
13

Semantic
Web Services
Concepts, Technologies and Applications

Rudi Studer
Stephan Grimm
Andreas Abecker (Eds.)

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Semantic Web Services

Rudi Studer · Stephan Grimm ·
Andreas Abecker (Eds.)

Semantic Web Services
Concepts, Technologies, and Applications

With 102 Figures

Editors

Rudi Studer Andreas Abecker
Universität Karlsruhe Forschungszentrum Informatik (FZI)
Inst. Angewandte Informatik und Haid-und-Neu-Str. 10-14
Formale Beschreibungsverfahren 76131 Karlsruhe
76128 Karlsruhe Germany
Germany abecker@fzi.de
studer@aifb.uni-karlsruhe.de

Stephan Grimm
Forschungszentrum Informatik (FZI)
Haid-und-Neu-Str. 10-14
76131 Karlsruhe
Germany
grimm@fzi.de

Library of Congress Control Number: 2007923415

ACM Classification: H.4, D.2, I.2, J.1

ISBN 978-3-540-70893-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Typesetting by the editors
Production: Integra Software Services Pvt. Ltd., India
Cover design: KünkelLopka, Heidelberg

Printed on acid-free paper 45/3100/Integra 5 4 3 2 1 0

Contents

Introduction
Rudi Studer, Stephan Grimm and Andreas Abecker . 1

Part I Web Services Technology

1 Towards Service-Oriented Architectures
Stefan Fischer and Christian Werner . 15

2 Architecture and Standardisation of Web Services
Christian Werner and Stefan Fischer . 25

Part II Semantic Web Technology

3 Knowledge Representation and Ontologies
Stephan Grimm, Pascal Hitzler and Andreas Abecker . 51

4 Ontology Development
Gábor Nagypál . 107

5 Semantic Annotation of Resources in the Semantic Web
Siegfried Handschuh . 135

Part III Semantic Web Services

6 Goals and Vision
Chris Preist . 159

7 Description
Holger Lausen, Rubén Lara, Axel Polleres, Jos de Bruijn
and Dumitru Roman . 179

VI Contents

8 Discovery
Stephan Grimm . 211

9 Composition
Laurent Henocque and Mathias Kleiner . 245

10 Mediation
Oscar Corcho, Silvestre Losada and Richard Benjamins 287

Part IV Tools and Use Cases

11 Tools for Semantic Web Services
Anupriya Ankolekar, Massimo Paolucci, Naveen Srinivasan
and Katia Sycara . 311

12 Ontology-Based Change Management in an eGovernment
Application Scenario
Ljiljana Stojanović . 339

13 An eGovernment Case Study
Christian Drumm and Liliana Cabral . 365

14 An eHealth Case Study
Emanuele Della Valle, Dario Cerizza, Irene Celino, Asuman Dogac,
Gokce B. Laleci, Yildiray Kabak, Alper Okcan, Ozgur Gulderen,
Tuncay Namli and Veli Bicer . 381

Glossary . 403

Index . 405

Introduction

Rudi Studer, Stephan Grimm and Andreas Abecker

FZI Research Center for Information Technologies, University of Karlsruhe, Germany

{studer,grimm,abecker}@fzi.de

Motivation for the Topic of this Book

Web Service (WS) technology and the idea of a Service-Oriented Architecture (SOA)

for web-based, modular implementation of complex, distributed software systems

seem to become a tremendous success [17, 9]. In just a few years, the service-oriented

approach not only gained considerable interest in Computer Science research, but

was also taken up with a unique unanimity by all big international players in the IT

industry, such as IBM, Microsoft, Hewlett Packard, and SAP.

Distributed software systems conquer more and more fields of daily life,1 and

the software itself becomes more and more powerful. On the other hand, such soft-

ware systems also become increasingly complex, and the software bridges more and

more between formerly separated, heterogeneous areas.2 Hence, the matter of how

to structure modular systems and how to achieve interoperability between heteroge-

neous parts becomes a key to success. The effective and efficient realisation of such

modular, interoperable, large-scale software systems is facilitated by Web Services

and SOA because they provide a standardised architecture for modular systems, for

creating new functionality from existing building blocks, and for enabling commu-

nication between heterogeneous elements.

In contrast to the former, technologically well-founded, approaches that

addressed (at least partially) similar goals, such as CORBA or Multi-Agent Systems,

the current approach seems to have some striking advantages:

• It is simple, based on simple, open protocols.

• These protocols does not require or require only a limited amount of additional

software.

1 See, for instance, the ever growing importance of embedded software systems in the auto-

motive area, or the thrilling new opportunities opened up by Ubiquitous Computing and

RFID technology
2 Consider, e.g., cross-platform implementations, cross-department workflows, cross-organi-

sational application integration, or even cross-national eGovernment processes

2 Rudi Studer et al.

• It is a conservative extension of accepted Internet standards which proved to

work, also platform independently.

• It allows easy encapsulation of existing code and applications.

Maybe even more important for the success of SOA than purely technological issues

is the fact that times have changed to some extent:

• Standardisation of some levels of software communication is commonly accepted

through the success of the Internet.

• Supporting business processes and understanding business logic becomes more

important than mastering low-level computer functionality.

• Interoperability in a networked world is going to be considered a bigger compet-

itive advantage than binding customers through proprietary software and proto-

cols.

All such considerations led to an atmosphere which facilitates the widespread indus-

trial take-up of ideas like SOA and Web Services. Nevertheless, it would be an illu-

sion to think that we have already found the golden bullet for solving all problems

of interoperability in heterogeneous systems, as required for Enterprise Application

Integration or Business-to-Business solutions. Essentially, Web Service standards

provide a communication medium for distributed systems, but they cannot yet ensure

that the communicating parties “speak the same language”–which is necessary for

smooth, fully automated system interoperation.

For illustrating the deficiencies of existing SOA solutions, let us use the follow-

ing analogy. If two parties want to communicate, they might want to send a letter by

mail. Hence they need paper and pen for writing, they need stamps, postal offices, etc.

which provide a transport infrastructure. They also need some addressing schemes

and coding standards, such as ZIP codes. All this can be considered as given in the

SOA approach with its lower levels for message transport, etc. For really communi-

cating, our two parties also need to know the grammar and the lexicon of the English

language. Even this might be considered as given in SOA technology, e.g. through

the Web Service Description language.

However, such standards for structure, syntax, and vocabulary of Web Service

functionality do not yet offer the semantics and the pragmatics of the used vocabu-

lary. Software systems cannot know that the words bank and credit institute may be

used in many cases as synonyms; that a flower shop in particular sells roses, tulips,

and cloves because they are flowers; that flower shops may offer seedlings of salad

or vegetables, but not always do – if a certain shop does not, a market-garden is

the more appropriate address; that flower shops sometimes also sell greeting cards

because they go often along with a bouquet of flowers; or that a market-garden may

also produce the flowers for the flower shop, and thus might offer cheaper prices,

but less floristic services. Coming back to our analogy, we can say that by writing

a letter, real communication between the two parties is only achievable if they both

share a common understanding of how language refers to concepts prevalent in the

real world, and if both know which constraints and which background knowledge is

typically associated with these concepts.

Introduction 3

All such common-sense reasoning as well as general or business-specific back-

ground knowledge are typically not available in a computer system. Hence it is still

often the case that also in today’s most developed service-oriented software sce-

narios, there is much manual, human intervention required in order to interpret the

semantics of informal descriptions of service functionality, or in order to harmonise

incompatible data schemata or communication protocols.

Semantic Web Technology

This is the moment where Semantic Web (SW; see [1]) technology comes into play.

Its aim is exactly to harmonise semantical discrepancies in software systems by pro-

viding machine-interpretable semantics, and to “understand” ambiguous descriptions

– thus achieving a new quality of intelligent and automated information processing

in the web [6, 28].

This is done on the basis of semantically rich meta data for webpages, for web-

accessible data or multimedia resources, etc. This meta data is expressed in powerful,

logic-based, representation languages (which are in part already standardised by the

World Wide Web Consortium W3C) that refer to the controlled vocabulary of shared

and quasi standardised domain knowledge models, so-called ontologies [10, 29].

The ultimate goal of such an approach–based upon formal, expressive languages

and shared, controlled vocabularies–is to make semantics machine-processable to a

much bigger extent than it is today.

Semantic Web Services

Semantic Web Services (SWS) employ such Semantic Web technology in the Web

Services area: service functionality, Web Service inputs and outputs, their precon-

ditions and effects, etc., all are expressed in knowledge representation languages,

referring to shared ontological vocabularies [20, 30, 3, 16]. In this way, a higher

degree of automation and more precise results can be achieved:

• When searching for a service providing a specific functionality, ontologies and

associated thesauri can provide synonyms of words, the taxonomic structure of

service capabilities, relationships between service capabilities, etc.

• When trying to harmonise different data formats for two services which have to

exchange messages, ontologies can provide elaborated conceptual data models

for message descriptions which facilitate automated translation.

• When mediating different communication protocols of services to work together,

highly expressive Semantic Web languages can provide well-founded means to

describe interaction patterns in communication protocols.

• When trying to compose complex business processes from given partial pro-

cesses implemented by a number of Web Services, automated planning algo-

rithms from Artificial Intelligence can be employed, provided the semantics of

the input services is formally defined.

4 Rudi Studer et al.

About this Book

This book aims to be a self-contained compendium of material for newcomers in the

field, starting with the basics, and also coming to a level of technical depth which is

sufficient to start one’s own concrete technical work in the area. We aim at provid-

ing the necessary theoretical and practical knowledge for understanding the essential

ideas and the current status of Semantic Web Services research. The reader should be

familiar with Computer Science basics and fundamental terminology; prior knowl-

edge in Semantic Web technology or Artificial Intelligence is useful, but not required.

The book mainly addresses advanced Computer Science students or researchers, as

well as practitioners with a good theoretical background, interested in the future of

computing. It provides a snapshot of ongoing research in the SWS area and might

be used as a supplementary textbook for Semantic Web, Artificial Intelligence, Web

Services, or Middleware lectures. It shall also serve as an introductory and survey

volume for IT professionals who prepare the step from Web Service programming to

Semantic Web Services or who want to assess the potential of this new technology.

In order to achieve these goals, we followed some principles guiding the prepa-

ration of this book:

• The book aims at a complete coverage of the topic and its background. Therefore,

we included in Parts I and II of the book introductory chapters on Web Services

and SOA, as well as on the most important Semantic Web fundamentals, in order

to provide all necessary prior knowledge for the SWS topic.

• The aim of a comprehensive discussion of Semantic Web Services also led to

the goal of finding a balance between theoretical foundations and practical or
practice-oriented topics. This led to the decision of discussing in Part III of the

book the overall SWS life cycle and technology foundations in a principled sur-

vey manner, whereas Part IV contains concrete application examples and imple-

mentation issues.

• We tried to have all chapters reasonably self-contained, such that they could be

taken (by a reader familiar with the required background) as stand-alone papers,

also including their own list of references. Definitely, the several parts of the book

can be read stand-alone.

• Although we had this aim of providing relatively self-contained chapters, we also

tried to ensure a maximum level of consistency between chapters, meaning that

we avoided redundancies and tried to ensure a consistent use of terminology and

overall idea of SWS – which is mainly based on Chap. 6.

• The book is not committed to a specific knowledge representation or service

description approach (such as OWL-S or WSMO), but tries to give a fair and

comprehensive account of today’s existing solutions.

It should be noted that the SWS topic is still pretty young; by far not all technical

discussions are completed yet nor is any technical basis finally standardised. Conse-

quently, this early stage of SWS research is also reflected in the content of the various

chapters and their level of overall integration.

Introduction 5

Structure of the Book

The structure of this book, divided into parts and chapters, is as follows.

Part I briefly presents the basics of current, non-semantic Web Services and SOA

technology:

• Chapter 1 motivates the basic idea of Web Services and SOA.

• Chapter 2 introduces the Web Service technology stack and technical fun-

damentals of SOA, and thoroughly discusses the most important standards,

protocols, and basic technologies underlying the approach (such as SOAP,

WSDL, and UDDI).

Part II introduces major ideas and some basic technology of the Semantic Web:

• Chapter 3 introduces the basic ideas of knowledge representation and pro-

cessing, in particular with respect to ontologies as a key feature of the

Semantic Web.

• Chapter 4 gives a pragmatic introduction to ontology engineering.

• Chapter 5 explains the overall Semantic Web idea with ontology-based meta

data, and meta data annotation of Web resources as its core concepts.

Part III presents the major principles and technological components of the SWS

approach:

• Chapter 6 sketches the overall vision and idea of SWS and introduces the

basic notions used in the subsequent chapters.

• Chapter 7 shows the principles and the major, widespread approaches for

SWS description by ontology-based meta data.

• Chapter 8 illustrates the usage of such semantic description for precise dis-

covery and selection of Web Services.

• Chapter 9 discusses several ways of how to compose complex Web Services

from simpler ones.

• Chapter 10 identifies various kinds of heterogeneity prevalent in SWS sce-

narios and shows ways to overcome them with semantic mediation technolo-

gies.

Part IV illustrates implementation and application aspects of Semantic Web Ser-

vices:

• Chapter 11 gives an impression of contemporary, implemented SWS tech-

nology by discussing basic tool categories for Semantic Web Services and

showing many example implementations.

• Chapter 12 uses elements of the SWS technology as introduced in the former

parts of the book for adding a new functionality to existing legacy systems in

the area of Electronic Government. Concretely, an approach is shown which

supports tracking of changes in an evolving world down to the affected ser-

vice implementations.

• Chapter 13 describes some more application examples in the domain of Elec-

tronic Government. Here, the focus is on interoperability of different soft-

ware systems.

6 Rudi Studer et al.

• Finally, Chap. 14 shows two applications of SWS technology in the eHealth

area. Again, interoperability is a major aim, and also the easier use of new

mobile technologies is addressed.

Practical Relevance of the SWS Topic

At the time of editing this book, Semantic Web Services were a highly active research

and development topic. Initiatives such as OWL-S, WSMO, IRS-III, or METEOR-S

have gained a high level of visibility and produced valuable research results. Issues

such as intelligent service discovery or fully automated service composition were

subject to widespread ongoing research in many labs. Standardisation efforts such as

OWL-S, WSMO, WSDL-S or SWSF (all submitted to W3C and partially discussed

in OASIS and OMG) have found their way into relevant standardisation processes.

Big IT companies like Hewlett Packard, SAP, and IBM have taken up the topic in

their research agendas and belong to the major drivers in the field. Semantic Web

Service approaches are investigated as a base technology for supporting other rel-

evant Web Service issues such as policy modelling or quality of service [15, 32].

Other approaches to distributed computing, such as Peer-to-Peer or Grid computing,

settle upon Web Services as an underlying technology and can thus also be “lifted”

to Semantic Peer-to-Peer or Semantic Grid computing [14, 23].

However, regarding real-world practical applications, Semantic Web Services are

still looking for their “killer applications”. In this book, we included case studies

from the healthcare and the government area. Both are perfect application domains

for SWS3; however, in eBusiness, it is not yet clear which scenarios definitely need

SWS functionality – although company-internal application integration (EAI) and

cross-organisational business processes in Business-to-Business (B2B) relationships

were a main driver for the development of SWS technology. There is a number of

published applications, mostly in the prototype status:

• Logistics – In [25], logistics supply chains are generated on-the-fly, while chang-

ing availability of transportation alternatives may require real-time reconfigura-

tion of service networks.

3 eHealth and eGovernment seem to be fruitful for a number of reasons: both are charac-

terised by a huge number of parties, the software of which should seamlessly interoperate

(e.g. all doctor’s surgeries with all hospitals and all health insurance companies); interop-

erability is a critical issue since both domains face a strong pressure for significant cost

reductions; moreover, legal regulations enforce a better software process interoperability in

some fields of eGovernment; traditionally, both domains are to some extent resistant against

some market mechanisms which reduce interoperability problems in some eBusiness sce-

narios (e.g. when a big Original Equipment Manufacturer presses its suppliers or vendors

to use a specific software that is compliant with its own systems, or when a certain de-facto

standard arises for any economic reason which does not apply to public authorities); last

but not the least, in spite of their huge heterogeneity, both areas have some tradition in

standardisation and are thus prepared for the use of ontologies etc.

Introduction 7

• Tourism – In [12, 7, 33], travel Web Services are composed for a virtual travel

agency in an automated way, in order to loosen the currently centralised struc-

tures of the travel business.

• Collaborative work – Reference [11] presents a simple demonstrator for the ad

hoc composition of virtual teams, exploiting semantic descriptions for match-

making of appropriate collaborators and for facilitating interoperability of

involved software applications.

• Finance – Reference [5] demonstrates automatic selection and composition of

account monitoring and message delivery Web Services in an eBanking scenario

where a user is automatically notified if he/she is financially overcommitted.

• Telecommunication – Reference [8] explains how British Telecom aims at an eas-

ier integration of new business partners into their BT Wholesale’s B2B Gateway

through SWS technology.

• Bioinformatics – Reference [24] employs SWS methods and models for a seman-

tic workflow tool which configures and manages complex workflows for pro-

cessing information about protein sequences in genes. Similar approaches are

also under work in other bioinformatics labs. Reference [18] compares several

architectural alternatives for semantics-based bioinformatics software, and draws

some general conclusions about the potential for applying SWS technology in

bioinformatics. We suspect that a similar application potential exists also in other

eScience domains with complex information processing tasks.

• Business Intelligence (BI) – similarly to the above-mentioned bioinformatics

example, [27] uses the IRS-III Semantic Web Service framework for integrating

heterogeneous applications and for reusing code of existing BI software. Such

a usage of SWS technology, namely easier web-based construction of software

workbenches from existing code, seems to be possible and useful in many other

domains too.

• Geographic Information Systems (GIS) – Recently, more and more spatial-

related data becomes publicly available and opens up new opportunities for

space-oriented information services which combine different information streams

at runtime, within a given context. To this end, the integration of manifold het-

erogeneous data at different layers of abstraction is important. For instance, [31]

describes an emergency management system based on a Semantic Web GIS, with

SWS as the technological basis for achieving data interoperability and for inter-

facing different software services.

The examples above illustrate potential SWS use cases and show under which condi-

tions the provided functionality can be used beneficially. It seems decent to think that

large-scale SOA installations with thousands of available services and high expecta-

tions with respect to process automation cannot be realised at all without models of

formalised semantics and powerful inferences acting upon them. However, the lack

of widespread industrial take-up of SWS technology shows that practitioners are not

yet fully convinced. Nevertheless, independent from possible future SWS usage sce-

narios in eBusiness or eScience, we suspect a remarkable success of SWSs in two

further areas: Semantics-Based Software Engineering and Pervasive Computing.

8 Rudi Studer et al.

Semantics-Based Software Engineering

Let us call our first vision Semantics-Based Software Engineering (SBSE, cp. [21,

22]). Imagine a software engineering scenario within a company that often builds

large-scale software solutions from many components (modules, packages, classes,

etc.) with different functionality, many of them being slight variations of others. In

such a situation, the semantic description of components could facilitate the man-

ual discovery of reusable components by employing well-known techniques from

ontology-based information retrieval, thus increasing significantly the programmers’

productivity. Components could be linked with supporting documentation, FAQs,

example usages, etc. Usage constraints and interdependencies with other compo-

nents would be modelled formally to enable automated consistency checks. More-

over, the semantic description of general, as well as domain-specific usage policies

would facilitate automated policy enforcement for checking the consistency of sys-

tem configurations, or for tracing the effects of policy changes. While the “general”

SWS scenario strives for full automation, the SBSE vision keeps the human in the

loop: software development tasks are supported, facilitated, and controlled by the

system, thus leading to an approach which is much more realistic in the short term.

Pervasive Computing and Ubiquitous Intelligence

Another scenario, much more ambitious than the aforementioned, is the idea of

Ambient, Ubiquitous Intelligence, or Pervasive Computing, where human–computer

interaction is supported by networked physical devices which act as sensors or as

actuators and are embedded in our clothes or in our everyday working and living

environments, tools, or electrical appliances. For instance, the MyCampus project

at Carnegie Mellon University [26] describes ubiquitous, context-aware, person-

alised information services in three sample domains: at a University campus, in a

museum, and in a smart office environment. Reference [4] presents context-aware,

policy-based, and personalised computing services in a smart meeting room. All such

scenarios imply the seamless ad hoc interoperability of a variety of software com-

ponents, which requires a high degree of automation in composition and mediation.

Moreover, the implementation of intelligent system behaviour can benefit from the

higher level of abstraction provided by declarative modelling of policies, context,

behaviour, etc.

Acknowledgments

The work presented in this book is the result of cooperation in many inspired and

committed teams, which could not have taken place without the generous financial

support by many public and private institutions and organisations. At this place, we

want to thank all these co-financing partners which made ambitious IT research pos-

sible and which helped to shape the future of our working environments.

Introduction 9

Let us mention with special emphasis the European Commission (EC) which

co-funded two ground-breaking research projects laying the foundations for a wide-

spread adoption of SWS approaches in Europe:

1. SWWS (Semantic Web Enabled Web Services, funded by the EC under grant

FP5-IST-2001-37134) was probably the first endeavour to join forces of sev-

eral European research institutions and commercial players to come to a com-

mon, eBusiness-driven vision of Semantic Web Service technology as a basis for

Enterprise Application Integration and Business-to-Business Interoperation.

2. DIP (Data, Information and Process Integration with Semantic Web Services,

funded by the EC under grant FP6-IST-507483) continued the SWWS efforts

and came up with the Web Service Modelling Ontology (WSMO), an ontology-

based, comprehensive SWS framework.

Many of the chapters benefit from the work done in these two projects. Let us also

mention especially the European OntoGov project (Ontology-enabled eGov Service

Configuration, funded by the EC under grant FP6-IST-507237) which substantially

supported the editors’ work. OntoGov employed semantics-based service modelling

methods for change management as part of service management in Electronic Gov-

ernment.

For the US authors, we have to mention DARPA which considerably supported

the success of SWS research through its DAML programme.

Other projects which supported some of our chapter authors, include the follow-

ing:

• ARTEMIS (A Semantic Web Service-Based P2P Infrastructure for the Interoper-

ability of Medical Information Systems, funded by the EC under grant FP6-IST-

002103)

• ASG (Adaptive Service Grid, funded by the EC under grant FP6-IST-004617)

• COCOON (Building Knowledge Driven and Dynamically Adaptive Networked

Communities within Healthcare Systems, funded by the EC under grant FP6 IST-

507126)

• CollaBaWü (Collaborative, Component-Based Business Application Software

Development within the Financial Service Provider Domain in Baden-

Wüerttemberg, funded by the German Federal State of Baden-Württemberg)

• DERI-Lion (funded by Science Foundation Ireland)

• Esperonto (Application Service Provision of Semantic Annotation, Aggregation,

Indexing and Routing of Textual, Multimedia, and Multilingual Web Content,

funded by the EC under grant FP5-IST-2001-34373)

• FIT (Fostering Self-Adaptive e-Government Service Improvement Using Seman-

tic Technologies, funded by the EC under grant FP6-IST-027090)

• InfraWebs (Intelligent Framework for Generating Open (Adaptable) Develop-

ment Platforms for Web-Service Enabled Applications Using Semantic Web

Technologies, Distributed Decision Support Units and Multi-Agent Systems,

funded by the EC under grant FP6-IST-511723)

10 Rudi Studer et al.

• Knowledge Web (Network of Excellence, funded by the EC under grant FP6-

507482)

• Monadic Media (funded under the ITEA scheme by the government of Italy)

• RW2 (Reasoning With Semantic Web Services, funded by the Austrian govern-

ment in the FIT-IT programme)

• SEKT (Semantically Enabled Knowledge Technologies, funded by the EC under

grant FP6-IST-506826)

• TSC (Triple-Space Computing, funded by the Austrian government in the FIT-IT

programme).

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, 284,

May 2001.

2. C. Bussler, J. Davies, D. Fensel, and R. Studer, editors. The Semantic Web: Research
and Applications, First European Semantic Web Symposium, ESWS 2004, volume 3053

of LNCS. Springer-Verlag, 2004.

3. L. Cabral, J. Domingue, E. Motta, T.R. Payne, and F. Hakimpour. Approaches to Semantic

Web Services: an Overview and Comparisons. In [2], pages 225–239, 2004.

4. H. Chen, T. Finin, A. Joshi, L. Kagal, F. Perich, and D. Chakraborty. Intelligent Agents

Meet the Semantic Web in Smart Spaces. IEEE Internet Computing, 8, November/De-

cember 2004.

5. J.M. López Cobo, S. Losada, Ó. Corcho, V.R. Benjamins, M. Niño, and J. Contreras.

SWS for Financial Overdrawn Alerting. In McIlraith et al. [19], pages 782–796.

6. J. Davies, R. Studer, and P. Warren, editors. Semantic Web Technologies – Trends and
Research in Ontology-based Systems. John Wiley & Sons, 2006.

7. J. Domingue, S. Galizia, and L. Cabral. The Choreography Model for IRS-III. In Hawaii
International Conference on System Sciences (HICSS 2006), 2006.

8. A. Duke, M. Richardson, S. Watkins, and M. Roberts. Towards B2B Integration in

Telecommunications with Semantic Web Services. In Gómez-Pérez and Euzenat [13],

pages 710–724.

9. T. Erl, editor. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice

Hall PTR, 2005.

10. D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic Com-
merce. Springer-Verlag, 2001.

11. M. Flügge and K.-U. Schmidt. Using Semantic Web Services for ad hoc Collaboration in

Virtual Teams. In Berliner XML Tage, pages 187–198, 2004.

12. M. Flügge and D. Tourtchaninova. Ontology-derived Activity Components for Compos-

ing Travel Web Services. In Berliner XML Tage, pages 133–150, 2004.

13. A. Gómez-Pérez and J. Euzenat, editors. The Semantic Web: Research and Applica-
tions, Second European Semantic Web Conference, ESWC 2005, volume 3532 of LNCS.

Springer-Verlag, 2005.

14. P. Haase, S. Agarwal, and Y. Sure. Service-Oriented Semantic Peer-to-Peer Systems. In

C. Bussler et al., editor, Workshop Web Information Systems Engineering, volume 3307

of LNCS, pages 46–57. Springer-Verlag, 2004.

15. J. Miller, J. Arnold, J. Cardoso, A. Sheth, and K. Kochut. Quality of Service for Work-

flows and Web Service Processes. Journal of Web Semantics, July/August, 2004.

Introduction 11

16. A.P. Sheth, J.A. Miller, Z. Wu, K. Verma, and K. Gomadam. The METEOR-S Approach

for Configuring and Executing Dynamic Web Processes. Technical report, June 2005.

17. D. Krafzig, K. Banke, and D. Slama, editors. Enterprise SOA: Service Oriented Architec-
ture Best Practices. Prentice Hall PTR, 2004.

18. P.W. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull, C.A. Goble,

and L. Stein. Applying Semantic Web Services to Bioinformatics: Experiences Gained,

Lessons Learnt. In McIlraith et al. [19], pages 350–364.

19. S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors. The Semantic Web - ISWC
2004: Third International Semantic Web Conference, volume 3298 of LNCS. Springer-

Verlag, 2004.

20. S.A. McIlraith, T. Cao Son, and H. Zeng. Semantic Web Services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

21. D. Oberle. Semantic Management of Middleware. Springer-Verlag, February 2006.

22. D. Oberle, S. Lamparter, S. Grimm, D. Vrandecic, S. Staab, and A. Gangemi. Towards

Ontologies for Formalizing Modularization and Communication in Large Software Sys-

tems. Journal of Applied Ontology, 2006.

23. A. Polleres, I. Toma, and D. Fensel. Modeling Services for the Semantic Grid. In

C. Goble, C. Kesselman, and Y. Sure, editors, Semantic Grid: The Convergence of Tech-
nologies, number 05271 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-

und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.

24. S. Potter and J.S. Aitken. A Semantic Service Environment: A Case Study in Bioinfor-

matics. In Gómez-Pérez and Euzenat [13], pages 694–709.

25. C. Preist, J. Esplugas Cuadrado, S. Battle, S. Grimm, and S.K. Williams. Automated

Business-to-Business Integration of a Logistics Supply Chain Using Semantic Web Ser-

vices Technology. In Y. Gil, E. Motta, V.R. Benjamins, and M.A. Musen, editors, Inter-
national Semantic Web Conference, volume 3729 of LNCS, pages 987–1001. Springer-

Verlag, 2005.

26. N. Sadeh, F. Gandon, and O. Buyng Kwon. Ambient Intelligence: The MyCampus Expe-

rience. In T. Vasilakos and W. Pedrycz, editors, Ambient Intelligence and Pervasive Com-
puting. ArTech House, 2006.

27. D. Sell, L. Cabral, E. Motta, J. Domingue, and F. Hakimpour. A Semantic Web based

Architecture for Analytical Tools. In 7th International IEEE Conference on E Commerce
Technology (IEEE CEC 2005), 2005.

28. S. Staab and H. Stuckenschmidt, editors. Semantic Web and Peer-to-Peer. Springer-

Verlag, November 2005.

29. S. Staab and R. Studer. Handbook on Ontologies. International Handbooks on Informa-

tion Systems. Springer-Verlag, 2004.

30. K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated Discovery, Interac-

tion and Composition of Semantic Web Services. Journal of Web Semantics, 1(1):27–46,

September 2003.

31. V. Tanasescu, A. Gugliotta, J. Domingue, L. Gutiérrez Vilları́as, R. Davies, M. Rowlatt,

and M. Richardson. A Semantic Web GIS based Emergency Management System. In

Workshop on Semantic Web for eGovernment Held in conjunction with ESWC 2006, 2006.

32. J.M. Bradshaw, R. Jeffers, M. Johnson, A. Tate, J. Dalton, A. Uszok, and S. Aitken.

KAoS Policy Management for Semantic Web Services. IEEE Intelligent Systems, 19,

July/August 2004.

33. M. Zaremba, M. Moran, and T. Haselwanter. Applying Semantic Web Services to Virtual

Travel Agency Case Study, Poster Presentation. In Y. Sure and J. Domingue, editors,

ESWC, volume 4011 of LNCS, pages 782–796. Springer-Verlag, 2004.

Part I

Web Services Technology

1

Towards Service-Oriented Architectures

Stefan Fischer and Christian Werner

Institute for Telematics, University of Lübeck

{fischer,werner}@itm.uni-luebeck.de

Summary. This chapter is meant as a motivation of why and how Web Services have evolved.

Starting from the increasing need for integration of IT solutions, we argue that Web Services

have something to offer, especially for the important fields of Business-to-Business (B2B) and

Enterprise Application Integration (EAI). However, this is only the beginning of a new road,

leading to the radically new software technology of Service-Oriented Architectures (SOA).

1.1 Integration: The New Challenge

This book is about Semantic Web Services, and before we can talk about the new and

fascinating “semantics” part, it will be helpful to consider the foundations, namely to

look at the Web Service technology itself. Web Services themselves are a relatively

new phenomenon and have been under development for only slightly more than five

years. During this time, they have gained a lot of attention and have also already

gone through their hype phase. Meanwhile, they are accepted as one of the most

important technologies when talking about application integration. In this context,

they have been brought together with many other buzzwords that have been coming

up in recent years.

1.1.1 The Need for Integration

First, Web Services have been considered as a new kind of middleware, taking their

place between application and network. Here, they are in competition with other sim-

ilar approaches such as CORBA, Java RMI, OSF DCE, etc. One can very well argue

that Web Services have an excellent chance to become the dominating middleware,

due to their extensive support of Internet technologies – one of the most important

and relatively rarely mentioned being the use of URIs/URLs as addressing scheme

– and the massive support by IT industry, resulting, for instance, in an excellent tool

chain support throughout the software life cycle.

Second, Web Services have been chosen as one of the base technologies in grid
computing, another major recent buzzword. A computing or storage grid works just

16 Stefan Fischer and Christian Werner

like a water or electrical grid – just press a button and the grid delivers as much water

or power as you need. In IT terms, you just plug in your terminal and get as much

storage capacity or computing power as you need. The resources will be provided

by the grid, which consists of some cooperation software and lots of more or less

powerful computers. As a user, you do not see the computers, you just see the grid

(or the plug) and its services. And grid services are provided as Web Services, so that

is where they come into the game. Whenever your grid application makes use of one

of the grid’s services, it calls a Web Service.

Third and final example, Web Services are the basic component in most SOA
approaches. SOA means Service-Oriented Architecture, and it is the latest hype in

enterprise application software architecture design. SOA will most likely become one

of the most important technologies within the next few years. Due to its importance,

we will come back to it at the end of this chapter.

All these technologies are related to integration. Why is integration obviously so

important that it triggers the development of so many new buzzwords, hypes, and

serious new technologies?

This has to do with the famous real-world phenomenon of globalisation. Today,

goods and services are traded and provided worldwide. Companies are no longer

restricted to their home base, but often produce their products in different countries.

There, they cooperate with other companies they might not have heard of a few

weeks before. Or they might even buy other companies which fit into their portfolio

or provide a certain service that the buying company urgently needs.

In order to survive in a globalised world, the IT infrastructure of such companies

needs to be adjusted to the new requirements. This basically means two things. First,

integration has to take place on an internal level. It will be necessary that applications

in different domains can work together, based on the same stock of data. This is not

as simple as it might sound: just consider as an example the merger of Daimler and

Chrysler and the need to integrate these two completely different IT worlds. Second,

integration has to take place on an external level. Applications of different business

partners have to cooperate, e.g. in a selling–buying process. This is a major chal-

lenge based on heterogeneous technologies, but a major success factor for a globally

operating company.

How can integration be achieved? Let us first have a look at an obvious candi-

date – the Internet and especially the World Wide Web.

1.1.2 B2C: Great New World?

One could well argue that the Web offers everything you need in order to conduct

business. In fact, probably millions of web-based applications are in use today, so a

lot of business is going on already. Looking closely at these applications, one will

realise that they all have one very specific property: they are interactive applications,

which means that there is a always a human on one end of the line (human–machine
interaction). Take, e.g., all the well-known ticket-booking applications for flights,

railway travel, etc. They are very well suited for interaction between a user and the

application, providing a usually very nice and stylish user interface. Most of them

1 Towards Service-Oriented Architectures 17

are the so-called business-to-consumer (B2C) applications, i.e. individuals use them

to conduct all kinds of businesses on the web.

However, when we talk about globalisation and integration, we usually mean

something else: it is the companies that need to cooperate. Usually, we then talk about

B2B applications. So, can we use the same technologies to organise this cooperation,

i.e. to implement B2B applications?

