of knowledge representation which we discussed. A
knowledge engineer views an ontology by means of some graphical or formal visual-
isation, while for storage or transfer it is encoded in an ontology language with some
machine-processable serialisation format. A reasoner, in turn, interprets an ontol-
ogy as a set of axioms that constitute a logical theory. We illustrate these different
forms of appearance in ontology engineering, machine-processing and reasoning by
an example.

Our business trips scenario, introduced earlier, involves several domains of inter-
est. On the one hand, reasoning about business trips requires knowledge about trav-
elling infrastructure for trains, flights and rental cars, while on the other hand it

72 Stephan Grimm et al.

involves financial knowledge about prices, different currencies and methods of pay-
ment when it comes to comparing different offers. Yet another related domain is that
of geographic knowledge about locations of sources and destinations for trips, which
we pick up as an example to illustrate appearance of ontologies. All these differ-
ent domains of interest can be thought of as being captured by a modularised set of
ontologies to which an information system in the business trips scenario can have
access.

A geographic ontology suitable for a business trips booking system encodes
countries and continents with their geographic regions, as well as geographic fea-
tures like rivers, roads, rail tracks or cities. It relates geographic features to their
regions, stating, e.g., that a city occupies a certain region, and it defines containment
between such regions; the geographic region of a European city is, e.g., contained in
that of Europe. Besides these general geographic concepts and their relations, such
an ontology also determines concrete instances, such as particular cities, countries
and continents, and relates them appropriately.

To a knowledge engineer an ontology is often visualised as some form of seman-
tic network. Figure 3.2 shows the graphical visualisation of an example geographic
ontology.

As common to most ontology development environments,10 the visualisation in
Fig. 3.2 presents to the knowledge engineer a taxonomy, i.e. a subsumption hierar-
chy, of the concepts in the ontology, which is indicated by isa−−−→ links. The two
taxonomies exposed in the graph are those for GeographicRegion with subconcepts

NewYork

USAEuropeAmerica

BerlinLondon

LinearRegion

Infrastructure

Lake

PlanarRegion

OceanRiverIndustrialFacilityRoadCity

USCityEuropeanCity

Land

BodyOfWater Territory

GeographicRegion

GeographicLocation

GeographicAreaGeographic Feature

CountryContinent

isa isa

isa isa isa isa

isa isa isa isaisa isa

isa

isa

isa

isaisa

isa

io io io

io io iolocatedIn locatedIn locatedIn locatedIn locatedIn

locatedIn locatedIn

contains*

isRegionFor* locatedIn

contains* isContainedBy*

Fig. 3.2. A graphical visualisation for a geographic ontology

10 The ontology graph in Fig. 3.2 has been produced with the OntoViz-plugin for the Protégé
environment (http://protege.stanford.edu/plugins/owl/)

http://protege.stanford.edu/plugins/owl/

3 Knowledge Representation and Ontologies 73

for linear and planar regions, and for GeographicLocation with subconcepts for geo-
graphic features, like cities or rivers, and geographic areas, like continents or coun-
tries. In the visualisation, the knowledge engineer can also see conceptual relations
as arcs pointing from their domain concept to their range concept. By the relation

locatedIn−−−−−−−−→ between GeographicLocation and GeographicRegion a location, such
as a city or a country, is associated to some region in which it is actually located. A
Road or River is further restricted to be located in a LinearRegion, whereas a City
or Lake is located in a PlanarRegion encompassing a surface area. The graph also
shows some concrete cities and countries, modelled as instances of their respective
concepts, which here serve as representatives for all the particular geographic places
such an ontology would be populated with.

Not all the information in an ontology can easily be visualised in a graph as the
one shown in Fig. 3.2. For some more detailed information, such as complex axioms
and restrictions on concepts, there does not exist to date any appropriate visualisation
paradigm other than exposing such fragments of the ontology in a formal language.
Therefore, ontology engineering environments usually provide extra means for dis-
playing and editing such complex axiomatic information, using a special-purpose
ontology language or logical formal notation. When the environment exports the
ontology for storage on a disk or for transfer over the wire, all of its information is
expressed in the ontology language supported by the tool. Hence, the way an ontol-
ogy appears to a developer of an ontology editor, storage facility or reasoner is in
the form of ontology language constructs in some serialisation format suitable for
machine processing.

There are various ontology languages, based on different knowledge represen-
tation formalisms, and we investigate the most prevalent of them in Sect. 3.4. For
illustrating a fragment of our example geographic ontology, we choose the OWL11

ontology language. The following listing displays a part of the ontology encoded in
the OWL RDF serialisation format.

...
<owl:Class rdf:ID="City">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#locatedIn"/>
<owl:allValuesFrom rdf:resource="#PlanarRegion"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Infrastructure"/>
<owl:disjointWith rdf:resource="#Road"/>
<owl:disjointWith rdf:resource="#IndustrialFacility"/>

</owl:Class>
<owl:ObjectProperty rdf:ID="locatedIn">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#GeographicLocation"/>
<rdfs:range rdf:resource="#GeographicRegion"/>
<owl:inverseOf rdf:resource="#isRegionFor"/>

</owl:ObjectProperty>
<EuropeanCity rdf:ID="London"/>
...

11 The DL-based Web Ontology Language (OWL) is popular in the Semantic Web context,
and it is described in Sect. 3.4 among other languages

74 Stephan Grimm et al.

The listing shows an excerpt of the geographic ontology as it is serialised and parsed
by tools and transferred over the network. It exhibits the specification of OWL classes
(concepts), properties (relations) and individuals (instances), all expressed by tags
and attributes of a customised XML serialisation. The City concept is defined as a
subconcept of Infrastructure with the restriction that the relation locatedIn−−−−−−−−→ can
only have instances of PlanarRegion as values. The relation locatedIn−−−−−−−−→ is defined
as functional (having a unique value) and as being inverse to isRegionFor−−−−−−−−−−→ , with
proper domain and range concepts. London is introduced as an instance of Euro-
peanCity.

As ontology languages like OWL are based on logical formalisms, the formal
semantics of the language precisely defines the meaning of an ontology in terms of
logic. To a reasoner, therefore, an ontology appears as a set of logical formulas that
express the axioms of a logical theory. It can verify whether these axioms are consis-
tent or derive logical consequences. This form of appearance of an ontology is free
of syntactical or graphical additions or ambiguities and reflects the pure knowledge
representation aspect.

We use the description logic notation for OWL to exemplify some of the axioms
in our example geographical ontology in their logical form. The following DL for-
mulas constitute the definition of a European city.

∃ locatedIn.> v GeographicLocation
> v ∀ locatedIn.GeographicRegion

∃ contains.> v GeographicRegion
> v ∀ contains.GeographicRegion

GeographicLocation v =1 locatedIn
Continent v GeographicLocation
Continent (Europe)

PlanarRegion v GeographicRegion
City v GeographicLocation u ∀ locatedIn.PlanarRegion

EuropeanCity ≡ City u ∀ locatedIn.∃ contains−.∃ locatedIn−.{Europe}

The last, quite sophisticated formula defines the concept of a European city by its
geographical region being contained in the geographical region of the European con-
tinent. It has the following translation to first-order logic.

∀ x : (EuropeanCity(x)↔
City(x) ∧ ∀ y : (locatedIn(x, y)→ ∃ z : (contains(z, y) ∧ locatedIn(Europe, z))))

In prose, its reading is as follows: “European cities are cities for which all geographic
regions they are located in are contained in some geographic region in which Europe
is located.” This allows a knowledge-based system to decide whether a city is Euro-
pean by reasoning over containment of geographic regions.

In this logical form, an ontology is the set of axioms that constitutes the explicit
knowledge represented about its domain of interest. By means of automated deduc-
tion, implicit knowledge of the same form can be derived but is not part of the ontol-
ogy’s explicit specification.

3 Knowledge Representation and Ontologies 75

3.3.3 Usage of Ontologies

Often, an ontology is distinguished from a knowledge base in that it is supposed
to describe knowledge on a schema level, i.e. in terms of conceptual taxonomies
and general statements, whereas the more data-intensive knowledge base is thought
of containing instance information on particular situations. We take a different per-
spective and perceive the relation between an ontology and a knowledge base as
the connection between an epistemological specification of domain knowledge and
a technical tool for reasoning. From this point of view, an ontology is a piece of
knowledge that can be used by a knowledge-based application among other pieces
of knowledge, e.g. other ontologies or meta data. To properly cover its domain of
interest, it can make use of both schema level and instance level information. When-
ever the knowledge-based system needs to consult the ontology, it loads (parts of) its
specification into a knowledge base, most likely together with other pieces of knowl-
edge, to take it into account for reasoning. The business trips booking system, e.g.,
would probably make combined use of a geographical ontology, a financial one, and
one for public transportation, when comparing offers for trips, loading all relevant
domain knowledge in its knowledge base. In this sense, a knowledge-based applica-
tion uses an ontology via its knowledge base.

The computational domain model of an ontology can be used for various pur-
poses, depending on the application scenario. We distinguish the different cases of
usage on diverse levels, as follows.

• Level of knowledge connectivity
An application can view an ontology as its single and isolated source of knowl-
edge in a stand-alone fashion. This is the way an expert system maintains a highly
specialised knowledge base to answer questions in its domain of interest, simu-
lating expert knowledge.

In contrast to this, an ontology can also be viewed in relation to other sources
of knowledge, such as other ontologies or meta data that is aligned to the ontol-
ogy’s conceptual model. In an information integration scenario, e.g., an ontology
supports interoperability among different systems on the knowledge or data level,
providing a basic domain vocabulary.

• Level of knowledge abstraction
On the one hand, an application can process an ontology on the schema level of
knowledge about categories. Examples for this are applications which need to
automatically classify user-defined concepts in an existing taxonomy or which
build upon answers to general domain questions.

On the other hand, an ontology can be used as a schema for data-intensive
instance retrieval on large knowledge or databases.

• Level of automation in knowledge processing
An application can make intensive use of automated reasoning techniques in
order to derive implicit knowledge from the axioms in an ontology, answering
sophisticated domain questions.