The answer is clearly no, and the reason for this is the already mentioned interac-

tivity of B2C applications. B2B applications are inherently non-interactive; instead,

nearly every transaction is expected to be executed automatically. Only then, such

applications really make sense, because of the gain of speed and efficiency. What

therefore is needed is not human–machine, but machine–machine interaction. Why

does it not make sense to use the existing interface of web applications for B2B

applications?

B2C applications use a standardised page description language to create these

interfaces the name of which is HTML. HTML does a great job: it is simple, flexible,

robust and very expressive, especially with its partner Cascading Style Sheets (CSS),
but it does just that: it describes page layouts. This is great for user interfaces, but

it is not good for automatised interactions between applications. Applications need

to exchange clean data, just describing the objects of the application domain which

need to be exchanged. Let us look at an example.

When you book a flight on the Lufthansa or British Airways website, you will

typically be presented a list of available flights. For a human user, it is absolutely no

problem to understand the content of the page, since it has been nicely rendered by

the web browser. The web browser got, from the Lufthansa web server, something

like

<tr><td>FRA</td><td>SFR</td><td>10:00</td><td>12:00</td></tr>

The browser need not understand the application-specific semantics of this code, it

just needs to understand the meaning of tags such as <tr> – in this case indicating

a new line in the table displaying all flights. For an automated application-specific

processing (i.e. not simply layout oriented), however, this is not sufficient, since there

is absolutely no information available on what the application domain of this code

is. We as humans can tell that most likely this describes a flight from Frankfurt to

San Francisco which leaves at 10 in the morning and arrives at noon, but the “dumb”

computer can not.

To summarise, HTML is not enough for B2B applications. If we want to make

use of applications which are available on the Internet today in B2B contexts, we

need to provide different interfaces.

1.1.3 B2B and EAI: Today’s Solutions

Before we see how the new integration solution works, let us have a look at some

earlier approaches that have been developed in order to create interoperable appli-

cations in the business world. We already called the interaction between companies

B2B. There was (and still is) a second big movement that covered the integration

18 Stefan Fischer and Christian Werner

question on an inter-company level. It is called Enterprise Application Integration
(EAI), but in essence, from a technical point of view, it is the same as B2B.

The name of these solutions has already been mentioned: middleware. The pur-

pose of middleware is usually twofold. First, it is meant to abstract away from the

details and the complexity of network programming which includes bit-wise encod-

ing of messages and their transfer to specific destinations. Second, it provides a uni-

form way of describing interfaces of objects relevant in a certain application. Based

on these interfaces, services provided by one object can be used by other objects

using the interface’s description.

First solutions such as Sun’s Remote Procedure Call (RPC) were simple and

straight-forward, but today’s dominant technologies such as the Common Object

Request Broker Architecture (CORBA) developed by the OMG or Sun’s Enterprise

Java Beans provide a full-featured framework for creating powerful distributed appli-

cations. And even more important, this framework can be very well used to integrate

existing applications by providing them with a new wrap-around interface which can

then be used by other applications.

This sounds good, but it did not really work out. Mainly, three types of reasons

can be given:

1. Complexity

Most of today’s middleware approaches employ complex communication proto-

cols which make it rather difficult to implement them. Consequently, there are

typically rather few implementations to choose from. In addition, they are often

incompatible, as has been reported for a number of CORBA implementations.

This is critical for any kind of integration approaches for applications created by

different companies.

2. Lack of standardisation

Whenever a new middleware was invented, most of the important underlying

technologies were invented too. This includes, for instance, all the communi-

cation protocols between application components, all the pre-defined services

(such as name service or trader service), and also basic features such as the

scheme for addressing objects of the system. It is obviously hard to convince

others who have been using a certain scheme all the time to use a new (just

invented) one when nobody else is doing that.

3. Political reasons

Information technology’s short history has already shown that technologies

invented by one company are rarely adopted by their competitors. A typi-

cal example is the programming language Java which has been developed by

Sun while, in turn, Microsoft released a competing language realising similar

concepts. Another example is middleware: Microsofts DCOM has never been

accepted or supported by Sun, and Suns Java 2 Enterprise Edition (J2EE, which

includes Enterprise Java Beans) has never been supported by Microsoft.

A typical example is the programming language Java which has been devel-

oped by Sun and never been liked by Microsoft. So they invented their own

Java but gave it a different name. The same is true for middleware: Microsoft’s

1 Towards Service-Oriented Architectures 19

DCOM has never been accepted or supported by Sun, and Sun’s Java 2 Enter-

prise Edition (J2EE, which includes Enterprise Java Beans) has never been sup-

ported by Microsoft.

As a result, instead of integration, we got many IT islands in the 1990s, and there

was no simple way to let them cooperate. Shortly before the year 2000, however, the

pressure by IT industry’s customers became big enough to make it think about a solu-

tion to these problems. In the next section, we will see how Web Services addresses

them. The next chapter will then give a more technical, in-depth introduction into the

most important components of Web Services.

1.2 Web Services as a New Solution

As one may have guessed by now, the Web Service technology tackles the major

problems that come with other technologies, as mentioned above. And this is cer-

tainly by design and not by accident. Here is what one of the standard documents

says what a Web Service is: “A Web Service is a software system designed to sup-

port interoperable machine-to-machine interaction over a network. It has an inter-

face described in a machine-processable format (specifically WSDL). Other systems

interact with the Web Service in a manner prescribed by its description using SOAP

messages, typically conveyed using HTTP with an XML serialisation in conjunction

with other Web-related standards” [W3C Web Services Architecture].1

From this definition, two of the three main questions are already answered: Web

Services use standardised and open web technology wherever possible, from URIs

as the basic addressing scheme over XML as the basic description language to the

use of Internet protocols for message transport. The next few paragraphs describe

why these are advantages.

1.2.1 URI as Addressing Scheme

The concept of Universal Resource Identifiers and their more practicable subset, the

Uniform Resource Locator, was developed for the World Wide Web. It is used to

uniquely identify any single resource on the web, especially documents and applica-

tions. The concept is very well introduced and well under stood. In addition, there is

massive infrastructure available that supports all kinds of operations on URIs, namely

their mapping on more concrete addresses as used by computers to find the resource

identified by a URI. The most important part of this infrastructure is the Domain
Name System (DNS) which maps host names to IP addresses. Another important role

is played by the web server which maps the rest of the URL to a local path in the file

system.

Why is this so important? Obviously, this infrastructure can simply be used for

Web Services. When a service user calls a specific Web Service, the URI of this

service is known. Then, the features of DNS and the existing web servers can easily

be used to find this service. There is absolutely no need to develop something like a

new name service: everything is already there.

1 http://www.w3.org/TR/ws-arch/

20 Stefan Fischer and Christian Werner

1.2.2 XML as the New Lingua Franca

XML as such is just another data description language, and this is exactly what is

needed: a simple and standardised language that can be used to describe data struc-

tures. It is not that such languages have not existed before: just think of ASN.1, the

data description language coming from the OSI world. As with many things, XML

came just at the right point in time, and it provided a number of features that quickly

made it popular with a huge community:

• XML is simple. It is very easy to define a data structure in XML, due to its

intuitive hierarchical structure.

• XML is ASCII. Every XML data structure is human-readable. This might result

in performance problems, but it brings a lot of advantages, for instance when

debugging a service.

• XML is self-describing. An XML data structure contains both a description of

its structure and the content itself.

• It has been standardised by the World Wide Web Consortium (W3C), which is the

most important standardisation body in the context of World Wide Web protocols

and languages.

In Web Services, everything is based on XML. As can be seen from the above defini-

tion, it is not only the definition of data structures, but all message exchanges and also

the service descriptions are based on this new universal data description language.

1.2.3 Exchanging XML Messages

In order for two distributed application components to communicate with each other,

they need to exchange messages. As we already know, the messages are described in

XML, but how does the exchange protocol look like? How are messages encoded?

How are they finally transported over the network?

Many people say that these are the core questions when designing a middleware,

so one can argue well that the solutions in this field belong to the core of Web Ser-

vice technology. The protocol that is used to encode XML messages is called Simple
Object Access Protocol (SOAP), or, more correctly as of today, the XML Protocol
(XMLP). And it is really simple: it just defines a general pattern of how XML Web

Service messages have to look like, it defines a few so-called message exchange pat-
tern that can be used by Web Service partners, and it defines how XML type informa-

tion can be encoded in such messages. It also gives some hints how such messages

can be transported over the Internet: just use one of the existing application-level

protocols such as the web protocol HTTP or the email protocol SMTP.

Why is it good to use such existing protocols? Obviously again, these are well-

established technologies, and there is a mass of products available which can simply

be used. Most importantly, one can use web or email servers in order to receive

Web Service calls and forward them to their appropriate end points. Such servers are

available everywhere, and every system administrator knows how to configure and

administrate them. So, we have the same advantage as with DNS: the infrastructure

1 Towards Service-Oriented Architectures 21

is there and just waits to be used. And protocols such as HTTP and SMTP have been

verified over and over again: they simply work, and interoperability questions simply

do not arise anymore today.

1.2.4 Creating Services Based on XML Messages

How, after all, does a service user know how a message has to look like in order

to use a provided service? Here, we have to mention the second most important

Web Service technology, the Web Service Description Language (WSDL). WSDL is

defined in XML, and it is used to define how Web Service interfaces look like. This

basically means that it describes how incoming and outgoing messages look like and

where such services are available (in terms of a URI). Once such a definition exists

and gets published, a service user can read it and then knows how to call a Web

Service. Since everything is again in XML, the messages to be transferred can be

immediately deduced from the service description. And on the service side, it is easy

to decode incoming service messages: just use one of the many existing XML parsers

and read the message into your service program. All in all, creating a Web Service

usually only means copying an already existing object into a certain location – and

that is it.

1.2.5 And Politics?

What is not obvious from the above definition is the political question. Why are Web

Services much better accepted and supported within the IT industry than any other

middleware technology?

One may well argue that Web Services have been invented by Microsoft. The

above-mentioned SOAP has been brought up by Microsoft. And right from the begin-

ning, Microsoft was interested in making this an open standard, which had so far not

exactly been one of Microsoft’s core strategies. As a result, other companies such

as IBM and Hewlett-Packard and later on Sun Microsystems jumped onto the band-

waggon. With this support, Web Services on the one hand get a lot of publicity and

on the other hundreds of developers started to create languages, protocols and, most

importantly, tools. Today, from all middleware and integration technologies, Web

Services get the best tool support along the life cycle. It has been the core or it has

been fully integrated into today’s most relevant enterprise application architectures,

namely Microsoft’s .Net and Sun’s J2EE. Meanwhile, we see applications being cre-

ated that consist of both .Net and J2EE (and other) components, so it obviously

works. Still, a few things are missing.

1.2.6 What is Missing?

Since their creation in the late 1990s, Web Services have gained a lot of momentum.

Many people are sure that this is the new integration technology. However, there are

still a few things to do in order to make it real and have the Web Service technology

universally accepted. From the authors’ point of view, there are at least the following

three points to mention:

22 Stefan Fischer and Christian Werner

1. Well-established directory services

Directory services are needed in order to find available Web Services. Web Ser-

vice providers publish their services in such a directory, and Web Service users

look for services that best fit their needs. In the best case, applications know what

they need and then automatically check directories for corresponding services

(we will later in this book see how semantics help in this respect). Surely, this

need has been openly visible from early on, and with the specification of Univer-
sal Description, Discovery, and Integration (UDDI), there is a solution available.

However, UDDI in its use as a global Web Service directory today does not have

the best image. This is due to the fact that basically everybody is allowed to

publish new service entries. Sounding good at first hand, this quickly results in

lots of dummy entries and dangling pointers to no longer existing services. As

a result, the quality of the global UDDI directory is not good, so that UDDI is

not often used for serious applications (though on an enterprise-level, the UDDI

technology is widely adopted, since here, the entries can be controlled). In order

to create a really useful global service directory, some kind of quality manage-

ment needs to be put into effect.

2. Security

In Web Service technology’s early days, security never has been a big issue, due

to the need to first make Web Services really work. The typical way of talking

about it was “Great, Web Services work over firewalls”. This is true, because

Web Services are typically transported using the HTTP protocol, and the HTTP

port is usually open on a firewall, but certainly is a bad argument – which admin-

istrator likes the thought that all kinds of active codes can be transported into his

systems? Today, many solutions around Web Service security exist, including

something like SOAP proxies in order to allow security checks on incoming

Web Service calls, XML encryption which allows confidential calls of Web Ser-

vices, and XML signature for Web Service message authentication. Actually,

there are so many security standards available right now that it is already too

much. For making Web Services really happen, a small set of security standards

has to be identified that needs to be supported by all serious Web Service users

and providers. A first step has been done by the so-called WS-Security standard

that provides such a basic set of services. It is now necessary to promote this

approach more actively.

3. Interoperability

It certainly sounds strange that interoperability is one of the major problems with

Web Services, when we just said that Web Services are all about integration. It

is true, there is a number of open standards which are easy to implement and

ubiquitously available. The bad thing is there are already too many of these stan-

dards. We mentioned this above for the field of security, but this is also already

true for the basic standards such as SOAP/XMLP, WSDL, or UDDI; in other

words those technologies that need to be present in order to make Web Ser-

vices run at all. Basically, there are two problems. First, some companies might

tweak the standard just a little bit in order to make them work better with their

own tools. Second, there are different versions of these basic standards. Unfor-

1 Towards Service-Oriented Architectures 23

tunately, they are usually not interoperable. The newest WSDL standard, for

instance, uses keywords which have not been available in earlier standards, and

discards others. As a result, a WSDL 1.1 interpreter will not be able to decode

a WSDL 2.0 description, making it impossible for the user to call this specific

service.

There is already a solution for this problem, provided by the organisation

WS-Interoperability (WS-I). WS-I defines the so-called profiles which contain

a set of standards. Whenever a company declares that its services are compati-

ble with a certain WS-I profile, it guarantees that all the relevant standards are

implemented in a standard-conforming way. As of today, WS-I has published the

Basic Interoperability Profile. Companies which are really interested in global

and automatised interaction with other companies will have to make their ser-

vices compatible to these profiles.

And after all, this book is about Semantic Web Services. In the last section of this

chapter, we will look, as promised, at the new idea of service-oriented architectures

and explain how a formally described semantics may play a major role in making

them real.

1.3 The Future: SOA

Web Services are a basic building block in the creation of SOA. These SOAs are

expected to be the future architecture of enterprise applications. As can be told from

the name, the idea is that future applications will be built upon services. This is,

however, not the whole picture; service-oriented computing has already been the

concept of CORBA and similar approaches. SOA go a step further and propose a

completely new way of creating applications. In the SOA vision, they will no longer

be programmed, but instead composed of loosely coupled components which will

be imported from servers from all over the world. Required services will be dynami-

cally – potentially during run time – searched and called when needed. Such an archi-

tecture is well suited to map the dynamic environment that enterprises are confronted

with in today’s globalised world. If, for instance, two companies form a new strate-

gic alliance or just create a new customer–supplier relationship in the real world, the

vision says that in the IT world this will simply mean abandoning a few services and

selecting a few new ones.

The question certainly is, how realistic this vision is today. Above, we have

already discussed a few obstacles such as unused security features, lack of inter-

operability, or missing high-quality directory services. However, even when all these

are available, would you, as the Chief Information Officer, lay the fate of your com-

pany in the hands of some obscure services that you probably do not really know

anything about?

The probably much more realistic scenario is an implementation of SOAs within

the boundaries of an enterprise, i.e. as a new approach towards EAI. Here, the com-

pany has full control over all services and service offers and can thus make sure that

all applications that the company relies on will really be operational.

24 Stefan Fischer and Christian Werner

Since the rest of this book is on semantics and Web Services, we consider it

useful to provide a first hint at how these two big trends in Web Services – SOA and

semantics – fit together.

We have mentioned several times now that Web Services is on integration,

automatisation, and machine–machine interaction. In order to fully automate the

communication between application components, the search for new Web Services

also needs to go into this direction. In a perfect SOA world, an application com-

ponent in need for a specific service describes this need in its problem domain and

sends it to a directory service. This service will “understand” the need of the compo-

nent and look for matching services. From the list of found matches, the component

selects one service and automatically binds it to the running application.

Today, this is not possible, because a formal description of the functionality of a

service is not available. This book shows what needs to be done in order to make the

vision real.

2

Architecture and Standardisation of Web Services

Christian Werner and Stefan Fischer

Institute for Telematics, University of Lübeck

{werner,fischer}@itm.uni-luebeck.de

Summary. Since Web Services are complex artefacts that rely on sophisticated protocols and

data formats, it is important to have effective strategies for dealing with this complexity. As a

basic concept, the Web Service technologies are structured in a stack model. It is crucial for

every Web Service developer to have this model in mind and to have a clear understanding

how the single items work together. In this chapter, we will first give an overview of the Web

Service technology stack. Then, we will step through this model and discuss the different

core technologies in detail. This includes different variants of Web Service transport bindings,

SOAP, WSDL and UDDI.

2.1 Web Services Technology Stack

The W3C Web Service Architecture Working Group has developed a model that

describes how Web Services are generally structured, called the Web Service Tech-

nology Stack. However, in order not to limit the scope of Web Service technology,

this model has been purposely designed on a very abstract level, i.e. without spec-

ifying technologies used for the implementation. Other W3C working groups are

providing such technology specific bindings.

The current version of the Web Service Architecture Document has been released

on 11 February 2004 and is publicly available at http://www.w3.org/TR/
2004/NOTE-ws-arch-20040211/. Figure 2.1 depicts the basic structure of

the Web Service technology stack.

The “Communications” block, which some authors also call “Wire Stack”, is the

basis for all other layers. It comprises generic transport mechanisms that can be used

to send messages over the Internet. In terms of classical network architecture these

technologies are located on the “Application Layer” (or “Layer 7”) of the ISO/OSI

Protocol Reference Model. Typical examples would be HTTP, SMTP, FTP, etc. All

these protocols can be used with Web Services and each protocol does provide spe-

cific benefits and drawbacks. The Web Service Technology Stack does not determine

which transport mechanism should be used, since the optimal choice may heavily

depend on the specific use case. We will have a detailed look on this topic in the

following section.

26 Christian Werner and Stefan Fischer

Fig. 2.1. The web service technology stack (taken from the W3C web service architecture
document)

The core technology of Web Services is located on the next higher layer. The

“Messages” block provides basic functionalities for encapsulating network messages

in a neutral way that is independent from a certain programming language or oper-

ating systems. The goal here is to find message representation that can be syntacti-

cally understood by humans as well as computers. Unfortunately, this does not mean

that the meaning of a message can be understood by everybody. Technologies for

semantic interoperability will be focussed in the following parts of this book. The

key technology for achieving syntactical interoperability in the Web Service world

is XML. In Fig. 2.1 this is indicated by the dark box around Messages, Descriptions
and Processes.

The Simple Object Access Protocol (SOAP) is an XML language itself. It pro-

vides a composable framework for packaging and exchanging XML messages. In

particular, it provides a platform- and application- independent message format. Fur-

thermore, a number of extensions have been developed for SOAP. With these it is

possible to provide additional protocol features, such as reliable message transport

or support for transactions.

The layer above is named Descriptions. Here we find technologies that are used

for describing Web Services in a formal way. Such a description is crucial because a

Web Service consumer needs exact access parameters before the service can be used.

This includes data about the service location as well as a specification of supported

data types and operations. The most widely used solution here is the Web Service
Description Language (WSDL). It is important to note that WSDL does cover only

the technical but not the semantical description of a service. So with WSDL it is

possible to express that “This service has an operation echo which takes a string as

2 Architecture and Standardisation of Web Services 27

parameter and returns another string.” A human can guess from the operation’s name

that the two strings will be identical, but machines do need an additional semantic

service description in order to discover services that provide suitable operations for

a given problem.

The very top layer comprises Processes. One of the most important processes in

the field of Web Services here is the discovery of a service. Web Services can be dis-

tributed all over the world and they might be used from all over the world too. How

can we locate a Web Service that fits the user’s needs? The most popular solution

here is Universal Description, Discovery and Integration (UDDI). This worldwide

service registry can be visualised as a huge phone book. A service provider can pub-

lish a Web Service in this registry and if somebody is looking for a specific Web

Service he or she can query the UDDI registry by specifying certain search criteria.

Although there are mechanisms in UDDI for realising things like data replication,

it is basically a centralised approach and therefore UDDI contradicts the concept of

service distribution in some way. Anyhow, distributed service registries are harder

to maintain and no solution for practical usage have been developed yet. A more

active approach for building up service registries is called Web Service Inspection
(WS-Inspection). Here the service directory looks actively for new services and reg-

isters them.

Besides service discovery, there are more Processes that are important in a Web

Service world. For instance, it is possible to combine a number of services in order

to complete a certain task. Here we are talking about Web Service aggregation or

Web Service composition.

In addition to the concepts and tasks that are located on the different layers in

the Web Service Technology Stack, there are some issues that are relevant to all

layers. The most important one here certainly is Security, shown as a column on the

very right side of Fig. 2.1. In April 2002, Microsoft and IBM introduced the Web
Service Security (WS-Security) specification. It provides a comprehensive security

framework that is based on two other W3C standards as core components, namely

XML Encryption and XML Signature.

A second area that is relevant to all layers of the Web Service technology stack

is Management, shown in the very right side of Fig. 2.1. Since the Web Service tech-

nology primarily targets the domain of business applications, where the availability

and reliability of a service might be crucial, it is very important that there are capable

measures for monitoring and controlling the state of a Web Service. If we think of

“pay per use” scenarios, it is also desirable that the service provides a certain Quality
of Service (QoS), e.g. by sending back query results within a given time interval. IBM

addresses this issue in a framework called Web Service Level Agreement (WSLA),
which has been introduced in 2003. We will not discuss Web Service management

here in detail, because it is still a very active area in research and therefore out of

scope for this chapter.

In the remainder of this chapter, we will discuss the different layers of the Web

Service Technology Stack, from bottom to top, more in detail.

28 Christian Werner and Stefan Fischer

2.2 Web Services Transport

A very important feature of the Web Service technology is that virtually any transport

mechanism can be used for transporting the network messages (usually we are talk-

ing about SOAP messages here). In the Web Service world, such a transport mecha-

nism is called a binding. In contrast to other middleware approaches like CORBA or

Java RMI which have fixed transport mechanisms in form of proprietary protocols,

the idea here is to rely on existing standards. Another benefit is that the application

domain of Web Services is not limited by the binding. We have the freedom to choose

a binding that meets the demands of a certain application domain best.

Anyhow, the used binding affects the way in which messaging takes place in an

important aspect. The SOAP specification defines the concept of message exchange

patterns (MEPs). A MEP is a template that defines how messages are exchanged

between SOAP nodes. We will see an example on this in the later part of this section.

2.2.1 HTTP

The most popular binding by far is SOAP-over-HTTP because HTTP is ubiquitously

available and its build-in addressing and error-handling functionalities are fully cov-

ering SOAP’s needs. SOAP-over-HTTP is the only binding that is available as a W3C

recommendation. The recommended version to use with SOAP is HTTP/1.1. Even

though the HTTP binding is not mandatory, virtually all modern SOAP implementa-

tions do provide a HTTP binding.

The HTTP binding provides two MEPS: the Request–Response MEP and the

Response MEP. Both can be easily illustrated with an example depicting two SOAP

nodes exchanging messages.

The Request–Response MEP is based on the HTTP-POST command. Node A

uses a HTTP client and sends out a POST request that carries a SOAP document to

node B, which is running a HTTP server. Node B processes this request and sends out

a HTTP response, carrying the answer to that request in the form of another SOAP

document. In contrast to that, the Response MEP is based on HTTP-GET. Node A

sends out a GET request, where the request information is directly encoded in the

HTTP request URL. Node B sends back a SOAP document in the HTTP response.

So, here SOAP is only used in the response, but not in the request.

With the Request–Response MEP HTTP is perfectly suitable for realising Remote
Procedure Calls (RPC) over SOAP. Unfortunately, the use of HTTP has also a num-

ber of disadvantages. HTTP is a client–server protocol and has not been designed

for transferring messages between SOAP nodes in a peer-to-peer manner. Asyn-

chronous messaging, where SOAP nodes can communicate independently from a

fixed request–response cycle, is not supported. However, more and more Web Ser-

vice applications, especially in the field of grid computing, do require peer-to-peer

messaging.

2 Architecture and Standardisation of Web Services 29

2.2.2 Email

In July 2002, the W3C released a note about SOAP-over-email. In contrast to HTTP,

which is a synchronous request/response protocol, SOAP-over-email supports asyn-

chronous messaging. As shown in Listing 2.1 the XML Web Service message is

placed inside the body of an email message, which is sent to its receiver using com-

mon mail transport protocols. Of course, unlike a normal email, this message will

not be interpreted by a human reader but by the receiving SOAP engine.

By specifying more than one receiver in the mail header (e.g. by using the To:
field) it is possible with this binding to realise a point-to-multipoint MEP, which is

clearly an advantage over HTTP.

It is important to note that the SOAP-over-email specification is not limited to

a certain mail transport protocol. Anyhow, most implementations are currently sup-

porting only SOAP transport over SMTP although using POP3 or IMAP might be an

interesting alternative in certain scenarios.

2.2.3 Message Queuing Systems

Another approach for sending Web Services messages asynchronously is the use of

message queueing systems like Microsoft Message Queuing or Java Message Ser-
vice (JMS). Both are based on TCP, providing a reliable store-and-forward commu-

nication mechanism. Such systems are queueing all messages on a separate queuing

server in order to temporally decouple the processes of sending and receiving them.

This particularly means that one can send messages even if the receiving party is

currently busy or not connected to the network (Fig. 2.2).

At a first sight, this approach seems to be pretty close to the email transport –

message queues in the form of mailboxes and temporal decoupling of sending and

receiving are used here as well. However, in fact, message queuing systems are very

complex and powerful systems that are widely used in the field of large-scale enter-

prise applications. In addition to just queuing messages, they are closely cooperating

From: soap-engine@service-consumer.example.com To:
soap-engine@doNothing-company.example.com Subject: RPC Request
Date: Thu, 29 Nov 2004 16:24:03 EST Message-Id:
<EE492E16A090090276D208424960C0C@service-consumer.example.com>

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<ns1:doNothing

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="http://services.doNothing-company.example.com/service1"/>

</soapenv:Body>
</soapenv:Envelope>

Listing 2.1. Using eMails for transporting XML network messages

30 Christian Werner and Stefan Fischer

Sender Receiver

Message Queue

Fig. 2.2. Point-to-point communication over a message queue

with the database management systems providing sophisticated mechanisms for

managing data persistency, processing transactions and data locking.

Like SOAP-over-email, such systems do also support application layer multicast,

realising a point-to-multipoint MEP. Furthermore, as illustrated in Fig. 2.3, message

queues can be used to implement a publisher/subscriber communication model. Here

a sender does not directly address the receiver but sends the message to a message

queue that is associated with a certain topic. The queuing server finally delivers this

message to all system that have previously subscribed to that queue.

2.2.4 Direct Messaging over TCP and UDP Sockets

The concept of reusing standardised application protocols like SMTP or HTTP for

Web Service message transport has two major drawbacks. First, these protocols usu-

ally provide features that are not necessarily useful in conjunction with Web Services,

because they have been originally designed for use in a different context. Second,

full-scale application protocols are causing a significant amount of overhead to the

communication.

Microsoft has been the first company that put much effort into the development of

alternative, more light-weight bindings. The basic idea here is to remove application

layer protocols like HTTP or SMTP completely from the Web Service technology

stack and send the messages directly over TCP or UDP sockets. Unfortunately, these

Sender

Receiver

Receiver

publish

subscribe

subscribe

deliver

deliver
Topic

Fig. 2.3. Publisher/subscriber communication over a message queue

2 Architecture and Standardisation of Web Services 31

protocols are lacking suitable mechanisms for addressing Web Service. With these

protocols it is only possible to address different applications on an Internet host using

TCP or UDP port numbers. However, it is usually desired that more than one Web

Service can be implemented within a single application (which is usually an appli-

cation server). Therefore, a more fine-grained addressing scheme is needed. This

missing feature has to be implemented in the messaging layer of the Web Service

Technology Stack, which makes the concept of using TCP or UDP sockets more

complicated again.

An implementation of SOAP-over-TCP is included in the Web Service Enhance-

ments (WSE) 2.0 package. The basic idea here is to remove the application layer

protocol completely and to put the required addressing information directly into the

SOAP header using WS-Addressing, which is a standardised extension for SOAP.

The WSE 2.0 provide two versions of TCP-based messaging: synchronous and asyn-

chronous. With synchronous TCP the request and response messages are exchanged

over a common TCP connection realising a Request–Response MEP. In the asyn-

chronous mode, the TCP connection is closed after a single message has been sent,

realising one-way messaging. Asynchronous TCP messaging increases flexibility but

leads to more protocol overhead at the same time.

SOAP-over-UDP has been specified by Microsoft, BEA, Lexmark and Ricoh

in September 2004. Currently, there is only an experimental implementation of an

SOAP-over-UDP binding. It supports one-way messaging over unicast, multicast and

broadcast, providing the greatest flexibility of all currently available bindings. It is

notable that in contrast to the multicast features of email and message queuing sys-

tems, the UDP multicast uses IP multicast, which significantly increases efficiency.

As a major drawback of this binding, the size of a SOAP message is limited to

about 64 KBy in order to fit into a single UDP datagram. Unlike TCP, UDP does not

provide any congestion or flow control mechanisms. Furthermore, it is an unreliable

transport protocol, i.e. messages might get lost.

2.3 SOAP: XML Messages

As already mentioned in the beginning of this chapter, SOAP can be seen as a

core component of the Web Service Technology Stack. It has been designed as a

lightweight protocol for exchanging structured information in distributed environ-

ments. SOAP is, and that is the most important advantage over competing technolo-

gies like Java RMI or CORBA, absolutely independent from a certain operating sys-

tem, a programming language or special runtime components.

Extensibility has been a major design goal. SOAP itself does not provide any

features for realising secure messaging, message routing or reliability, but instead it

implements a sophisticated extension model which allows to incorporate even very

special demands.

The most recent version of SOAP is 1.2, which was standardised by the W3C

in June 2003. The specification is split up into two major parts: SOAP Version 1.2
Part 1: Messaging Framework and SOAP Version 1.2 Part 2: Adjuncts. The first part

32 Christian Werner and Stefan Fischer

describes on an abstract level the structure of the SOAP Envelope and how SOAP can

be bound to an underlaying transport mechanism. The second part is more concrete.

It defines a data model and a set of data types that can be used for realising Remote
Procedure Calls (RPC). Furthermore, the SOAP-over-HTTP binding is specified,

defining how SOAP messages can be transported using the HTTP GET and POST

commands.

2.3.1 SOAP Message Format

The structure of a SOAP message is illustrated in Fig. 2.4. The root element of

a SOAP message is Envelope. It encloses one or two child elements: an optional

Header and a Body.

If the header is present, it carries information that do not directly belong to the

payload of the message. For example, the header may provide authentication infor-

mation by putting username and password into a separate block. Another header

block could carry a transaction ID, indicating that this message belongs to a set of

messages that are part of an ongoing transaction.

The Body element is mandatory. It contains the actual payload of a SOAP mes-

sage. The SOAP specification does not define intentionally any constraints about the

data in the message body, one can include all kinds of XML data here. The used data

format is application specific.

Of course, this high degree of freedom imposes the risk of ambiguity. How can

we ensure that all Web Service applications in the world use unambiguous data

formats? SOAP addresses this issue by the intensive use of XML namespaces. As

SOAP Envelope

SOAP Header

Header Block

Header Block

SOAP Body

Message Body

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://

www.w3.org/2003/05/soap-envelope">
<env:Header>
...
</env:Header>
<env:Body>
...
</env:Body>

</env:Envelope>

Fig. 2.4. Structure of a SOAP message, schematic view (left) and XML representation (right)

2 Architecture and Standardisation of Web Services 33

shown in Fig. 2.4, all elements belonging to the SOAP envelope are carrying a com-

mon namespace prefix. The SOAP specification defines a set of namespaces that are

exclusively reserved for the SOAP protocol itself. SOAP extensions and application

data should be separated by using different namespaces.

In addition to that, namespaces are also used for versioning. Each version of the

SOAP protocol uses a unique namespace. A receiver can detect the used protocol

version by evaluating the namespace URIs. An example for this is also visible in

Fig. 2.4. Here the used namespace URI for envelope elements is http://www.
w3.org/2003/05/soap-envelope, which indicates SOAP Version 1.2. With

SOAP Version 1.1 the namespace URI would be http://schemas.xmlsoap.
org/soap/envelope.

2.3.2 Communication Patterns

In addition to a common message format the SOAP specification defines a model for

describing how the communication takes place. As already introduced in Sect. 2.2

such a description is called a Message Exchange Pattern (MEP). It describes the

interactions between the communication parties. As already mentioned in the previ-

ous section, not all bindings are supporting all possible MEPs. Or – in other words –

the available MEPs are part of the used binding.

In Part 1 of the SOAP specification, we can find a formal characterisation what a

MEP is and how a new one can be defined. In Part 2, two MEPs for the HTTP binding

are provided: A Response-MEP and a Request–Response MEP. The first one is used

in conjunction with the HTTP GET command and the second one with HTTP POST.

A typical example using the Response-MEP is illustrated in Listing 2.2. A

reservation terminal queries the reservation data from the central computer sys-

tem of a car rental company by sending the corresponding reservationID. The

Request: GET /info?reservationID=384DA3F HTTP/1.1 Host:
sunshinecars.example.org Accept: text/html;q=0.5,
application/soap+xml

Response: HTTP/1.1 200 OK Content-Type: application/soap+xml;
charset="utf-8" Content-Length: nnnn <?xml version=’1.0’ ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Body>
<res:reservationInfo
xmlns:res="http://sunshinecars.example.org/reservation">
<res:vehicle>Standard SUV</res:vehicle>
<res:customer>

<res:name>John Smith</res:name>
<res:ID>1674927356</res:ID>

</res:customer>
<res:pickup>2005-09-12T12:00:00:00.000Z</res:pickup>
<res:dropoff>2005-09-19T12:00:00:00.000Z</res:dropoff>
<res:rate>69,00 USD per day</res:rate>

</res:reservationInfo>
</env:Body>
</env:Envelope>

Listing 2.2. Using SOAP with HTTP GET

34 Christian Werner and Stefan Fischer

reservationID is directly encoded as a parameter in the HTTP GET request

(printed in bold letters). The Web Service sends its response back to the requesting

system using SOAP. The application payload is included in the SOAP body element.