76 Stephan Grimm et al.

At the same time, ontologies can also be used for documentation and refer-
ence purposes, targeting humans to read their specifications rather than machines.
This way, the documentation of domain models benefits from precise specifica-
tion through the formal semantics of ontology languages.

In Artificial Intelligence research, some typical types of applications have evolved
that make use of ontologies in different ways. We list some of them as examples of
how applications can leverage the formalised conceptual domain models that ontolo-
gies provide.

• Information integration
A promising field of application for ontologies is their use for integrating hetero-
geneous information sources on the schema level. Often, different databases store
the same kind of information but adhere to different data models. An ontology
can be used to mediate between database schemas, allowing to integrate infor-
mation from differently organised sources and to interpret data from one source
under the schema of another.

Our example geographic ontology could be used to integrate geographic
databases with different schemas; for example, one relating cities directly to
their countries as different entities and another modelling a single entity for geo-
graphic places which have the property of being either a city or a country. In
either schema, the local entities and relations can be mapped to the respective
notions of City, Country, GeographicRegion and locatedIn−−−−−−−−→ in the ontology,
realising unified querying and reasoning over both information sources.

• Information retrieval
Motivated by the success and key role of Google12 in the World Wide Web, infor-
mation retrieval on web documents is a major field of application for ontologies.
The idea behind ontology-based information retrieval is to increase the precision
of retrieval results by taking into account the semantic information contained in
queries and documents, lifting keywords to ontological concepts and relations.

When interpreted according to our example geographic ontology, a query
like “capital of Germany” would yield documents that are about Berlin, the cap-
ital of Germany. Some of the false positive matches that keyword-based retrieval
systems typically produce, such as documents about the German venture capital
market, can be filtered out this way.

• Semantically enhanced content management
In many areas of computation, the data that is actually computed is annotated
with meta data for various purposes. Ontologies provide the domain-specific
vocabulary for annotating data with meta data. The formality of ontology lan-
guages allows for an automated processing of this meta data and their grounding
in knowledge representation facilitates machine-interpretability.

The geographic concepts and relations provided by our example ontology
could be used to annotate manifold geographic content, such as geographic books
and articles in an electronic library to better find and archive them or 3D-models

12 http://www.google.com

http://www.google.com

3 Knowledge Representation and Ontologies 77

of geographic sites in surveying and mapping, in order to better group and relate
them, providing easier access to their content.

• Knowledge management and community portals
In companies or other organised associations, or in communities of practice, indi-
vidual knowledge can be viewed as a strategic resource that is desirable to be
shared and systematically maintained, which is referred to as knowledge man-
agement. Ontologies provide a means to unify knowledge management efforts
under a shared conceptual domain model, connecting technical systems for nav-
igating, storing, searching and exchanging community knowledge.

Our example ontology could serve as the backbone for a geographic knowl-
edge portal in the Internet, through which land surveying offices, urban plan-
ning institutions and other interested community members provide access to
geography-related resources.

• Expert systems
In various domains, such as medical diagnosis or legal advice in case-law, it is
desirable to simulate a domain expert who can be asked sophisticated questions.
In an expert system, this is achieved by incorporating a thoroughly developed
domain ontology that formalises expert knowledge. Domain-specific questions
can then be answered by reasoning over such highly specialised knowledge.

An expert system for the geographical domain could answer questions like
“Which is the German city closest to the French border? ”or “Through which
cities does the river Rhein flow? ”.

3.3.4 Types of Ontologies

Since the beginning of ontology research in Computer Science, ontologies have been
considered as a means to foster reuse within knowledge-based system engineering,
and it turned out that different types of ontologies exhibit a different potential for
reuse.

A categorisation of ontologies can be made according to their subject of concep-
tualisation. The most prominent insights in this respect have been published in [20]
and are summarised in Fig. 3.3.

top-level ontology

application ontology

domain ontology task ontology

Fig. 3.3. Types of ontologies

78 Stephan Grimm et al.

The categorisation in Fig. 3.3 distinguishes the following types of ontologies.

• Top-level ontologies
Top-level ontologies – also called upper ontologies or foundational ontolo-
gies – attempt to describe very abstract and general concepts that can be shared
across many domains and applications. They borrow from philosophical notions,
describing top-level concepts for all things that exist, such as “physical object” or
“abstract object”, as well as generic notions of common-sense knowledge about
phenomena as time, space, processes, etc. They are usually well thought out and
extensively axiomatised. Due to their generality, they are typically not directly
used in applications but for other ontologies to be aligned to. Prominent exam-
ples for top-level ontologies are DOLCE [17] and SUMO [39].

• Domain ontologies and task ontologies
These types of ontologies capture the knowledge within a specific domain of dis-
course, such as medicine or geography, or the knowledge about a particular task,
such as diagnosing or configuring. In this sense, they have a much narrower and
more specific scope than top-level ontologies. In the ideal case, the conceptual-
isation in a domain ontology is kept strictly task independent, while the notions
in a task ontology are described neutrally with respect to a domain. Much work
has been done in the development of domain ontologies in medicine, genetics,
geographic and environment information, tourism, as well as cultural heritage
and museum exhibits. Task ontologies have been devised, e.g., for scheduling
and planning tasks, monitoring in a scientific domain, intelligent computer-based
tutoring, missile tracking, execution of clinical guidelines, etc.

• Application ontologies
Further narrowing the scope, application ontologies provide the specific vocabu-
lary required to describe a certain task enactment in a particular application con-
text. They typically make use of both domain and task ontologies, and describe,
e.g., the role that some domain entity plays in a specific task. For example, a
particular physical entity in some engineering domain may play the role of a
replaceable unit in a machine diagnosis and maintenance task, and at the same
time play the role of a spare resource in a configuration or production process.

Altogether, we can say that the lattice indicated in Fig. 3.3 represents an inclusion
hierarchy: the lower ontologies inherit and specialise concepts and relations from
the upper ones. The lower ontologies are more specific and have thus a narrower
application scope, whereas the upper ones have a broader potential for reuse.

3.3.5 Ontologies in the Semantic Web

In the context of the Semantic Web, ontologies play a particularly important key role.
The idea of the Semantic Web is to annotate web content by machine-interpretable
meta data such that computers are able to process this content on a semantic level.
Ontologies provide the domain vocabulary in terms of which semantic annotation

3 Knowledge Representation and Ontologies 79

is formulated. Meta statements about web content in such annotations refer to a
commonly used domain model by including the concepts, relations and instances
of a domain ontology. The formality of ontology languages allows to reason about
semantic annotation from different sources, connected to background knowledge in
the domain of interest. There are a couple of characteristics of the web which affect
the use of ontologies for semantic annotation.

One aspect is the natural distributedness of content in the Semantic Web. The
knowledge captured in semantic annotation and ontologies is not locally available
at a single node but spread over different sites. This poses additional constraints on
the use of ontologies in the Semantic Web, taking into account distributedness of
knowledge. To avoid the need to transfer relevant knowledge to a central location,
there should be techniques that allow for a modularisation of the reasoning process
by handling partial results that are computed locally, based on a subset of all relevant
information. This issue is addressed by current research on distributed reasoning.

Another related aspect is that content on the web is created in an evolution-
ary manner and maintained in a decentralised way. There is no central control over
semantic annotation and ontologies that evolve in the Semantic Web, and information
in one ontology can conflict with information in another one. To deal with conflict-
ing pieces of knowledge, there should be techniques that resolve such situations by,
e.g., preferring one or another consistent sub view, similar to how humans would do.
Such techniques are subject to investigation in current research on paraconsistent
reasoning, as mentioned in Sect. 3.2.6.

There is an extra chapter dedicated to the topic of semantic annotation, namely
Chap. 5, in which the usage of ontologies for annotating web content with meta data
in the Semantic Web context is further elaborated on.

3.4 Ontology Languages

To make ontologies available to information systems, various concrete ontology lan-
guages have been designed and proposed for standardisation. In this section, we give
an overview of the most prevalent ontology languages that are important in the con-
text of the Semantic Web, and present some of them in detail.

3.4.1 Hierarchy of Languages for the Semantic Web

In the light of widespread impact and industrial usability, the standardisation of
ontology languages is of great importance to the Semantic Web community. Various
different aspects are considered for language standardisation, such as issues of the
underlying knowledge representation formalism in terms of expressiveness and com-
putational properties, web-related features like global unique identification and XML
serialisation syntax, or usability add-ons like the inclusion of strings and numbers or
non-functional meta data. The influence of different research and user communities
with manifold requirements have resulted in a complex landscape of a multitude of

80 Stephan Grimm et al.

languages backed by different past and ongoing standardisation efforts. Which lan-
guages are best suited for what purpose, how they can be efficiently implemented and
realised in a user-friendly way, or technically and semantically made interoperable
is still an open topic stimulating lively discussions in current research.

In Fig. 3.4 we make an attempt to sketch this landscape of languages, giving an
overview of the most important ontology languages with respect to current trends in
the Semantic Web. Since some languages build on others and on formerly achieved
standards, this landscape can be perceived as a hierarchy of languages for the Seman-
tic Web. However, besides a hierarchical structure with some languages being clearly
layered on top of others, there are also parallel branches and cross-relations between
languages and formalisms.13

One of the major distinctions of Semantic Web languages is by the knowl-
edge representation paradigm they follow. On the left-hand side in Fig. 3.4 there
is the description logic family of languages that build on various DL dialects and
their rule-extensions. They adhere to the classical model-theoretic semantics of
first-order predicate logic and to the open-world assumption. On the right-hand
side there is the family of logic programming languages that build on rules with

Fig. 3.4. An overview of Semantic Web languages

13 This figure shall convey a rough intuition about the relationships between major languages
with respect to their underlying knowledge representation formalisms and paradigms. It
therefore abstracts from certain language details and is necessarily imprecise and vague in
some aspects

3 Knowledge Representation and Ontologies 81

negation-as-failure. They typically follow a semantics of minimal or preferred mod-
els and adhere to the closed-world assumption. There are also languages in between
these two main strands, which cannot be clearly assigned to either paradigm. These
have been designed with a focus set on aspects other than a logically clear seman-
tics, or are attempts to combine features from both worlds, while the pure DL and
LP family languages have well understood properties in terms of computability and
inferential behaviour.

Languages that are placed near to the top in Fig. 3.4 are more expressive than lan-
guages that are placed close to the bottom, meaning that they allow for expressing
more complex knowledge and for richer inferencing through more sophisticated log-
ical consequences than less expressive languages do. Accordingly, high expressivity
of a language is traded for higher computational complexity of decision procedures
for reasoning. Within recent standardisation efforts, it is considered highly desirable
to at least maintain decidability as a design goal for a Semantic Web ontology lan-
guage, and Fig. 3.4 shows a boundary for decidability, above of which languages do
not meet this goal.

Three different kinds of arrows in Fig. 3.4 express a relationship of embedment
between languages. A solid arrow denotes complete semantic containedness of a
less expressive language in a more expressive one, meaning that anything that can be
expressed in the former can also be expressed in the latter by means of a direct map-
ping of languages constructs. A dashed arrow denotes a weaker form of embedding,
where not all the features of the less expressive language do completely fit the more
expressive target language, meaning that the former is in principle (approximately)
covered by the latter, apart from moderate deficiencies in some language constructs
and their semantic interpretation. A dash-dotted arrow denotes a syntactic embed-
ding such that the language constructs of the (syntactically) less expressive language
can be directly used in the more expressive one, although they may semantically be
interpreted in a different way.

An early initiative to standardise a language for semantic annotation of web
resources by the World Wide Web consortium (W3C) resulted in RDF and RDFS,
which form now a well established and widely accepted standard for encoding meta
data. The RDF(S) language is described in more detail in Sect. 3.4.2. It can be used
to express class-membership of resources and subsumption between classes but its
peculiar semantics does fit neither the classical nor the LP-style. If semantically
restricted to a first-order setting, RDF(S) can be mapped to a formalism named
description logic programs (DLP) [18], which is sometimes used to interoperate
between DL and LP by reducing expressiveness to their intersection.

On top of RDF(S), W3C standardisation efforts have produced the OWL family
of languages for describing ontologies in the Semantic Web, which comes in several
flavours with increasing expressiveness. Only the most expressive language variant,
namely OWL-Full, has a semantically proper layering on top of RDF(S), allowing
for features of metamodelling and reification. The less expressive variants OWL-Lite
and OWL-DL map to certain description logic dialects and fit the classical semantics
as subsets of first-order logic. Besides the class membership and subsumption rela-
tions inherited from RDF(S), OWL offers the construction of complex classes from

82 Stephan Grimm et al.

simpler ones by means of DL-style concepts constructors. Among ongoing standard-
isation efforts, OWL-DL is currently the most prominent Semantic Web ontology
language following the description logic paradigm, and in Sect. 3.4.3 the OWL fam-
ily is described in more detail.

A current trend in research on knowledge representation formalisms in the con-
text of the Semantic Web is to integrate DL-style ontologies with LP-style rules to
be interoperable on a semantic level. One attempt to do so is the Semantic Web
Rule Language SWRL)14 that extends the set of OWL axioms to include Horn-like
rules interpreted under first-order semantics. Interoperability with OWL ontologies
is realised by referring to OWL classes and properties within SWRL rules; however,
the combination of OWL-DL and SWRL rules results in an undecidable formalism.
Another approach to amalgamate OWL ontologies and rules are the so-called DL-
safe rules [38], which extend DL knowledge bases in a way similar to SWRL. How-
ever, DL-safe rules preserve decidability of the resulting language by imposing an
additional safety restriction on SWRL rules which ensures that they are only applied
to individuals explicitly known to the knowledge base.

Languages that follow the logic programming paradigm mainly stem from deduc-
tive database systems, which apply rules on the facts stored in a database to derive
new facts by means of logical inferencing. A common declarative language used in
deductive databases is Datalog [47], which is syntactically similar to Prolog [31].
In the Semantic Web context, F-Logic is a more prominent rule language that com-
bines logical formulas with object-oriented and frame-based description features. In
its logic programming variant F-Logic (LP), it adopts the semantics of Datalog rules.
In Sect. 3.4.4 we investigate F-Logic in more detail.

Finally, the Web Service Modeling Language (WSML) family is the most recent
attempt to standardise ontology languages for the web, with a special focus on anno-
tating Semantic Web Services. Since WSML tries to cover all the major aspects
of different knowledge representation formalisms, its various language variants are
spread over the scheme of Fig. 3.4. They fit semantically in between existing lan-
guages by being based on similar formalisms in both the DL and the LP strands. We
will have a closer look at the WSML family of languages in Sect. 3.4.5.

3.4.2 RDF(S)

The Resource Description Framework (RDF) [30] is a language recommended by
the W3C standardisation body for representing information about resources in the
World Wide Web. It is particularly intended for the representation of meta data about
identifiable web resources, such as title and author of a web page, topic and copyright
information of an electronic document retrievable from the web or functionality and
access conditions of a Web Service.

Abstracting from retrievable or electronically processable web resources to any-
thing that has identity, RDF can be used to represent information about just anything.

14 http://www.w3.org/Submission/SWRL/

http://www.w3.org/Submission/SWRL/

3 Knowledge Representation and Ontologies 83

In this sense, RDF can serve as a language to represent knowledge as meta data about
entities in, e.g., the business trips domain.

The RDF Vocabulary Description language RDF Schema (RDFS) [7] is an exten-
sion to RDF which facilitates the formulation of vocabularies for RDF meta data.
While RDF is used to relate resources by means of properties, RDFS introduces the
notions of resource classes and their hierarchies. The combined use of both RDF and
RDFS is often referred to as RDF(S) and provides a simple ontology language for
conceptual modelling with some basic inferencing capabilities.

Basic Elements of RDF

The approach for representing meta data about resources in RDF is based on a few
main ideas.

Identity through URIs

Uniform Resource Identifiers (URIs) are used for naming entities. They exhibit some
naming conventions that allow for partitioning of names into namespaces. For mod-
elling ontologies in RDF, URIs may be used to identify the following kinds of enti-
ties: individuals, such as the person MisterX or the company UbiqBiz; kinds of
things, such as Employee or Company; properties of those things, such as mailbox;
and values of those properties, such as the string “mailto:mrX@ubiqbiz.com”.

By URIs, resources are uniquely identified throughout the web, which allows for
a decentralised organisation of knowledge about commonly referenced resources.

Sentences with Subject, Predicate and Object

Statements in RDF have the form of subject–predicate–object sentences, which are
also referred to as RDF triples. A triple

subject predicate−−−−−−−−−−→ object

relates a subject to an object via a predicate, while the roles of subject, predicate and
object are played by resources identified by URIs. The subject is the resource to be
described, the predicate is a specific property of this resource, and the object serves
as a value of this property for this resource.

Examples for triples in RDF are15

btr:MrX btr:employedAt−−−−−−−−−−−−−−−→ btr:UbiqBiz ,

stating that MisterX is employed at UbiqBiz, or

http://ubiqbiz.com/web/MrX.html btr:hasAuthor−−−−−−−−−−−−−−→ btr:MrX ,

stating that MisterX is the author of his web page at the UbiqBiz website.

15 In the examples, btr: refers to a namespace abbreviation for the business trips domain

84 Stephan Grimm et al.

Graph Representation

Several triples taken together form an RDF graph, whose nodes are resource
URIs and whose arcs are properties. A node in an object position can be either
a resources or an RDF literal, which represents a data value like the string
“mailto:mrX@ubiqbiz.com” or some number. Furthermore, RDF graphs sup-
port blank nodes, which represent anonymous resources. From a knowledge repre-
sentation view, an RDF graph can be seen as a semantic network, similar to the one
depicted in Fig. 3.1.

Since RDF is a web language, the various triples in an RDF graph can originate
from different sites, with the idea that anybody can state anything about any resource.
In this sense, RDF is designed to capture knowledge and meta data that is spread over
the web.

XML Serialisation

Another web-related aspect of RDF is its XML serialisation format in which RDF
graphs are encoded for machine processing and for transport over the wire. An exam-
ple of the above triples encoded in RDF/XML syntax is the following.

<rdf:Description rdf:about="http://ubiqbiz.com/web/MrX.html">
<btr:hasAuthor rdf:resource="btr:MisterX"/>

</rdf:Description>
<rdf:Description rdf:about="btr:MisterX">

<btr:employedAt rdf:resource="btr:UbiqBiz"/>
</rdf:Description>

Descriptions of resources are encoded using special XML tags from the RDF-
predefined vocabulary.

Reification

RDF allows one to make statements about statements, which is referred to as reifica-
tion. A reified statement is a resource that represents an occurrence of an RDF triple.
In this way, meta statements can be formulated, which can be illustrated as follows.

subject predicate−−−−−−−−−−→ object predicate−−−−−−−−−−→ object

Here, the subject role is played by a resource that represents a whole statement.
Reification is particularly interesting in the context of the Semantic Web, where

it can be used to make statements about things that have been stated elsewhere by
referring them as resources.

Data Structuring Facilities

Furthermore, RDF specifies elements to represent basic data structures as known
from programming languages, namely containers and collections. Containers can
be used to realise open data structures, such as ordered and unordered sequences,
whereas collections allow for list structures that can be closed by stating that there
are no more members.

3 Knowledge Representation and Ontologies 85

Typing Resources with RDFS

RDFS facilitates the specification of application-specific ontological vocabularies in
the form of class and property hierarchies on top of RDF resources. For this pur-
pose, it defines a set of reserved keywords that can be used in RDF triples to relate
resources to classes.

Classes

RDFS defines a type system for RDF resources by introducing the concept of a class.
The reserved predicate rdf:type is used to indicate class membership, i.e. that a
resource is of a certain type. RDFS classes are organised in a hierarchy of types
for RDF resources. The reserved predicate rdfs:subClassOf is used to state a
subclass relationship between two types. The following RDF(S) graph illustrates the
typing of resources.

btr:MrX rdf:type−−−−−−−−−−−→ btr:Employee rdfs:subClassOf−−−−−−−−−−−−−−−−−−−→ btr:Person

Here, the resource that represents MisterX is stated to be of type btr:Employee, i.e.
MisterX is a member of the class of employees, which is itself a subclass of persons.