As shown in this example, it is advisable to use a separate namespace for application-

specific data.

The Response-MEP of the HTTP-Binding is suitable for all scenarios where we

have only barely structured information in the request message, because all request

parameters must be encoded in a sequence of values. With the Request-Response

MEP we can use SOAP for the request as well.

Figure 2.3 shows the same example when using the Request-Response MEP. It is

obvious that the protocol overhead for the Request is significantly higher than with

the Response MEP. On the other hand, we can include hierarchically structured data

in the request when using SOAP.

A general drawback of using application specific XML data within the SOAP

body is that the application developer has to take care of an adequate mapping

between the data types of the programming language and their representation in

XML. In the following section we will present a more convenient way.

Request: POST /info HTTP/1.1 Host: sunshinecars.example.org
Content-Type: application/soap+xml; charset="utf-8" Content-Length:
nnnn

<?xml version=’1.0’ ?> <env:Envelope
xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Body>
<res:reservationRequest
xmlns:res="http://sunshinecars.example.org/reservation">
<res:reservationID>384DA3F</res:reservationID>

</res:reservationRequest>
</env:Body>
</env:Envelope>

Response: HTTP/1.1 200 OK Content-Type: application/soap+xml;
charset="utf-8" Content-Length: nnnn

<?xml version=’1.0’ ?> <env:Envelope
xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Body>
<res:reservationInfo
xmlns:res="http://sunshinecars.example.org/reservation">
<res:vehicle>Standard SUV</res:vehicle>
<res:customer>

<res:name>John Smith</res:name>
<res:ID>1674927356</res:ID>

</res:customer>
<res:pickup>2005-09-12T12:00:00:00.000Z</res:pickup>
<res:dropoff>2005-09-19T12:00:00:00.000Z</res:dropoff>
<res:rate>69,00 USD per day</res:rate>

</res:reservationInfo>
</env:Body>
</env:Envelope>

Listing 2.3. Using SOAP with HTTP POST

2 Architecture and Standardisation of Web Services 35

2.3.3 RPC and SOAP Data Encoding

The most widely used MEP is the Request-Response MEP. As already mentioned, it

is perfectly suitable for realising Remote Procedure Calls (RPCs).

However, two very important features are missing so far for realising RPCs with

SOAP: first a common model that describes how RPCs are expressed in XML and

second a common approach for encoding language-specific data types in XML. Both

issues are addressed in the SOAP specification Part 2.

In Listing 2.4 we can see how both things are working and how they can be

combined.

Request: <?xml version="1.0" encoding="UTF-8"?> <soapenv:Envelope
xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope"
xmlns:soapenc="http://www.w3.org/2003/05/soap-encoding"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:res="http://sunshinecars.example.org/reservation">
<soapenv:Body>
<res:getReservationInfo soapenv:encodingStyle=

"http://www.w3.org/2003/05/soap-encoding">
<in0 xsi:type="soapenc:string">dab37a3e4f</in0>

</res:getReservationInfo>
</soapenv:Body>

</soapenv:Envelope>

Response: <?xml version="1.0" encoding="UTF-8"?> <soapenv:Envelope
xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope"
xmlns:soapenc="http://www.w3.org/2003/05/soap-encoding"
xmlns:rpc="http://www.w3.org/2003/05/soap-rpc"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:res="http://sunshinecars.example.org/reservation">
<soapenv:Body>
<res:getReservationInfoResponse soapenv:encodingStyle=
"http://www.w3.org/2003/05/soap-encoding">
<rpc:result>getReservationInfoReturn</rpc:result>
<getReservationInfoReturn id="id0"
xsi:type="res:ReservationInfo">
<customerInfo id="id1" xsi:type="res:CustomerInfo">
<ID xsi:type="soapenc:string">27463782</ID>
<name xsi:type="soapenc:string">John Smith</name>

</customerInfo>
<dropoff xsi:type="soapenc:date">

2005-09-12T12:00:00:00.000Z</dropoff>
<pickup xsi:type="soapenc:date">

2005-09-19T12:00:00:00.000Z</pickup>
<rate xsi:type="soapenc:string">

69,00 USD per day</rate>
<vehicle
xsi:type="soapenc:string">Standard SUV</vehicle>

</getReservationInfoReturn>
</res:getReservationInfoResponse>

</soapenv:Body>
</soapenv:Envelope>

Listing 2.4. SOAP messages of the RPC call ReservationInfo
getReservationInfo (String reservationID)

36 Christian Werner and Stefan Fischer

There are two requirements defined in the SOAP specification about RPC-style

messaging:

1. The body of the request message contains only one element.

2. This element must have the same name as the RPC operation and carries all input

parameters.

Both requirements are clearly visible in the example.

The response message is required to satisfy the following three basic rules, which

are also clearly depicted in the example shown in Fig. 2.4:

1. The SOAP body must contain a single element. There are no restrictions about

its name.

2. For each return parameter there is a child element with the name of that param-

eter.

3. If the return type is not null, there must be an additional child element with a

namespace of http://www.w3.org/2003/05/soap-rpc and the name

result. It contains the name of the element that shall be interpreted as the

return value of this RPC operation. If it is null, such an element must not exist.

Although we find some further details in the SOAP specification, e.g. about error

handling, these five rules are sufficient for understanding the basics of RPC-style

SOAP messaging. As already mentioned, we will now have a look at our example

focussing the predefined SOAP data encoding schema.

The use of SOAP encoding is indicated by using the namespace http://www.
w3.org/2003/05/soap-encoding. In our example, the according namespace

prefix is soapenc. As we can see in the request as well as in the response mes-

sage, all simple input and output parameters are of a type with that prefix. Complex

types are indicated to be constructed using the SOAP encoding schema by using

the attribute soapenv:encodingStyle with http://www.w3.org/2003/
05/soap-encoding as value. Thus, the receiving SOAP engine knows that it

may interpret these XML constructs and pass them as native data types in the used

programming language to the application instead of passing the XML data directly.

In Java for instance, such constructs are typically mapped to Java Bean types.

Although SOAP Encoding and RPC-Style messaging may be used independently

from each other, it is very common to combine both features. They make SOAP mes-

saging very comfortable for the programmer. With both features enabled the SOAP

engine can automatically handle serialisation and deserialisation of most data types

and can also map Web Service operations to simple function or method calls.

2.4 WSDL: Web Service Description

Another crucial building block for Web Services as a universal middleware tech-

nology is a powerful and well-structured Interface Definition Language (IDL). The

basic task of an IDL is to provide an exact and machine readable definition of service

2 Architecture and Standardisation of Web Services 37

interfaces. A service consumer interprets the IDL description of a service provider

in order to generate service calls that are compatible with the according service

interfaces.

There are existing IDL approaches for JAVA-RMI and CORBA but these are not

adequate for Web Services, because they are inconsistent with the ideas of being

extensible, XML-based just to name a few.

Therefore the Web Service Description Language (WSDL) has been developed.

The most recent version is WSDL 2.0 which has been published by the W3C in

August 2005 as a working draft. Equally to the SOAP specification, the WSDL spec-

ification is split up into two major parts: WSDL Version 2.0 Part 1: Core Language
and WSDL Version 2.0 Part 2: Adjuncts. The fist part specifies the structure of the

WSDL documents on an abstract level, i.e. independently from a specific messag-

ing protocol or transport mechanism. The second part specifies primarily the use of

WSDL together with SOAP and HTTP.

As shown in Listing 2.5 a WSDL 2.0 document is typically structured in five

main sections: documentation, types, interface, binding and service. In the following

we will explain each section in detail and point out the interrelations between them.

<?xml version="1.0" encoding="utf-8" ?> <description
xmlns="http://www.w3.org/2005/08/wsdl"...>

<documentation>
...
</documentation>

<types>
<xs:schema>

<xs:element name="someElementName" .../>
...
</xs:schema>

</types>

<interface>
<operation name="someOpName" ...>

<input element="someElementName" ...>
...
<output ...>
...

</operation>
...

</interface>

<binding name="someBindingName"...>
<operation ref="someOpName" .../>

...
</binding>

<service>
<endpoint binding="someBindingName" ...>

...
</service>

</description>

Listing 2.5. Typical structure of a WSDL service description

38 Christian Werner and Stefan Fischer

The documentation section contains additional textual information on how to use

the described service for humans. Its content is meant as an endorsement to the other

sections of this WSDL description, which are mainly meant to be interpreted by

machines. This endorsement is very important because WSDL can provide only a

partial description of the service. It can express how the messages should look like

that go in and out of a service operation. However, it cannot express application level

semantics like. “First call operation X, then call operation Y with the result of X as

the first input parameter”.

Of course this documentation endorsement is far away from covering the needs

of all Web Service applications. The problem is that a human is needed to inter-

pret this documentation section. For automated service composition, more advanced

approaches are necessary, which will be covered in Part III of this book.

In the types section all data types that will be used in the input and output mes-

sages of our service operations are declared. This is typically done using XML

Schema. Unlike other XML grammar description languages (e.g. DTDs) XML

Schema provides a very sophisticated type system which can be directly used for

specifying basic data types like integers, strings and dates as well as compound

data types. Furthermore, extensions and restrictions of existing data types can be

described.

The interface section basically is the core component of a WSDL description.

Here each service operation is listed and its inputs and outputs are specified by refer-

encing the according data type definitions which were specified in the types section.

Up to this point the service description is abstract, i.e. independent from a certain

messaging format or transport mechanism.

In the binding section we are mapping our abstract service operations to concrete

ones. We specify the used messaging format (e.g. SOAP 1.2) and the protocol used

for message transport (e.g. HTTP 1.1). The according service operation, declared in

the interface section are referenced using the ref attribute.

In the service section we finally define service endpoints. An endpoint references

a previously defined binding and provides all necessary technical information for

accessing its service operations. This is typically done by providing the URL of the

Web Service.

2.4.1 Example

Listing 2.6 shows a complete WSDL 2.0 example describing the reservation Web

Service from Subsect. 2.3.2 using the Request–Response MEP. Again we can see the

main sections of a WSDL description: types, interface, binding and service. We have

omitted the optional documentation in this example.

In the types section we see a XML Schema definition of the data type we will use

with our Web Service. We need to specify a message format for the request as well

as for the response message (see also Listing 2.3 for details).

In the interface section we specify all service operations that our Web Service

provides. In WSDL 2.0, each operation is mapped to predefined message exchange

2 Architecture and Standardisation of Web Services 39

<?xml version="1.0" encoding="utf-8" ?> <description
xmlns="http://www.w3.org/2005/08/wsdl"
targetNamespace= "http://sunshinecars.example.org/reservation"
xmlns:tns= "http://sunshinecars.example.org/wsdl/reservation"
xmlns:res= "http://sunshinecars.example.org/reservation"
xmlns:wsoap= "http://www.w3.org/2005/08/wsdl/soap">
<|types|><xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://sunshinecars.example.org/reservation"
xmlns="http://sunshinecars.example.org/reservation">
<xs:element name="reservationRequest">
<xs:compleyType><xs:sequence>
<xs:element name="reservationID" type="xs:string"/>

</xs:sequence></xs:complexType>
</xs:element>
<xs:element name="reservationInfo">
<xs:complexType><xs:sequence>
<xs:element name="vehicle" type="xs:string"/>
<xs:element name="customer" type="customerType"/>
<xs:element name="pickup" type="xs:date"/>
<xs:element name="dropoff" type="xs:date"/>
<xs:element name="rate" type="xs:string"/>

</xs:sequence></xs:compleType>
</xs:element>
<xs:complexType name="customerType"><xs:sequence>
<xs:element name="name" type="xs:string/>
<xs:element name="ID" type="xs:string/>

</xs:sequence></xs:complexType>
</xs:schema></types>
<|interface| name="reservationInterface">
<operation name="reservationInfoOperation"
|pattern="http://www.w3.org/2005/08/wsdl/in-out"|>
<input messageLabel="In"
element="res:reservationRequest"/>

<output messageLabel="Out"
element="res:reservationInfo"/>

</operation>
</interface>
<|binding| name="reservationSOAPBinding"
interface="tns:reservationInterface"
type="http://www.w3.org/2005/08/wsdl/soap"
wsoap:protocol=
"http://www.w3.org/2003/05/soap/bindings/HTTP">
<operation ref="tns:reservationInfoOperation" wsoap:mep=
"http://www.w3.org/2003/05/soap/mep/request-response"/>

</binding>
<|service| name="reservationService"
interface="tns:reservationInterface">
<endpoint name="reservationEndpoint"
binding="tns:reservationSOAPBinding"
address=

"http://sunshinecars.example.org:8080/reservation.cgi"/>
</service>

</description>

Listing 2.6. Example WSDL document describing the reservation web service

patterns which are specified in the WSDL standard. Note that these MEPs are dif-

ferent from the SOAP MEPs discussed in the previous sections. In our example the

service operation takes an incoming message and answers with an outgoing one.

40 Christian Werner and Stefan Fischer

Therefore we reference the appropriate WSDL message exchange pattern by using

the URI http://www.w3.org/2005/08/wsdl/in-out.

The binding section binds the interface with all its service operations to a con-

crete messaging format and a message transport protocol. As shown in the exam-

ple, this is done by specifying the appropriate URIs. For each operation we can

define binding specific parameters. In Listing 2.6 we can see a specification for

the messaging MEP using the URI "http://www.w3.org/2003/05/soap/
mep/request-response". Note that this MEP is specific for the used messag-

ing format while the one specified in the interface section is more abstract. Of course

both specifications must be compatible with each other.

Finally we can use the service section to describe the so-called service endpoint

for our interface. In our example the specified address is a HTTP URL. Again,

the endpoint format must match with the parameters of the binding section. With

a SOAP-over-email binding the endpoint would be an email address.

2.5 UDDI: Web Service Discovery

UDDI, which is an acronym for Universal Description, Discovery and Integration,

is a platform independent, electronic technology for general purpose business reg-

istries. Anyhow, the Web Service technology has been a key factor for designing

UDDI in its current form and therefore UDDI can be seen as a directory service for

Web Services. As well as SOAP and WSDL, it is a core component of the Web Ser-

vice Technology Stack. The first version of UDDI has been introduced by Microsoft,

IBM and Ariba in the year 2000. Today UDDI is available in version 3.0 and has

been ratified as an OASIS standard in February 2005. The UDDI working group at

OASIS has currently more than 20 companies as members. Most recent information

about the latest UDDI developments are available from the UDDI website.1

The UDDI v3.0 standard is divided into four groups of documents: A Feature
List which describes the changes to version 2, the Technical Specification describing

the architecture of UDDI in detail, a set of XML Schema documents describing the

used data structures in UDDI and finally a set of WSDL documents, describing a

common API for working with UDDI.

In the most basic setup, UDDI is a fully centralised approach for realising a

directory service, i.e. if a business wants to add an entry to the UDDI repository

it contacts the UDDI operator and adds its data manually either by using a web

browser or by using the UDDI Web Service interface. The data is stored locally on

the computer system of this operator. Other businesses can then query this data from

there.

Of course there can be more than one registry operator and it is probably

unwanted that all registries are providing different information sets. Therefore,

UDDI provides mechanisms for replicating the data between several UDDI nodes.

These nodes form an UDDI Operator Cloud.

1 http://www.uddi.org/

2 Architecture and Standardisation of Web Services 41

2.5.1 Components and Data Structures

A UDDI registry can be seen as a composition of three components, analogously to

the different types of phone books: White Pages, Yellow Pages and Green Pages.

The White Pages contain the basic information about a business, like mailing

address, phone or fax numbers, etc.

The Yellow Pages are very similar to the White Pages. The difference is that

all entries are grouped according to an industrial categorisation here. So the Yellow
Pages are the right place if one is not looking for a certain company but a certain type
of business.

In the Green Pages we find technical information about the services provided by

a business.

For each component the UDDI specification provides well-defined data struc-

tures (in form of XML Schema documents) which all UDDI nodes must be able to

process. The following components are declared as the core of the UDDI information

model in the UDDI Specification document.

As shown in Fig. 2.5 there are four core data types:

1. The <businessEntity> element is the top-level data structure that holds all

information about a business and its services. While the enclosed

<businessService> structures contain detailed information about the ser-

vices, other child elements describe more general properties of a business, such

as phone and fax numbers, mailing address, etc.

2. In <businessService> elements we find a non-technical description of

business services. It can contain a service name and a descriptive text. Fur-

thermore, it can contain a set of service categories (a so-called categoryBag)

that characterise this service, e.g. with respect to a certain geographic region,

businessEntities contain
businessServices

businessServices contain
bindingTemplates

bindingTemplates contain references to
tModels. These references designate the
interface specifications for a service

businessEntity: Information about the
party who publishes information about
a service

businessService: Descriptive
information about a particular family of
technical services

bindingTemplate: Technical
information about a service entry point
and implementation specs

tModel: Decriptions of specifications
for services or value sets. Basis for
technical fingerprints

Fig. 2.5. Core UDDI data types (Taken from the UDDI v3.0 specification)

42 Christian Werner and Stefan Fischer

industry or product. There is also the possibility of including a digital signa-

ture for this service description. Finally, there is at least one references to a

<bindingTemplate>.

3. A<bindingTemplate>provides a technical description of a business service.

It specifies an access point, which can be used to invoke the service. There are

no technical restrictions how the specification of an access point must look like.

It is basically a string which represents a technical interface. This could be an

URL, an email address or even a telephone number. A <bindingTemplate>
can also contain its own categoryBag, but unlike the categoryBag of a

<businessService> element we find technical categories in there. For

instance, it could contain the categories “production”, “stable”, “testing” or

“unstable”. A <bindingTemplate> may also provide several natural lan-

guage descriptions of the technical details of this service. Furthermore, it con-

tains at least one <tModel> element.

4. The <tModel> structure is probably the most important one in UDDI. Here

we can specify wire protocols, interchange formats and interchange sequencing

rules for the business service. It is the basis for providing a “technical finger-

print” of a service which can be used to identify suitable services for service

compositions with respect to their technical compatibility. Of course, it is very

important to express this data in an unambiguous and commonly understand-

able language. The UDDI specification does not prescribe a common format

but refers to the following suitable examples: RosettaNet Partner Interface Pro-
cesses specification, Open Applications Group Integration Specification and var-

ious Electronic Document Interchange (EDI) efforts.

All UDDI data structure instances have unique identifiers, which can be used as a

query key when using the UDDI APIs. In UDDI 2.0 this identifier is 128 bit long

and is written as a hexadecimal number. An example could look like this:

uddi:3DF43C1F-83A1-BB39-007E-F487BA25CC04.

2.5.2 API Overview

For the communication between clients and UDDI registry nodes, UDDI specifies a

rich set of APIs:

• UDDI Inquiry is used for querying business entities and their service descrip-

tions.

• UDDI Publication refers to registering and updating business entities and service

descriptions.

• UDDI Security realises authentication and access control (typically used together

with UDDI Publication).

• UDDI Custody Transfer is used for transferring the custody for a UDDI record

from one node to another.

• UDDI Subscription allows clients to register for notification messages if certain

UDDI records are changed.

2 Architecture and Standardisation of Web Services 43

• UDDI Replication is used for replicating UDDI records between the nodes within

a UDDI operator cloud.

• UDDI Subscription Listener must be implemented by all clients that use the

UDDI Subscription API, which defines this as a mandatory interface.

• UDDI Value Set must be implemented by an UDDI client in order to allow a

UDDI node to perform certain checks on data before it is written into the registry.

In the following two subsections, we take a closer look on the two most important

UDDI APIs: to query a UDDI registry and to add new entries.

2.5.3 Using UDDI Inquiry

The UDDI Inquiry API provides two different sets of operations for querying an

UDDI registry: the find xxx and the get xxx operations.

The first is used primarily for reducing the size of the search space. Thus, the

find xxx operations are primarily useful if only very few things are known about

the wanted service. The result of such an API call contains a list of entries. Their

data type depends on the type of the query. In a second step a client can retrieve more

specific properties of these entries using the get xxx operations. The find xxx
operations follow a “drill-down” pattern while the get xxx operation follow a

“browse” pattern.

There are different variants of the find xxx and get xxx operations avail-

able for all UDDI core data structures:

• With find business and get businessDetail a client can retrieve

information about one or more <businessEntity> elements.

• With find service and get serviceDetail a client can retrieve infor-

mation about one or more <businessService> elements.

• With find binding and get bindingDetail a client can retrieve infor-

mation about one or more <bindingTemplate> elements.

• With find tModel and get tModelDetail a client can retrieve informa-

tion about one or more <tModel> elements.

A typical API call could look like this (the SOAP and HTTP data is not shown in

this example):

<uddi:find_tModel generic="3.0"
xmlns:uddi="urn.uddi-org:api_v3">
<uddi:name>Sunshine</uddi:name>

</uddi:find_tModel>

The UDDI specification does not prescribe any fixed algorithms for processing

search requests. Current UDDI implementations are mainly based on string match-

ing. However, a typical response message to this call might look like this:

<uddi:tModelList generic="3.0" operator="IBM"
xmlns:uddi="urn.uddi-org:api_v3">

<uddi:tModelInfos>
<uddi:tModelInfo

tModelKey="uddi:3DF43C1F-83A1-BB39-007E-F487BA25CC04"/>
<uddi:name>Sunshine Cars Inc. reservation service</uddi:name>

44 Christian Werner and Stefan Fischer

</uddi:tModelInfo>
<uddi:tModelInfo

tModelKey="uddi:2342D4B5-8AA0-FE04-83DB-FFBB023CABC5"/>
<uddi:name>Sunshine Inn Motel electronic check-in</uddi:name>

</uddi:tModelInfo>
<uddi:tModelInfo

tModelKey="uddi:BB54CF23-F52B-40A4-B8FA-0038B35A9FD3"/>
<uddi:name>Sunshine Fruits Import Corp. price list service</uddi:name>

</uddi:tModelInfo>
<uddi:tModelInfos>

</uddi:tModelList>

The client could now retrieve additional information about the three business services

in the result set by calling the get tModelDetail operation with the according

UDDI identifiers as parameters.

Furthermore, this API provides the find relatedBusiness operation

which allows to locate <businessEntity> entries which are somehow related

to a known one. This UDDI feature is not implemented using automated reasoning

about the registry data. Both publishers of the related <businessEntity> must

manually specify this relation. Note that the isRelatedTo relation in UDDI is always

symmetric (isRelatedTo(X,Y) → isRelatedTo(Y,X)). We will show how this is techni-

cally implemented in the end of the following subsection.

2.5.4 Using UDDI Publication

Equally to querying a UDDI registry, the UDDI specification defines an API for

inserting and deleting registry entries, called UDDI Publication. UDDI Publica-

tion is very similar to UDDI Inquiry and its usage is straightforward. For insert-

ing or deleting an entry the appropriate service operations are named save xxx
and delete xxx, where xxx must be substituted by binding, business,

service or tModel.

Unlike UDDI Inquiry, which provides a service that should be generally acces-

sible for everyone, the access to UDDI Publication needs to be restricted in most

cases. It is typically undesired that everybody is able to modify all registry entries.

Although the details of access control are not part of the UDDI specification and

thus must be constituted by the registry operators, the UDDI specification does pro-

vide basic measures for implementing various types of access control policies. Most

of these measures are managed by the UDDI Security API and will not be discussed

here in detail. Basically a publisher is usually required to authenticate before getting

write access to a UDDI registry. The registry will issue a so-called authToken
which can be thought of as some kind of session ID. This token must be included in

the <authInfo> Element in all operation calls which require write access.

In UDDI 2.0 the UDDI Publication API provides additional operations for man-

aging the so-called publisherAssertions which are the technical basis for process-

ing find relatedBusiness calls. Again, the isRelatedTo relation in UDDI is

always symmetric. Since two businesses are involved here, the control over this reg-

istry entry is slit-up: A publisherAssertion issued by business A has basi-

cally the meaning “X is related to Y”. In order to become visible in the registry,

this relation must be acknowledged by business B. B must issue the corresponding

2 Architecture and Standardisation of Web Services 45

publisherAssertion counterpart “Y is related to X”. In this way both parties

control half of the relationship.

An example illustrates the use of the add publisherAssertion operation:

<add_publisherAssertions xmlns="urn:uddi-org:api_v3" >
<authInfo>FFFFF</authInfo>
<publisherAssertion>

<fromKey>uuid:957A2C6B-EE22-470D-DBC7-104243335CD3</fromKey>
<toKey>uddi:4BF4A41B-A3AC-BB39-D18A-B683BA311B02</toKey>
<keyedReference

tModelKey="uddi:uddi.org:relationships"
keyName="Holding Company"
keyValue="parent-child" />

</publisherAssertion>
</add_publisherAssertions>

The contents of the elements <fromKey> and <toKey> are referencing the

two <businessEntity> entries which are related to each other. The value

in the <authInfo> element must be a valid authToken that authorises the

sender of this add publisherAssertion to be in charge of controlling the

<businessEntity> referenced in the <fromKey> element. The content of the

<keyedReference> element specifies what kind of relation is described by this

publisherAssertion. Also here the used vocabulary is not specified in the

UDDI standard and thus may be implementation specific.

In order to have visible effects on the registry, a second, inverse

publisherAssertion must be issued by somebody who controls the

<businessEntity> entry referenced in the <toKey> element.

Besides add publisherAssertion the Publication API also provides

functionalities for deleting, monitoring and updating publisherAssertions.

They are called delete publisherAssertion, get assertion
StatusReport, get publisherAssertions and set publisher
Assertions.

2.6 The Web Service Role Model: How Things Are Working
Together

In the previous section we have discussed various technologies for implementing

Web Services. With these building blocks it is possible to model even very complex

usage scenarios. The W3C Web Services Architecture Working Group has released

a document describing typical Web Service Architectures in more than 30 different

usage scenarios.2

However, despite this complexity, there is a quite regular pattern in all Web Ser-

vice application scenarios, which is commonly called the “Web Service Role Model”

or the “SOA Triangle”. It is illustrated in Fig. 2.6. Each participating software com-

ponent can take on the role of a service provider, a service requester or a registry
agency.

2 http://www.w3.org/TR/ws-arch-scenarios/

46 Christian Werner and Stefan Fischer

Discovery
Agency

WSD

Service
Requester

Service
Provider

WSD

Find

Interact

Publish

Fig. 2.6. The Web Service Role Model: relationships between service requester, service

provider and discovery agency

The service provider describes the service it provides with a Web Service
Description (WSD) document. This is necessary because a service requester needs

this service description in order to interact with the provided service correctly. Today

WSDL is the only language which is commonly used for describing service interface.

However, the W3C Web Services Architecture Working Group does not prescribe a

certain data format and therefore WSD documents might be written in any suitable

language. Alternative approaches like OWL-S and WSMO, which might become

relevant for practical use in near future, will be discussed in Chap. 7.

There are several ways for the service requester to get this WSD document. It is

easiest to get it directly from the service provider, but unfortunately this is not always

possible. The service requester and the service provider might not even know each

other at this point.

Therefore, we need the third role: the registry agency. The service provider can

use the registry agency in order to make its service description publicly available.

After publishing the service description a service requester can query the registry

agency and if it finds a suitable service it can directly access the WSD document.

Finally, the service requester can interact with the service provider.

The technologies for implementing the registry and accessing other service com-

ponents are usually UDDI and SOAP. However, no mandatory technology is spec-

ified by the W3C Web Services Architecture Working Group. Generally it is also

possible to use any suitable data format for these tasks.

At a first glance the Web Service Role Model looks quite simple but in fact there

are several obstacles. First of all the WSD document is, as already described in the

section about WSDL, usually only a partial service description with focus on the

technical parameters of the service. Therefore, the service consumer must usually

interpret this description in order to get a full understanding of the service and how

it is used.

2 Architecture and Standardisation of Web Services 47

In the following example, we want to check a customer’s credit card limit with

a creditCardCheck Web Service. All we know is the customer’s name. The service

provides three service operations with the following operation signatures:

1. String getCreditCardNo(String CustomerID)
2. Boolean checkCreditLimit(String CreditCardNumer)
3. String getCustomerIDbyName(String Name)

By looking at the operation names a human programmer can figure out quite easily

that it is usually required to call operation number 3 first. Then we can call operation

number 1 in order to get a valid credit card number and with this we can finally

call checkCreditLimit. However, if we think of a scenario with a computer

selecting a prior unknown service, it is quite hard to make a failsafe decision in what

sequence these operations must be called in order to complete a certain task.

Therefore, it is usually required to have more expressive service description if

we want to select or combine prior unknown services at runtime. This description

should not be limited to the technical service parameters but must also include the

service semantics. This problem will be discussed Part III of this book.

Another very basic problem may occur when searching for suitable Web Services

in a registry agency. As already stated in Sect. 2.5, UDDI does not define a standard

vocabulary for describing Web Services and therefore it is very hard to implement

automated service discovery with today’s repositories. This problem field will be

addressed in the Chap. 7 and 8.

All in all, the technologies described in this chapter are generally ready for use.

SOAP, WSDL and UDDI are providing similar functionalities as competing older

technologies like Java-RMI or CORBA but are much more flexible in use. However,

as stated in Chap. 1, some visions of the Web Service research community have

not become reality so far. This is especially true for things like automated service

composition and the mappings between business processes and Web Service opera-

tions. So there is still a big gap between the idea of fully automated B2B processes

and what Web Service technology can do today. Therefore, research in this field is

still very active. The combination of Semantic Web technology and Web Services is

considered a promising approach for bridging this gap.

References

1. M. Birbeck, J. Diamond, J. Duckett, O.G. Gudmundsson, P. Kobak, E. Lenz,

S. Livingstone, D. Marcus, S. Mohr, N. Ozu, J. Pinnock, K. Visco, A. Watt, K. Williams,

and Z. Zaev. Professional XML. Wrox Press, 2001.

2. K. Cagle, J. Duckett, O. Griffin, S. Mohr, F. Norton, N. Ozu, I. Stokes-Ress, J. Tennison,

and K. Williams. Professional XML schemas. Wrox Press, 2001.

3. T. Erl. Service-Oriented Architecture: : A Field Guide to Integrating XML and Web Ser-
vices. Prentice Hall PTR, 2004.

4. I.T. Foster. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. In Euro-
Par ’01: Proceedings of the 7th International Euro-Par Conference Manchester on Par-
allel Processing, pages 1–4, London, UK, 2001. Springer-Verlag.

48 Christian Werner and Stefan Fischer

5. C. Germain-Renaud and D. Monnier-Ragaigne. Grid Result Checking. In CF ’05: Pro-
ceedings of the 2nd Conference on Computing Frontiers, pages 87–96, New York, USA,

2005. ACM Press.

6. M. Girardot and N. Sundaresan. Millau: An Encoding Format for Effcient Representation

and Exchange of XML Over the Web. In 9th International World Wide Web Conference,

pages 747–765, Amsterdam, Netherlands, May 2000.

7. W. Hoschek. The Web Service Discovery Architecture. In Proceedings of the ACM/IEEE
Conference on Supercomputing, pages 1–15. IEEE Computer Society Press, 2002.

8. W. Iverson. Real World Web Services. O’Reilly, 1. edition, 2005.

9. E. O’Tuathail and M.T. Rose. RFC 3288: Using the Simple Object Access Protocol

(SOAP) in Blocks Extensible Exchange Protocol (BEEP), June 2002.

10. A. Tanenbaum. Computer Networks. Prentice Hall PTR, 2002.

11. M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J. Schiller. Performance Considerations

for Mobile Web Services. In IEEE Communication Society Workshop on Applications
and Services in Wireless Networks, July 2003.

12. C. Werner, C. Buschmann, and S. Fischer. WSDL-Driven SOAP Compression. Interna-
tional Journal on Web Service Research, 2(1):18–35, 2005.

13. C. Werner, C. Buschmann, T. Jäcker, and S. Fischer. Enhanced Transport Bindings for

Efficient SOAP Messaging. In IEEE International Conference on Web Services, pages

193–200. IEEE Computer Society, July 2005.

Part II

Semantic Web Technology

3

Knowledge Representation and Ontologies
Logic, Ontologies and Semantic Web Languages

Stephan Grimm1, Pascal Hitzler2 and Andreas Abecker1

1 FZI Research Center for Information Technologies, University of Karlsruhe, Germany

{grimm,abecker}@fzi.de
2 Institute AIFB, University of Karlsruhe, Germany,

hitzler@aifb.uni-karlsruhe.de

Summary. In Artificial Intelligence, knowledge representation studies the formalisation of

knowledge and its processing within machines. Techniques of automated reasoning allow a

computer system to draw conclusions from knowledge represented in a machine-interpretable

form. Recently, ontologies have evolved in computer science as computational artefacts to pro-

vide computer systems with a conceptual yet computational model of a particular domain of

interest. In this way, computer systems can base decisions on reasoning about domain knowl-

edge, similar to humans. This chapter gives an overview on basic knowledge representation

aspects and on ontologies as used within computer systems. After introducing ontologies in

terms of their appearance, usage and classification, it addresses concrete ontology languages

that are particularly important in the context of the Semantic Web. The most recent and pre-

dominant ontology languages and formalisms are presented in relation to each other and a

selection of them is discussed in more detail.

3.1 Knowledge Representation

As a branch of symbolic Artificial Intelligence, knowledge representation and rea-
soning aim at designing computer systems that reason about a machine-interpretable

representation of the world, similar to human reasoning. Knowledge-based systems
have a computational model of some domain of interest in which symbols serve as

surrogates for real-world domain artefacts, such as physical objects, events, relation-

ships, etc. [45]. The domain of interest can cover any part of the real world or any

hypothetical system about which one desires to represent knowledge for computa-

tional purposes.

A knowledge-based system maintains a knowledge base which stores the sym-

bols of the computational model in form of statements about the domain, and it

performs reasoning by manipulating these symbols. Applications can base their deci-

sions on domain-relevant questions posed to a knowledge base.

52 Stephan Grimm et al.

3.1.1 A Motivating Scenario

To illustrate principles of knowledge representation in this chapter, we introduce an

example scenario taken from a B2B travelling use case. In this scenario, companies

frequently book business trips for their employees, sending them to international

meetings and conference events. Such a scenario is a relevant use case for Semantic

Web Services, since companies desire to automate the online booking process, while

they still want to benefit from the high competition among various travel agencies

and no-frills airlines that sell tickets via the Internet. Automation is achieved by

computational agents deciding about whether an online offer of some travel agency

fits a request for a business trip or not, based on the knowledge they have about the

offer and the request. Knowledge represented in this domain of “business trips” is

about flights, trains, booking, companies and their employees, cities that are source

or destination for a trip, etc.