These RDF(S) constructs for typing allow for the formulation of subsumption
hierarchies and for the distinction between instances and concepts in the ontolog-
ical sense. However, in RDF(S) there is no clear separation between classes and
their members. Instead, RDF(S) allows self-reference and classes being members of
(meta) classes. Any resource can be tagged as a class by relating it to the predefined
meta type rdfs:Class.

Properties

By the semantics of RDF(S), any resource used in the predicate position of an RDF
triple is a member of the class rdfs:Property. Besides classes, properties can also
be organised in a hierarchy by means of the keyword rdfs:subPropertyOf. An
example is the following triple,

btr:employedAt rdfs:subPropertyOf−−−−−−−−−−−−−−−−−−−→ btr:worksFor

which reflects the fact that anybody employed at some company works for this com-
pany.

With the predefined predicates rdfs:domain and rdfs:range, one can
define the domain and range for a property. By setting the range of the property
btr:employedAt in the above example to btr:Company, any resource that fills
the object position of an RDF triple with this property as predicate is a member of
the company class.

Semantics of RDF(S)

RDF(S) comes with a formal semantics that is specified in a model-theoretic way in
[24]. Here, we only sketch the basic ideas of the semantics defined there, giving an
intuition on the inferencing characteristics of RDF(S).

86 Stephan Grimm et al.

In logical terms, RDF is an assertional language in which each triple expresses
a positive ground proposition. An RDF graph, as a set of triples, makes up a logi-
cal theory that consists of positive ground assertions. Since there is no concept of
negation, one cannot express contradictory information in the language. Although it
is possible to express or infer that, e.g., a person is both male and female, there is no
way of stating that the classes of males and females cannot have common resources
as their members.

In [24], the semantics of RDF(S) is characterised in the form of axiomatic triples
and entailment rules that derive new, inferred triples. To yield the set of all entailed
statements for an RDF graph GRDF, the rules are exhaustively applied to the triples of
GRDF together with all axiomatic triples. In this sense, the RDF(S) semantics deter-
mines which implicit knowledge is derived from explicitly stated assertions in a
graph. To illustrate the most essential parts of the RDF(S) semantics, we give exam-
ples of some of these entailment rules and their application to triples.

For example, the semantics for class membership and inheritance is determined
by the following two entailment rules applied to the triples of an RDF graph GRDF.

(1)
IF GRDF contains (C,rdfs:subClassOf,D) and (R,rdf:type,C)
THEN derive (R,rdf:type,D)

(2)
IF GRDF contains (C,rdfs:subClassOf,D) and (D,rdfs:subClassOf,E)
THEN derive (C,rdfs:subClassOf,E)

Their reading is to derive the triple in the THEN part for any instantiation of triples in
the IF-part. The variables occurring inside the triples range over RDF resource URIs.
Rule (1) entails the membership of resources in superclasses, while rule (2) ensures
the transitivity of the subclass relationship. From the previous triple about MisterX
being an employee as a special kind of person, rule (1) would entail the following
triple.

btr:MrX rdf:type−−−−−−−−−→ btr:Person

Thus, an implementation of an RDF system would include MisterX in the result for
the query asking for all persons.

As another example, the semantics for domains and ranges of properties is deter-
mined by the following two entailment rules.

(3)
IF GRDF contains (P, rdfs:domain,C) and (R,P,S)
THEN derive (R, rdf:type,C)

(4)
IF GRDF contains (P, rdfs:range,C) and (R,P,S)
THEN derive (S, rdf:type,C)

By setting the domain and range of the property btr:employedAt to
btr:Employee and btr:Company, as follows,

btr:Employee rdfs:domain←−−−−−−−−−−−− btr:emp.At rdfs:range−−−−−−−−−−−−→ btr:Company

the rules (3) and (4) apply to the triple

btr:MrX btr:employedAt−−−−−−−−−−−−−−−→ btr:UbiqBiz ,

3 Knowledge Representation and Ontologies 87

deriving that MisterX is an employee and that UbiqBiz is a company.
The entailment rules also apply to the RDF(S) meta vocabulary, determin-

ing the relationship between predefined vocabulary resources like rdfs:Class or
rdfs:Property. For example, the axiomatic triple

rdf:type rdfs:range−−−−−−−−−−−→ rdfs:Class ,

already triggers rule (4) for any class membership assertion, deriving that the referred
type resource is a class.

Software Support for RDF(S)

The RDF(S) language is used by various web-based applications for describing meta
data, and a number of tools are available that support visual editing and program-
matic handling of RDF(S) descriptions.

One of the most common visual editors for RDF(S) is Protégé,16 although
recently its focus has been shifted towards OWL. Protégé allows to navigate and edit
an RDF(S) class hierarchy and has special support for populating an RDF Schema
with instances using customisable input forms. Other ontology editors that support
RDF(S) are WebODE17 [10], OntoEdit18 [46] and KAON19 OI-Modeller.

For in-memory processing and database storage of RDF(S) descriptions, com-
mon tool suites are Sesame20 [8] and Jena21 [32], which provide software libraries
that enable software developers to process RDF(S) descriptions within their appli-
cations. They comprise parsing and serialisation for the RDF XML format, an in-
memory object representation for RDF(S) descriptions as well as database persis-
tency and querying functionality including reasoning capabilities. Recently, also ora-
cle include RDF(S) support in their database solutions. 22

3.4.3 OWL

The Web Ontology Language (OWL) [40] has been standardised by the W3C con-
sortium as a language for semantic annotation of web content and is widely accepted
within the Semantic Web community.

An important issue for the design of OWL was the trade-off between expressivity
of the language on the one hand and scalability of reasoning on the other. To this end,
OWL comes in three different flavours, namely OWL-Lite, OWL-DL and OWL-Full,
reflecting different degrees of expressiveness. The design of OWL-Lite and OWL-
DL has been significantly influenced by descriptions logics, and hence these two
16 http://protege.stanford.edu/
17 http://webode.dia.fi.upm.es/WebODEWeb/index.html
18 Meanwhile OntoStudio – http://ontoedit.com/
19 http://sourceforge.net/projects/kaon
20 http://sourceforge.net/projects/sesame/
21 http://jena.sourceforge.net/
22 See the technical whitepaper at http://www.oracle.com/technology/tech/
semantic_technologies/pdf/semantic_tech_rdf_wp.pdf

http://protege.stanford.edu/
http://webode.dia.fi.upm.es/WebODEWeb/index.html
http://ontoedit.com/
http://sourceforge.net/projects/kaon
http://sourceforge.net/projects/sesame/
http://jena.sourceforge.net/
http://www.oracle.com/technology/tech/semantic_technologies/pdf/semantic_tech_rdf_wp.pdf
http://www.oracle.com/technology/tech/semantic_technologies/pdf/semantic_tech_rdf_wp.pdf

88 Stephan Grimm et al.

variants correspond to the description logic dialects SHIF(D)23 and SHOIN (D),
respectively. OWL-Full, on the contrary, departs from description logic semantics in
order to provide compatibility with RDF(S). The DL-based OWL variants benefit
from well understood computational properties and decidability of description logic,
while OWL-Full has shown to be undecidable [36]. In our presentation of OWL, we
focus on OWL-DL as the most prominent language variant with the most support by
the Semantic Web community.

Syntax and Intuitive Semantics

The OWL standard defines different syntaxes based on RDF(S), XML and propri-
etary text format. The OWL RDF/XML syntax allows for an encoding of an OWL
ontology within the RDF(S) framework in RDF/XML serialisation. The OWL XML
presentation syntax provides a more compact XML format for OWL ontologies,
independent from RDF(S). In contrast to these machine-oriented serialisations, the
OWL abstract syntax serves as a human readable text format to present OWL ontolo-
gies to knowledge engineers. Yet another popular way to present OWL content to
a reader in a more scientific context is to make use of DL formulas. We choose to
present examples in OWL abstract syntax as well as in the more compact description
logic formal notation.

Similar to RDF(S), OWL provides syntactic modelling constructs for the basic
elements of an ontology, i.e. concepts, relations and instances. In OWL these are
called classes, properties and individuals, respectively, and they correspond to con-
cepts, roles and individuals in description logics. In contrast to RDF(S), OWL-DL
strictly separates classes from individuals and allows for building complex classes
out of simpler ones by means of class constructors. In the following we go over a
selection of the syntactic elements of OWL including various such constructors. For
each example statement, taken from the geographic ontology depicted in Fig. 3.2, we
give its intuitive meaning in natural language as well as notations in OWL abstract
syntax and DL formulas.

OWL by Examples

Named classes are usually introduced by means of class declarations that correspond
to DL inclusion axioms with an atomic concept on the left-hand side, as in the fol-
lowing example.

1© “A continent is a geographic location different from a country.”
Class(Continent partial

intersectionOf(GeographicLocation

complementOf(Country))

Continent v GeographicLocation u ¬Country

Here the class Continent is introduced through a partial declaration, which speci-
fies (some of) its necessary conditions. By means of the constructors intersectionOf

23 The F stands for functional roles, i.e. it can be stated that role relationships must be
functional

3 Knowledge Representation and Ontologies 89

and complementOf, a continent is declared to be a geographic region but not a coun-
try. Hence, this syntactic construct states both subclass relationship and disjointness,
according to the respective DL inclusion axiom. “Necessary” here means that any
continent is also a geographic location and not a country. However, not any geo-
graphic location that is not also a country is necessarily a continent; the partial class
declaration only works in one direction and does not impose a “sufficient” condi-
tion, which can be achieved by using the keyword complete instead of partial. The
keyword complete specifies class equivalence.

Individuals are introduced based on class descriptions, as in the following
example.

2© “Europe is a particular continent.”
Individual(Europe type(Continent)) Continent(Europe)

Here the individual Europe is introduced as an instance of the class Continent.
Although this example shows the instantiation of a previously declared named class,
the class description for the type-clause can be arbitrarily complex using class con-
structors.