Knowledge-based systems use a computational representation of such knowledge

in form of statements about the domain of interest. Examples of such statements in

the business trips domain are “companies book trips for their employees”, “flights

and train rides are special kinds of trips” or “employees are persons employed at

some company”. This knowledge can be used to answer questions about the domain

of interest. From the given statements, and by means of automated deduction, a

knowledge-based system can, e.g., derive that “a person on a flight booked by a

company is an employee” or “the company that booked a flight for a person is the

person’s employer”.

In this way, a knowledge-based computational agent can reason about business

trips, similar to the way a human would. It could, e.g., tell apart offers for business

trips from offers for vacations, or decide whether the destination city for a requested

flight is close to the geographical region specified in an offer, or conclude that a

participant of a business flight is an employee of the company that booked the flight.

3.1.2 Forms of Representing Knowledge

If we look at current Semantic Web technologies and use cases, knowledge represen-

tation appears in different forms, the most prevalent of which are based on semantic

networks, rules and logic. Semantic network structures can be found in RDF graph

representations [30] or Topic Maps [41], whereas a formalisation of business knowl-

edge often comes in form of rules with some “if-then” reading, e.g., in business

rules or logic programming formalisms. Logic is used to realise a precise semantic

interpretation for both of the other forms. By providing formal semantics for knowl-

edge representation languages, logic-based formalisms lay the basis for automated

deduction. We will investigate these three forms of knowledge representation in the

following.

Semantic Networks

Originally, semantic networks stem from the “existential graphs” introduced by

Charles Peirce in 1896 to express logical sentences as graphical node-and-link

3 Knowledge Representation and Ontologies 53

diagrams [43]. Later on, similar notations have been introduced, such as conceptual

graphs [45], all differing slightly in syntax and semantics. Despite these differences,

all the semantic network formalisms concentrate on expressing the taxonomic struc-

ture of categories of objects and the relations between them. We use a general notion

of a semantic network, abstracting from the different concrete notations proposed.

A semantic network is a graph whose nodes represent concepts and whose arcs

represent relations between these concepts. They provide a structural representation

of statements about a domain of interest. In the business trips domain, typical con-

cepts would be “Company”, “Employee” or “Flight”, while typical relations would

be “books”, “isEmployedAt” or “participatesIn”. Figure. 3.1 shows an example of a

semantic network for the business trips domain.

Semantic networks provide a means to abstract from natural language, represent-

ing the knowledge that is captured in text in a form more suitable for computation.

The knowledge expressed in the network from Fig. 3.1 coincides with the content of

the following natural language text.

Employees of companies are persons, while both persons and companies are

legal entities. Companies book trips for their employees. These trips can be

flights or train rides which start and end in cities of Europe or the USA.

Companies themselves have locations which can be cities.

The company UbiqBiz books the flight FL4711 from London to New York

for Mister X.

Typically, concepts are chosen to represent the meaning of nouns in such a text, while

relations are mapped to verb phrases. The fragment Company books−−−−−→ Trip is

LegalEntity

Person Company

Employee

Trip City

Location

EUCity USCityFlight TrainRide

partic
ipatesIn

books

kindO
f

ki
nd

O
f

endsIn

startsFrom

ki
nd

O
f kindO

f

k
in

d
O

fkindO
f

ki
nd

O
f

isEmployedAt

k
in

d
O

f

isLocatedAt

UbiqBiz

MisterX FL4711

London

New York
endsIn

startsFromisEmployedAt books

participatesIn

is
A

is
A

is
A is

A

is
A

Fig. 3.1. A semantic network for business trips

54 Stephan Grimm et al.

read as “companies book trips”, expressed as a binary relation between two concepts.

However, this is not mandatory; the relation books−−−−−→ could also be “lifted” to a con-

cept Booking with relations hasActor−−−−−−−−→ , hasParticipant−−−−−−−−−−−−→ and hasObject−−−−−−−−→
pointing to Company , Employee and Trip , respectively. In this way, its ternary

character would be expressed more accurately than in the original network where the

information about an employee’s involvement in booking is implicit.

In principle, the concepts and relations in a semantic network are generic and

could stand for anything relevant in the domain of interest. However, some particu-

lar relations for some standard knowledge representation and reasoning cases have

evolved.

The semantic network in Fig. 3.1 illustrates the distinction between general con-

cepts, like Employee , and individual concepts, like MisterX . While the latter

represent concrete individuals or objects in the domain of interest, the former serve

as classes to group together such individuals that have certain properties in common,

as e.g. all employees. The particular relation which links individuals to their classes

is that of instantiation, denoted by isA−−−−→ . Thus, MisterX is called an instance of

the concept employee. The lower part of the network is concerned with knowledge

about individuals, reflecting a particular situation of the employee MisterX partic-

ipating in a certain flight, while the upper part is concerned with knowledge about

general concepts, reflecting various possible situations.

The most prominent type of relation in semantic networks, however, is that of

subsumption, which we denote by kindOf−−−−−−→ . A subsumption link connects two

general concepts and expresses specialisation or generalisation, respectively. In the

network in Fig. 3.1, a flight is said to be a special kind of trip, i.e. Trip subsumes

Flight . This means that any flight is also a trip; however, there might be other trips

which are not flights, such as train rides. Subsumption is associated with the notion

of inheritance in that a specialised concept inherits all the properties from its more

general parent concepts. For example, from the network one can read that a company

can be located in a European city, since locatedAt−−−−−−−−→ points from Company to

Location while EUCity is a kind of City which is itself a kind of Location . The

concept EUCity inherits the property of being a potential location for a company

from the concept Location .

Other particular relations that can be found in semantic network notations are,

e.g., partOf−−−−−−→ to denote part-whole relationships, etc.

Semantic networks are closely related to another form of knowledge representa-

tion called frame systems. In fact, frame systems and semantic networks can be iden-

tical in their expressiveness but use different representation metaphors [43]. While

the semantic network metaphor is that of a graph with concept nodes linked by rela-

tion arcs, the frame metaphor draws concepts as boxes, i.e. frames, and relations as

slots inside frames that can be filled by other frames. Thus, in the frame metaphor

the graph turns into nested boxes.

The semantic network form of knowledge representation is especially suitable for

capturing the taxonomic structure of categories for domain objects and for express-

ing general statements about the domain of interest. Inheritance and other rela-

tions between such categories can be represented in and derived from subsumption

3 Knowledge Representation and Ontologies 55

hierarchies. On the other hand, the representation of concrete individuals or even

data values, like numbers or strings, does not fit well the idea of semantic networks.

Rules

Another natural form of expressing knowledge in some domain of interest are rules
that reflect the notion of consequence. Rules come in the form of IF-THEN con-

structs and allow to express various kinds of complex statements. Rules can be found

in logic programming systems, like the language Prolog [31], deductive databases

[34] or business rules systems.

The following is an example of rules expressing knowledge in the business trips

domain, specified in their intuitive if-then reading.

(1) IF something is a flight THEN it is also a trip

(2) IF some person participates in a trip booked by some company

THEN this person is an employee of this company

(3) FACT the person MisterX participates in a flight booked by the company UbiqBiz

(4) IF a trip’s source and destination cities are close to each other

THEN the trip is by train

The IF part is also called the body of a rule, while the THEN part is also called

its head. Typically, rule-based knowledge representation systems operate on facts,

which are often formalised as a special kind of rule with an empty body. They start

from a given set of facts, like rule (3) above, and then apply rules in order to derive

new facts, thus “drawing conclusions”.

However, the intuitive reading with natural language phrases is not suitable for

computation, and therefore such phrases are formalised to predicates and variables

over objects of the domain of interest. A formalisation of the above rules in the

typical style of rule languages looks as follows.

(1) Trip(?t) :− Flight(?t)
(2) Employee(?p) ∧ isEmployedAt(?p, ?c) :−

Trip(?t) ∧ books(?c, ?t) ∧ Company(?c)∧
participatesIn(?p, ?t) ∧ Person(?p)

(3) Person(MisterX) ∧ participatesIn(MisterX,FL4711)∧
Flight(FL4711) ∧ books(UbiqBiz,FL4711) ∧ Company(UbiqBiz) :−

(4) TrainRide(?t) :−
Trip(?t) ∧ startsFrom(?t, ?s) ∧ endsIn(?t, ?d) ∧ close(?s, ?d)

In most logic programming systems, a rule is read as an inverse implication, starting

with the head followed by the body, which is indicated by the symbol : − that

resembles a backward arrow. In this formalisation, the intuitive notions from the text,

that were concepts and relations in the semantic network case, became predicates

linked through variables and constants that identify objects in the domain of interest.

Variables start with the symbol ? and take as their values the constants that occur in

facts such as (3).

Rule (1) captures inheritance – or subsumption – between trips and flights by

stating that “everything that is a flight is also a trip”. Rule (2) draws conclusions

56 Stephan Grimm et al.

about the status of employment for participants of business flights. From the facts

(3), these two rules are able to derive the implicit fact that “MisterX is an employee

of UbiqBiz”.

While the rules (1) and (2) express general domain knowledge, rule (4) can be

interpreted as part of some company’s travelling policy, stating that trips between

close cities shall be conducted by train. In business rules, e.g., rule-based formalisms

are used with the motivation to capture complex business knowledge in companies

like pricing models or delivery policies.

Rule-based knowledge representation systems are especially suitable

for reasoning about concrete instance data, i.e. simple facts of the form

Employee(MisterX). Complex sets of rules can efficiently derive implicit

facts from explicitly given ones. They are problematic if more complex and general

statements about the domain shall be derived which do not fit a rule’s head.

Logic

Both forms, semantic networks as well as rules, have been formalised using logic

to give them a precise semantics. Without such a precise formalisation they are

vague and ambiguous, and thus problematic for computational purposes. From just

the graphical representation of the semantic network in Fig. 3.1, e.g., it is not

clear whether companies can only book flights for their own employees or for

employees of partner companies as well. Neither is it clear from the fragment

Company books−−−−−→ Trip whether every company books trips or just some com-

pany. Also for rules, despite their much more formal appearance, the exact meaning

remains unclear when, e.g., forms of negation are introduced that allow for potential

conflicts between rules. Depending on the choice of procedural evaluation or flavour

of formal semantics, different derivation results are being produced.

The most prominent and fundamental logical formalism classically used for

knowledge representation is the “first-order predicate calculus”, or first-order logic
for short, and we choose this formalism to present logic as a form of knowledge rep-

resentation here. First-order logic allows one to describe the domain of interest as

consisting of objects, i.e. things that have individual identity, and to construct logical

formulas around these objects formed by predicates, functions, variables and logical

connectives [43]. We assume that the reader is familiar with the notation of first-order

logic from formalisations of various mathematical disciplines.

Similar to semantic networks, most statements in natural language can be

expressed in terms of logical sentences about objects of the domain of interest with

an appropriate choice of predicate and function symbols. Concepts are mapped to

unary, relations to binary predicates. We illustrate the use of logic for knowledge

representation by axiomatising parts of the semantic network from Fig. 3.1 more

precisely.

Subsumption, e.g., can be directly expressed by a logical implication, which is

illustrated in the translation of the following fragment.

Employee kindOf−−−−−−→ Person ∀ x : (Employee(x) → Person(x))

3 Knowledge Representation and Ontologies 57

Due to the universal quantifier, the variable x in the logical formula ranges over all

domain objects and its reading is “everything that is an employee is also a person”.

Other parts of the network can be further restricted using logical formulas, as

shown in the following example.

Company books−−−−−→ Trip ∀ x, y : (books(x, y) → Company(x) ∧ Trip(y))
∀ x : ∃ y : (Trip(x) → Company(y) ∧ books(y, x))

The graphical representation of the network fragment leaves some details open, while

the logical formulas capture the booking relation between companies and trips more

precisely. The first formula states that domain and range of the booking relation are

companies and trips, respectively, while the second formula makes sure that for every

trip there does actually exist a company that booked it.

In particular, more complex restrictions that range over larger fragments of a

network graph can be formulated in logic, where the intuitive graphical notation

lacks expressivity. As an example, consider the relations between companies, trips

and employees in the following fragment.

Company books−−−−−→ Trip participatesIn←−−−−−−−−−−− Employee←−−−−−−−−−−−−−−−−−−−−−−−−
employedAt

∀ x : ∃ y : (Trip(x) → Employee(y) ∧ participatesIn(y, x) ∧ books(employer(y), x))

The logical formula expresses additional knowledge that is not captured in the graph

representation. It states that, for every trip, there must be an employee that partici-

pates in this trip while the employer of this participant is the company that booked

the flight.

Rules can also be formalised with logic. An IF-THEN rule can be represented as

a logical implication with universally quantified variables. For example, a common

formalisation of the rule

IF a trip’s source and destination cities are close to each other

THEN the trip is by train

is the translation to the logical formula

∀ x, y, z:(Trip(x)∧startsFrom(x, y)∧endsIn(x, z)∧close(y, z)→TrainRide(x)).

However, the typical rule-based systems do not interpret such a formula in the clas-

sical sense of first-order logic but employ different kinds of semantics, which are

discussed in Sect. 3.2.

Since a precise axiomatisation of domain knowledge is a prerequisite for pro-

cessing knowledge within computers in a meaningful way, we focus on logic as

the dominant form of knowledge representation. Therefore, we investigate different

kinds of logics and formal semantics more closely in a subsequent section.

In the context of the Semantic Web, two particular logical formalisms have

gained momentum, reflecting the semantic network and rules forms of knowledge

representation. The graph notations of semantic networks have been formalised

through description logics, which are fragments of first-order logic with typical

58 Stephan Grimm et al.

Tarskian model-theoretic semantics but restricted to unary and binary predicates to

capture the notions of concepts, an relations. On the other hand, rules have been

formalised through logic programming formalisms with minimal model semantics,

focusing on the derivation of simple facts about individual objects. Both descrip-

tion logics and logic programming can be found as underlying formalisms in various

knowledge representation languages in the Semantic Web, which are addressed in

Sect. 3.4.

3.1.3 Reasoning about Knowledge

The way in which we, as humans, process knowledge is by reasoning, i.e. the process

of reaching conclusions. Analogously, a computer processes the knowledge stored in

a knowledge base by drawing conclusions from it, i.e. by deriving new statements

that follow from the given ones.

The basic operations a knowledge-based system can perform on its knowledge

base are typically denoted by tell and ask [43]. The tell operation adds a new

statement to the knowledge base, whereas the ask operation is used to query what

is known. The statements that have been added to a knowledge base via the tell
operation constitute the explicit knowledge a system has about the domain of interest.

The ability to process explicit knowledge computationally allows a knowledge-based

system to reason over a domain of interest by deriving implicit knowledge that fol-

lows from what has been told explicitly.

This leads to the notion of logical consequence or entailment. A knowledge base

KB is said to entail a statement α if α “follows” from the knowledge stored in KB,

which is written as KB |= α. A knowledge base entails all the statements that have

been added via the tell operation plus those that are their logical consequences.

As an example, consider the following knowledge base with sentences in first-order

logic.

KB={ Person(MisterX), participates(MisterX, FL4711),
Flight(FL4711), books(UbiqBiz, FL4711),
∀ x, y, z : (Flight(y) ∧ participates(x, y) ∧ books(z, y) → employedAt(x, z)),
∀ x, y : (employedAt(x, y) → Company(x) ∧ Employee(y)),
∀ x : (Person(x) → ¬Company(x)) }

The knowledge base KB explicitly states that “MisterX is a person who participates

in the flight FL4711 booked by UbiqBiz”, that “participants of flights are employed

at the company that booked the flight”, that “the employment relation holds between

companies and employees” and that “persons are different from companies”. If we

ask the question “Is MisterX employed at UbiqBiz?” by saying

ask(KB, employedAt(MisterX, UbiqBiz))

the answer will be yes. The knowledge base KB entails the fact that “MisterX

is employed at UbiqBiz”, i.e. KB |= employedAt(MisterX, UbiqBiz), although

3 Knowledge Representation and Ontologies 59

it was not “told” so explicitly. This follows from its general knowledge about

the domain. A further consequence is that “UbiqBiz is a company”, i.e. KB |=
Company(UbiqBiz), which is reflected by a positive answer to the question

ask(KB, Company(UbiqBiz)).

This follows from the former consequence together with the fact that “employment

holds between companies and employees”.

Another important notion related to entailment is that of consistency or satisfia-
bility. Intuitively, a knowledge base is consistent or satisfiable if it does not contain

contradictory facts. If we would add the fact that “UbiqBiz is a person” to the above

knowledge base KB by saying

tell(KB, Person(UbiqBiz)),

it would become unsatisfiable because persons are said to be different from compa-

nies. We explicitly said that UbiqBiz is a person while at the same time it can be

derived that it is a company.

In general, an unsatisfiable knowledge base is not very useful, since in logical

formalisms it would entail any arbitrary fact. The ask operation would always return

a positive result independent from its parameters, which is clearly not desirable for a

knowledge-based system.

The inference procedures implemented in computational reasoners aim at real-

ising the entailment relation between logical statements [43]. They derive implicit

statements from a given knowledge base or check whether a particular statement is

entailed by a knowledge base.

An inference procedure that only derives entailed statements is called sound.

Soundness is a desirable feature of an inference procedure, since an unsound infer-

ence procedure would potentially draw wrong conclusions. If an inference procedure

is able to derive every statement that is entailed by a knowledge base then it is called

complete. Completeness is also a desirable property, since a complex chain of con-

clusions might break down if only a single statement in it is missing. Hence, for

reasoning in knowledge-based systems we desire sound and complete inference pro-

cedures.

3.2 Logic-Based Knowledge-Representation Formalisms

First-order (predicate) logic is the prevalent and single most important knowledge

representation formalism. Its importance stems from the fact that basically all current

symbolic knowledge representation formalisms can be understood in their relation

to first-order logic. Its roots can be traced back to the ancient Greek philosopher

Aristotle, and modern first-order predicate logic was created in the 19th century,

when the foundations for modern mathematics were laid.

First-order logic captures some of the essence of human reasoning by providing

a notion of logical consequence as already mentioned. It also provides a notion of

universal truth in the sense that a logical statement can be universally valid (and thus

60 Stephan Grimm et al.

called a tautology), meaning that it is a statement which is true regardless of any

preconditions.

Logical consequence and universal truth can be described in terms of model-
theoretic semantics. In essence, a model for a logical theory3 describes a state of

affairs which makes the theory true. A tautology is a statement for which all possible

states of affairs are models. A logical consequence of a theory is a statement which

is true in all models of the theory.

How to derive logical consequences from a theory – a process called deduction
or inferencing – is obviously central to the study of logic. Deduction allows to access

knowledge which is not explicitly given but implicitly represented by a theory. Valid

ways of deriving logical consequences from theories also date back to the Greek

philosophers, and have been studied since.

At the heart of this is what has become known as proof theory. Proof theory

describes syntactic rules which act on theories and allow to derive logical conse-

quences without explicit recurrence to models. The notion of universal truth can thus

be reduced to syntactic manipulations. This allows to abstract from model theory and

enables deduction by symbol manipulation, and thus by automated means.

Obviously, with the advent of electronic computing devices in the 20th century,

the automation of deduction has become an important and influential field of study.

The field of automated reasoning is concerned with the development of efficient

algorithms for deduction. These algorithms are usually required to be sound, and

completeness is a desired feature.

The fact that sound and complete deduction algorithms exist for first-order pred-

icate logic is reflected by the statement that first-order logic is semi-decidable. More

precisely, semi-decidability of first-order logic means that there exist algorithms

which, given a theory and a query statement, terminate with positive answer in finite

time whenever the statement is a logical consequence of the theory. Note that for

semi-decidability, termination is not required if the statement is not a logical con-

sequence of the theory and, indeed, termination (with the correct negative answer)

cannot be guaranteed in general for first-order logical theories.

For some kinds of theories, however, sound and complete deduction algorithms

exist which always terminate. Such theories are called decidable, and they have cer-

tain more-or-less obvious advantages, including the following.

• Decidability guarantees that the algorithm always comes back with a correct

answer in finite time.4 Under semi-decidability, an algorithm which runs for a

considerable amount of time may still terminate, or may not terminate at all, and

thus the user cannot know whether he has waited long enough for an answer.

Decidability is particularly important if we want to reason about the question of

whether or not a given statement is a logical consequence of a theory.

3 A logical theory denotes a set of logical formulas, seen as the axioms of some theory to be

modelled
4 It should be noted that there are practical limitations to this due to the fact that computing

resources are always limited. A theoretically sound, complete and terminating algorithms

may thus run into resource limits and terminate without an answer

3 Knowledge Representation and Ontologies 61

• Experience shows that practically efficient algorithms are often available for

decidable theories due to the effective use of heuristics. Often, this is even the

case if worst-case complexity is very high.

3.2.1 Description Logics

Description logics [3] are essentially decidable fragments of first-order logic,5 and

we have just seen why the study of these is important. At the same time, descrip-

tion logics are expressive enough such that they have become a major knowledge

representation paradigm, in particular for use within the Semantic Web.

We will describe one of the most important and influential description logics,

called ALC. Other description logics are best understood as restrictions or extensions

of ALC. We introduce the standard description logic notation and give a formal

mapping into standard first-order logic syntax.

The Description Logic ALC
A description logic theory consists of statements about concepts, individuals and

their relations. Individuals correspond to constants in first-order logic, and concepts

correspond to unary predicates. In terms of semantic networks, description logic

concepts correspond to general concepts in semantic networks, while individuals

correspond to individual concepts. We deal with concepts first, and will talk about

individuals later.

Concepts can be named concepts or anonymous (composite) concepts. Named

concepts consist simply of a name, say “human”, which will be mapped to a unary

predicate in first-order logic. Composite concepts are formed from named concepts

by use of concept constructors, similar to the formation of complex formulas out of

atomic formulas in first-order logic. In ALC, we have the boolean constructors

• conjunction �, which is binary

• disjunction �, which is binary

• negation ¬ , which is unary.

Hence, if C and D are concepts, then C�D, C�D and ¬C are also concepts. Concept

constructors can be nested arbitrarily. The translation of boolean constructors to first-

order predicate logic is obvious. To give an example, the statement C�¬D translates

to the formula C(x) ∧ ¬D(x).
ALC statements relate named or anonymous concepts by means of one of the

following:

• inclusion 	
• inverse inclusion

• equivalence ≡.

5 To be precise, there do exist some description logics which are not decidable. And there

exist some which are not straightforward fragments of first-order logics. But for this general

introduction, we will not concern ourselves with these

62 Stephan Grimm et al.

Their meaning in first-order logic are implication → inverse implication ← and

equivalence ↔. Occurring free variables are universally quantified. To give an exam-

ple, the statement C 	 D � ¬E translates to ∀ x : (C(x) → (D(x) ∨ ¬E(x))).
ALC provides two special classes as shortcuts, namely ⊥ and �. They are

defined by means of the equivalences ⊥ ≡ C � ¬C and � ≡ C � ¬C, where C
is some arbitrary concept. That is, ⊥ is the empty concept, and � is the concept

under which everything falls.

ALC allows the restricted further use of quantifiers by means of the so-called

role restrictions. A role is a named entity which translates to a binary predicate in

first-order logic. In the semantic network paradigm, roles are relations between con-

cepts. Given such a role r and a (named or anonymous) concept C, the composite

concepts ∀ r.C and ∃ r.C can be formed. Role restrictions and boolean constructors

can be nested arbitrarily with each other to form anonymous concepts. The compos-

ite concept ∀ r.C translates to ∀ y : (r(x, y) → C(y)) in first-order logic, while ∃ r.C
translates to ∃ y : (R(x, y) ∧ C(y)).

An ALC TBox, finally, consists of a set of statements of the form C 	 D, C
 D
or C ≡ D, where C and D are named or composite concepts. Obviously, any TBox

can be translated to first-order logic, and thus inherits a logical consequence relation

from it.

To give some examples for TBox statements from the business trips domain,

Employee 	 Person

encodes the knowledge that every employee is a person, while

Trip 	 ∃ bookedBy.(Company � Person)

states that every Trip is booked by a company or a person.

We now come to individuals, which correspond to constants in first-order logic.

ALC allows to state that some individuals belong to (named or composite) concepts,

e.g. C(a) states that the individual a belongs to concept C. Similarly, a statement

r(a, b), where r is a role, means that the individuals a and b stand in relation r. The

translation to first-order logic is obvious.

An ALC ABox consists of a set of statements of the form C(a) or R(a, b), where

C is a named or anonymous concept, R is a role and a, b are individuals. An ALC
knowledge base consists of an ALC ABox and an ALC TBox.

Examples for ABox statements are Flight(FL4711) and bookedBy(FL4711,
UbiqBiz), with the obvious meanings.

ALC allows to define a basic form of knowledge bases. We have already men-

tioned that it appears to be somewhat akin to semantic networks, but differs in two

important respects: ALC comes with a precise formal semantics via first-order logic,

and it is more expressive due to the use of concept constructors.

Nevertheless, ALC is very restricted in expressiveness in comparison with other

knowledge representation formalisms. This is apparent, e.g., by the very restricted

kinds of first-order logical statements which are expressible in ALC. In order to

meet the requirements of practice, it is therefore necessary to extend expressiveness

3 Knowledge Representation and Ontologies 63

of ALC. These extensions are not necessarily of a kind such that a larger fragment

of first-order logic is obtained. This is indeed just one of the ways of extending ALC
which we will examine.

Decidability-Preserving Extensions to ALC
We have seen before that decidability is a desirable property, and so the natural ques-

tion arises, which extensions of ALC retain its decidability. Indeed, extending ALC
while staying within first-order logic on the one hand, and while retaining decidabil-

ity on the other, has been one of the driving forces behind description logic research

in the recent past. We briefly describe some of these extensions. For a comprehensive

treatment of description logics, see [3].

The following additions can be made to ALC while retaining decidability.6

• Roles (i.e. binary predicates) can have additional properties such as being transi-

tive, symmetric or inverse to other roles.

• A role can be described as the inverse of another role.

• Roles can be arranged hierarchically, i.e. a statement such as r 	 s is allowed

between roles, which translates to ∀ x, y : (r(x, y) → s(x, y)) in first-order logic.

• Individuals can be compared, e.g. by stating explicitly that two individuals are

identical (a = b), or different (a �= b).

• It is allowed to use the so-called nominals in the TBox. Nominals are classes

which consist of an enumeration of exactly those elements which are in the class.

For example, the statement C ≡ {a, b, c} says that the class C contains exactly

the elements a, b and c.

• Quantifiers can be generalised to number restrictions, which yields anonymous

concepts such as ≤ n r and ≥ n r, where r is a role, and n is a positive integer.

The first of these describes the set of all individuals x for which less than or

equal to n individuals y are in relation r(x, y) to x. The meaning of the second

construction is analogous. Note, e.g., that ≥ 1 r is equivalent to ∃ r.�.

• Roles such as the ones described so far are also called abstract roles. Some

description logics additionally allow the use of concrete roles, which allow to

assign datatype values such as integers or strings to individuals.

ALC, together with the above-mentioned additions, roughly constitutes the descrip-

tion logic SHOIN (D). The strange acronym comes from a certain agreed-upon

standard for naming description logics, where each letter stands for a specific (group

of) allowed constructor(s). The S stands for ALC together with transitivity for roles.

H stands for role hierarchies. O and I stand for nominals and for the use of inverse

roles, respectively. N stands for number restrictions. The D, finally, stands for the

use of concrete roles and datatypes.

6 Some minor restrictions need to be respected, which we do not include here

64 Stephan Grimm et al.

Non-classical Semantics

SHOIN (D) is essentially still a decidable fragment of first-order predicate logic.7

Certain expressive features, however, cannot be conveniently described by means

of first-order logic. The study of such expressive features is motivated by Artificial

Intelligence applications and has a long history in knowledge representation and rea-

soning, and most recently corresponding extensions and alterations of description

logics are also being developed.

From a very general perspective, such expressive features are obtained by alter-

ing the notion of logical consequence. Recall that for first-order predicate logic a

statement is a logical consequence of a theory if it is true in all models of the theory.

Models of the theory, in turn, are interpretations (i.e. states of affairs) which make the

theory true. An alternative notion of logical consequence can thus be derived by not

selecting all interpretations which make the theory true, but only some, more or sim-

ply other such interpretations, and by calling those statements logical consequences,

which are true in all these selected interpretations.

This endeavour, although it appears to be somewhat dubious at first, provides

a general perspective on many expressive features in knowledge representation and

reasoning. Important for this is certainly that the corresponding selections of inter-

pretations are clearly defined and meaningful. Often, this selection is done most con-

veniently by means of additional syntax and, in the following, we will cover some

additional expressive features which are most important for the Semantic Web con-

text.

Let us remark that reasoning with expressive features is computationally expen-

sive, and this fact is a well-known obstacle for developments in symbolic Artificial

Intelligence. By means of description logics and the fact that they show reasonable

scalability despite high worst-case complexities, expressive knowledge representa-

tion features become attractive for practical purposes. Of obvious importance is thus

the identification of tractable description logics, as done e.g. in [18, 9, 2, 27].

3.2.2 Closed-World Assumption

The Closed-World Assumption (CWA) can be understood as a computational rein-

terpretation of negation. Roughly speaking, it is the assumption that what cannot be
proven is wrong. Assume, e.g., the statement “if an employee is not booked on a trip

at a certain date, then (s)he is available for internal meetings that day”, and assume

furthermore that there is no knowledge available whether the employee MisterX is

booked on a trip on a certain day. Then, under the CWA, we would conclude that

MisterX is available for an internal meeting on that particular day.

A CWA perspective is particularly natural from a database point of view. An

employee is assumed to be not booked on a trip, unless the booking can be found

in the database. Thus, the database describes a closed world, in which all statements

are either the case (if they are explicitly known) or not the case (otherwise).

7 More precisely, it corresponds to first-order predicate logic with equality. Care needs to be

taken with the encoding of number restrictions, and datatypes must be allowed as required

3 Knowledge Representation and Ontologies 65

Treating Semantic Web knowledge under CWA, however, is conceptually diffi-

cult in some cases. This comes from the open nature of the World Wide Web, where

data is constantly added and changing. Thus, if a particular piece of knowledge can-

not be retrieved from the Semantic Web, then it cannot safely be assumed to be

false: the information may be contained on a web page which has not been included

yet, but which will be crawled next. Such a situation should be treated under the

Open-World Assumption (OWA), which assumes that only such conclusions should

be drawn which will remain valid if new information is added.

The semantics of first-order predicate logic – and thus also of description logics –

operates under the OWA. If we have no knowledge about whether a person is booked

on a flight, then under the OWA we cannot conclude anything on this person’s avail-

ability for an internal meeting from the example statement given above.

It is safe to assume that knowledge from databases will play a natural role in

the realisation of the Semantic Web, and will come alongside knowledge from other

sources, like the open web. Restricting knowledge representation to pure OWA or

pure CWA settings is thus insufficient: while the basic framework for the open

Semantic Web should be based on the OWA, a restricted use of the CWA should

be possible at the same time. This integration has become known as Local Closed
World (LCW) [16], and is currently being researched from several perspectives. We

will say more about this in the next section on non-monotonicity.

3.2.3 Non-monotonicity

The original motivation for the study of non-monotonic reasoning comes from the

observation that humans tend to jump to conclusions when making every day prac-

tical and commonsense decisions. If we book a train trip, then we conclude that we

will not be arriving by bus, and in case we have to base further decisions on the

knowledge, we simply assume the conclusion to be true. However, our knowledge

about the real world is never complete. It may turn out, e.g., that there is a large power

outage on the day of the trip so that the trains will not run – and as a substitute, we

are being transported by bus on short notice.

When jumping to conclusions, it may be necessary to withdraw the conclusions

if further knowledge becomes available. In the example just given, we withdraw the

knowledge about not arriving by bus as soon as we learn about the special circum-

stances. In this sense, commonsense reasoning is non-monotonic.

More formally, a knowledge representation formalism is called monotonic if a

larger theory implies more conclusions or, in other words, if the addition of knowl-

edge never invalidates conclusions drawn before the addition. A knowledge repre-

sentation formalism is non-monotonic if it is not monotonic.

First-order predicate logic – and thus also description logics – are monotonic.

Formalisms operating under the CWA are usually non-monotonic: if a database does

not contain a booking information for MisterX being on a business trip at a certain

date, then it could be concluded that MisterX is available for internal meetings at this

date by an appropriate rule; if, however, such a booking information becomes known

and is added to the database, then the earlier conclusion must be withdrawn.

66 Stephan Grimm et al.

The strong relation between CWA and non-monotonicity is well known and has

inspired many lines of research in these areas. Historically, there are three major

approaches to non-monotonicity, which we briefly list in the following.

Default Logic [42] uses the so-called default rules of the form (α : β)/γ for express-

ing the following condition for formulas α, β and γ: if α is the case and β is possible,

then conclude γ. To give an example, α could be the statement “FL4711 is a trip to

a foreign country”, β could be the statement “FL4711 is not a train ride”, and γ
could be the statement “FL4711 is a flight”. We further assume that we indeed know

that FL4711 is a trip to a foreign country. Without any further knowledge whether

FL4711 is a flight or a train ride, we conclude by the default rule that FL4711 is

a flight. If we add further knowledge that FL4711 is indeed a train ride, then the

conclusion must be withdrawn. In this sense, a default rule is a rule that allows for

exceptions.

Circumscription [33] realises non-monotonicity by means of a condition over log-

ical predicates which ensures that in some cases truth or falsity of a statement is

enforced although this would not be the case in classical first-order predicate logic.

Circumscription is expressed by means of second-order logic (see Sect. 3.2.5), and

does not require any extension of syntax.

Autoepistemic Logic [35] employs a modal logic operator to represent that some-

thing is believed (but not necessarily known).

All three historic approaches are being studied in the context of description log-

ics, and central references are [4], [6] and [14], respectively. It is still an open quest

to find out which of these is most suitable for Semantic Web applications. Of partic-

ular importance – besides the obvious scalability requirements – is the question how

the formalism realises LCW reasoning in a practically useful way.

Historically, the area of non-monotonic reasoning received decisive impulses in

the 1980s and 1990s from logic programming research, which we discuss next.

3.2.4 Logic Programming

Logic programming was originally conceived as a way to use (first-order predicate)

logic as a programming language. In order to allow for efficient computation, for-

mulas were syntactically restricted to the so-called Horn clauses. Additionally, only

certain kinds of logical consequences are being considered.