An alternative way to define a class is to enumerate all its individuals, as shown
in the following example.

3© “The continents are America, Europe, Africa, Asia and Australia.”
EnumeratedClass(Continent

America Europe Africa Asia Australia)
Continent ≡ {America, Europe, Africa, Asia, Australia}

Here the class Continent is defined by listing all its known members, i.e. all the
different continents.

Similar to classes, properties are introduced through explicit declarations with
optional domain and range classes and other modifiers, as shown in the following
example.

4© “Geographic regions in general contain geographic regions.”
ObjectProperty(contains

domain(GeographicRegion)
range(GeographicRegion)
inverseOf(isContainedBy)
Transitive)

∃ contains.> v GeographicRegion,
> v ∀ contains.GeographicRegion,
locatedIn ≡ isContainedBy−

Trans(contains)

Here the object property contains is declared as a transitive containment relation
between geographic regions. It is linked to its inverse property isContainedBy. The
domain and range clauses are mapped to appropriate DL inclusion axioms: anything
that contains something is a geographic region, as well as anything that is being
contained. In addition to the domain of individuals OWL also offers the so-called
concrete domains [3], i.e. properties can alternatively range over datatypes such as
integer, float or string.

Once properties have been introduced, complex class descriptions can be formed
by imposing restrictions on them. The following example shows a general subclass
statement including a restriction on the previously introduced property.

90 Stephan Grimm et al.

5© “A planar region only contains planar or linear regions.”
SubClassOf(PlanarRegion

restriction(contains
allValuesFrom(

unionOf(PlanarRegion

LinearRegion)))

PlanarRegion v
∀ contains.(PlanarRegion t LinearRegion)

Here planar regions are restricted to only contain planar or linear regions by means of
the restriction constructor. The allValuesFrom clause requires that all values for the
restricted property are of a certain type, which is specified as a disjunction by means
of the unionOf constructor. Although this example states subclass relationship for a
named class, both parameters of the subClassOf-clause can be arbitrarily complex
class descriptions made up of constructors.

Statements of class equivalence can also be quite sophisticated as in the following
example.

6© “A European city is a city whose geographic region is contained in that of Europe.”
EquivalentClasses(EuropeanCity
intersectionOf(

City
restriction(locatedIn

allValuesFrom(
restriction(isContainedBy

someValuesFrom(
restriction isRegionFor

someValuesFrom(
oneOf(Europe))))))))

EuropeanCity ≡ City u
∀ locatedIn.∃ isContainedBy.∃ isRegionFor.{Europe}

Here the class EuropeanCity is set equivalent to a complex class description with
nested restrictions on properties and their inverses. By this, a city can be concluded to
be European if its geographic region is contained by that of the European continent.
The someValuesFrom clause restricts a property such that there must exist a value of
a certain type, while the oneOf constructor creates a class from an explicitly named
individual, similar to the enumerated class in 3©.

Another way to restrict properties is to constrain their cardinality, as shown in
the following example.

7© “A city is a geographic location governed by a single country.”
SubClassOf(City

restriction(governedBy

maxCardinality 1))

City v ≤ 1 governedBy

Here cities are restricted to be governed by at most one country by means of
the maxCardinality clause. Similarly, minimal cardinality can be realised with the
minCardinality clause, while both can be combined to require a fixed cardinality.

Another usage of introduced properties is to connect individuals to other individ-
uals or data values, as shown in the following example.

8© “Munich is a German city with 1288307 inhabitants.”
Individual(Munich type(City)

value(governedBy Germany)
value(numberOfInhabitants 1288307))

City(Munich),
governedBy(Munich,Germany)
numberOfInhabitants(Munich, 1288307)

Here the individual Munich is stated to be a city that lies in Germany by an appro-
priate connection to the individual Germany. It is asserted an integer value for the
property numberOfInhabitants.

3 Knowledge Representation and Ontologies 91

Model-Theoretic Semantics

The exact semantics of the DL-based OWL variants is determined by the model-
theoretic semantics of the underlying description logic formalism. An OWL ontology
consists of a collection of statements as the ones shown in the examples 1© – 8©.
These statements are interpreted as axioms of a DL knowledge base, as described in
Sect. 3.2, and thus OWL employs the open-world assumption. Table 3.1 shows the
mapping of OWL abstract syntax constructs to their corresponding description logic
axioms.

Table 3.1. Translation of OWL abstract syntax to description logic formal notation

OWL abstract syntax DL syntax
Axioms

Class(A partial C1 . . .Cn) A v C1 u . . .Cn

Class(A complete C1 . . .Cn) A ≡ C1 u . . .Cn

EnumeratedClass(A a1 . . . an) A ≡ {a1} t · · · t {an}
SubClassOf(C D) C v D
EquivalentClasses(C1 . . .Cn) C1 ≡ · · · ≡ Cn

DisjointClasses(C1 . . .Cn) Ci v ¬Cj, (1 ≤ i < j ≤ n)

ObjectProperty(r super(r1). . .super(rn) r v r1 u · · · u rn

domain(C1) . . . domain(Cn) ∃ r.> v C1 u · · · u Cn

range(C1) . . . range(Cn) > v ∀ r.C1 u · · · u ∀ r.Cn

[inverseOf(s)] r ≡ s−

[Symmetric] r ≡ r−

[Functional] > v ≤ 1 r
[InverseFunctional] > v ≤ 1 r−

[Transitive]) Trans(r)
SubPropertyOf(r s) r v s
EquivalentProperties(r1 . . . rn) r1 ≡ · · · ≡ rn

Individual(a type(C1) . . . type(Cn) C1 u · · · u Cn(a)

value(r1 a1) . . . value(rn an)) r1(a, a1), . . . , rn(a, an)

SameIndividual(a1 . . . an) a1 = · · · = an

DifferentIndividuals(a1 . . . an) ai 6= aj, (1 ≤ i < j ≤ n)

Descriptions
Class(A) A
Class(owl:Thing) >
Class(owl:Nothing) ⊥

intersectionOf(C1 C2 . . .) C1 u C2

unionOf(C1 C2 . . .) C1 t C2

complementOf(C) ¬C
oneOf(a1 a2 . . .) {a1} t {a2}

restriction(r someValuesFrom(C)) ∃ r.C
restriction(r allValuesFrom(C)) ∀ r.C
restriction(r hasValue(a)) ∃ r.{a}
restriction(r minCardinality(n)) ≥ n r
restriction(r maxCardinality(n)) ≤ n r

92 Stephan Grimm et al.

Working with OWL Ontologies

Due to the connection of OWL to description logics, the basic reasoning services
available for DL knowledge bases also apply to OWL ontologies. Thus, an OWL
ontology can be checked for consistency or it can be queried for implicit knowledge.

Ontology Inconsistency

Consider the following OWL ontology consisting of three statements.

{ subClassOf(City restriction(governedBy maxCardinality(1))),
Individual(Nicosia type(City) value(governedBy Greece) value(governedBy Turkey)),
DifferentIndividuals(Greece Turkey) }

The first statement is taken from 7© and says that cities are uniquely governed by
a single country. The second statement says that the city of Nicosia24 is governed
by both Greece and Turkey, while the third statement assures that these are two dif-
ferent countries. This is clearly a contradiction and this OWL ontology is therefore
inconsistent. This can be verified by using the reasoning service of knowledge base
satisfiability, offered by common description logic reasoners. Notice that for practi-
cal reasons an inconsistent ontology is quite useless, since it allows to conclude any
arbitrary statement.

Ontology Coherency

Another kind of “problematic modelling” in ontologies is to introduce classes that
cannot have instances, which is the case in the following OWL ontology.

{ subClassOf(City restriction(governedBy maxCardinality(1))),
class(SplitCity complete

intersectionOf(City restriction(governedBy minCardinality(2)))) }

Again, the first statement, taken from 7©, restricts cities to be governed by at most one
country. The second statement introduces a class SplitCity, requiring that split cities
are cities governed by at least two countries. However, by the first statement, this is
not possible and thus the class SplitCity cannot have an instance in any valid model of
the corresponding description logic knowledge base. In DL-terms this means that the
concept SplitCity is unsatisfiable. Common description logic reasoners offer the ser-
vice of checking concepts for their satisfiability. An ontology that contains an unsat-
isfiable concept/class is said to be incoherent. In contrast to inconsistent ontologies,
an incoherent ontology is not useless and many reasoning tasks might not be affected
by the unsatisfiability of a particular class. However, incoherence of an ontology indi-
cates erroneous modelling, and once an unsatisfiable class is assigned an individual
as an instance the ontology becomes inconsistent.

24 Nicosia is the capital of Cyprus and is split into a Greek and a Turkish part

3 Knowledge Representation and Ontologies 93

Querying for Subsumption

Besides checking an ontology for consistency or coherency, its main usage is to be
queried for implicit knowledge. Based on the notion of entailment, for any OWL
statement we can ask whether it follows from an OWL ontology, i.e. whether its cor-
responding DL axiom is entailed by the respective DL knowledge base. Querying for
subsumption between two classes underlies the most important usage of reasoning in
the OWL language, namely classification. The following OWL ontology allows for
the automatic classification of two classes that are not explicitly put in subsumption
relation.

{ class(SplitCity complete
intersectionOf(City restriction(governedBy minCardinality(2)))),

class(GreekTurkishCity partial
intersectionOf(City

restriction(governedBy someValuesFrom(oneOf(Greece)))
restriction(governedBy someValuesFrom(oneOf(Turkey))))),

DifferentIndividuals(Greece Turkey) }

The first statement introduces split cities as before, while the second statement
introduces a class GreekTurkishCity for cities which are governed by both Greece
and Turkey. The third statement assures the two involved countries to be dis-
tinct, as before. Notice that this time the ontology does not restrict cities to be
governed by a single country. From the knowledge specified in the ontology,
GreekTurkishCity is a subclass of SplitCity and a DL reasoner would derive the state-
ment subClassOf(GreekTurkishCity SplitCity) as a logical consequence.

By checking subsumption between all the named classes in an OWL ontology,
an inferred class hierarchy can be established.

Querying for Assertion

The other kind of statements an OWL ontology can be queried for are assertion
axioms. For both role assertions and concept assertions, we can ask whether they
hold with respect to an OWL ontology, as illustrated by the following example.

{ subClassOf(EUCountry restriction(officialCurrency hasValue(Euro))),
Individual(Germany type(EUCountry),
class(GermanCity partial

intersectionOf(City restriction(governedBy hasValue(Germany)))),
Individual(Munich type(GermanCity) }

This ontology states that in countries in the EU, as e.g. Germany, the official currency
is Euro, and that German cities, as e.g. Munich, are cities governed by Germany.
From the knowledge specified in the ontology, it follows that Munich is governed
by Germany, and a DL reasoner would derive the statement Individual(Munich

value(governedBy Germany)) as a logical consequence, since Munich is assigned to be a
GermanCity. Furthermore, the ontology allows to conclude that in Munich one can
pay with Euro, i.e. Munich is governed by a country that has Euro as official currency.
A reasoner would derive the statement Individual(Munich type(restriction(governedBy

94 Stephan Grimm et al.

someValuesFrom(restriction(officialCurrency hasValue(Euro)))))), since, as a
GermanyCity, Munich is governed by Germany whose official currency is
Euro.

By iterating over all the individuals in an OWL ontology, querying for subsets of
named individuals with certain properties can be achieved. For example, in the above
query Munich can be subsequently replaced by other named individuals to retrieve
all cities in which one can pay with Euro.

Software Support for OWL

Since OWL is technically built on top of RDF(S), some RDF(S) specific tools can
be readily applied, e.g. for parsing and serialisation in the OWL RDF/XML format,
while others have also been upgraded to OWL versions.

The ontology editor Protégé [22] also supports OWL and comes with a variety of
plugins that allow for visualisation and management of OWL ontologies. In addition
to different graphical views of the explicit class and property hierarchies, it facil-
itates the visual editing of OWL axioms and enables the embedding of reasoning
tools for computing inferred subsumption hierarchies. Other visual editors for OWL
ontologies that offer similar functionality are SWOOP25 [28] or the commercial tools
Altova Semantic Works26 and TopBraid.27

For the programmatic handling of OWL ontologies, the OWL API28 [5] as well
as Jena [32] can be used by software developers to process OWL descriptions within
their applications. They provide means for parsing and serialisation of the different
OWL syntax formats and for in-memory manipulation of ontologies.

As OWL is an expressive knowledge representation language, reasoning plays
an important role, and there are a number of description logic reasoners available
that can be used for querying OWL ontologies with respect to inferred knowledge
or for verifying their consistency. The most common description logic reasoners in
the Semantic Web context are based on the tableau calculus, and available systems
that support the OWL language are Racer29 [23], FaCT30 [25] and Pellet31 [44].
Recently, new DL reasoning algorithms – based on deductive database technology –
were devised for the development of the KAON232 [37] system, which is particularly
optimised for querying ontologies with large A-Boxes.

3.4.4 F-Logic

Frame Logic (F-Logic) [29] is a deductive, object-oriented database language which
aims at combining the declarative semantics and expressiveness of logic program-
25 http://www.mindswap.org/2004/SWOOP/
26 http://origin.altova.com/products_semanticworks.html
27 http://www.topbraidcomposer.com/
28 http://owl.man.ac.uk/api.shtml
29 Meanwhile RacerPro – http://www.racer-systems.com/
30 Meanwhile FaCT++ – http://owl.man.ac.uk/factplusplus/
31 http://www.mindswap.org/2003/pellet/
32 http://kaon2.semanticweb.org/

http://www.mindswap.org/2004/SWOOP/
http://origin.altova.com/products_semanticworks.html
http://www.topbraidcomposer.com/
http://owl.man.ac.uk/api.shtml
http://www.racer-systems.com/
http://owl.man.ac.uk/factplusplus/
http://www.mindswap.org/2003/pellet/
http://kaon2.semanticweb.org/

3 Knowledge Representation and Ontologies 95

ming with rich and intuitive conceptual modelling capabilities, as provided by frame-
based systems. The most significant language features of F-Logic comprise object
identity, complex objects, classes, inheritance, polymorphic types, rules and queries.
Besides the aspects of a frame-based language for conceptual modelling, it can also
be perceived as a logic with model-theoretic semantics and a sound and complete
resolution-based proof theory.

We give a short overview on syntax and informal semantics of the most impor-
tant features of F-Logic. In the original specification [29], F-Logic is given several
semantics and in its full version it is an extension of first-order logic. However, sys-
tems that support the language do not implement full F-Logic but a logic program-
ming variant based on the well-founded semantics. Thus, we present F-Logic as a
rule-based LP-style language, as it is widely perceived.

F-Logic by Examples

Frame-Based Modelling

F-Logic allows to describe objects – identified by an object ID – by grouping related
information about the object in the so-called F-molecules. The following example
illustrates the use of F-molecules to describe some objects from our business trips
scenario.
UbiqBiz[hasLegalName -> ‘Ubiquitous Business Ltd.’,

hasOfficesIn ->> {NewYork, London, Singapore},
hasPhones ->> {0017324747123, 00654564458},
hasEmployees ->> {MrX, MrY, MsZ}].

MrX[hasName -> ‘Mister X’,
hasAddress -> AddressMrX[hasStreet -> ‘Fifth Avenue’,

hasNumber -> 521,
hasCity -> NewYork].

BookingUbiqMrX[bookedBy -> UbiqBiz,
bookedFor -> MrX,
issuedFor -> FL4711].

In the example, objects, such as UbiqBiz, are described in terms of F-molecules that
assign them values for certain attributes, such as legal name, locations of offices,
phone numbers and associated employees. As values for attributes, F-Logic allows
objects as well as data values, such as strings or numbers. The symbol -> denotes
an assignment of a single value, while the symbol ->> indicates the assignment of
multiple values for set-valued attributes. As illustrated by the attribute hasAddress,
attribute assignments in F-molecules can be nested.

From an ontology point of view, the objects in the example can be seen as
instances. Besides these, F-Logic also provides language features for describing
classes of objects with attached attributes and relating them in class hierarchies,
as shown next.
Company :: LegalEntity.
Company[hasLegalName => STRING,

hasOfficesIn =>> City,
hasPhones =>> NUMBER,

96 Stephan Grimm et al.

hasEmployees =>> Person].

Person :: LegalEntity.
Person[hasName => STRING,

hasAddress => Addresss].

Employee :: Person.
Employee[isEmployedAt => Company].

Booking[bookedBy => LegalEntity,
bookedFor => Person,
issuedFor => Flight].

UbiqBiz : Company.
MrX : Person.
FL4711 : Flight.
BookingUbiqMrX : Booking.

In the example, the object Company is described as a class for company objects with
appropriate attribute ranges. The symbol => indicates a single-valued range, while
the symbol =>> assigns a set-valued range for attributes with multiple values.

Both Company and Person are declared as subclasses of LegalEntity by means of
the symbol ::, which denotes class inheritance and is used to build class hierarchies.
The class Employee is, in turn, a subclass of Person with an additional attribute for
employment; it inherits the attributes from its parent class Person.

Objects can be assigned to classes using the symbol :. In the ontological view,
this means to relate an instance to a concept. Here, the symbol : is used to state that
UbiqBiz is a company, that MisterX is a person, etc. Since any object can serve as a
class, classes can be declared as instances of other classes, and thus F-Logic supports
metamodelling facilities.

Rules

In the Semantic Web context, F-Logic is primarily perceived as a language following
the rule-based paradigm. Indeed, LP-style rules form the essential language feature
for the deductive aspects of F-Logic.

The keyword FORALL – to indicate universal quantification of involved variables –
is used together with the symbol <- to construct rules in F-Logic. A rule
FORALL <variables> <head> <- <body>.

has the typical reading: for any possible instantiation of variables in the rule body,
derive the corresponding instantiation of the rule head. By deriving new information,
rules extend an F-Logic object base by intensional knowledge, forming its deductive
closure.

The following is an example of a rule that operates on the descriptions of the
classes and objects given before.
FORALL C,E C[hasEmployees ->> E] <- E : Employee[isEmployedAt -> C].

It captures a part of the inverse relationship between the attributes hasEmployees and
isEmployedAt. Whenever an employee can be derived to be employed at a certain
company, the rule derives that this employee is among the list of employees of that
particular company.

Another, more complex example of a rule is the following, taken from Sect. 3.1.

3 Knowledge Representation and Ontologies 97

FORALL B,C,P P : Employee[isEmployedAt -> C] <- P : Person AND
C : Company AND
B : Booking[bookedBy -> C,

bookedFor -> P].

It concludes a person to be an employee of a certain company whenever there is
a booking for this person by that particular company. From the concrete booking
BookingUbiqMrX for flight FL4711, specified before, this rule would derive the F-
molecule
MrX : Employee[isEmployedAt -> UbiqBiz].

stating that MisterX is an employee of UbiqBiz.

Queries

F-Logic provides queries as a language element for the retrieval of (tuples of) objects.
Objects are bound to possible instantiations of variables that occur in the query. Syn-
tactically, queries in F-Logic are a special kind of rules with an empty head and have
the following form.
FORALL <variables> <- <body>.

As with rules, the variables that occur in the body of a query are universally quanti-
fied. Whenever a tuple of objects is a possible instantiation of variables that conform
with the deductive closure of the object base, this tuple is part of the result for the
query.

An example for an F-Logic query is the following,
FORALL E,A <- E : Employee[isEmployedAt -> UbiqBiz,

hasAddress -> A[hasCity -> NewYork]].

asking for all UbiqBiz employees who live in New York. Applied to the formerly
described objects and rules, the answer to this query would be the object MrX because
MisterX is assigned an address in New York and he can also be derived to be an
employee.

Queries can also ask for schema elements and bind variables to classes. The
following query asks for all classes which MisterX belongs to.
FORALL C <- MrX : C.

The answer to the query is the set {Person, Employee, LegalEntity} of classes.