Syntactically, Horn clauses can be understood as rules. For example, the expres-

sion Trip(t) ∨ ¬ Flight(t) is a Horn clause, which is semantically equivalent (with

respect to FOL) to ∀ t : Trip(t) ← Flight(t). This, in turn, can also be interpreted as

the rule Trip(?t) :− Flight(?t) from page 55.

Note, however, that the semantics of the Horn clause is given by means of

first-order logic semantics, whereas logic programming rules are usually under-

stood in a different sense. One of the differences stems from the fact that in a

logic programming system only certain types of logical consequences are being

3 Knowledge Representation and Ontologies 67

considered, namely ground8 instances of predicates. In the example, the addition

of a fact Flight(FL4711) would allow to conclude Trip(FL4711) both in

FOL and in a logic programming system. A conclusion such as Trip(FL4711) ∨
¬ Flight(FL4711), however, would be possible only in FOL, and not derivable

using logic programming semantics.

The second difference between the semantics concerns the handling of negative

information. In the example above, we could be interested in whether the statement

Trip(FL2306) holds. In FOL, neither truth nor falsity of this statement is deriv-

able. In logic programming, however, the statement would be considered false. The

handling of negative information in logic programming in this sense is based on the

CWA: as no information on FL2306 is available, it is considered to be not a trip.

Logic programming semantics is thus non-monotonic: just consider adding the

single fact Flight(FL2306) to the knowledge base, by which Trip(FL2306)
turns true. This insight triggered substantial research efforts on relating logic pro-

gramming and non-monotonic reasoning, which led to the introduction of non-

monotonic kinds of negation into the logic programming paradigm, see [1].

How to combine logic programming or other rules formalisms with description

logics constitutes a recent research issue. Prominent approaches include the creation

of hybrid systems by interfacing logic programming systems with description logic

systems, as e.g. in [15]. Other approaches simply go back to Horn clauses and add

them as FOL statements to description logic knowledge bases [26].

3.2.5 Higher-Order Logic

Another feature which is considered important for knowledge representation in the

Semantic Web is what has become known as metamodelling. This occurs, e.g., when-

ever description logic classes should be considered as individual members of other

(meta-)classes, or if properties shall be attached to entire classes by means of roles.

Logically, this corresponds to using high-order logics, and generally results in the

loss of decidability. Decidable fragments, however, can be described, as in [36].

To give an example, consider an international company using a semantics-based

knowledge management system for business trips, which requires that different

languages spoken within the company are supported by the system. It may thus

be necessary to represent the knowledge that the concept Flight is called “Flug”

in German. This could be represented by using a concrete role statement like

germanName(Flight, “Flug”). Here, “Flug” would be a data value of type string,

while the concept Flight actually appears syntactically as an individual. Notice that

here a data value is directly assigned to a concept rather than to its instances.

3.2.6 Treatment of Inconsistencies

A point of particular importance for the Semantic Web lies in a sensible treatment

of inconsistencies in knowledge bases. This comes from the fact that in Semantic

8 A ground (instance of a) predicate is an atomic formula which does not contain any variable

symbols

68 Stephan Grimm et al.

Web applications it is very often necessary to merge different knowledge bases from

different sources, and it can be expected that in many cases some parts of the respec-

tive knowledge bases may conflict with each other, resulting in inconsistency. In a

classical FOL setting, a single inconsistency causes a knowledge base to be entirely

useless. For practical purposes, however, it should be possible to rescue at least some

of the knowledge in a constructive way in order to draw meaningful conclusions

from the knowledge.

There exist two basic approaches to dealing with inconsistency. The first one is

based on the intuition that inconsistencies point to mistakes in modelling, and thus

should be repaired. Technically, such repairs can be done by identifying, e.g., max-

imal consistent subsets of the knowledge base and using those for drawing conclu-

sions, see e.g. [48]. The other approach is based on using the so-called paraconsistent
logics with an additional truth value which represents contradiction, see e.g. [50].

3.2.7 Uncertainty

Knowledge is often acquired by machine learning techniques. Knowledge base state-

ments obtained this way are usually uncertain, e.g. in a probabilistic sense or in the

sense of fuzzy logic. Recent efforts are thus under way to provide methods and tools

for the representation and the reasoning with uncertainty in description logics.

To give an example, consider a business trips booking Internet portal which uses

a knowledge base for providing personalised content to the user. From the usage pat-

terns of UbiqBiz customers the knowledge base knows with a probability of 80%

that a UbiqBiz customer browsing the portal will be interested in booking a flight,

and is thus able to provide appropriate personalised content. As part of a sophisti-

cated personalisation knowledge base, the treatment of such probabilities and other

uncertainty values becomes important.

3.3 Ontologies in Information Systems

Recently, the notion of ontologies as computational artefacts has appeared in Arti-

ficial Intelligence and Computer Science, while “ontology” originally denotes the

study of existence in philosophy. In information systems, ontologies are conceptual

models of what “exists” in some domain, brought into machine-interpretable form by

means of knowledge representation techniques. In this section we start from a gen-

eral definition of the notion of ontology and elaborate on its appearance and usage in

computer science.

3.3.1 Ontology

In its original meaning in philosophy, ontology is a branch of metaphysics and

denotes the philosophical investigation of existence. It is concerned with the fun-

damental questions of “what is being?” and “what kinds of things are there?” [11].

3 Knowledge Representation and Ontologies 69

Dating back to Aristotle, the question of “what exists?” lead to studying general cat-

egories for all things that exist. Ontological categories provide a means to classify all

existing things, and the systematic organisation of such categories allows to analyse

the world that is made up by these things in a structured way. In ontology, categories

are also referred to as universals, and the concrete things that they serve to classify

are referred to as particulars.

Philosophers have mostly been concerned with general top-level hierarchies of

universals that cover the entire physical world. Examples of universals occurring in

such top-level hierarchies are most general and abstract concepts like “substance”,

“physical object”, “intangible object”, “endurant” or “perdurant”. Philosophers have

argued about the appropriateness of different such abstract categorisations and about

the general properties of everything existing. Transferred to knowledge representa-

tion and computer science, information systems can benefit from the idea of onto-

logical categorisation. When applied to a limited domain of interest in the scope of

a concrete application scenario, ontology can be restricted to cover a special subset

of the world. Examples of ontological categories in the business trips domain are

“Person”, “Company”, “Trip” or “Flight”, whereas examples for particular individ-

uals that are classified by these categories are the person “MisterX”, the company

“UbiqBiz” or the particular flight “FL4711”.

In general, the choice of ontological categories and particular objects in some

domain of interest determines the things about which knowledge can be represented

in a computer system [45]. In this sense, ontology provides the labels for nodes and

arcs in a semantic network or the names for predicates and constants in rules or log-

ical formulas that constitute an ontological vocabulary. By defining “what exists”

it determines the things that can be predicated about. The terms of the ontologi-

cal vocabulary are then used to represent knowledge, forming statements about the

domain.

3.3.2 Ontologies

While “ontology” studies what exists in a domain of interest, “an ontology” as a com-

putational artefact encodes knowledge about this domain in a machine-processable

form to make it available to information systems.

Definition of an Ontology

In various application contexts, and within different communities, ontologies have

been explored from different points of view, and there exist several definitions of

what an ontology is. Within the Semantic Web community the dominating definition

of an ontology is the following, based on [19].

An ontology is a formal explicit specification of a shared conceptualisation

of a domain of interest.

This definition captures several characteristics of an ontology as a specification of

domain knowledge, namely the aspects of formality, explicitness, being shared, con-

ceptuality and domain-specificity, which require some explanation.

70 Stephan Grimm et al.

• Formality
An Ontology is expressed in a knowledge representation language that provides a

formal semantics. This ensures that the specification of domain knowledge in an

ontology is machine-processable and is being interpreted in a well-defined way.

The techniques of knowledge representation help to realise this aspect.

• Explicitness
An ontology states knowledge explicitly to make it accessible for machines.

Notions that are not explicitly included in the ontology are not part of the

machine-interpretable conceptualisation it captures, although humans might take

them for granted by common sense.9

• Being shared
An ontology reflects an agreement on a domain conceptualisation among people

in a community. The larger the community the more difficult it is to come to an

agreement on sharing the same conceptualisation. Thus, an ontology is always

limited to a particular group of people in a community, and its construction is

associated with a social process of reaching consensus.

• Conceptuality
An ontology specifies knowledge in a conceptual way in terms of symbols that

represent concepts and their relations. The concepts and relations in an ontology

can be intuitively grasped by humans, as they correspond to the elements in our

mental model. (In contrast to this, the weights in a neural network or the probabil-

ity measures in a Bayesean network would not fit such a conceptual and symbolic

approach.) Moreover, an ontology describes a conceptualisation in general terms

and does not only capture a particular state of affairs. Instead of making state-

ments about a specific situation involving particular individuals, an ontology tries

to cover as many situations as possible, that can potentially occur [21].

• Domain specificity
The specifications in an ontology are limited to knowledge about a particular

domain of interest. The narrower the scope of the domain for the ontology, the

more an ontology engineer can focus on axiomatising the details in this domain

rather than covering a broad range of related topics. In this way, the explicit spec-

ification of domain knowledge can be modularised and expressed using several

different ontologies with separate domains of interest.

Technically, the principal constituents of an ontology are concepts, relations and

instances. Concepts map to the generic nodes in semantic networks, or to unary

9 Notice that this notion of explicitness is different from the distinction between explicit and

implicit knowledge, introduced earlier. Implicit knowledge that can be derived by means

of automated deduction does not need to be included in an ontology for a computer system

to access it. However, knowledge that is neither explicitly stated nor logically follows from

what is stated can by no means be processed within the machine, although it might be

obvious to a human. Such knowledge remains implicit in the modeller’s mind and is not

represented in the machine

3 Knowledge Representation and Ontologies 71

predicates in logic, or to concepts as in description logics. They represent the onto-

logical categories that are relevant in the domain of interest. Relations map to arcs in

semantic networks, or to binary predicates in logic, or to roles in description logics.

They semantically connect concepts, as well as instances, specifying their interre-

lations. Instances map to individual nodes in semantic networks, or to constants in

logic. They represent the named and identifiable concrete objects in the domain of

interest, i.e. the particular individuals which are classified by concepts.

These elements constitute an ontological vocabulary for the respective domain

of interest. An ontology can be viewed as a set of statements, expressed in terms of

this vocabulary, which are also referred to as axioms. A simple axiom would, e.g.,

state that “Mister X is an employee”, involving an instance and a concept. A more

complex axiom could state that “only employees of a particular company can be

on trips booked by this company”, imposing a restriction on a relation between two

concepts.

Conceptual modelling with ontologies seems to be very similar to modelling in

object-oriented software development or to designing entity-relationship diagrams

for database schemas. However, there is a subtle twofold difference. First, ontol-

ogy languages usually provide a richer formal semantics than object-oriented or

database-related formalisms. They support encoding of complex axiomatic informa-

tion due to their logic-based notations. Hence, an ontology specifies a semantically

rich axiomatisation of domain knowledge rather than a mere data or object model.

Second, ontologies are usually developed for a different purpose than object-oriented

models or entity-relationship diagrams. While the latter mostly describe components

of an information system to be executed on a machine and a schema for data storage,

respectively, an ontology captures domain knowledge as such and allows to reason

about it.

In summary, an ontology used in an information system is a conceptual yet exe-

cutable model of an application domain. It is made machine-interpretable by means

of knowledge representation techniques and can therefore be used by applications to

base decisions on reasoning about domain knowledge.

Appearance of Ontologies

When engineered for or processed by information systems, ontologies appear in dif-

ferent forms related to the forms of knowledge representation which we discussed. A

knowledge engineer views an ontology by means of some graphical or formal visual-

isation, while for storage or transfer it is encoded in an ontology language with some

machine-processable serialisation format. A reasoner, in turn, interprets an ontol-

ogy as a set of axioms that constitute a logical theory. We illustrate these different

forms of appearance in ontology engineering, machine-processing and reasoning by

an example.

Our business trips scenario, introduced earlier, involves several domains of inter-

est. On the one hand, reasoning about business trips requires knowledge about trav-

elling infrastructure for trains, flights and rental cars, while on the other hand it

72 Stephan Grimm et al.

involves financial knowledge about prices, different currencies and methods of pay-

ment when it comes to comparing different offers. Yet another related domain is that

of geographic knowledge about locations of sources and destinations for trips, which

we pick up as an example to illustrate appearance of ontologies. All these differ-

ent domains of interest can be thought of as being captured by a modularised set of

ontologies to which an information system in the business trips scenario can have

access.

A geographic ontology suitable for a business trips booking system encodes

countries and continents with their geographic regions, as well as geographic fea-

tures like rivers, roads, rail tracks or cities. It relates geographic features to their

regions, stating, e.g., that a city occupies a certain region, and it defines containment

between such regions; the geographic region of a European city is, e.g., contained in

that of Europe. Besides these general geographic concepts and their relations, such

an ontology also determines concrete instances, such as particular cities, countries

and continents, and relates them appropriately.

To a knowledge engineer an ontology is often visualised as some form of seman-

tic network. Figure 3.2 shows the graphical visualisation of an example geographic

ontology.

As common to most ontology development environments,10 the visualisation in

Fig. 3.2 presents to the knowledge engineer a taxonomy, i.e. a subsumption hierar-

chy, of the concepts in the ontology, which is indicated by isa−−−→ links. The two

taxonomies exposed in the graph are those for GeographicRegion with subconcepts

�������

	
�������������

������������

������������

������������

����

������������

������� �����������!������"����#��"

	
#��"�������#��"

����

���"��$���� %�������"

&������'��������

&������'����������

&������'������&������'��(!�����

#����"#��������

��� ���

��� ��� ��� ���

��� ��� ��� ������ ���

���

���

���

������

���

�� �� ��

�� �� ����������� ��������� ��������� ��������� ���������

��������� ���������

��������)

��������!��) ���������

��������) ��#���������")

Fig. 3.2. A graphical visualisation for a geographic ontology

10 The ontology graph in Fig. 3.2 has been produced with the OntoViz-plugin for the Protégé

environment (http://protege.stanford.edu/plugins/owl/)

3 Knowledge Representation and Ontologies 73

for linear and planar regions, and for GeographicLocation with subconcepts for geo-

graphic features, like cities or rivers, and geographic areas, like continents or coun-

tries. In the visualisation, the knowledge engineer can also see conceptual relations

as arcs pointing from their domain concept to their range concept. By the relation
locatedIn−−−−−−−−→ between GeographicLocation and GeographicRegion a location, such

as a city or a country, is associated to some region in which it is actually located. A

Road or River is further restricted to be located in a LinearRegion, whereas a City
or Lake is located in a PlanarRegion encompassing a surface area. The graph also

shows some concrete cities and countries, modelled as instances of their respective

concepts, which here serve as representatives for all the particular geographic places

such an ontology would be populated with.

Not all the information in an ontology can easily be visualised in a graph as the

one shown in Fig. 3.2. For some more detailed information, such as complex axioms

and restrictions on concepts, there does not exist to date any appropriate visualisation

paradigm other than exposing such fragments of the ontology in a formal language.

Therefore, ontology engineering environments usually provide extra means for dis-

playing and editing such complex axiomatic information, using a special-purpose

ontology language or logical formal notation. When the environment exports the

ontology for storage on a disk or for transfer over the wire, all of its information is

expressed in the ontology language supported by the tool. Hence, the way an ontol-

ogy appears to a developer of an ontology editor, storage facility or reasoner is in

the form of ontology language constructs in some serialisation format suitable for

machine processing.

There are various ontology languages, based on different knowledge represen-

tation formalisms, and we investigate the most prevalent of them in Sect. 3.4. For

illustrating a fragment of our example geographic ontology, we choose the OWL11

ontology language. The following listing displays a part of the ontology encoded in

the OWL RDF serialisation format.

...
<owl:Class rdf:ID="City">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#locatedIn"/>
<owl:allValuesFrom rdf:resource="#PlanarRegion"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Infrastructure"/>
<owl:disjointWith rdf:resource="#Road"/>
<owl:disjointWith rdf:resource="#IndustrialFacility"/>

</owl:Class>
<owl:ObjectProperty rdf:ID="locatedIn">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#GeographicLocation"/>
<rdfs:range rdf:resource="#GeographicRegion"/>
<owl:inverseOf rdf:resource="#isRegionFor"/>

</owl:ObjectProperty>
<EuropeanCity rdf:ID="London"/>
...

11 The DL-based Web Ontology Language (OWL) is popular in the Semantic Web context,

and it is described in Sect. 3.4 among other languages

74 Stephan Grimm et al.

The listing shows an excerpt of the geographic ontology as it is serialised and parsed

by tools and transferred over the network. It exhibits the specification of OWL classes

(concepts), properties (relations) and individuals (instances), all expressed by tags

and attributes of a customised XML serialisation. The City concept is defined as a

subconcept of Infrastructure with the restriction that the relation locatedIn−−−−−−−−→ can

only have instances of PlanarRegion as values. The relation locatedIn−−−−−−−−→ is defined

as functional (having a unique value) and as being inverse to isRegionFor−−−−−−−−−−→ , with

proper domain and range concepts. London is introduced as an instance of Euro-
peanCity.

As ontology languages like OWL are based on logical formalisms, the formal

semantics of the language precisely defines the meaning of an ontology in terms of

logic. To a reasoner, therefore, an ontology appears as a set of logical formulas that

express the axioms of a logical theory. It can verify whether these axioms are consis-

tent or derive logical consequences. This form of appearance of an ontology is free

of syntactical or graphical additions or ambiguities and reflects the pure knowledge

representation aspect.
We use the description logic notation for OWL to exemplify some of the axioms

in our example geographical ontology in their logical form. The following DL for-
mulas constitute the definition of a European city.

∃ locatedIn.� � GeographicLocation
� � ∀ locatedIn.GeographicRegion

∃ contains.� � GeographicRegion
� � ∀ contains.GeographicRegion

GeographicLocation � =1 locatedIn
Continent � GeographicLocation
Continent (Europe)

PlanarRegion � GeographicRegion
City � GeographicLocation � ∀ locatedIn.PlanarRegion

EuropeanCity ≡ City � ∀ locatedIn.∃ contains−.∃ locatedIn−.{Europe}

The last, quite sophisticated formula defines the concept of a European city by its
geographical region being contained in the geographical region of the European con-
tinent. It has the following translation to first-order logic.

∀ x : (EuropeanCity(x) ↔
City(x) ∧ ∀ y : (locatedIn(x, y) → ∃ z : (contains(z, y) ∧ locatedIn(Europe, z))))

In prose, its reading is as follows: “European cities are cities for which all geographic

regions they are located in are contained in some geographic region in which Europe

is located.” This allows a knowledge-based system to decide whether a city is Euro-

pean by reasoning over containment of geographic regions.

In this logical form, an ontology is the set of axioms that constitutes the explicit

knowledge represented about its domain of interest. By means of automated deduc-

tion, implicit knowledge of the same form can be derived but is not part of the ontol-

ogy’s explicit specification.

3 Knowledge Representation and Ontologies 75

3.3.3 Usage of Ontologies

Often, an ontology is distinguished from a knowledge base in that it is supposed

to describe knowledge on a schema level, i.e. in terms of conceptual taxonomies

and general statements, whereas the more data-intensive knowledge base is thought

of containing instance information on particular situations. We take a different per-

spective and perceive the relation between an ontology and a knowledge base as

the connection between an epistemological specification of domain knowledge and

a technical tool for reasoning. From this point of view, an ontology is a piece of

knowledge that can be used by a knowledge-based application among other pieces

of knowledge, e.g. other ontologies or meta data. To properly cover its domain of

interest, it can make use of both schema level and instance level information. When-

ever the knowledge-based system needs to consult the ontology, it loads (parts of) its

specification into a knowledge base, most likely together with other pieces of knowl-

edge, to take it into account for reasoning. The business trips booking system, e.g.,

would probably make combined use of a geographical ontology, a financial one, and

one for public transportation, when comparing offers for trips, loading all relevant

domain knowledge in its knowledge base. In this sense, a knowledge-based applica-

tion uses an ontology via its knowledge base.

The computational domain model of an ontology can be used for various pur-

poses, depending on the application scenario. We distinguish the different cases of

usage on diverse levels, as follows.

• Level of knowledge connectivity

An application can view an ontology as its single and isolated source of knowl-

edge in a stand-alone fashion. This is the way an expert system maintains a highly

specialised knowledge base to answer questions in its domain of interest, simu-

lating expert knowledge.

In contrast to this, an ontology can also be viewed in relation to other sources

of knowledge, such as other ontologies or meta data that is aligned to the ontol-

ogy’s conceptual model. In an information integration scenario, e.g., an ontology

supports interoperability among different systems on the knowledge or data level,

providing a basic domain vocabulary.

• Level of knowledge abstraction

On the one hand, an application can process an ontology on the schema level of

knowledge about categories. Examples for this are applications which need to

automatically classify user-defined concepts in an existing taxonomy or which

build upon answers to general domain questions.

On the other hand, an ontology can be used as a schema for data-intensive

instance retrieval on large knowledge or databases.

• Level of automation in knowledge processing

An application can make intensive use of automated reasoning techniques in

order to derive implicit knowledge from the axioms in an ontology, answering

sophisticated domain questions.

76 Stephan Grimm et al.

At the same time, ontologies can also be used for documentation and refer-

ence purposes, targeting humans to read their specifications rather than machines.

This way, the documentation of domain models benefits from precise specifica-

tion through the formal semantics of ontology languages.

In Artificial Intelligence research, some typical types of applications have evolved

that make use of ontologies in different ways. We list some of them as examples of

how applications can leverage the formalised conceptual domain models that ontolo-

gies provide.

• Information integration

A promising field of application for ontologies is their use for integrating hetero-

geneous information sources on the schema level. Often, different databases store

the same kind of information but adhere to different data models. An ontology

can be used to mediate between database schemas, allowing to integrate infor-

mation from differently organised sources and to interpret data from one source

under the schema of another.

Our example geographic ontology could be used to integrate geographic

databases with different schemas; for example, one relating cities directly to

their countries as different entities and another modelling a single entity for geo-

graphic places which have the property of being either a city or a country. In

either schema, the local entities and relations can be mapped to the respective

notions of City, Country, GeographicRegion and locatedIn−−−−−−−−→ in the ontology,

realising unified querying and reasoning over both information sources.

• Information retrieval

Motivated by the success and key role of Google12 in the World Wide Web, infor-

mation retrieval on web documents is a major field of application for ontologies.

The idea behind ontology-based information retrieval is to increase the precision

of retrieval results by taking into account the semantic information contained in

queries and documents, lifting keywords to ontological concepts and relations.

When interpreted according to our example geographic ontology, a query

like “capital of Germany” would yield documents that are about Berlin, the cap-

ital of Germany. Some of the false positive matches that keyword-based retrieval

systems typically produce, such as documents about the German venture capital

market, can be filtered out this way.

• Semantically enhanced content management

In many areas of computation, the data that is actually computed is annotated

with meta data for various purposes. Ontologies provide the domain-specific

vocabulary for annotating data with meta data. The formality of ontology lan-

guages allows for an automated processing of this meta data and their grounding

in knowledge representation facilitates machine-interpretability.

The geographic concepts and relations provided by our example ontology

could be used to annotate manifold geographic content, such as geographic books

and articles in an electronic library to better find and archive them or 3D-models

12 http://www.google.com

3 Knowledge Representation and Ontologies 77

of geographic sites in surveying and mapping, in order to better group and relate

them, providing easier access to their content.

• Knowledge management and community portals

In companies or other organised associations, or in communities of practice, indi-

vidual knowledge can be viewed as a strategic resource that is desirable to be

shared and systematically maintained, which is referred to as knowledge man-
agement. Ontologies provide a means to unify knowledge management efforts

under a shared conceptual domain model, connecting technical systems for nav-

igating, storing, searching and exchanging community knowledge.

Our example ontology could serve as the backbone for a geographic knowl-

edge portal in the Internet, through which land surveying offices, urban plan-

ning institutions and other interested community members provide access to

geography-related resources.

• Expert systems

In various domains, such as medical diagnosis or legal advice in case-law, it is

desirable to simulate a domain expert who can be asked sophisticated questions.

In an expert system, this is achieved by incorporating a thoroughly developed

domain ontology that formalises expert knowledge. Domain-specific questions

can then be answered by reasoning over such highly specialised knowledge.

An expert system for the geographical domain could answer questions like

“Which is the German city closest to the French border? ”or “Through which

cities does the river Rhein flow? ”.

3.3.4 Types of Ontologies

Since the beginning of ontology research in Computer Science, ontologies have been

considered as a means to foster reuse within knowledge-based system engineering,

and it turned out that different types of ontologies exhibit a different potential for

reuse.

A categorisation of ontologies can be made according to their subject of concep-

tualisation. The most prominent insights in this respect have been published in [20]

and are summarised in Fig. 3.3.

top-level ontology

application ontology

domain ontology task ontology

Fig. 3.3. Types of ontologies

78 Stephan Grimm et al.

The categorisation in Fig. 3.3 distinguishes the following types of ontologies.

• Top-level ontologies

Top-level ontologies – also called upper ontologies or foundational ontolo-

gies – attempt to describe very abstract and general concepts that can be shared

across many domains and applications. They borrow from philosophical notions,

describing top-level concepts for all things that exist, such as “physical object” or

“abstract object”, as well as generic notions of common-sense knowledge about

phenomena as time, space, processes, etc. They are usually well thought out and

extensively axiomatised. Due to their generality, they are typically not directly

used in applications but for other ontologies to be aligned to. Prominent exam-

ples for top-level ontologies are DOLCE [17] and SUMO [39].

• Domain ontologies and task ontologies

These types of ontologies capture the knowledge within a specific domain of dis-

course, such as medicine or geography, or the knowledge about a particular task,

such as diagnosing or configuring. In this sense, they have a much narrower and

more specific scope than top-level ontologies. In the ideal case, the conceptual-

isation in a domain ontology is kept strictly task independent, while the notions

in a task ontology are described neutrally with respect to a domain. Much work

has been done in the development of domain ontologies in medicine, genetics,

geographic and environment information, tourism, as well as cultural heritage

and museum exhibits. Task ontologies have been devised, e.g., for scheduling

and planning tasks, monitoring in a scientific domain, intelligent computer-based

tutoring, missile tracking, execution of clinical guidelines, etc.

• Application ontologies

Further narrowing the scope, application ontologies provide the specific vocabu-

lary required to describe a certain task enactment in a particular application con-

text. They typically make use of both domain and task ontologies, and describe,

e.g., the role that some domain entity plays in a specific task. For example, a

particular physical entity in some engineering domain may play the role of a

replaceable unit in a machine diagnosis and maintenance task, and at the same

time play the role of a spare resource in a configuration or production process.

Altogether, we can say that the lattice indicated in Fig. 3.3 represents an inclusion

hierarchy: the lower ontologies inherit and specialise concepts and relations from

the upper ones. The lower ontologies are more specific and have thus a narrower

application scope, whereas the upper ones have a broader potential for reuse.

3.3.5 Ontologies in the Semantic Web

In the context of the Semantic Web, ontologies play a particularly important key role.

The idea of the Semantic Web is to annotate web content by machine-interpretable

meta data such that computers are able to process this content on a semantic level.

Ontologies provide the domain vocabulary in terms of which semantic annotation

3 Knowledge Representation and Ontologies 79

is formulated. Meta statements about web content in such annotations refer to a

commonly used domain model by including the concepts, relations and instances

of a domain ontology. The formality of ontology languages allows to reason about

semantic annotation from different sources, connected to background knowledge in

the domain of interest. There are a couple of characteristics of the web which affect

the use of ontologies for semantic annotation.

One aspect is the natural distributedness of content in the Semantic Web. The

knowledge captured in semantic annotation and ontologies is not locally available

at a single node but spread over different sites. This poses additional constraints on

the use of ontologies in the Semantic Web, taking into account distributedness of

knowledge. To avoid the need to transfer relevant knowledge to a central location,

there should be techniques that allow for a modularisation of the reasoning process

by handling partial results that are computed locally, based on a subset of all relevant

information. This issue is addressed by current research on distributed reasoning.

Another related aspect is that content on the web is created in an evolution-

ary manner and maintained in a decentralised way. There is no central control over

semantic annotation and ontologies that evolve in the Semantic Web, and information

in one ontology can conflict with information in another one. To deal with conflict-

ing pieces of knowledge, there should be techniques that resolve such situations by,

e.g., preferring one or another consistent sub view, similar to how humans would do.

Such techniques are subject to investigation in current research on paraconsistent
reasoning, as mentioned in Sect. 3.2.6.

There is an extra chapter dedicated to the topic of semantic annotation, namely

Chap. 5, in which the usage of ontologies for annotating web content with meta data

in the Semantic Web context is further elaborated on.

3.4 Ontology Languages

To make ontologies available to information systems, various concrete ontology lan-

guages have been designed and proposed for standardisation. In this section, we give

an overview of the most prevalent ontology languages that are important in the con-

text of the Semantic Web, and present some of them in detail.

3.4.1 Hierarchy of Languages for the Semantic Web

In the light of widespread impact and industrial usability, the standardisation of

ontology languages is of great importance to the Semantic Web community. Various

different aspects are considered for language standardisation, such as issues of the

underlying knowledge representation formalism in terms of expressiveness and com-

putational properties, web-related features like global unique identification and XML

serialisation syntax, or usability add-ons like the inclusion of strings and numbers or

non-functional meta data. The influence of different research and user communities

with manifold requirements have resulted in a complex landscape of a multitude of

80 Stephan Grimm et al.

languages backed by different past and ongoing standardisation efforts. Which lan-

guages are best suited for what purpose, how they can be efficiently implemented and

realised in a user-friendly way, or technically and semantically made interoperable

is still an open topic stimulating lively discussions in current research.

In Fig. 3.4 we make an attempt to sketch this landscape of languages, giving an

overview of the most important ontology languages with respect to current trends in

the Semantic Web. Since some languages build on others and on formerly achieved

standards, this landscape can be perceived as a hierarchy of languages for the Seman-

tic Web. However, besides a hierarchical structure with some languages being clearly

layered on top of others, there are also parallel branches and cross-relations between

languages and formalisms.13

One of the major distinctions of Semantic Web languages is by the knowl-

edge representation paradigm they follow. On the left-hand side in Fig. 3.4 there

is the description logic family of languages that build on various DL dialects and

their rule-extensions. They adhere to the classical model-theoretic semantics of

first-order predicate logic and to the open-world assumption. On the right-hand

side there is the family of logic programming languages that build on rules with

Fig. 3.4. An overview of Semantic Web languages

13 This figure shall convey a rough intuition about the relationships between major languages

with respect to their underlying knowledge representation formalisms and paradigms. It

therefore abstracts from certain language details and is necessarily imprecise and vague in

some aspects

3 Knowledge Representation and Ontologies 81

negation-as-failure. They typically follow a semantics of minimal or preferred mod-

els and adhere to the closed-world assumption. There are also languages in between

these two main strands, which cannot be clearly assigned to either paradigm. These

have been designed with a focus set on aspects other than a logically clear seman-

tics, or are attempts to combine features from both worlds, while the pure DL and

LP family languages have well understood properties in terms of computability and

inferential behaviour.

Languages that are placed near to the top in Fig. 3.4 are more expressive than lan-

guages that are placed close to the bottom, meaning that they allow for expressing

more complex knowledge and for richer inferencing through more sophisticated log-

ical consequences than less expressive languages do. Accordingly, high expressivity

of a language is traded for higher computational complexity of decision procedures

for reasoning. Within recent standardisation efforts, it is considered highly desirable

to at least maintain decidability as a design goal for a Semantic Web ontology lan-

guage, and Fig. 3.4 shows a boundary for decidability, above of which languages do

not meet this goal.

Three different kinds of arrows in Fig. 3.4 express a relationship of embedment

between languages. A solid arrow denotes complete semantic containedness of a

less expressive language in a more expressive one, meaning that anything that can be

expressed in the former can also be expressed in the latter by means of a direct map-

ping of languages constructs. A dashed arrow denotes a weaker form of embedding,

where not all the features of the less expressive language do completely fit the more

expressive target language, meaning that the former is in principle (approximately)

covered by the latter, apart from moderate deficiencies in some language constructs

and their semantic interpretation. A dash-dotted arrow denotes a syntactic embed-

ding such that the language constructs of the (syntactically) less expressive language

can be directly used in the more expressive one, although they may semantically be

interpreted in a different way.

An early initiative to standardise a language for semantic annotation of web

resources by the World Wide Web consortium (W3C) resulted in RDF and RDFS,

which form now a well established and widely accepted standard for encoding meta

data. The RDF(S) language is described in more detail in Sect. 3.4.2. It can be used

to express class-membership of resources and subsumption between classes but its

peculiar semantics does fit neither the classical nor the LP-style. If semantically

restricted to a first-order setting, RDF(S) can be mapped to a formalism named

description logic programs (DLP) [18], which is sometimes used to interoperate

between DL and LP by reducing expressiveness to their intersection.

On top of RDF(S), W3C standardisation efforts have produced the OWL family

of languages for describing ontologies in the Semantic Web, which comes in several

flavours with increasing expressiveness. Only the most expressive language variant,

namely OWL-Full, has a semantically proper layering on top of RDF(S), allowing

for features of metamodelling and reification. The less expressive variants OWL-Lite
and OWL-DL map to certain description logic dialects and fit the classical semantics

as subsets of first-order logic. Besides the class membership and subsumption rela-

tions inherited from RDF(S), OWL offers the construction of complex classes from

82 Stephan Grimm et al.

simpler ones by means of DL-style concepts constructors. Among ongoing standard-

isation efforts, OWL-DL is currently the most prominent Semantic Web ontology

language following the description logic paradigm, and in Sect. 3.4.3 the OWL fam-

ily is described in more detail.

A current trend in research on knowledge representation formalisms in the con-

text of the Semantic Web is to integrate DL-style ontologies with LP-style rules to

be interoperable on a semantic level. One attempt to do so is the Semantic Web

Rule Language SWRL)14 that extends the set of OWL axioms to include Horn-like

rules interpreted under first-order semantics. Interoperability with OWL ontologies

is realised by referring to OWL classes and properties within SWRL rules; however,

the combination of OWL-DL and SWRL rules results in an undecidable formalism.

Another approach to amalgamate OWL ontologies and rules are the so-called DL-
safe rules [38], which extend DL knowledge bases in a way similar to SWRL. How-

ever, DL-safe rules preserve decidability of the resulting language by imposing an

additional safety restriction on SWRL rules which ensures that they are only applied

to individuals explicitly known to the knowledge base.

Languages that follow the logic programming paradigm mainly stem from deduc-

tive database systems, which apply rules on the facts stored in a database to derive

new facts by means of logical inferencing. A common declarative language used in

deductive databases is Datalog [47], which is syntactically similar to Prolog [31].

In the Semantic Web context, F-Logic is a more prominent rule language that com-

bines logical formulas with object-oriented and frame-based description features. In

its logic programming variant F-Logic (LP), it adopts the semantics of Datalog rules.

In Sect. 3.4.4 we investigate F-Logic in more detail.

Finally, the Web Service Modeling Language (WSML) family is the most recent

attempt to standardise ontology languages for the web, with a special focus on anno-

tating Semantic Web Services. Since WSML tries to cover all the major aspects

of different knowledge representation formalisms, its various language variants are

spread over the scheme of Fig. 3.4. They fit semantically in between existing lan-

guages by being based on similar formalisms in both the DL and the LP strands. We

will have a closer look at the WSML family of languages in Sect. 3.4.5.

3.4.2 RDF(S)

The Resource Description Framework (RDF) [30] is a language recommended by

the W3C standardisation body for representing information about resources in the

World Wide Web. It is particularly intended for the representation of meta data about

identifiable web resources, such as title and author of a web page, topic and copyright

information of an electronic document retrievable from the web or functionality and

access conditions of a Web Service.

Abstracting from retrievable or electronically processable web resources to any-

thing that has identity, RDF can be used to represent information about just anything.

14 http://www.w3.org/Submission/SWRL/

3 Knowledge Representation and Ontologies 83

In this sense, RDF can serve as a language to represent knowledge as meta data about

entities in, e.g., the business trips domain.

The RDF Vocabulary Description language RDF Schema (RDFS) [7] is an exten-

sion to RDF which facilitates the formulation of vocabularies for RDF meta data.

While RDF is used to relate resources by means of properties, RDFS introduces the

notions of resource classes and their hierarchies. The combined use of both RDF and

RDFS is often referred to as RDF(S) and provides a simple ontology language for

conceptual modelling with some basic inferencing capabilities.

Basic Elements of RDF

The approach for representing meta data about resources in RDF is based on a few

main ideas.

Identity through URIs

Uniform Resource Identifiers (URIs) are used for naming entities. They exhibit some

naming conventions that allow for partitioning of names into namespaces. For mod-

elling ontologies in RDF, URIs may be used to identify the following kinds of enti-

ties: individuals, such as the person MisterX or the company UbiqBiz; kinds of

things, such as Employee or Company; properties of those things, such as mailbox;

and values of those properties, such as the string “mailto:mrX@ubiqbiz.com”.

By URIs, resources are uniquely identified throughout the web, which allows for

a decentralised organisation of knowledge about commonly referenced resources.

Sentences with Subject, Predicate and Object

Statements in RDF have the form of subject–predicate–object sentences, which are

also referred to as RDF triples. A triple

subject predicate−−−−−−−−−−→ object

relates a subject to an object via a predicate, while the roles of subject, predicate and

object are played by resources identified by URIs. The subject is the resource to be

described, the predicate is a specific property of this resource, and the object serves

as a value of this property for this resource.

Examples for triples in RDF are15

btr:MrX btr:employedAt−−−−−−−−−−−−−−−→ btr:UbiqBiz ,

stating that MisterX is employed at UbiqBiz, or

http://ubiqbiz.com/web/MrX.html btr:hasAuthor−−−−−−−−−−−−−−→ btr:MrX ,

stating that MisterX is the author of his web page at the UbiqBiz website.

15 In the examples, btr: refers to a namespace abbreviation for the business trips domain

84 Stephan Grimm et al.

Graph Representation

Several triples taken together form an RDF graph, whose nodes are resource

URIs and whose arcs are properties. A node in an object position can be either

a resources or an RDF literal, which represents a data value like the string

“mailto:mrX@ubiqbiz.com” or some number. Furthermore, RDF graphs sup-

port blank nodes, which represent anonymous resources. From a knowledge repre-

sentation view, an RDF graph can be seen as a semantic network, similar to the one

depicted in Fig. 3.1.

Since RDF is a web language, the various triples in an RDF graph can originate

from different sites, with the idea that anybody can state anything about any resource.

In this sense, RDF is designed to capture knowledge and meta data that is spread over

the web.

XML Serialisation

Another web-related aspect of RDF is its XML serialisation format in which RDF

graphs are encoded for machine processing and for transport over the wire. An exam-

ple of the above triples encoded in RDF/XML syntax is the following.

<rdf:Description rdf:about="http://ubiqbiz.com/web/MrX.html">
<btr:hasAuthor rdf:resource="btr:MisterX"/>

</rdf:Description>
<rdf:Description rdf:about="btr:MisterX">

<btr:employedAt rdf:resource="btr:UbiqBiz"/>
</rdf:Description>

Descriptions of resources are encoded using special XML tags from the RDF-

predefined vocabulary.

Reification

RDF allows one to make statements about statements, which is referred to as reifica-

tion. A reified statement is a resource that represents an occurrence of an RDF triple.

In this way, meta statements can be formulated, which can be illustrated as follows.

subject predicate−−−−−−−−−−→ object predicate−−−−−−−−−−→ object

Here, the subject role is played by a resource that represents a whole statement.

Reification is particularly interesting in the context of the Semantic Web, where

it can be used to make statements about things that have been stated elsewhere by

referring them as resources.

Data Structuring Facilities

Furthermore, RDF specifies elements to represent basic data structures as known

from programming languages, namely containers and collections. Containers can

be used to realise open data structures, such as ordered and unordered sequences,

whereas collections allow for list structures that can be closed by stating that there

are no more members.

3 Knowledge Representation and Ontologies 85

Typing Resources with RDFS

RDFS facilitates the specification of application-specific ontological vocabularies in

the form of class and property hierarchies on top of RDF resources. For this pur-

pose, it defines a set of reserved keywords that can be used in RDF triples to relate

resources to classes.

Classes

RDFS defines a type system for RDF resources by introducing the concept of a class.

The reserved predicate rdf:type is used to indicate class membership, i.e. that a

resource is of a certain type. RDFS classes are organised in a hierarchy of types

for RDF resources. The reserved predicate rdfs:subClassOf is used to state a

subclass relationship between two types. The following RDF(S) graph illustrates the

typing of resources.

btr:MrX rdf:type−−−−−−−−−−−→ btr:Employee rdfs:subClassOf−−−−−−−−−−−−−−−−−−−→ btr:Person

Here, the resource that represents MisterX is stated to be of type btr:Employee, i.e.

MisterX is a member of the class of employees, which is itself a subclass of persons.

These RDF(S) constructs for typing allow for the formulation of subsumption

hierarchies and for the distinction between instances and concepts in the ontolog-

ical sense. However, in RDF(S) there is no clear separation between classes and

their members. Instead, RDF(S) allows self-reference and classes being members of

(meta) classes. Any resource can be tagged as a class by relating it to the predefined

meta type rdfs:Class.

Properties

By the semantics of RDF(S), any resource used in the predicate position of an RDF

triple is a member of the class rdfs:Property. Besides classes, properties can also

be organised in a hierarchy by means of the keyword rdfs:subPropertyOf. An

example is the following triple,

btr:employedAt rdfs:subPropertyOf−−−−−−−−−−−−−−−−−−−→ btr:worksFor

which reflects the fact that anybody employed at some company works for this com-

pany.

With the predefined predicates rdfs:domain and rdfs:range, one can

define the domain and range for a property. By setting the range of the property

btr:employedAt in the above example to btr:Company, any resource that fills

the object position of an RDF triple with this property as predicate is a member of

the company class.

Semantics of RDF(S)

RDF(S) comes with a formal semantics that is specified in a model-theoretic way in

[24]. Here, we only sketch the basic ideas of the semantics defined there, giving an

intuition on the inferencing characteristics of RDF(S).

86 Stephan Grimm et al.

In logical terms, RDF is an assertional language in which each triple expresses

a positive ground proposition. An RDF graph, as a set of triples, makes up a logi-

cal theory that consists of positive ground assertions. Since there is no concept of

negation, one cannot express contradictory information in the language. Although it

is possible to express or infer that, e.g., a person is both male and female, there is no

way of stating that the classes of males and females cannot have common resources

as their members.

In [24], the semantics of RDF(S) is characterised in the form of axiomatic triples

and entailment rules that derive new, inferred triples. To yield the set of all entailed

statements for an RDF graph GRDF, the rules are exhaustively applied to the triples of

GRDF together with all axiomatic triples. In this sense, the RDF(S) semantics deter-

mines which implicit knowledge is derived from explicitly stated assertions in a

graph. To illustrate the most essential parts of the RDF(S) semantics, we give exam-

ples of some of these entailment rules and their application to triples.
For example, the semantics for class membership and inheritance is determined

by the following two entailment rules applied to the triples of an RDF graph GRDF.

(1)
IF GRDF contains (C,rdfs:subClassOf, D) and (R,rdf:type, C)
THEN derive (R,rdf:type, D)

(2)
IF GRDF contains (C,rdfs:subClassOf, D) and (D,rdfs:subClassOf, E)
THEN derive (C,rdfs:subClassOf, E)

Their reading is to derive the triple in the THEN part for any instantiation of triples in

the IF-part. The variables occurring inside the triples range over RDF resource URIs.

Rule (1) entails the membership of resources in superclasses, while rule (2) ensures

the transitivity of the subclass relationship. From the previous triple about MisterX

being an employee as a special kind of person, rule (1) would entail the following

triple.

btr:MrX rdf:type−−−−−−−−−→ btr:Person

Thus, an implementation of an RDF system would include MisterX in the result for

the query asking for all persons.

As another example, the semantics for domains and ranges of properties is deter-

mined by the following two entailment rules.

(3)
IF GRDF contains (P, rdfs:domain, C) and (R, P, S)
THEN derive (R, rdf:type, C)

(4)
IF GRDF contains (P, rdfs:range, C) and (R, P, S)
THEN derive (S, rdf:type, C)

By setting the domain and range of the property btr:employedAt to

btr:Employee and btr:Company, as follows,

btr:Employee rdfs:domain←−−−−−−−−−−−− btr:emp.At rdfs:range−−−−−−−−−−−−→ btr:Company

the rules (3) and (4) apply to the triple

btr:MrX btr:employedAt−−−−−−−−−−−−−−−→ btr:UbiqBiz ,

3 Knowledge Representation and Ontologies 87

deriving that MisterX is an employee and that UbiqBiz is a company.

The entailment rules also apply to the RDF(S) meta vocabulary, determin-

ing the relationship between predefined vocabulary resources like rdfs:Class or

rdfs:Property. For example, the axiomatic triple

rdf:type rdfs:range−−−−−−−−−−−→ rdfs:Class ,

already triggers rule (4) for any class membership assertion, deriving that the referred

type resource is a class.

Software Support for RDF(S)

The RDF(S) language is used by various web-based applications for describing meta

data, and a number of tools are available that support visual editing and program-

matic handling of RDF(S) descriptions.

One of the most common visual editors for RDF(S) is Protégé,16 although

recently its focus has been shifted towards OWL. Protégé allows to navigate and edit

an RDF(S) class hierarchy and has special support for populating an RDF Schema

with instances using customisable input forms. Other ontology editors that support

RDF(S) are WebODE17 [10], OntoEdit18 [46] and KAON19 OI-Modeller.

For in-memory processing and database storage of RDF(S) descriptions, com-

mon tool suites are Sesame20 [8] and Jena21 [32], which provide software libraries

that enable software developers to process RDF(S) descriptions within their appli-

cations. They comprise parsing and serialisation for the RDF XML format, an in-

memory object representation for RDF(S) descriptions as well as database persis-

tency and querying functionality including reasoning capabilities. Recently, also ora-

cle include RDF(S) support in their database solutions. 22

3.4.3 OWL

The Web Ontology Language (OWL) [40] has been standardised by the W3C con-

sortium as a language for semantic annotation of web content and is widely accepted

within the Semantic Web community.

An important issue for the design of OWL was the trade-off between expressivity

of the language on the one hand and scalability of reasoning on the other. To this end,

OWL comes in three different flavours, namely OWL-Lite, OWL-DL and OWL-Full,

reflecting different degrees of expressiveness. The design of OWL-Lite and OWL-

DL has been significantly influenced by descriptions logics, and hence these two

16 http://protege.stanford.edu/
17 http://webode.dia.fi.upm.es/WebODEWeb/index.html
18 Meanwhile OntoStudio – http://ontoedit.com/
19 http://sourceforge.net/projects/kaon
20 http://sourceforge.net/projects/sesame/
21 http://jena.sourceforge.net/
22 See the technical whitepaper at http://www.oracle.com/technology/tech/
semantic_technologies/pdf/semantic_tech_rdf_wp.pdf

88 Stephan Grimm et al.

variants correspond to the description logic dialects SHIF(D)23 and SHOIN (D),
respectively. OWL-Full, on the contrary, departs from description logic semantics in

order to provide compatibility with RDF(S). The DL-based OWL variants benefit

from well understood computational properties and decidability of description logic,

while OWL-Full has shown to be undecidable [36]. In our presentation of OWL, we

focus on OWL-DL as the most prominent language variant with the most support by

the Semantic Web community.

Syntax and Intuitive Semantics

The OWL standard defines different syntaxes based on RDF(S), XML and propri-

etary text format. The OWL RDF/XML syntax allows for an encoding of an OWL

ontology within the RDF(S) framework in RDF/XML serialisation. The OWL XML
presentation syntax provides a more compact XML format for OWL ontologies,

independent from RDF(S). In contrast to these machine-oriented serialisations, the

OWL abstract syntax serves as a human readable text format to present OWL ontolo-

gies to knowledge engineers. Yet another popular way to present OWL content to

a reader in a more scientific context is to make use of DL formulas. We choose to

present examples in OWL abstract syntax as well as in the more compact description

logic formal notation.

Similar to RDF(S), OWL provides syntactic modelling constructs for the basic

elements of an ontology, i.e. concepts, relations and instances. In OWL these are

called classes, properties and individuals, respectively, and they correspond to con-

cepts, roles and individuals in description logics. In contrast to RDF(S), OWL-DL

strictly separates classes from individuals and allows for building complex classes

out of simpler ones by means of class constructors. In the following we go over a

selection of the syntactic elements of OWL including various such constructors. For

each example statement, taken from the geographic ontology depicted in Fig. 3.2, we

give its intuitive meaning in natural language as well as notations in OWL abstract

syntax and DL formulas.

OWL by Examples

Named classes are usually introduced by means of class declarations that correspond

to DL inclusion axioms with an atomic concept on the left-hand side, as in the fol-

lowing example.

1© “A continent is a geographic location different from a country.”

Class(Continent partial
intersectionOf(GeographicLocation

complementOf(Country))

Continent � GeographicLocation � ¬Country

Here the class Continent is introduced through a partial declaration, which speci-

fies (some of) its necessary conditions. By means of the constructors intersectionOf

23 The F stands for functional roles, i.e. it can be stated that role relationships must be

functional

3 Knowledge Representation and Ontologies 89

and complementOf, a continent is declared to be a geographic region but not a coun-

try. Hence, this syntactic construct states both subclass relationship and disjointness,

according to the respective DL inclusion axiom. “Necessary” here means that any

continent is also a geographic location and not a country. However, not any geo-

graphic location that is not also a country is necessarily a continent; the partial class

declaration only works in one direction and does not impose a “sufficient” condi-

tion, which can be achieved by using the keyword complete instead of partial. The

keyword complete specifies class equivalence.

Individuals are introduced based on class descriptions, as in the following

example.

2© “Europe is a particular continent.”
Individual(Europe type(Continent)) Continent(Europe)

Here the individual Europe is introduced as an instance of the class Continent.
Although this example shows the instantiation of a previously declared named class,

the class description for the type-clause can be arbitrarily complex using class con-

structors.

An alternative way to define a class is to enumerate all its individuals, as shown

in the following example.

3© “The continents are America, Europe, Africa, Asia and Australia.”

EnumeratedClass(Continent
America Europe Africa Asia Australia)

Continent ≡ {America, Europe, Africa, Asia, Australia}

Here the class Continent is defined by listing all its known members, i.e. all the

different continents.

Similar to classes, properties are introduced through explicit declarations with

optional domain and range classes and other modifiers, as shown in the following

example.

4© “Geographic regions in general contain geographic regions.”

ObjectProperty(contains
domain(GeographicRegion)
range(GeographicRegion)
inverseOf(isContainedBy)
Transitive)

∃ contains.� � GeographicRegion,
� � ∀ contains.GeographicRegion,

locatedIn ≡ isContainedBy−

Trans(contains)

Here the object property contains is declared as a transitive containment relation

between geographic regions. It is linked to its inverse property isContainedBy. The

domain and range clauses are mapped to appropriate DL inclusion axioms: anything

that contains something is a geographic region, as well as anything that is being

contained. In addition to the domain of individuals OWL also offers the so-called

concrete domains [3], i.e. properties can alternatively range over datatypes such as

integer, float or string.

Once properties have been introduced, complex class descriptions can be formed

by imposing restrictions on them. The following example shows a general subclass

statement including a restriction on the previously introduced property.

90 Stephan Grimm et al.

5© “A planar region only contains planar or linear regions.”

SubClassOf(PlanarRegion
restriction(contains

allValuesFrom(
unionOf(PlanarRegion

LinearRegion)))

PlanarRegion �
∀ contains.(PlanarRegion � LinearRegion)

Here planar regions are restricted to only contain planar or linear regions by means of

the restriction constructor. The allValuesFrom clause requires that all values for the

restricted property are of a certain type, which is specified as a disjunction by means

of the unionOf constructor. Although this example states subclass relationship for a

named class, both parameters of the subClassOf-clause can be arbitrarily complex

class descriptions made up of constructors.

Statements of class equivalence can also be quite sophisticated as in the following

example.

6© “A European city is a city whose geographic region is contained in that of Europe.”

EquivalentClasses(EuropeanCity
intersectionOf(

City
restriction(locatedIn

allValuesFrom(
restriction(isContainedBy

someValuesFrom(
restriction isRegionFor

someValuesFrom(
oneOf(Europe))))))))

EuropeanCity ≡ City �
∀ locatedIn.∃ isContainedBy.∃ isRegionFor.{Europe}

Here the class EuropeanCity is set equivalent to a complex class description with

nested restrictions on properties and their inverses. By this, a city can be concluded to

be European if its geographic region is contained by that of the European continent.

The someValuesFrom clause restricts a property such that there must exist a value of

a certain type, while the oneOf constructor creates a class from an explicitly named

individual, similar to the enumerated class in 3©.

Another way to restrict properties is to constrain their cardinality, as shown in

the following example.

7© “A city is a geographic location governed by a single country.”

SubClassOf(City
restriction(governedBy

maxCardinality 1))

City � ≤ 1 governedBy

Here cities are restricted to be governed by at most one country by means of

the maxCardinality clause. Similarly, minimal cardinality can be realised with the

minCardinality clause, while both can be combined to require a fixed cardinality.

Another usage of introduced properties is to connect individuals to other individ-

uals or data values, as shown in the following example.

8© “Munich is a German city with 1288307 inhabitants.”

Individual(Munich type(City)
value(governedBy Germany)
value(numberOfInhabitants 1288307))

City(Munich),
governedBy(Munich, Germany)
numberOfInhabitants(Munich, 1288307)

Here the individual Munich is stated to be a city that lies in Germany by an appro-

priate connection to the individual Germany. It is asserted an integer value for the

property numberOfInhabitants.

3 Knowledge Representation and Ontologies 91

Model-Theoretic Semantics

The exact semantics of the DL-based OWL variants is determined by the model-

theoretic semantics of the underlying description logic formalism. An OWL ontology

consists of a collection of statements as the ones shown in the examples 1© – 8©.

These statements are interpreted as axioms of a DL knowledge base, as described in

Sect. 3.2, and thus OWL employs the open-world assumption. Table 3.1 shows the

mapping of OWL abstract syntax constructs to their corresponding description logic

axioms.

Table 3.1. Translation of OWL abstract syntax to description logic formal notation

OWL abstract syntax DL syntax
Axioms

Class(A partial C1 . . . Cn) A � C1 � . . . Cn

Class(A complete C1 . . . Cn) A ≡ C1 � . . . Cn

EnumeratedClass(A a1 . . . an) A ≡ {a1} � · · · � {an}
SubClassOf(C D) C � D
EquivalentClasses(C1 . . . Cn) C1 ≡ · · · ≡ Cn

DisjointClasses(C1 . . . Cn) Ci � ¬Cj, (1 ≤ i < j ≤ n)

ObjectProperty(r super(r1). . .super(rn) r � r1 � · · · � rn

domain(C1) . . . domain(Cn) ∃ r.� � C1 � · · · � Cn

range(C1) . . . range(Cn) � � ∀ r.C1 � · · · � ∀ r.Cn

[inverseOf(s)] r ≡ s−

[Symmetric] r ≡ r−

[Functional] � � ≤ 1 r
[InverseFunctional] � � ≤ 1 r−

[Transitive]) Trans(r)
SubPropertyOf(r s) r � s
EquivalentProperties(r1 . . . rn) r1 ≡ · · · ≡ rn

Individual(a type(C1) . . . type(Cn) C1 � · · · � Cn(a)
value(r1 a1) . . . value(rn an)) r1(a, a1), . . . , rn(a, an)

SameIndividual(a1 . . . an) a1 = · · · = an

DifferentIndividuals(a1 . . . an) ai
= aj, (1 ≤ i < j ≤ n)

Descriptions
Class(A) A
Class(owl:Thing) �
Class(owl:Nothing) ⊥

intersectionOf(C1 C2 . . .) C1 � C2

unionOf(C1 C2 . . .) C1 � C2

complementOf(C) ¬C
oneOf(a1 a2 . . .) {a1} � {a2}

restriction(r someValuesFrom(C)) ∃ r.C
restriction(r allValuesFrom(C)) ∀ r.C
restriction(r hasValue(a)) ∃ r.{a}
restriction(r minCardinality(n)) ≥ n r
restriction(r maxCardinality(n)) ≤ n r

92 Stephan Grimm et al.

Working with OWL Ontologies

Due to the connection of OWL to description logics, the basic reasoning services

available for DL knowledge bases also apply to OWL ontologies. Thus, an OWL

ontology can be checked for consistency or it can be queried for implicit knowledge.

Ontology Inconsistency

Consider the following OWL ontology consisting of three statements.

{ subClassOf(City restriction(governedBy maxCardinality(1))),
Individual(Nicosia type(City) value(governedBy Greece) value(governedBy Turkey)),
DifferentIndividuals(Greece Turkey) }

The first statement is taken from 7© and says that cities are uniquely governed by

a single country. The second statement says that the city of Nicosia24 is governed

by both Greece and Turkey, while the third statement assures that these are two dif-

ferent countries. This is clearly a contradiction and this OWL ontology is therefore

inconsistent. This can be verified by using the reasoning service of knowledge base
satisfiability, offered by common description logic reasoners. Notice that for practi-

cal reasons an inconsistent ontology is quite useless, since it allows to conclude any

arbitrary statement.

Ontology Coherency

Another kind of “problematic modelling” in ontologies is to introduce classes that

cannot have instances, which is the case in the following OWL ontology.

{ subClassOf(City restriction(governedBy maxCardinality(1))),
class(SplitCity complete

intersectionOf(City restriction(governedBy minCardinality(2)))) }

Again, the first statement, taken from 7©, restricts cities to be governed by at most one

country. The second statement introduces a class SplitCity, requiring that split cities

are cities governed by at least two countries. However, by the first statement, this is

not possible and thus the class SplitCity cannot have an instance in any valid model of

the corresponding description logic knowledge base. In DL-terms this means that the

concept SplitCity is unsatisfiable. Common description logic reasoners offer the ser-

vice of checking concepts for their satisfiability. An ontology that contains an unsat-

isfiable concept/class is said to be incoherent. In contrast to inconsistent ontologies,

an incoherent ontology is not useless and many reasoning tasks might not be affected

by the unsatisfiability of a particular class. However, incoherence of an ontology indi-

cates erroneous modelling, and once an unsatisfiable class is assigned an individual

as an instance the ontology becomes inconsistent.

24 Nicosia is the capital of Cyprus and is split into a Greek and a Turkish part

3 Knowledge Representation and Ontologies 93

Querying for Subsumption

Besides checking an ontology for consistency or coherency, its main usage is to be

queried for implicit knowledge. Based on the notion of entailment, for any OWL

statement we can ask whether it follows from an OWL ontology, i.e. whether its cor-

responding DL axiom is entailed by the respective DL knowledge base. Querying for

subsumption between two classes underlies the most important usage of reasoning in

the OWL language, namely classification. The following OWL ontology allows for

the automatic classification of two classes that are not explicitly put in subsumption

relation.

{ class(SplitCity complete
intersectionOf(City restriction(governedBy minCardinality(2)))),

class(GreekTurkishCity partial
intersectionOf(City

restriction(governedBy someValuesFrom(oneOf(Greece)))
restriction(governedBy someValuesFrom(oneOf(Turkey))))),

DifferentIndividuals(Greece Turkey) }

The first statement introduces split cities as before, while the second statement

introduces a class GreekTurkishCity for cities which are governed by both Greece

and Turkey. The third statement assures the two involved countries to be dis-

tinct, as before. Notice that this time the ontology does not restrict cities to be

governed by a single country. From the knowledge specified in the ontology,

GreekTurkishCity is a subclass of SplitCity and a DL reasoner would derive the state-

ment subClassOf(GreekTurkishCity SplitCity) as a logical consequence.

By checking subsumption between all the named classes in an OWL ontology,

an inferred class hierarchy can be established.

Querying for Assertion

The other kind of statements an OWL ontology can be queried for are assertion

axioms. For both role assertions and concept assertions, we can ask whether they

hold with respect to an OWL ontology, as illustrated by the following example.

{ subClassOf(EUCountry restriction(officialCurrency hasValue(Euro))),
Individual(Germany type(EUCountry),
class(GermanCity partial

intersectionOf(City restriction(governedBy hasValue(Germany)))),
Individual(Munich type(GermanCity) }

This ontology states that in countries in the EU, as e.g. Germany, the official currency

is Euro, and that German cities, as e.g. Munich, are cities governed by Germany.

From the knowledge specified in the ontology, it follows that Munich is governed

by Germany, and a DL reasoner would derive the statement Individual(Munich

value(governedBy Germany)) as a logical consequence, since Munich is assigned to be a

GermanCity. Furthermore, the ontology allows to conclude that in Munich one can

pay with Euro, i.e. Munich is governed by a country that has Euro as official currency.

A reasoner would derive the statement Individual(Munich type(restriction(governedBy

94 Stephan Grimm et al.

someValuesFrom(restriction(officialCurrency hasValue(Euro)))))), since, as a

GermanyCity, Munich is governed by Germany whose official currency is

Euro.

By iterating over all the individuals in an OWL ontology, querying for subsets of

named individuals with certain properties can be achieved. For example, in the above

query Munich can be subsequently replaced by other named individuals to retrieve

all cities in which one can pay with Euro.

Software Support for OWL

Since OWL is technically built on top of RDF(S), some RDF(S) specific tools can

be readily applied, e.g. for parsing and serialisation in the OWL RDF/XML format,

while others have also been upgraded to OWL versions.

The ontology editor Protégé [22] also supports OWL and comes with a variety of

plugins that allow for visualisation and management of OWL ontologies. In addition

to different graphical views of the explicit class and property hierarchies, it facil-

itates the visual editing of OWL axioms and enables the embedding of reasoning

tools for computing inferred subsumption hierarchies. Other visual editors for OWL

ontologies that offer similar functionality are SWOOP25 [28] or the commercial tools

Altova Semantic Works26 and TopBraid.27

For the programmatic handling of OWL ontologies, the OWL API28 [5] as well

as Jena [32] can be used by software developers to process OWL descriptions within

their applications. They provide means for parsing and serialisation of the different

OWL syntax formats and for in-memory manipulation of ontologies.

As OWL is an expressive knowledge representation language, reasoning plays

an important role, and there are a number of description logic reasoners available

that can be used for querying OWL ontologies with respect to inferred knowledge

or for verifying their consistency. The most common description logic reasoners in

the Semantic Web context are based on the tableau calculus, and available systems

that support the OWL language are Racer29 [23], FaCT30 [25] and Pellet31 [44].

Recently, new DL reasoning algorithms – based on deductive database technology –

were devised for the development of the KAON232 [37] system, which is particularly

optimised for querying ontologies with large A-Boxes.

3.4.4 F-Logic

Frame Logic (F-Logic) [29] is a deductive, object-oriented database language which

aims at combining the declarative semantics and expressiveness of logic program-

25 http://www.mindswap.org/2004/SWOOP/
26 http://origin.altova.com/products_semanticworks.html
27 http://www.topbraidcomposer.com/
28 http://owl.man.ac.uk/api.shtml
29 Meanwhile RacerPro – http://www.racer-systems.com/
30 Meanwhile FaCT++ – http://owl.man.ac.uk/factplusplus/
31 http://www.mindswap.org/2003/pellet/
32 http://kaon2.semanticweb.org/

3 Knowledge Representation and Ontologies 95

ming with rich and intuitive conceptual modelling capabilities, as provided by frame-

based systems. The most significant language features of F-Logic comprise object

identity, complex objects, classes, inheritance, polymorphic types, rules and queries.

Besides the aspects of a frame-based language for conceptual modelling, it can also

be perceived as a logic with model-theoretic semantics and a sound and complete

resolution-based proof theory.

We give a short overview on syntax and informal semantics of the most impor-

tant features of F-Logic. In the original specification [29], F-Logic is given several

semantics and in its full version it is an extension of first-order logic. However, sys-

tems that support the language do not implement full F-Logic but a logic program-

ming variant based on the well-founded semantics. Thus, we present F-Logic as a

rule-based LP-style language, as it is widely perceived.

F-Logic by Examples

Frame-Based Modelling

F-Logic allows to describe objects – identified by an object ID – by grouping related

information about the object in the so-called F-molecules. The following example

illustrates the use of F-molecules to describe some objects from our business trips

scenario.

UbiqBiz[hasLegalName -> ‘Ubiquitous Business Ltd.’,
hasOfficesIn ->> {NewYork, London, Singapore},
hasPhones ->> {0017324747123, 00654564458},
hasEmployees ->> {MrX, MrY, MsZ}].

MrX[hasName -> ‘Mister X’,
hasAddress -> AddressMrX[hasStreet -> ‘Fifth Avenue’,

hasNumber -> 521,
hasCity -> NewYork].

BookingUbiqMrX[bookedBy -> UbiqBiz,
bookedFor -> MrX,
issuedFor -> FL4711].

In the example, objects, such as UbiqBiz, are described in terms of F-molecules that

assign them values for certain attributes, such as legal name, locations of offices,

phone numbers and associated employees. As values for attributes, F-Logic allows

objects as well as data values, such as strings or numbers. The symbol -> denotes

an assignment of a single value, while the symbol ->> indicates the assignment of

multiple values for set-valued attributes. As illustrated by the attribute hasAddress,

attribute assignments in F-molecules can be nested.

From an ontology point of view, the objects in the example can be seen as

instances. Besides these, F-Logic also provides language features for describing

classes of objects with attached attributes and relating them in class hierarchies,

as shown next.

Company :: LegalEntity.
Company[hasLegalName => STRING,

hasOfficesIn =>> City,
hasPhones =>> NUMBER,

96 Stephan Grimm et al.

hasEmployees =>> Person].

Person :: LegalEntity.
Person[hasName => STRING,

hasAddress => Addresss].

Employee :: Person.
Employee[isEmployedAt => Company].

Booking[bookedBy => LegalEntity,
bookedFor => Person,
issuedFor => Flight].

UbiqBiz : Company.
MrX : Person.
FL4711 : Flight.
BookingUbiqMrX : Booking.

In the example, the object Company is described as a class for company objects with

appropriate attribute ranges. The symbol => indicates a single-valued range, while

the symbol =>> assigns a set-valued range for attributes with multiple values.

Both Company and Person are declared as subclasses of LegalEntity by means of

the symbol ::, which denotes class inheritance and is used to build class hierarchies.

The class Employee is, in turn, a subclass of Person with an additional attribute for

employment; it inherits the attributes from its parent class Person.

Objects can be assigned to classes using the symbol :. In the ontological view,

this means to relate an instance to a concept. Here, the symbol : is used to state that

UbiqBiz is a company, that MisterX is a person, etc. Since any object can serve as a

class, classes can be declared as instances of other classes, and thus F-Logic supports

metamodelling facilities.

Rules

In the Semantic Web context, F-Logic is primarily perceived as a language following

the rule-based paradigm. Indeed, LP-style rules form the essential language feature

for the deductive aspects of F-Logic.

The keyword FORALL – to indicate universal quantification of involved variables –

is used together with the symbol <- to construct rules in F-Logic. A rule

FORALL <variables> <head> <- <body>.

has the typical reading: for any possible instantiation of variables in the rule body,

derive the corresponding instantiation of the rule head. By deriving new information,

rules extend an F-Logic object base by intensional knowledge, forming its deductive

closure.

The following is an example of a rule that operates on the descriptions of the

classes and objects given before.

FORALL C,E C[hasEmployees ->> E] <- E : Employee[isEmployedAt -> C].

It captures a part of the inverse relationship between the attributes hasEmployees and

isEmployedAt. Whenever an employee can be derived to be employed at a certain

company, the rule derives that this employee is among the list of employees of that

particular company.

Another, more complex example of a rule is the following, taken from Sect. 3.1.

3 Knowledge Representation and Ontologies 97

FORALL B,C,P P : Employee[isEmployedAt -> C] <- P : Person AND
C : Company AND
B : Booking[bookedBy -> C,

bookedFor -> P].

It concludes a person to be an employee of a certain company whenever there is

a booking for this person by that particular company. From the concrete booking

BookingUbiqMrX for flight FL4711, specified before, this rule would derive the F-

molecule

MrX : Employee[isEmployedAt -> UbiqBiz].

stating that MisterX is an employee of UbiqBiz.

Queries

F-Logic provides queries as a language element for the retrieval of (tuples of) objects.

Objects are bound to possible instantiations of variables that occur in the query. Syn-

tactically, queries in F-Logic are a special kind of rules with an empty head and have

the following form.