Negation as Failure

Under the semantics of the logic programming variant, F-Logic makes the closed-
world assumption for the evaluation of queries and for the deductive closure on an
object base. For example, the query
FORALL E <- E : Employee.

that asks for all employees only yields MrX as a result. For MrY and MsZ, it has not been
stated that they are employees, nor can this information be derived from the specified
knowledge. Therefore, MisterY and MissZ are assumed to be no employees.

98 Stephan Grimm et al.

Furthermore, the negation operator NOT, used in the bodies of rules and queries,
is interpreted as negation-as-failure. The following is an example of a query that
contains a negation operator, combined with a rule.
FORALL P P : FlightParticipant <- F : Flight AND

B : Booking[bookedFor -> P,
issuedFor -> F].

FORALL E <- UbiqBiz[hasEmployee ->> E] AND
NOT E : FlightParticipant.

It asks for all the employees of UbiqBiz who do not participate in any known flight,
which yields the set {MrY, MsZ}.

Software Support for F-Logic

Since F-Logic sets a focus on rule-based inferencing rather than on web aspects,
it does not come in a web-style XML serialisation format like other ontology lan-
guages in the Semantic Web. Its syntax rather resembles the style of typical pro-
gramming languages and is human-readable for people with a software develop-
ment background. To this end, there is not much support in graphical editing tools
and F-Logic ontologies are typically developed using text editors. An exception is
OntoStudio,33 which provides graphical editing capabilities for F-Logic rules, while
some other ontology editors also support F-Logic export features.

There are two major inference engines available that perform reasoning on F-
Logic rules: the freely available FLORA-234 [49] and the commercial OntoBro-
ker35 [12]. Recently, also the KAON236 system has included some support for F-
Logic.

3.4.5 WSML

The WSMO37 initiative aims at providing an overarching framework for handling
Semantic Web Services (SWS). It comprises the WSMO conceptual model, as
an upper-level ontology for Semantic Web Services, the WSML language and
the WSMX execution environment. WSMO (Web Service Modelling Ontology) is
described in Part III Chap. 7 in more detail, while here we are concerned with ontol-
ogy language aspects. WSML (Web Service Modeling Language) is a language to
formally describe the elements defined in the WSMO conceptual model, providing
syntax and formal semantics for them.

WSML is particularly designed for describing Semantic Web Services and is
therefore not a mere ontology language. Besides typical ontological notions, it also
provides SWS-specific language constructs, such as “goal”, “web service”, “inter-
face”, “choreography” or “capability”, to capture different aspects of Web Service

33 http://www.ontoprise.de/content/e1171/e1249/index_eng.html
34 http://flora.sourceforge.net/florahome.php
35 http://ontobroker.semanticweb.org/
36 http://kaon2.semanticweb.org/
37 http://www.wsmo.org

http://www.ontoprise.de/content/e1171/e1249/index_eng.html
http://flora.sourceforge.net/florahome.php
http://ontobroker.semanticweb.org/
http://kaon2.semanticweb.org/
http://www.wsmo.org

3 Knowledge Representation and Ontologies 99

semantics. One of the corner stones in WSMO are the domain ontologies used to
semantically annotate Web Services. Hence, WSML also provides means to describe
such ontologies, as any ordinary ontology language does. Since here we are inter-
ested in the description of ontologies in general, we present the ontology-related part
of WSML only.

Syntax

The Syntax of WSML is split into a conceptual part and a logical expression part.
The conceptual syntax allows typical conceptual modelling with concepts, relations
and instances, known from frame-based systems where information about a certain
entity is specified locally in a single syntactic construct. The logical expression syn-
tax allows the formulation of complex axiomatic information using logical formulas.
It is very similar to F-Logic syntax and provides the typical logical symbols as well
as different forms of negation and implication, LP-style rules and constraints. WSML
also supports datatypes like integer, float or string, up to user-defined datatypes.

The following listing shows a fragment of our example geographic ontology in
WSML syntax in its human readable serialisation.

concept GeographicRegion
isRegionFor inverseOf(locatedIn) ofType GeographicLocation
contains inverseOf(isContainedBy) transitive impliesType GeographicRegion
boundedBy ofType (2 ∗) SurfacePoint

concept SurfacePoint
hasLongtitude ofType float
hasLatitude ofType float

concept City subConceptOf Infrastructure
locatedIn ofType PlanarRegion
officialName ofType string
numberOfInhabitants ofType integer

concept EuropeanCity subConceptOf City

instance Europe memberOf Continent

instance Munich memberOf City
officialName hasValue ”M ünchen”
numberOfInhabitants hasValue 1288307

axiom EuropeanCity sufficient condition definedBy
?c memberOf EuropeanCity :− ?c memberOf City and

?c[locatedIn hasValue ?rc] and
?rc[containedBy hasValue ?re] and
?re[isRegionFor hasValue Europe].

The upper part shows the conceptual syntax with bold-faced keywords for defining
concepts, instances and their membership relations. Attributes, i.e. relations defined
in the scope of a concept, are further restricted or filled with concrete values. They
can be declared as being transitive or as the inverse of another attribute, and they
can be constrained by their range type or cardinality. With the distinction between
the ofType and impliesType constructs, WSML offers both range constraints that ensure

100 Stephan Grimm et al.

attribute values to be of a certain type, and range restrictions in the style of OWL
that allow to conclude information about attribute values. Attribute ranges can be
concepts or datatypes, such as integer, float or string. The lower part of the listing
shows an axiom defined by a logical expression in form of an LP-style rule with
variables preceded by a ? symbol. The rule concludes a city to be European if its
geographic region lies within that of Europe, referring to the elements declared in
the conceptual part.

Besides the human readable form, there are other forms of serialisation for the
WSML syntax, similar to the different serialisation formats for OWL. These cover
serialisation in XML as well as in RDF.

Semantics

Similar to OWL, WSML comes in various language variants that have different
expressiveness and that reflect different knowledge representation paradigms. The
most basic and least expressive variant is WSML-Core, which is based on DLP
[18] as a least common denominator for description logic formalisms on the one
hand and logic programming and rule-based systems on the other hand. WSML-
Core is separately extended in the directions of these two paradigms by the variants
WSML-DL and WSML-Flight/Rule, respectively. Ultimately, the vision of WSML-
Full is to semantically amalgamate the two paradigms in a language with first-order
model-theoretic semantics augmented by non-monotonic extensions and typical LP-
style features like default negation or constraints. At the current stage, however, the
WSMO initiative is an ongoing effort and the semantics of WSML-Full is yet to be
defined.

In Fig. 3.5 the WSML language variants are positioned with respect to different
knowledge representation formalisms.

WSML-Core

This variant is based on the DLP fragment described in [18]. It offers basic concep-
tual modelling with concepts, attributes and instances, as well as taxonomic hierar-
chies and the use of datatypes. Its semantics is defined by a mapping to function-free
horn logic interpreted in the classical model-theoretic way. Similar to RDF, it does
not allow to express any form of negative information, and thus no contradictory
statements can be formulated.

WSML-DL

This variant extends WSML-Core to a description logic formalism, namely to the
logic SHIQ(D). In this sense, WSML-DL is very similar to the OWL language.
The WSML syntax does not provide the variable-free constructs that are typical for
DLs. Thus, in WSML-DL logical expressions with variables and logical connectives
are interpreted as in first-order logic, with the restriction to only allow unary and
binary predicates for DL concepts and roles.

3 Knowledge Representation and Ontologies 101

Fig. 3.5. WSML language variants in knowledge representation

WSML-Flight

This variant extends WSML-Core to an LP-style rule language with a closed-world
semantics. It is similar to F-Logic (LP) and offers features like negation-as-failure,
constraints and meta-modelling. The semantics of WSML-Flight is defined by a
mapping to F-Logic formulas interpreted under perfect model semantics.

WSML-Rule

This variant further extends WSML-Flight with more expressive logic programming
features, such as function symbols or unsafe rules. Its semantics is based on the well-
founded semantics.

WSML-Full

The still-to-be-defined semantics of WSML-Full is envisioned to combine WSML-
DL and WSML-Rule. A candidate formalism to achieve integration of the two
paradigms is autoepistemic logic.

Software Support for WSML

Since WSML is a relatively new language, tool development is in an early stage.
However, there are some tools available for handling and editing WSML ontologies,
all driven by the WSMO initiative.

102 Stephan Grimm et al.

The WSMO4J38 framework enables parsing, serialisation and in-memory pro-
cessing of WSML ontologies an other WSML elements.

The Web Services Modelling Toolkit (WSMT)39 is a graphical editor that allows
for visualisation and manipulation of WSML ontologies. Other tools for editing
WSML elements are WSMO Studio40 [13] and DOME.41

3.5 Outlook

In this chapter we have presented an overview on the topics of knowledge representa-
tion, ontologies and Semantic Web languages. Here we want to briefly sketch future
research and usability issues around these knowledge-based technologies.

Having reviewed various ontology languages and knowledge representation
paradigms, we have seen that there are multiple different ways of approaching the
representation and computational handling of knowledge. There is still room for
research on which approach is most suitable for which kind of application context.
A current trend in ontology languages is to perceive LP-based approaches as par-
ticularly suitable for data-intensive retrieval tasks with rule-based inferencing on the
one hand, and DL-based approaches for automated classification and for satisfiability
problems on the other hand.

To achieve wide-spread use of ontologies, they have to be established as usable
software artefacts that are interchanged and traded between parties, similar to com-
puter programs or other forms of electronic content. As such, they can principally
be plugged in systems that make use of knowledge-based technology. However,
the logic-based notions in which ontologies are described are typically too techni-
cal and too onerous to handle to be widely accepted. To overcome this deficiency,
design methodologies and higher-level descriptive languages should be introduced
that abstract from the surfeit of logical details, presenting the user a more intuitive
view on domain knowledge. An analogous level of abstraction has been achieved
in the field of software engineering, where more and more abstract higher-level lan-
guages have been build on machine codes and assembler languages.

In the Semantic Web context, also other techniques from the field of Artifi-
cial Intelligence are used, such as lexical methods for natural language processing
or statistics-based methods for machine learning. There, the symbolic knowledge
representation in ontologies should used complementarily to exploit synergies with
such techniques in Semantic Web applications. Moreover, there is a trend to forbear
from the heavy-weight semantics of logical formalisms, moving to the light-weight
semantics of languages with decreased expressive power in applications where preci-
sion and exactness is not the main focus. In this sense, some applications prefer, e.g.,
RDF(S) over the semantically richer OWL due to simplicity or scalability issues.

38 http://wsmo4j.sourceforge.net/
39 http://wsmt.sourceforge.net
40 http://www.wsmostudio.org/
41 http://dome.sourceforge.net/

http://wsmo4j.sourceforge.net/
http://wsmt.sourceforge.net
http://www.wsmostudio.org/
http://dome.sourceforge.net/

3 Knowledge Representation and Ontologies 103

Finally, there is much space for research on finding the right degree of formality in
semantics for a particular application scenario.

References

1. G. Antoniou. Nonmonotonic Reasoning. MIT Press, 1996.
2. F. Baader, S. Brandt, , and C. Lutz. Pushing the EL Envelope. In Proceedings of the

19th Int. Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh, UK. Morgan
Kaufmann, 2005.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, January 2003.

4. F. Baader and B. Hollunder. Embedding Defaults into Terminological Knowledge Repre-
sentation Systems. Journal of Automated Reasoning, 14:149–180, 1995.

5. S. Bechhofer, R. Volz, and P. Lord. Cooking the Semantic Web with the OWL API. In
Proc. of the First International Semantic Web Conference 2003 (ISWC 2003), October
21-23, 2003, Sanibel Island, Florida, 2003.

6. P. Bonatti, C. Lutz, and F. Wolter. Description Logics with Circumscription. In Proceed-
ings of the 10th Int. Conference on Principles of Knowledge Representation and Reason-
ing, KR-06, 2006.

7. D. Brickley and R.V. Guha. RDF Vocabulary Description Language – RDF Schema.
http://www.w3.org/TR/rdf-schema/, 2004.

8. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. In ISWC ’02: Proceedings of the First
International Semantic Web Conference on The Semantic Web, pages 54–68, London,
UK, 2002. Springer.

9. D. Calvanese, G. de Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable
Description Logics for Ontologies. In Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI-2005), 2005.

10. Ó. Corcho, M. Fernández-López, A. Gómez-Pérez, and Ó. Vicente. WebODE: An Inte-
grated Workbench for Ontology Representation, Reasoning, and Exchange. In EKAW, p.
138–153, 2002.

11. E. Craig. Ontology. In E. Craig, editor, Routledge Encyclopedia of Philosophy, pages
117–118. Routledge, New York, 1998.

12. S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based Access to
Distributed and Semi-Structured Information. In Semantic Issues in Multimedia Systems.
Proceedings of DS-8, pages 351–369, 1999.

13. M. Dimitrov, A. Simov, V. Momtchev, and D. Ognyanov. WSMO Studio - An Integrated
Service Environment for WSMO. In Proc. of the 2nd WSMO Impl. Workshop, Innsbruck,
Austria, 2005.

14. F.M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal Knowledge and
Negation as Failure. ACM Transactions on Computational Logic, 3(2):177–225, 2002.

15. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In L. P. Kaelbling and
A. Saffiotti, editors, Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI-05), 2005.

16. O. Etzioni, K. Golden, and D. Weld. Tractable Closed World Reasoning with Updates.
In Proceedings of the 4th International Conference on Knowledege Representation and
Reasoning (KR-1994), pages 178–189. Morgan Kaufmann, 1994.

http://www.w3.org/TR/rdf-schema/

104 Stephan Grimm et al.

17. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening Ontolo-
gies with DOLCE. In EKAW-02: Proceedings of the 13th Int. Conference on Knowledge
Engineering and Knowledge Management. Ontologies and the Semantic Web, pages 166–
181. Springer, 2002.

18. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combin-
ing Logic Programs with Description Logics. In Proceedings of WWW-2003, Budapest,
Hungary, pages 48–57. ACM, 2003.

19. T.R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 6(2):199–221, 1993.

20. N. Guarino. Semantic Matching: Formal Ontological Distinctions for Information Orga-
nization, Extraction, and Integration. In M.T. Pazienza, editor, Information Extraction:
A Multidisciplinary Approach to an Emerging Information Technology, number 1299 in
LNCS, pages 139–170. Springer-Verlag, 1997.

21. N. Guarino. Formal Ontology and Information Systems, Preface. In N. Guarino, editor,
Proceedings of the 1st International Conference on Formal Ontologies in Information
Systems, FOIS-98, Trento, Italy, pages 3–15. IOS Press, 1998.

22. N. Noy M. Musen H. Knublauch, R. Fergerson. The Protege OWL Plugin: An Open
Development Environment for Semantic Web Applications. Proceedings of the 3rd Inter-
national Semantic Web Conference (ISWC), 2004.

23. V. Haarslev and R. Möller. Description of the RACER System and its Applications. In
International Workshop on Description Logics, 2001.

24. P. Hayes. RDF Semantics. http://www.w3.org/TR/rdf-mt/, 2004.
25. I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Proceed-

ings of the 6th International Conference on Knowledege Representation and Reasoning
(KR1998), pages 636–645. Morgan Kaufmann, 1998.

26. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language. In
Proceedings of the 13th International World Wide Web Conference (WWW-2004). ACM,
2004.

27. U. Hustadt, B. Motik, and U. Sattler. Data Complexity of Reasoning in Very Expres-
sive Description Logics. In Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI-05), Edinburgh, UK, pages 466–471. Morgan Kaufmann,
2005.

28. A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca Grau, and J. Hendler. Swoop: A Web
Ontology Editing Browser. Journal of Web Semantics, 4(2):144–153, 2006. http:
//dx.doi.org/10.1016/j.websem.2005.10.001.

29. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-
Based Languages. Journal of the ACM, 42(4):741–843, July 1995.

30. G. Klyne and J. Carroll. RDF Concepts and Abstract Syntax. http://www.w3.org/
TR/rdf-primer/, 2004.

31. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1988.
32. B. McBride. Jena: Implementing the RDF Model and Syntax Specification. In SemWeb,

2001. http://CEUR-WS.org/Vol-40/mcbride.pdf.
33. J. McCarthy. Circumscription – A Form of Non-Monotonic Reasoning. Artificial Intelli-

gence, 13(1):27–39, 1980.
34. J. Minker. Logic and Databases: Past, Present, and Future. AI Magazine, 18(3):21–47,

1997.
35. R. Moore. Semantical Considerations on Nonmonotonic Logic. Artificial Intelligence,

25(1), 1985.

http://www.w3.org/TR/rdf-mt/
http://dx.doi.org/10.1016/j.websem.2005.10.001
http://dx.doi.org/10.1016/j.websem.2005.10.001
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://CEUR-WS.org/Vol-40/mcbride.pdf

3 Knowledge Representation and Ontologies 105

36. B. Motik. On the Properties of Metamodeling in OWL. In Y. Gil, E. Motta, V.R. Ben-
jamins, and M. Musen, editors, Proceedings of the 4th International Semantic Web Con-
ference (ISWC-2005), volume 3729 of LNCS, pages 548–562. Springer-Verlag, 2005.

37. B. Motik and U. Sattler. A Comparison of Reasoning Techniques for Querying Large
Description Logic ABoxes. In Miki Hermann and Andrei Voronkov, editors, Proc. of the
13th Int. Conf. on Logic for Programming Artificial Intelligence and Reasoning (LPAR
2006), LNCS, Phnom Penh, Cambodia, November 13–17 2006. Springer.

38. B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules. In S. A.
McIlraith, D. Plexousakis, and F. van Harmelen, editors, Proc. of the 3rd Int. Seman-
tic Web Conf. (ISWC 2004), pages 549–563, Hiroshima, Japan, November 7–11 2004.
Springer.

39. I. Niles and A. Pease. Towards a Standard Upper Ontology. In C. Welty and B. Smith, edi-
tors, Proceedings of the 2nd International Conference on Formal Ontology in Information
Systems (FOIS-2001), 2001.

40. P.F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language; Seman-
tics and Abstract Syntax. http://www.w3.org/TR/owl-semantics/, Novem-
ber 2002.

41. S. Pepper and G. Moore. XML Topic Maps (XTM) 1.0. http://www.topicmaps.
org/xtm/1.0/.

42. R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13:81–132, 1980.
43. S. Russel and P. Norvig. Artificial Intelligence – A Modern Approach. Prentice-Hall,

1995.
44. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A Practical OWL-

DL Reasoner. Technical report, University of Maryland Institute for Advanced Computer
Studies (UMIACS), 2005. http://mindswap.org/papers/PelletDemo.pdf.

45. J.F. Sowa. Knowledge Representation. Brooks Cole Publishing, Pacific Grove, CA, USA,
2000.

46. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit: Col-
laborative Ontology Development for the Semantic Web. In ISWC ’02: Proceedings of
the First International Semantic Web Conference on The Semantic Web, pages 221–235.
Springer-Verlag, 2002.

47. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems: Volumes I and
II. Computer Science Press, 1989.

48. F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure. A Framework for Han-
dling Inconsistency in Changing Ontologies. In Y. Gil, E. Motta, V.R. Benjamins,
and M. Musen, editors, Proceedings of the 4th International Semantic Web Conference
(ISWC-2005), volume 3729 of LNCS, pages 353–367. Springer-Verlag, 2005.

49. G. Yang, M. Kifer, and C. Zhao. Flora-2: A Rule-Based Knowledge Representation
and Inference Infrastructure for the Semantic Web. In CoopIS/DOA/ODBASE, pages
671–688, 2003.

50. M. Yue and L. Zuoquan. Infering with Inconsistent OWL DL Ontology: a Multi-valued
Approach. In Proceedings of the International Conference on Semantics in a Networked
World, ICSNW-2006, Munich, Germany. Springer-Verlag, 2006.

http://www.w3.org/TR/owl-semantics/
http://www.topicmaps.org/xtm/1.0/
http://www.topicmaps.org/xtm/1.0/
http://mindswap.org/papers/PelletDemo.pdf

	Knowledge Representation and Ontologies Logic, Ontologies and Semantic Web Languages