FORALL <variables> <- <body>.

As with rules, the variables that occur in the body of a query are universally quanti-

fied. Whenever a tuple of objects is a possible instantiation of variables that conform

with the deductive closure of the object base, this tuple is part of the result for the

query.

An example for an F-Logic query is the following,

FORALL E,A <- E : Employee[isEmployedAt -> UbiqBiz,
hasAddress -> A[hasCity -> NewYork]].

asking for all UbiqBiz employees who live in New York. Applied to the formerly

described objects and rules, the answer to this query would be the object MrX because

MisterX is assigned an address in New York and he can also be derived to be an

employee.

Queries can also ask for schema elements and bind variables to classes. The

following query asks for all classes which MisterX belongs to.

FORALL C <- MrX : C.

The answer to the query is the set {Person, Employee, LegalEntity} of classes.

Negation as Failure

Under the semantics of the logic programming variant, F-Logic makes the closed-

world assumption for the evaluation of queries and for the deductive closure on an

object base. For example, the query

FORALL E <- E : Employee.

that asks for all employees only yields MrX as a result. For MrY and MsZ, it has not been

stated that they are employees, nor can this information be derived from the specified

knowledge. Therefore, MisterY and MissZ are assumed to be no employees.

98 Stephan Grimm et al.

Furthermore, the negation operator NOT, used in the bodies of rules and queries,

is interpreted as negation-as-failure. The following is an example of a query that

contains a negation operator, combined with a rule.

FORALL P P : FlightParticipant <- F : Flight AND
B : Booking[bookedFor -> P,

issuedFor -> F].
FORALL E <- UbiqBiz[hasEmployee ->> E] AND

NOT E : FlightParticipant.

It asks for all the employees of UbiqBiz who do not participate in any known flight,

which yields the set {MrY, MsZ}.

Software Support for F-Logic

Since F-Logic sets a focus on rule-based inferencing rather than on web aspects,

it does not come in a web-style XML serialisation format like other ontology lan-

guages in the Semantic Web. Its syntax rather resembles the style of typical pro-

gramming languages and is human-readable for people with a software develop-

ment background. To this end, there is not much support in graphical editing tools

and F-Logic ontologies are typically developed using text editors. An exception is

OntoStudio,33 which provides graphical editing capabilities for F-Logic rules, while

some other ontology editors also support F-Logic export features.

There are two major inference engines available that perform reasoning on F-

Logic rules: the freely available FLORA-234 [49] and the commercial OntoBro-

ker35 [12]. Recently, also the KAON236 system has included some support for F-

Logic.

3.4.5 WSML

The WSMO37 initiative aims at providing an overarching framework for handling

Semantic Web Services (SWS). It comprises the WSMO conceptual model, as

an upper-level ontology for Semantic Web Services, the WSML language and

the WSMX execution environment. WSMO (Web Service Modelling Ontology) is

described in Part III Chap. 7 in more detail, while here we are concerned with ontol-

ogy language aspects. WSML (Web Service Modeling Language) is a language to

formally describe the elements defined in the WSMO conceptual model, providing

syntax and formal semantics for them.

WSML is particularly designed for describing Semantic Web Services and is

therefore not a mere ontology language. Besides typical ontological notions, it also

provides SWS-specific language constructs, such as “goal”, “web service”, “inter-

face”, “choreography” or “capability”, to capture different aspects of Web Service

33 http://www.ontoprise.de/content/e1171/e1249/index_eng.html
34 http://flora.sourceforge.net/florahome.php
35 http://ontobroker.semanticweb.org/
36 http://kaon2.semanticweb.org/
37 http://www.wsmo.org

3 Knowledge Representation and Ontologies 99

semantics. One of the corner stones in WSMO are the domain ontologies used to

semantically annotate Web Services. Hence, WSML also provides means to describe

such ontologies, as any ordinary ontology language does. Since here we are inter-

ested in the description of ontologies in general, we present the ontology-related part

of WSML only.

Syntax

The Syntax of WSML is split into a conceptual part and a logical expression part.

The conceptual syntax allows typical conceptual modelling with concepts, relations

and instances, known from frame-based systems where information about a certain

entity is specified locally in a single syntactic construct. The logical expression syn-

tax allows the formulation of complex axiomatic information using logical formulas.

It is very similar to F-Logic syntax and provides the typical logical symbols as well

as different forms of negation and implication, LP-style rules and constraints. WSML

also supports datatypes like integer, float or string, up to user-defined datatypes.

The following listing shows a fragment of our example geographic ontology in

WSML syntax in its human readable serialisation.

concept GeographicRegion
isRegionFor inverseOf(locatedIn) ofType GeographicLocation
contains inverseOf(isContainedBy) transitive impliesType GeographicRegion
boundedBy ofType (2 ∗) SurfacePoint

concept SurfacePoint
hasLongtitude ofType float
hasLatitude ofType float

concept City subConceptOf Infrastructure
locatedIn ofType PlanarRegion
officialName ofType string
numberOfInhabitants ofType integer

concept EuropeanCity subConceptOf City

instance Europe memberOf Continent

instance Munich memberOf City
officialName hasValue ”M ünchen”
numberOfInhabitants hasValue 1288307

axiom EuropeanCity sufficient condition definedBy
?c memberOf EuropeanCity :− ?c memberOf City and

?c[locatedIn hasValue ?rc] and
?rc[containedBy hasValue ?re] and
?re[isRegionFor hasValue Europe].

The upper part shows the conceptual syntax with bold-faced keywords for defining

concepts, instances and their membership relations. Attributes, i.e. relations defined

in the scope of a concept, are further restricted or filled with concrete values. They

can be declared as being transitive or as the inverse of another attribute, and they

can be constrained by their range type or cardinality. With the distinction between

the ofType and impliesType constructs, WSML offers both range constraints that ensure

100 Stephan Grimm et al.

attribute values to be of a certain type, and range restrictions in the style of OWL

that allow to conclude information about attribute values. Attribute ranges can be

concepts or datatypes, such as integer, float or string. The lower part of the listing

shows an axiom defined by a logical expression in form of an LP-style rule with

variables preceded by a ? symbol. The rule concludes a city to be European if its

geographic region lies within that of Europe, referring to the elements declared in

the conceptual part.

Besides the human readable form, there are other forms of serialisation for the

WSML syntax, similar to the different serialisation formats for OWL. These cover

serialisation in XML as well as in RDF.

Semantics

Similar to OWL, WSML comes in various language variants that have different

expressiveness and that reflect different knowledge representation paradigms. The

most basic and least expressive variant is WSML-Core, which is based on DLP

[18] as a least common denominator for description logic formalisms on the one

hand and logic programming and rule-based systems on the other hand. WSML-

Core is separately extended in the directions of these two paradigms by the variants

WSML-DL and WSML-Flight/Rule, respectively. Ultimately, the vision of WSML-

Full is to semantically amalgamate the two paradigms in a language with first-order

model-theoretic semantics augmented by non-monotonic extensions and typical LP-

style features like default negation or constraints. At the current stage, however, the

WSMO initiative is an ongoing effort and the semantics of WSML-Full is yet to be

defined.

In Fig. 3.5 the WSML language variants are positioned with respect to different

knowledge representation formalisms.

WSML-Core

This variant is based on the DLP fragment described in [18]. It offers basic concep-

tual modelling with concepts, attributes and instances, as well as taxonomic hierar-

chies and the use of datatypes. Its semantics is defined by a mapping to function-free

horn logic interpreted in the classical model-theoretic way. Similar to RDF, it does

not allow to express any form of negative information, and thus no contradictory

statements can be formulated.

WSML-DL

This variant extends WSML-Core to a description logic formalism, namely to the

logic SHIQ(D). In this sense, WSML-DL is very similar to the OWL language.

The WSML syntax does not provide the variable-free constructs that are typical for

DLs. Thus, in WSML-DL logical expressions with variables and logical connectives

are interpreted as in first-order logic, with the restriction to only allow unary and

binary predicates for DL concepts and roles.

3 Knowledge Representation and Ontologies 101

Fig. 3.5. WSML language variants in knowledge representation

WSML-Flight

This variant extends WSML-Core to an LP-style rule language with a closed-world

semantics. It is similar to F-Logic (LP) and offers features like negation-as-failure,

constraints and meta-modelling. The semantics of WSML-Flight is defined by a

mapping to F-Logic formulas interpreted under perfect model semantics.

WSML-Rule

This variant further extends WSML-Flight with more expressive logic programming

features, such as function symbols or unsafe rules. Its semantics is based on the well-

founded semantics.

WSML-Full

The still-to-be-defined semantics of WSML-Full is envisioned to combine WSML-

DL and WSML-Rule. A candidate formalism to achieve integration of the two

paradigms is autoepistemic logic.

Software Support for WSML

Since WSML is a relatively new language, tool development is in an early stage.

However, there are some tools available for handling and editing WSML ontologies,

all driven by the WSMO initiative.

102 Stephan Grimm et al.

The WSMO4J38 framework enables parsing, serialisation and in-memory pro-

cessing of WSML ontologies an other WSML elements.

The Web Services Modelling Toolkit (WSMT)39 is a graphical editor that allows

for visualisation and manipulation of WSML ontologies. Other tools for editing

WSML elements are WSMO Studio40 [13] and DOME.41

3.5 Outlook

In this chapter we have presented an overview on the topics of knowledge representa-

tion, ontologies and Semantic Web languages. Here we want to briefly sketch future

research and usability issues around these knowledge-based technologies.

Having reviewed various ontology languages and knowledge representation

paradigms, we have seen that there are multiple different ways of approaching the

representation and computational handling of knowledge. There is still room for

research on which approach is most suitable for which kind of application context.

A current trend in ontology languages is to perceive LP-based approaches as par-

ticularly suitable for data-intensive retrieval tasks with rule-based inferencing on the

one hand, and DL-based approaches for automated classification and for satisfiability

problems on the other hand.

To achieve wide-spread use of ontologies, they have to be established as usable

software artefacts that are interchanged and traded between parties, similar to com-

puter programs or other forms of electronic content. As such, they can principally

be plugged in systems that make use of knowledge-based technology. However,

the logic-based notions in which ontologies are described are typically too techni-

cal and too onerous to handle to be widely accepted. To overcome this deficiency,

design methodologies and higher-level descriptive languages should be introduced

that abstract from the surfeit of logical details, presenting the user a more intuitive

view on domain knowledge. An analogous level of abstraction has been achieved

in the field of software engineering, where more and more abstract higher-level lan-

guages have been build on machine codes and assembler languages.

In the Semantic Web context, also other techniques from the field of Artifi-

cial Intelligence are used, such as lexical methods for natural language processing

or statistics-based methods for machine learning. There, the symbolic knowledge

representation in ontologies should used complementarily to exploit synergies with

such techniques in Semantic Web applications. Moreover, there is a trend to forbear

from the heavy-weight semantics of logical formalisms, moving to the light-weight

semantics of languages with decreased expressive power in applications where preci-

sion and exactness is not the main focus. In this sense, some applications prefer, e.g.,

RDF(S) over the semantically richer OWL due to simplicity or scalability issues.

38 http://wsmo4j.sourceforge.net/
39 http://wsmt.sourceforge.net
40 http://www.wsmostudio.org/
41 http://dome.sourceforge.net/

3 Knowledge Representation and Ontologies 103

Finally, there is much space for research on finding the right degree of formality in

semantics for a particular application scenario.

References

1. G. Antoniou. Nonmonotonic Reasoning. MIT Press, 1996.

2. F. Baader, S. Brandt, , and C. Lutz. Pushing the EL Envelope. In Proceedings of the
19th Int. Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh, UK. Morgan

Kaufmann, 2005.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, January 2003.

4. F. Baader and B. Hollunder. Embedding Defaults into Terminological Knowledge Repre-

sentation Systems. Journal of Automated Reasoning, 14:149–180, 1995.

5. S. Bechhofer, R. Volz, and P. Lord. Cooking the Semantic Web with the OWL API. In

Proc. of the First International Semantic Web Conference 2003 (ISWC 2003), October
21-23, 2003, Sanibel Island, Florida, 2003.

6. P. Bonatti, C. Lutz, and F. Wolter. Description Logics with Circumscription. In Proceed-
ings of the 10th Int. Conference on Principles of Knowledge Representation and Reason-
ing, KR-06, 2006.

7. D. Brickley and R.V. Guha. RDF Vocabulary Description Language – RDF Schema.

http://www.w3.org/TR/rdf-schema/, 2004.

8. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture for

Storing and Querying RDF and RDF Schema. In ISWC ’02: Proceedings of the First
International Semantic Web Conference on The Semantic Web, pages 54–68, London,

UK, 2002. Springer.

9. D. Calvanese, G. de Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable

Description Logics for Ontologies. In Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI-2005), 2005.

10. Ó. Corcho, M. Fernández-López, A. Gómez-Pérez, and Ó. Vicente. WebODE: An Inte-

grated Workbench for Ontology Representation, Reasoning, and Exchange. In EKAW, p.

138–153, 2002.

11. E. Craig. Ontology. In E. Craig, editor, Routledge Encyclopedia of Philosophy, pages

117–118. Routledge, New York, 1998.

12. S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based Access to

Distributed and Semi-Structured Information. In Semantic Issues in Multimedia Systems.
Proceedings of DS-8, pages 351–369, 1999.

13. M. Dimitrov, A. Simov, V. Momtchev, and D. Ognyanov. WSMO Studio - An Integrated

Service Environment for WSMO. In Proc. of the 2nd WSMO Impl. Workshop, Innsbruck,
Austria, 2005.

14. F.M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal Knowledge and

Negation as Failure. ACM Transactions on Computational Logic, 3(2):177–225, 2002.

15. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-Order

Reasoning and External Evaluations in Answer Set Programming. In L. P. Kaelbling and

A. Saffiotti, editors, Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI-05), 2005.

16. O. Etzioni, K. Golden, and D. Weld. Tractable Closed World Reasoning with Updates.

In Proceedings of the 4th International Conference on Knowledege Representation and
Reasoning (KR-1994), pages 178–189. Morgan Kaufmann, 1994.

104 Stephan Grimm et al.

17. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening Ontolo-

gies with DOLCE. In EKAW-02: Proceedings of the 13th Int. Conference on Knowledge
Engineering and Knowledge Management. Ontologies and the Semantic Web, pages 166–

181. Springer, 2002.

18. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combin-

ing Logic Programs with Description Logics. In Proceedings of WWW-2003, Budapest,
Hungary, pages 48–57. ACM, 2003.

19. T.R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 6(2):199–221, 1993.

20. N. Guarino. Semantic Matching: Formal Ontological Distinctions for Information Orga-

nization, Extraction, and Integration. In M.T. Pazienza, editor, Information Extraction:
A Multidisciplinary Approach to an Emerging Information Technology, number 1299 in

LNCS, pages 139–170. Springer-Verlag, 1997.

21. N. Guarino. Formal Ontology and Information Systems, Preface. In N. Guarino, editor,

Proceedings of the 1st International Conference on Formal Ontologies in Information
Systems, FOIS-98, Trento, Italy, pages 3–15. IOS Press, 1998.

22. N. Noy M. Musen H. Knublauch, R. Fergerson. The Protege OWL Plugin: An Open

Development Environment for Semantic Web Applications. Proceedings of the 3rd Inter-
national Semantic Web Conference (ISWC), 2004.

23. V. Haarslev and R. Möller. Description of the RACER System and its Applications. In

International Workshop on Description Logics, 2001.

24. P. Hayes. RDF Semantics. http://www.w3.org/TR/rdf-mt/, 2004.

25. I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Proceed-
ings of the 6th International Conference on Knowledege Representation and Reasoning
(KR1998), pages 636–645. Morgan Kaufmann, 1998.

26. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language. In

Proceedings of the 13th International World Wide Web Conference (WWW-2004). ACM,

2004.

27. U. Hustadt, B. Motik, and U. Sattler. Data Complexity of Reasoning in Very Expres-

sive Description Logics. In Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI-05), Edinburgh, UK, pages 466–471. Morgan Kaufmann,

2005.

28. A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca Grau, and J. Hendler. Swoop: A Web

Ontology Editing Browser. Journal of Web Semantics, 4(2):144–153, 2006. http:
//dx.doi.org/10.1016/j.websem.2005.10.001.

29. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-

Based Languages. Journal of the ACM, 42(4):741–843, July 1995.

30. G. Klyne and J. Carroll. RDF Concepts and Abstract Syntax. http://www.w3.org/
TR/rdf-primer/, 2004.

31. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1988.

32. B. McBride. Jena: Implementing the RDF Model and Syntax Specification. In SemWeb,

2001. http://CEUR-WS.org/Vol-40/mcbride.pdf.

33. J. McCarthy. Circumscription – A Form of Non-Monotonic Reasoning. Artificial Intelli-
gence, 13(1):27–39, 1980.

34. J. Minker. Logic and Databases: Past, Present, and Future. AI Magazine, 18(3):21–47,

1997.

35. R. Moore. Semantical Considerations on Nonmonotonic Logic. Artificial Intelligence,

25(1), 1985.

3 Knowledge Representation and Ontologies 105

36. B. Motik. On the Properties of Metamodeling in OWL. In Y. Gil, E. Motta, V.R. Ben-

jamins, and M. Musen, editors, Proceedings of the 4th International Semantic Web Con-
ference (ISWC-2005), volume 3729 of LNCS, pages 548–562. Springer-Verlag, 2005.

37. B. Motik and U. Sattler. A Comparison of Reasoning Techniques for Querying Large

Description Logic ABoxes. In Miki Hermann and Andrei Voronkov, editors, Proc. of the
13th Int. Conf. on Logic for Programming Artificial Intelligence and Reasoning (LPAR
2006), LNCS, Phnom Penh, Cambodia, November 13–17 2006. Springer.

38. B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules. In S. A.

McIlraith, D. Plexousakis, and F. van Harmelen, editors, Proc. of the 3rd Int. Seman-
tic Web Conf. (ISWC 2004), pages 549–563, Hiroshima, Japan, November 7–11 2004.

Springer.

39. I. Niles and A. Pease. Towards a Standard Upper Ontology. In C. Welty and B. Smith, edi-

tors, Proceedings of the 2nd International Conference on Formal Ontology in Information
Systems (FOIS-2001), 2001.

40. P.F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language; Seman-

tics and Abstract Syntax. http://www.w3.org/TR/owl-semantics/, Novem-

ber 2002.

41. S. Pepper and G. Moore. XML Topic Maps (XTM) 1.0. http://www.topicmaps.
org/xtm/1.0/.

42. R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13:81–132, 1980.

43. S. Russel and P. Norvig. Artificial Intelligence – A Modern Approach. Prentice-Hall,

1995.

44. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A Practical OWL-

DL Reasoner. Technical report, University of Maryland Institute for Advanced Computer

Studies (UMIACS), 2005. http://mindswap.org/papers/PelletDemo.pdf.

45. J.F. Sowa. Knowledge Representation. Brooks Cole Publishing, Pacific Grove, CA, USA,

2000.

46. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit: Col-

laborative Ontology Development for the Semantic Web. In ISWC ’02: Proceedings of
the First International Semantic Web Conference on The Semantic Web, pages 221–235.

Springer-Verlag, 2002.

47. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems: Volumes I and
II. Computer Science Press, 1989.

48. F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure. A Framework for Han-

dling Inconsistency in Changing Ontologies. In Y. Gil, E. Motta, V.R. Benjamins,

and M. Musen, editors, Proceedings of the 4th International Semantic Web Conference
(ISWC-2005), volume 3729 of LNCS, pages 353–367. Springer-Verlag, 2005.

49. G. Yang, M. Kifer, and C. Zhao. Flora-2: A Rule-Based Knowledge Representation

and Inference Infrastructure for the Semantic Web. In CoopIS/DOA/ODBASE, pages

671–688, 2003.

50. M. Yue and L. Zuoquan. Infering with Inconsistent OWL DL Ontology: a Multi-valued

Approach. In Proceedings of the International Conference on Semantics in a Networked
World, ICSNW-2006, Munich, Germany. Springer-Verlag, 2006.

4

Ontology Development
Methodologies for Ontology Engineering

Gábor Nagypál

FZI Research Center for Information Technologies at the University of Karlsruhe, Germany,

nagypal@fzi.de

Summary. The development of ontologies is comparable in complexity with the development

of a complex software. Therefore, it is not enough just to be familiar with the available ontol-

ogy formalisms to build high-quality ontologies. Development methodologies are needed,

which structure the steps of the ontology development process. This chapter will introduce

two popular methodologies – On-To-Knowledge and METHONTOLOGY – which show most

of the major ideas behind ontology methodologies. Creating the conceptual ontology model –

which is one of the steps in the ontology development process – is a highly complex task,

and methodologies alone do not provide solutions how to perform it. This chapter therefore

also provides an overview of best-practice ontology design principles, which provide stan-

dard solutions for the most common problems. A discussion about the modularisation of big

ontologies closes this chapter.

4.1 Introduction

The development of ontologies is comparable in complexity with the design and

development of a complex software. As it is unrealistic to except someone who

knows only the basics of a programming language will be able to design a good

software architecture using that language, similarly it is not enough just to know the

available ontology formalisms to build good ontologies.

To remain by the analogy of software development; a software analyst first of all

needs lots of analysis and design experience to be able to design high-quality soft-

ware applications. Unfortunately, experience cannot be described in books. There

are, however, various software development methodologies which provide a frame-

work for the various software development activities, together with various analysis

and design patterns which communicate some general rules how a good analysis or

design model should look like.

Similarly, an ontology engineer needs first of all lots of ontology building expe-

rience which cannot be described in books. There are, however, various ontology

development methodologies available. They provide guidance through the com-

plex process of ontology development. Based on existing ontology development

experience some philosophical and practical design principles were also reported

108 Gábor Nagypál

in the literature. Unfortunately, these principles are not yet organised in the form

of patterns, as ontology engineering is still a nascent field compared to software

engineering.

After the previous chapter described the concept of ontologies and the various

popular ontology formalisms available today, this chapter provides an overview of

the activities of a typical ontology development process, describes the main ideas of

two popular methodologies for organising these activities into a consistent frame-

work, provides an overview of some generally accepted ontology design principles

and finally discusses some issues which are relevant for large ontologies.

4.2 Activities of the Ontology Development Process

An ontology development process consists of various activities and tasks. In this

section we give an overview of the most typical activities. We base the discussion on

[14], where a comprehensive list of ontology development activities is described.

Activities are categorised in [14] as management activities, development-oriented
activities and support activities. This categorisation is motivated by the relevant

IEEE standard on software processes [1], whereas support activities are termed as

integral activities in the IEEE document.

Management activities include activities which are common to all kinds of

projects. Development-oriented activities form the core of the development process,

and are normally conducted sequentially. These type of activities are further cate-

gorised as pre-development, development and post-development activities. Finally,

support (or integral) activities are crucial for the success of the development activ-

ities (and such for the whole project), and they are conducted parallel with one or

more development activities. Many of them (like documentation) are performed con-

tinuously throughout the whole project. A summary of these activities is shown in

Fig. 4.1 and they are discussed in detail in the following.

4.2.1 Management Activities

These kind of activities are common for all kinds of projects, and they are by no

means specific for the ontology development process. They are enumerated here only

for the sake of completeness.

Scheduling: Scheduling identifies the tasks to be performed, their order, dependen-

cies and allocates time and resources for them.

Control: This activity guarantees that the tasks are performed in a way that was

specified by the scheduling activity. Adjustments in the plan are made if needed.

Quality Assurance: This activity assures that the quality of each produced artefact

(in our case the ontology, its documentation and eventually supporting software) is

satisfactory.

4 Ontology Development 109

Scheduling

Control

Quality
assurance

Documentation

Evaluation

Knowledge
acquisition

Configuration
management

Integration

Management

Development oriented

Support

Environment
study

Feasibility
study

pre-development

Specification Conceptualisation

Formalisation Implementation

development

Use and ReuseMaintenance

post-development

Fig. 4.1. Activities of the ontology development process

4.2.2 Development-Oriented Activities

These activities form the core of the ontology development process.

Pre-development Activities

Environment study: Identifies where the ontology will be used, in which technical

environment (software platform, applications), by which types of users, etc.

Feasibility study: Checks whether it is possible and whether it is feasible to build the

ontology in the given environment. Perhaps the project goals can also be achieved

without building a new ontology, or the costs of building an ontology would outweigh

the benefits provided by using an ontology. In this case the ontology development

project should be cancelled.

Development Activities

Specification: This activity normally results in the ontology specification document.

This document can be informal (natural language description, informal competency

questions) or formal (formal competency questions). The document should define at

least the goal and the scope of the ontology clearly and give clear criteria for ontol-

ogy evaluation. It should also list the major information sources (domain experts,

110 Gábor Nagypál

documents, external ontologies) for the ontology. It can optionally also list the most

important entities of the domain (if the middle-out strategy is followed, see below

the Conceptualisation activity).

Conceptualisation: Creates a model of the relevant domain knowledge at the knowl-

edge level [32]. This model is usually not suitable for reasoning and can be in any

form which is understood and accepted by domain experts (e.g. Excel sheets, a mind

map, semi-structured text).

There are different strategies for defining a conceptualisation. Following the top-
down strategy one starts with the most general concept (e.g. THING) and tries to

refine the ontology structure along different distinguishing notions. This strategy is

usable mostly in case of top-level, philosophical ontologies.

The bottom-up strategy starts with a suitable set of information resources

(databases, documents) which should be described by an ontology. In the first step,

interesting entities are collected from these resources which are worth to be included

to the ontology. This process can be supported by information extraction (IE) and

ontology learning tools like Text-to-Onto1 or Amilcare.2 Later on the ontology engi-

neer tries to find common superconcepts and superproperties of the identified con-

cepts and properties, and specifies the proper concepts for the identified instances.

The advantage of the bottom-up strategy is that the ontology will definitely

describe the target document corpus or database(s) properly, i.e. it will describe the

“information supply” well. On the other hand, with this approach there is a danger

that the ontology will be too focused on a specific information resource, thus it will

not be reusable. Experience also shows that semi-automatically generated ontologies

are (yet) of lower quality than manually engineered ones. It is also important to note

that this strategy can be used only for very low-level ontologies, where a specific

information resource should be semantically described. This approach thus cannot

be used for high-level ontologies, which should be developed independently from

specific databases or document corpora.

Finally, the middle-out strategy starts with a list of most important ontology enti-

ties (concept, properties) which can be collected during a brain-storming session.

This approach can be used for both low-level, application ontologies, and medium-

level ontologies where a list of most important concepts can be easily identified at

the beginning.

Generally speaking, we can say that both the top-down and middle-out strategies

can result in high-quality ontologies which represents the “information need” in the

domain quite well. There is a danger, however, that the ontology will not describe a

specific collection of documents or a database adequately.

Formalisation: This phase includes choosing a suitable formalism (e.g. first order

logic (FOL), F-Logic , description logic (DL)) and transform the conceptual model

into that formalism. This formal representation is semi-computable, i.e. it can be

rewritten into a suitable syntax quite easily, which can serve as an input for a rea-

soner.

1 http://sourceforge.net/projects/texttoonto/
2 http://nlp.shef.ac.uk/amilcare/

4 Ontology Development 111

Implementation: Codifying the formal representation using a specific ontology lan-

guage (such as OWL-DL) which can be executed in a suitable reasoner.

Post-development Activities

Maintenance: No ontology is ever complete as our understanding of the world (i.e.

our conceptualisation) evolves constantly. It is also possible that the needs of the

ontology users or applications change with the time, i.e. other parts of the domain

will be relevant. To reflect those changes the ontology should be continuously

evolved.

There are two types of ontology maintenance strategies [42, 43]: centralised and

decentralised. In the centralised case, one person (or a group of people) is respon-

sible for ontology changes. In the decentralised case, everyone can make changes

to the ontology. In this case, tool support for ontology change management is cru-

cial. The centralised strategy should be followed if high quality is important. On the

other hand, the decentralised strategy is cheaper, faster and more flexible. As part

of the maintenance activity, clear guidelines should be provided, which describe the

maintenance strategy that is followed by the project.

Use and reuse: The ontology is used by various applications and users, and can be

reused as part of other ontologies.

Ontology reuse is a very important aspect, as one of the main motivation for

developing ontologies is the hope that knowledge formalised in such form is more

amenable for reuse than in other forms (like relational database schemas or rule sets

in expert systems). An ontology can reuse an other ontology in many ways. It can

reference elements of an other ontology in its axioms. It can include the axioms of

the other ontology. Finally, it can serve as a semantical basis during the development

of the new ontology. In this case reuse happens at the knowledge level in the heads

of ontology engineers. The axioms of the original ontology are adapted according to

the needs of the new ontology, so it is even possible that almost none of the original

axioms are taken in a syntactically unchanged form. Still, in many cases, it is simpler

to adapt an existing ontology in the same domain than to develop a completely new

one from scratch.

Ontology reuse during the ontology development process happens as part of the

integration activity which will be discussed later.

4.2.3 Support Activities

These activities are important for the success of the development process, and they

are performed in parallel with the development-oriented activities.

Knowledge acquisition: Knowledge has to be extracted from the various knowl-

edge sources. Those sources can include domain expert knowledge, existing books

and external ontologies. As mentioned at the conceptualisation activity, parts of the

knowledge acquisition can happen automatically. In this case we speak of ontology

learning [27].

112 Gábor Nagypál

Evaluation: Evaluation includes verification, i.e. judgement of ontology correctness

with respect to a frame of reference (e.g. the ontology specification document). It

also includes validation, i.e. judgement of the ontology with respect to the real-world

domain it is supposed to represent. From a different point of view evaluation can be

categorised in three categories [42, 43], as follows:

• Technology-focused evaluation: This includes checking the syntactical correct-

ness and semantical consistency of the ontology, its performance, modularity,

maintainability, etc.

• User-focused evaluation: This includes checking whether the ontology contains

all of the information which was identified in the ontology specification docu-

ment. A usage pattern–based evaluation is also part of this process, where it is

checked that all parts of the ontology are really used, i.e. there are no unnecessary

parts in it.

• Ontology-focused evaluation: This checks the semantical correctness of the

ontology. Both philosophical methods (such as OntoClean [21]) and ontology

evaluation rules [13] can be used to find incorrect conceptualisations.

Integration: It is strongly recommended to search for related ontologies which could

be reused in our ontology before we start building a new ontology from scratch. If

a suitable ontology is identified, it must be integrated in our new ontology. This

integration process can be supported by two subactivities: ontology merging and

ontology alignment. Ontology merging (e.g. [41]) aims at obtaining a new ontology

by merging several ontologies from the same domain. The resulting ontology unifies

elements of the source ontologies. Ontology alignment [35] only identifies mappings

between the source ontologies, but does not create a new ontology. It is important to

note that a prerequisite for a successful ontology merging is that proper mappings

between the ontologies to be merged are already found in a previous alignment step.

Documentation: Proper documentation of an ontology is crucial for later mainte-

nance and reuse [12]. One of the most serious hindrance in ontology reuse nowadays

is that most of the ontologies available on the Web are not properly documented.

Both the meaning of ontology entities and the design decisions which led to a specific

ontology must be documented, otherwise the ontology cannot be judged objectively,

when someone wants to decide about the integration of the ontology into a new one.

Configuration management: Configuration management means recording versions

of the ontology, of the ontology documentation and of the supporting software (if it

exists). Mainly in the case of big ontologies, which are developed collaboratively,

configuration management is crucial for the success of the project, similarly to big

software development projects. For this activity, the tools of Software Engineering

can be used,3 and also some ontology editing environments provide such features.4

3 For example, Subversion, see http://subversion.tigris.org/
4 For example, the Protege editor, see http://protege.stanford.edu/

4 Ontology Development 113

4.2.4 The Rationale for Separating Conceptualisation, Formalisation
and Implementation

Some of the existing methodologies, and many practitioners, do not separate the

conceptual model and the ontology implementation in a formal ontology language,

but propose to develop the ontology at once in the target language. This raises the

question whether it is meaningful to separate the conceptualisation, formalisation

and implementation activities at all.

First of all we examine the reasons for separating conceptualisation from the for-

malisation and implementation steps. There are basically two motivations for doing

this. One is the limited expression power of most of the ontology formalisms, the

other is the need for communication between domain experts and ontology engi-

neers.

Most formal ontology languages are designed with the motivation to provide for

several reasoning constructs. A natural requirement from the user side is that these

reasoning operations should be calculated efficiently, or at least the reasoning should

be decidable. Clearly, the more expressive an ontology language is, the more compli-

cated the reasoning will be, and it is easy to reach the point where the reasoning will

not be decidable any more. Therefore, these languages make various compromises

in the area of expressiveness in favour of efficiency. This means that in many cases

the knowledge required to properly represent the target domain requires constructs

which are not supported by the target ontology language. As a result, it is possible

that changes in the conceptual structure are required because of the limitations of the

target formalism. For example, description logic usually supports only binary rela-

tions and many formalisms do not allow metaclasses, i.e. entities that are instances

and concepts at the same time. It is also possible that some elements of the full con-

ceptual model are lost completely. For example, information about the uncertainty

of some facts and axioms cannot be represented in most of the popular ontology

formalisms.

Because for an intermediate conceptual model reasoning support is not a require-

ment, we can include any knowledge representation constructs which seem to be

natural for the problem at hand. This has many advantages.

First, even if some of the constructs can be represented in the target formal lan-

guage using a workaround (e.g. representing n-ary relations as concept instances),

this makes the understanding of the model for humans much more complicated, and

thus practically eliminates the possibility of ontology reuse. On the other hand, a

natural representation of the ontology is available at the conceptual level; therefore,

people do not have to “parse” the low-level formal representation.

Second, if some information cannot be represented in the target formalism at

all, we still have it in the conceptual model. If we later switch to a more powerful

formalism, we can readily reuse this information. Moreover, if the information loss

causes any problems during ontology usage (e.g. non-intuitive inferences), the cause

of the problem can be found more easily, as all of the lost information is properly

documented in the conceptual model.

114 Gábor Nagypál

Finally, because the conceptual model uses constructs that naturally describe the

domain of discourse, it is easier to communicate it towards the domain experts. It

is sometimes even possible that domain experts can edit parts of the model, with-

out active participation of the ontology engineer. This helps to solve the common

dilemma: Who should develop an ontology? The domain experts who understand the

domain, but have only a little or absolutely no idea of good ontology design; or the

ontology engineer, who has extensive knowledge about proper ontology constructs,

but only a limited knowledge of the domain of discourse? By using intermediate

models, the domain experts can edit those representations, and the ontology engineer

can devise the best ways to map that non-computable conceptual representations into

formal ontology constructs. In most cases, it is possible to find ways to generate parts

of the formal ontology out of parts of the conceptual model fully automatically.

The use of intermediate models was already proved in many real-world systems

(such as Galen [38], VICODI [31] or in the OTK use cases [43]). It is also interesting

to note that the idea of separating the conceptual model from the implementation

(i.e. the concrete ontology formalism) is very similar to the vision of Model Driven
Architecture (MDA), a movement which became popular recently in the software

engineering field.5

The only cases where the development of intermediate conceptual models cannot

be advised are when

• the expressing power of the target ontology formalism is adequate to represent

all of the relevant information of the domain in a natural way

• the domain experts have no problems in understanding the target ontology for-

malisms (e.g. when ontology engineers develop an ontology describing the

knowledge engineering domain).

There are much less reasons for the separation of the formalisation and implemen-

tation steps. The transformation from an abstract formal representation to a specific

syntactical representation required by a specific reasoner can be usually made fully

automatically, as in most cases no more semantical changes are needed. If it is possi-

ble to devise algorithms to transform the conceptual model to a formal representation

automatically, it is advisable to perform the transformation into the implementation

language at once.

There are some cases, however, when a separation of formalisation and imple-

mentation can be advantageous.

• It is not possible to fully automatise the transformation from the conceptual to the

formal model, but human intervention is required. In this case, it is better to have

an explicit formal model, and it can be transformed completely automatically

into the various ontology implementation languages.

• Even if a fully automated transformation from the conceptual to the formal model

is possible, it is a good idea to keep the formal model separate from the imple-

mentation model, if there are lots of target implementation languages which

we should support. For example, we have to support OIL, DAML+OIL and

5 See http://www.omg.org/mda/ for details

4 Ontology Development 115

OWL-DL versions of our ontology. By separating the formal model from the

implementation language we have to write the potentially difficult mapping from

the conceptual to the formal model only once, and we can easily add new trivial

mappings from the formal model to a new implementation language later.

4.3 Ontology Building Methodologies

As ontology development is a very complex, creative process, a methodology which

co-ordinates the various activities involved, is crucial for its success. Ontology

development is comparable with software engineering in complexity, a field where

already lots of matured methodologies exist like the Rational Unified Process [23] or

Extreme Programming [3]. Unfortunately, as the field of ontologies is not so matured

yet as the field of software engineering, presently there is no set of established, gen-

erally accepted methodologies. There were numerous methodologies proposed, how-

ever, and some of them are quite elaborated.

The main purpose of a methodology is to define the life cycle of the ontology

development process, i.e. the order in which the activities (described in the previ-

ous section) should be executed. Most of the methodologies propose the evolving
prototypes approach, where changes in the developed ontology are always possible,

i.e. it is always possible to switch between various phases of the development, like

conceptualisation and implementation.

Another important criterion of a methodology is its application dependency.

A methodology can be application dependent, which means that the ontology is

built on the basis of an existing application. This is not typical, and presently only

the KACTUS methodology [40] is known which proposes such a strategy. Applica-
tion semi-dependent methodologies start with concrete scenarios of future ontology

usage as part of their specification activity. This definitely helps to make the decision

later on during the conceptualisation activity whether a piece of information about

the domain of discourse is relevant for the ontology or not. Actually, there is a debate

in the ontology engineering community whether it is possible to develop meaningful

ontologies at all without considering their future application scenarios [46, 18] (it is

the so-called interaction problem [7]). On the other hand, if the ontology engineer

focuses too much on the target application, the ontology will not be reusable. The

methodologies which follow this strategy include the methodology of Grüninger and

Fox [16] and On-To-Knowledge [42, 43]. Finally, application-independent method-

ologies do not make any assumptions about the future applications of the ontology.

Examples in this category include the methodology of Uschold and King [45] and

METHONTOLOGY [26, 12].

Yet another categorisation is based on whether a proposed methodology depends

on an existing core ontology. For example, the SENSUS approach [44] proposes to

design a domain ontology by pruning and extending the highly complex SENSUS

ontology. This approach is not usual, however, and most of the methodologies do not

depend on specific core ontologies.

116 Gábor Nagypál

Based on recent studies [9, 14], the two most matured and detailed methodologies

presently exist are METHONTOLOGY [12] and the On-To-Knowledge methodol-

ogy [43]. Both build strongly on the best ideas of other, older methodologies. There-

fore, we will discuss only these here and recommend reading one of the detailed

studies about other methodologies for the interested reader. Some good studies and

overviews which can be recommended are the following: [9], Chap. 3 in [14] and

[24].

4.3.1 The On-to-Knowledge Methodology

The On-to-Knowledge methodology (OTK) concentrates on building knowledge-

based systems, where ontologies form an important part of the system. This method-

ology defines two orthogonal processes, the Knowledge Process and the Knowledge
Meta Process. The former describes the process of ontology usage, the latter guides

the ontology creation. Therefore, here we are interested only in the Knowledge Meta

Process.

OTK defines the following steps as part of the Knowledge Meta Process (see also

Fig. 4.2 taken from [43]):

Feasibility study: OTK follows the CommonKADS methodology [39] in order to

decide whether it makes sense to start the project, i.e. to build the ontology.

Fig. 4.2. OTK steps

4 Ontology Development 117

Kickoff: During this phase the ontology requirements are finalised: the exact goal

and the scope of the ontology is determined. According to the middle-out strategy

during a brainstorming session, an initial list of important entities is collected and

a list of relevant experts and knowledge sources is compiled. Design guidelines are

also made which will guide the development process. Competency questions are

collected which can be used later to validate the ontology. This step corresponds to

the Specification activity in Sect. 4.2.

Refinement: In this phase relevant knowledge is extracted from the identified knowl-

edge sources (and from human experts) and formalised. This phase is a combination

of the Conceptualisation, Formalisation and Implementation activities in Sect. 4.2.

Evaluation: OTK describes all the three types of evaluation which were described

in Sect. 4.2 (technology-focused, user-focused and ontology-focused evaluation). It

is interesting to note that in the case of OTK the evaluation activity is a main devel-

opment activity and not just a supporting one. This shows that the categorisation of

activities into “development” and “support” is somewhat subjective.

Application and evolution: This is practically the Maintenance activity described in

Sect. 4.2, using a different name.

OTK proposes a cyclic ontology development process, i.e. the Refinement and

Evaluation phases are iterated until a stable, high-quality ontology version is reached,

and the lessons learned during the “Application & Evolution” phase can initiate a new

cycle.

OTK was used in various use cases during the On-To-Knowledge project.6 The

most important lessons learned during these use cases were the following:

• “Human Issues” can dominate other forces during a Knowledge Management

(KM) project.

• Domain experts in industrial context need pragmatic development guidelines

(which we also provide in this chapter).

• Collaborative ontology engineering requires physical presence and advanced tool

support.

• Brainstorming is very helpful for early stages of ontology engineering, especially

for domain experts not familiar with modelling. In OTK, mind maps7 were used

quite successfully.

4.3.2 The METHONTOLOGY Methodology

The METHONTOLOGY methodology [26, 12] describes a similar process than

OTK, but it focuses more on the ontology development (it does not address

the issue of Knowledge Process) and describes the conceptualisation activity in

6 See http://www.ontoknowledge.org
7 See http://en.wikipedia.org/wiki/Mind_mapping

118 Gábor Nagypál

much more detail. METHONTOLOGY defines an evolutionary type of life cycle

(similar to most of the other methodologies) which is shown on Fig. 4.3. This

means that the development activities are executed iteratively throughout the devel-

opment process. From the project management activities, planning is done at the

very beginning, control and quality assurance are continuous. All of the integral

activities are done continuously, although the amount of knowledge acquisition,

integration and evaluation decreases as the ontology matures and its structure

stabilises.

As it can be seen on Fig. 4.3, this methodology specifies exactly the same activ-

ities that were described in Sect. 4.2, using the same names, but it does not mention

the environmental study and feasibility study steps.

As it was already mentioned, the main strength of METHONTOLOGY is the

detailed description of the conceptualisation activity. In the remaining part of this

section we therefore will concentrate on this activity.

As it was already described in Sect. 4.2, the main task of the conceptualisation

activity is the construction of an intermediate conceptual model. This model is (usu-

ally) not suitable for reasoning and can be in any form which is understood and

accepted by domain experts (e.g. Excel sheets, a mind map, semi-structured text or

combinations thereof). On the other hand, the intermediate model should be machine

processable, i.e. it must be possible to automatise the generation of the formal model

out of the conceptual model, at least partially.

METHONTOLOGY describes various artefacts which specify different aspects

of the conceptual model:

Fig. 4.3. Methodology life cycle

4 Ontology Development 119

• Glossary of terms

• Concept taxonomy

• Ad hoc binary relation diagrams

• Concept dictionary

• Descriptions (tables) of relations, instance and class attributes and constants

• Descriptions of formal axioms and rules

• Table of instances

According to METHONTOLOGY, the conceptualisation process is a controlled

development of the described artefacts. The list of artefacts shows the order of their

creation. First, a glossary of relevant terms of the domain is built. Terms represent-

ing concepts are identified, and the taxonomy of those concepts is devised. As the

next step, ad hoc binary relations are defined. After that, the concept dictionary is

constructed, which exactly defines which properties belong to which concepts. Next,

tables are created where properties of binary relations, instance and class attributes,

constants, formulas, axioms and rules are exactly specified. Finally, a table of ontol-

ogy instances is also created, if the ontology contains instances.

Clearly, the documents are in close relationship to each other. For example, only

such concept names can appear in the concept dictionary, which are also mentioned

in the glossary of terms. According to the “evolving prototypes” life cycle that

METHONTOLOGY defines, it is always possible to add new information to any

of the documents, but care must be taken that the whole model remains consistent.

For example, if a new concept is added to the concept dictionary, its name should

also be described in the glossary of terms, and it should also be added to the concept

taxonomy.

Listing conceptualisation steps and artefacts is only a possible way to define a

conceptual model. It can vary from project to project which is the most suitable for-

malism for the domain which is also understood by the domain experts. For exam-

ple, METHONTOLOGY commits strongly to a frame-based conceptual model with

binary relations, n-ary relations can be defined only as axioms or rules. This may not

be appropriate for all application domains.

More detailed descriptions of the documents forming the intermediate concep-

tual model of METHONTOLOGY and the steps that should be taken can be found

in Sect. 3.3.5 of [14] and in [12]. A detailed practical example using METHONTOL-

OGY is described in [26].

Other useful guides which describe possible tasks to take during the conceptual-

isation activity are [34] and [5], although these papers do not mention the utility of

intermediate conceptual models.

4.4 Ontology Design Principles

As we have seen, the conceptualisation activity is one of the most important ones

and it is definitely the most complex one. Practical guidelines and techniques are

definitely useful, if not crucial, to carry out this task.

120 Gábor Nagypál

Unfortunately, there is no standard catalog of “ontology design patterns”,

“knowledge patterns” or “semantic patterns”. Although there is already some prelim-

inary work in this area (e.g. [8, 37, 33]), ontologies are still immature in comparison

to software development, where a significant body of analysis and design patterns

are available (see e.g. [10, 11]). Therefore, we think that it is a valuable contribution

to list some of the best-practice principles which were collected from state-of-the-art

ontology-related literature (including [21, 14, 12, 36, 38, 24, 15, 28, 42, 37, 33, 9,

43, 34]) and are validated by many ontology building projects (e.g. [31, 43]).

For the sake of consistency, we will use the domain of train travel in all of the

examples in this section. A part of the ontology is shown on Fig. 4.4.

4.4.1 Philosophical Principles

The following principles describe high-level rules which describe at a general,

philosophical–epistemological level how a good ontology design should look like.

The first five principles, namely clarity, coherence, extendibility, minimal encod-

ing bias and minimal ontological commitment, are identified by Gruber and are

described in his seminal paper [15].

Clarity: What this principle states informally is that it is important that ontologies

are understandable. With other words, not only machines but also human beings

should understand the content of an ontology. Gruber defines clarity as follows:

An ontology should communicate effectively the intended meaning of

defined terms. Definitions should be objective. Definitions can be stated on

Fig. 4.4. Excerpt from the train ontology

4 Ontology Development 121

formal axioms, and a complete definition (defined by necessary and suffi-

cient conditions) is preferred over a partial definition (defined by only nec-

essary or sufficient conditions). All definitions should be documented with

natural language.

For example, if we know that steam locomotives are exactly those locomotives

which have steam propulsion, we should describe that fact with the proper logical

axioms, and also paraphrase this fact in natural language as part of the ontology

documentation, instead of simply inserting a STEAMLOCOMOTIVE concept into the

ontology as subconcept of LOCOMOTIVE, without any other axioms, constraints or

documentation.

Coherence: This principle deals with the consistency of the formal and informal

layers of the ontology (axioms vs natural language documentation and labels). The

principle states that the formal and informal layers of the ontology should make the

same statements. Gruber expresses this as follows:

An ontology should be coherent: that is, it should sanction inferences that

are consistent with the definitions. [. . .] If a sentence that can be inferred

from the axioms contradicts a definition or example given informally, then

the ontology is incoherent.

For example, if we define the STEAMLOCOMOTIVE concept with logical axioms as

locomotives that have diesel engines, our ontology is incoherent, because our logical

level contradicts the natural language label we have chosen for the concept.

Extendibility: This is a very abstract principle which states that an ontology should

be designed in a way which allows us to add new definitions without revising or

modifying old ones. Gruber’s definition is the following:

One should be able to define new terms for special uses based on the exist-

ing vocabulary, in a way that does not require the revision of the existing

definitions.

As this is a very abstract and general principle, it is hard to give a simple example

here, but we refer to Sect. 4.5 where we show a technique to achieve extendibility in

huge ontologies, and we also give numerous examples there.

Minimal encoding bias: This principle states that when we specify ontologies we

should remain at the knowledge level [32] if it is possible. With Gruber’s words,

The conceptualisation should be specified at the knowledge level without

depending on a particular symbol-level encoding.

Typical examples for the symbol level are the built-in datatypes, functions and pred-

icates which can be found in many database or logic programming languages. If we

use those symbols in the definition of our ontology (say, we state that the range of

the HASWHEELS property of locomotives is integer), the ontology will be clearly

system dependent and thus less reusable. The ideal solution would be to avoid using

system-dependent symbols in the ontology definition at all, and specify everything

122 Gábor Nagypál

with proper logical axioms at the knowledge level.8 Unfortunately, practical con-

siderations normally prohibit that approach, e.g. nobody would define and manage

100000 number instances in their ontology, instead of simply using some built-in

integer datatype. From a practical point of view we can therefore say that probably a

standardised set of primitive datatypes is a better solution, as it provides for ontology

interoperability, while making also ontology management and reasoning more effi-

cient. Indeed, most of the web ontology standards today support the XML Schema

datatypes [4].

Minimal ontological commitment: This principle states that we should define our

conceptualisation in more detail which is absolutely needed for our purposes. As

Gruber writes;

Since ontological commitment is based on the consistent use of the vocab-

ulary, ontological commitment can be minimised by specifying the weakest

theory and defining only those terms that are essential to the communication

of knowledge consistent with the theory.

As an example, consider the HASARRIVALTIME property of the TRAIN concept. We

can say that the range of HASARRIVALTIME is a TIMEPOINT, but what is a time

point? The minimal commitment depends on our needs. For example, if we need

to record only hours and minutes, we could attach the required information to time

points by defining the HASHOUR and HASMINUTE properties on the TIMEPOINT

concept. This keeps the definition general, and if later someone also needs to define

years, seconds or time zones,9 these new definitions can be added to the ontology

without disturbing the existing axioms. On the other hand, if we would have fixed

everything in our definition,10 our ontology could not be reused in other applications

without changes.

Similarly, if the colour of various locomotives is not interesting for us at the

moment, we should not include various colour information to our ontology just to

make it more “complete”.

Proper subconcept taxonomies: In many ontologies, subconcept relations are mis-

used to represent part of subtopic or other relations [21]. Even if we avoid such

apparently wrong cases, there are still a number of situations where it is hard to

decide whether a proper subconcept relationship exists between two concepts.

Guarino and Welty propose their OntoClean method for evaluating such deci-

sions. The main idea of the method is to annotate concepts in the ontology with

philosophical meta-properties like identity, unity or rigidity. After annotating the

concepts, several rules can be applied, which validate the existing subconcept rela-

tionships from a ontological–philosophical point of view. Unfortunately, because of

space limitations, we cannot give a deep discussion of this method here. We will give

8 For example, by introducing an INTEGER concept as a subconcept of NUMBER with 1, 2,

etc. as instances
9 That is, our definition is not adequate for the purposes of that new ontology any more

10 For example, stating that we use two digit years with Western European time zone

4 Ontology Development 123

here only a short motivating example, and recommend studying the pretty extensive

literature available on the topic (e.g. [20, 19, 22, 21, 47] and also Sect. 3.8.3 of [14]).

Let us consider the question whether PERSON can be a subconcept of

LOCOMOTIVEDRIVER or not. To answer that question, first we have to define one of

the meta-properties used by the OntoClean method, namely rigidity. The OntoClean

method uses the term “property” in its discussion, and we also adopt that terminol-

ogy here for the sake of simplicity. It must be stressed, however, that this property

has nothing to do with properties in RDFS, OWL and similar ontology formalisms.

If an entity “has a property X” in OntoClean speak, it is roughly synonymous with

the sentence “the entity is an instance of the concept X”.

A property is rigid if it is essential for all of its instances. Something is essential

if it is always true for an entity. For example, being a person is essential as we are

persons throughout our whole lives, and it cannot change. Therefore PERSON is rigid;

as if something is a member of the concept, it will remain a member forever.

A property is non-rigid if it is not rigid. Finally, a property is anti-rigid if it

is non-essential for all of its instances. For example, being a locomotive driver is

non-rigid, as a locomotive driver can cease to be one (e.g. when he is retired). Fur-

thermore, being a locomotive driver is anti-rigid, as nobody exists who is essentially

a locomotive driver, i.e. who was always a locomotive driver and will remain one

forever.

Now, that we defined rigidity, we are ready to apply a rule of OntoClean which

says “An anti-rigid property cannot subsume a rigid property” [19]. In our example,

it means that LOCOMOTIVEDRIVER cannot subsume PERSON: therefore the answer

to our question is “no”. On the other hand, none of the rules forbid us to make

LOCOMOTIVEDRIVER a subconcept of PERSON, which meets our intuition.

4.4.2 Technical Principles

The following principles contain concrete, practical advices, which can make the

conceptualisation process easier. Some of the described principles, like using nam-

ing conventions, and the importance of scoping and documentation are not ontology

specific. They are also valid for software development, or for the development of any

complex system. The other principles are, however, specific for ontology develop-

ment.

Define and use naming conventions [2, 34]: To achieve a consistent, and meaningful

ontology, it is extremely important to define naming conventions, and obey to them

throughout the development process. Probably the most important areas, where clear

guidelines are needed, are the following (Fig. 4.5):

• Capitalisation: It is a common convention to begin concept names with capital,

instance and property names with non-capital letters.

• Delimiters: Common conventions are using space or the “-” character as delim-

iters, or writing names in CamelCase which eliminates the need for delimiters.

As the Wikipedia writes:11

11 See also http://en.wikipedia.org/wiki/CamelCase

124 Gábor Nagypál

Fig. 4.5. Using naming conventions

CamelCase is the practice of writing compound words or phrases where

the words are joined without spaces, and each word is capitalised within

the compound. The name comes from the uppercase “bumps” in the mid-

dle of the compound word, suggesting the humps of a camel.

Note that CamelCase is also suitable for ontology URIs, therefore it is frequently

used in web ontologies.

• Singular or plural: It is important to decide whether to use singular or plural form

of names. It is a common convention to use the singular form in concept names.

• Prefix and suffix conventions: These conventions are mainly important for prop-

erty names. A usual solution is to use “has” and “is” as prefixes for properties,

with an additional “of” suffix for the “is” form. In case of an inverse property

pair, one of them should follow the ‘has’ scheme and the other should follow the

“is” scheme.

• Avoid abbreviations: Abbreviations should be avoided in names, except from

some very well established ones, like URI for Uniform Resource Identifier.

• Consistently exclude/include superconcepts in names: The name of supercon-

cepts or superproperties should be consistently included or excluded in the

name of subconcepts or subproperties throughout the ontology. For example,

both ONEWAYTICKET, RETURNTICKET or ONEWAY, RETURN can be used

as names for subconcepts of the TICKET concept, but ONEWAYTICKET and

RETURN should not be used together.

• Standardisation of names: To make the ontology more comprehensible, the

same naming conventions should be used for related terms [2]. For example,

STATIONINBERLIN and GERMANSTATION do not follow the same naming con-

vention.

Scope Your ontology: [34, 43] Scoping means that an ontology should not contain

all of the imaginable distinctions of the target domain but, on the other hand, it should

contain all of the important distinctions of the domain. Without defining a clear scope

it is hard/impossible to decide whether a specific fact or axiom should go to the

ontology or not. Note that for high-level ontologies it is not easy to decide what is

4 Ontology Development 125

relevant and what is not. In this case, scoping means deciding about the generality

level where the ontology should stop.

Introducing new entities: [34] Introduce a new concept or property only if it is sig-

nificant for the problem domain, i.e., we can say something about that very entity

which is not true for any of the other entities in the ontology. For example, typically

you should introduce new concepts only if they will have a different set of proper-

ties than other concepts in the ontology. On the other hand, you should introduce a

new entity whenever that distinction is important for you, even if the formal entity

definition does not (yet) differ from other definitions.

Formal concept hierarchy: [34] Always define a formal concept hierarchy: if D is

subconcept of C, all instances of D must be also instances of C.

Do not mix concepts with topics! A good example for an informal topic hier-

archy is the Yahoo Directory.12 An example hierarchy path in this directory is

COMPUTERS AND INTERNET > SOFTWARE > INTERNET > WORLD WIDE WEB

> HTML EDITORS. This hierarchy of informal topics may be meaningful for

humans if they would like to browse Yahoo, but it is by no means a formal concept

hierarchy. For example, we can clearly say that a specific HTML editor (instance of

HTML EDITORS) is not a kind of “World Wide Web”, therefore it is not an instance

WORLD WIDE WEB.

Further examples are as follows:

• All RETURNTICKETs are TICKETS. (Good)

• All LOCOMOTIVEs are TRANSPORTATION. (Bad, it is a topic hierarchy, as a

locomotive is not a transportation, but belongs to the transportation topic.)

If you are unsure about a subclass relationship, the OntoClean evaluation method-

ology [21] can help to validate the decision, as it was described at the “Proper tax-

onomies” principle.

Optimal number of subconcepts: The optimal number of subconcepts is between 2
and 12 (according to [34]). If you have only one subconcept, it is a good indication

that either the subconcept, is unnecessary, or siblings of that concept are missing

from the ontology, and they should be added. If you have more than twelve sub-

concepts, introducing an intermediate classification level may be useful, otherwise

human users will have serious problems comprehending your ontology.

New concept or property value: The following decision has to be made quite often

during ontology development: Should I represent something by introducing a new

concept, or is it enough to fill in the right value for a property at the instance level?

For example, the distinction between slow and fast locomotives can be represented

by introducing new SLOWLOCOMOTIVE and FASTLOCOMOTIVE concepts, or by

filling the proper values of a HASSPEED property (SLOW or FAST) at the instances

of LOCOMOTIVE.

If a distinction makes entities to participate in different relations, make the

new entities concepts, otherwise a property value is probably enough [34]. For

12 http://dir.yahoo.com/

126 Gábor Nagypál

example, if there is a concept HIGHSPEEDLINE and we know that only fast loco-

motives are allowed to travel on such lines, it is probably a good idea to define

FASTLOCOMOTIVE as a concept.

Another indicator for using a property value instead of defining new concepts is

if the value would change often [34]. For example, if locomotives are newly painted

each year with different colours, probably it is not the best idea to define the concepts

BLUELOCOMOTIVE and REDLOCOMOTIVE, as locomotive instances would change

their concept frequently (Fig. 4.6). Of course, if our target ontology formalism sup-

ports axiomatic concept definitions, and thus automatic categorisation of instances

(like description logic-based formalisms), this is not a real problem, and such con-

cepts can be defined even if concept membership often changes.

From a more philosophical point of view, we can also check whether an entity

can exist alone, or it is always dependent on other entities. For dependent entities,

it is better to define a new property instead of a new concept [5]. For example, it

makes sense to speak of “arrival time” if we know the entity whose arrival time

we talk about (e.g. a specific train). In this case, it is probably a good decision to

have a HASARRIVALTIME property instead of an ARRIVALTIME concept. Of course

in many cases the distinction is not so clear. For example, the colour “red” exists

also without considering other entities, but it is also clear that in many cases we are

interested in the connection between this colour and other objects.

Concept or instance: If it is meaningful to speak of a “kind of X” in the target

domain, i.e. the entity represents a set of something, make X a concept. Otherwise

X should be an instance [5, 34]. A good intuitive test for instances if you ask your-

Fig. 4.6. Concepts vs properties

4 Ontology Development 127

self whether it makes sense to count that entity [5], because normally instances are

countable, while concepts are usually not. If you are unsure, make X a concept, that

is the safer strategy [37].

For example, consider the case when you have a LOCOMOTIVE concept. The

question is, whether STEAMLOCOMOTIVE and DIESELLOCOMOTIVE should be

subclasses or instances of this concept. From a conceptual point of view, both

options are possible, the choice depends on whether we want to model concrete

instances of steam or diesel locomotives (e.g. STEAMLOC234543534). If loco-

motive instances are not interesting for us, we can have STEAMLOCOMOTIVE and

DIESELLOCOMOTIVE as instances of LOCOMOTIVE, in which case LOCOMOTIVE

represents the set of locomotive types. If we are unsure whether we will ever

need to represent LOC234543534, it is better to have STEAMLOCOMOTIVE

and DIESELLOCOMOTIVE as concepts. It is important to note that in this case

LOCOMOTIVE will represent a set of locomotive instances (and not locomotive

types, as before), i.e. the ontology will have a different semantics. If we represent

STEAMLOCOMOTIVE and DIESELLOCOMOTIVE as concepts, we will always be

able to define new subconcepts and instances of them, what would not be possible

for an instance any more. (Fig. 4.7).

Generally speaking, we can say that the concept vs instance distinction is unnatu-

ral for human beings, and in many cases the answer is that an entity is both a concept

(a set of something) and an instance (a member of a set). Consider the situation

described in [30]. There is a concept SPECIES (representing the set of all species),

with instances such as APE. However, APE may be also viewed as a set of all apes. It

Fig. 4.7. Concepts vs instances

128 Gábor Nagypál

may be argued that APE may be modelled as a subconcept of SPECIES. However, if

this is done, other irregularities arise. Since APE is a set of all apes, SPECIES, being a

superconcept of APE, must contain all apes as their members, which is conceptually

clearly wrong. Further, when talking about the APE species, there are many proper-

ties that may be attached to it, such as habitat, type of food, etc. This is impossible

to do if APE is a subconcept of SPECIES, since concepts cannot have properties (in

most ontology formalisms). This shows the need for ontology formalisms supporting

metaclasses, i.e. where concepts can be viewed as instances at the same time. KAON

[30], OWL-Full [29] or F-Logic [27] are examples for such ontology formalisms.

Document your ontologies: Documentation is crucial for the reuse of ontologies

[12]. You should always document ontology entities in natural language also13 [15].

While logical axioms are very useful for logic reasoners, usually human beings14

have problems interpreting and understanding them. On the other hand, simple labels

are usually ambiguous,15 and therefore paraphrasing the exact meaning of the ontol-

ogy entity with one or more sentences, is needed in the most cases. It is also possible

to express design considerations in natural language, which are not expressible in

the target modelling language, but are important when someone tries to reuse the

ontology.

Represent disjoint and exhaustive knowledge explicitly: If a set of subconcepts are

disjoint, or cover the superconcept completely, this information should always be

represented explicitly via logical axioms [2, 34], if supported by the ontology formal-

ism. Explicitly representing this information allows applying powerful sanity check-

ing rules on the ontology. For example ONEWAYTICKET and RETURNTICKET form

a disjoint decomposition of the concept TICKET because no ticket can be one-way

and return at the same time. If the railway company provides only one-way and

return tickets, this is also an exhaustive decomposition, because every ticket instance

is either one-way or return.

Minimise syntactic difference among siblings To improve the clarity of the ontol-

ogy, you should always strive to minimise the syntactic difference among sib-

ling concepts, i.e. represent them using the same ontological primitives [2]. For

example, if you define STEAMLOCOMOTIVE stating that steam locomotives are

LOCOMOTIVEs which HASPROPULSION STEAM, and in the same ontology you

define DIESELLOCOMOTIVE simply as a subconcept of LOCOMOTIVE without any

further axioms or constraints, it is syntactically inconsistent.

4.5 Developing Large Ontologies

Especially in the case of very big ontologies that are developed collaboratively, it is

useful to split the ontology into independent modules. A possible technique for doing

that is described in [36] by Rector, based on his more than fifteen years of ontology

13 see also the principle of “Clarity” above
14 especially domain experts with no or minimal background in logic
15 For example, consider “wing” in an airplane or in a bird ontology

4 Ontology Development 129

building experience. In terms of the ontological principles presented in Sect. 4.4, this

technique is concerned mainly with the “Extendibility” principle. We overview this

technique here informally, and recommend the interested reader to read the referred

paper for more details.

Before we can start discussing the modularisation technique, we have to intro-

duce some new terminology. Let A denote a logical formula, let C and D denote

concept names and i an ontology instance. A(i) means that the formula A is true on

instance i, C(i) means that i is an instance of C. Let → denote the usual logical

implication and ↔ the logical equivalence.

Axioms in the form A(i) → C(i) define a sufficient condition on C. Axioms

in the form C(i) → A(i) define a necessary condition on C. Axioms in the form

A(i) ↔ C(i) define a necessary and sufficient condition on C. It is important to

note that C(i) is also a logical formula itself, which is true if i is an instance of C.

Therefore, a subconcept axiom C ∈ D which can be written in an equivalent form as

C → D is also a necessary condition on C.16

A concept which is defined by a sufficient and necessary condition is called

defined. A non-defined concept is called primitive.

The main ideas of this modularisation technique are the following:

• The ontology should be split into independent modules, containing only prim-
itive concepts. As a primitive concept is not defined fully by necessary and

sufficient conditions in the ontology, it is transparent for the reasoner. In other

words, the reasoner does not “understand” the meaning of the concept. As we

have seen, simple subconcept axioms do not fully define concepts, therefore

organising primitive concepts into hierarchies still does not fully define them.

For example, we can state that LOCOMOTIVE is a subconcept of VEHICLE,

which is enough information for the reasoner to infer that all locomotives

are vehicles, the but the reasoner still does not have any information about

what are locomotives and vehicles exactly, i.e. what is the exact difference

between them.

• In a module, a tree taxonomy of primitive concepts should be defined where

– each concept has a maximum of one parent concept (i.e. the taxonomy forms

a tree)

– children of a concept are always pairwise disjoint

– the whole taxonomy is based on only one differentiating notion, such as

speed, colour, functionality or structure. That is, RED and FAST should not

be part of the same module, RED and BLUE should be.

• The modules should be connected by defined concepts which are defined by

axioms using primitive concepts from the various modules. These defined con-

cepts should be always subconcepts of exactly one primitive concept, and

connected by properties with other primitive concepts. For example, we can

define FASTREDLOCOMOTIVE as LOCOMOTIVE which HASSPEED FAST and

HASCOLOR RED.

16 and therefore a sufficient condition on D

130 Gábor Nagypál

The consequences of this procedure are the following:

• The place for new instances are easily identified even for huge ontologies, as

– all leaf concepts in a module’s tree hierarchy are pairwise disjoint (i.e. the

instance should belong only to one of them)

– the modules describe independent aspects and therefore it is easy to choose

the right module for the instance

• Updates (new axioms and instances) have minimal or absolutely no impact on

already existing parts of the ontology.

• The modules can be developed independently from each other, possibly by dif-

ferent expert groups.

As an example demonstrating the advantage of the approach, consider the following.

We would like to define the FASTREDSMALLLOCOMOTIVE concept in a big rail-

way ontology. Using a naive conceptualisation, this concept could be defined as a

subconcept of FASTLOCOMOTIVE, REDLOCOMOTIVE and SMALLLOCOMOTIVE,

which are again subconcepts of LOCOMOTIVE.

What happens if we later also want to make a distinction in the ontology, based

on the propulsion type of locomotives? How to add the FASTREDSMALLSTEAM-

LOCOMOTIVE concept? Of course, we could add this new concept as the sub-

concept of FASTREDSMALLLOCOMOTIVE, but this would cause two problems.

First of all, because we did not define clearly what is the difference between

FASTREDSMALLLOCOMOTIVE and FASTREDSMALLSTEAMLOCOMOTIVE,17 it is

not possible to classify existing (and possibly quite numerous) locomotive instances

automatically, but we have to examine all(!) of them manually, and declare them as

FASTREDSMALLSTEAMLOCOMOTIVE when it is appropriate.

Second, it is an open question, who is responsible for adding this new concept and

doing the job of manual classification. The experts dealing with colours? With speed?

Or with vehicle types? Most likely, the result will be a deadlock, where nobody will

do anything. Alternatively, many experts will try to add the new concept simultane-

ously. You should never underestimate human issues in a big ontology development

project, as it was already mentioned in Sect. 4.3.

Using the modularisation approach, expert groups can develop modules of vehi-

cle types (containing LOCOMOTIVE), speed (containing FAST), colour (containing

RED) independently (Fig. 4.8), and the ontology engineer can define the new concept

FASTREDSMALLLOCOMOTIVE as a LOCOMOTIVE which is red, fast and small.

Responsibilities for adding new instances can be clearly defined. For example, the

vehicle expert group adds new locomotives, and defines their properties (speed and

colour). If it is not possible, e.g. because the required colour does not yet exist in

the “colour” module, it notifies the other expert group, responsible for the mainte-

nance of that module. The instances are categorised automatically and properly as

FASTREDSMALLLOCOMOTIVE when it is appropriate.

What happens, if we also want to use propulsion types? It is easy, we just cre-

ate a new expert group which defines a new “propulsion types” module containing,

17 Because those are primitive concepts

4 Ontology Development 131

Fig. 4.8. The modularised train ontology

e.g., the STEAM concept.18 When they are finished with the “propulsion” module, the

vehicle expert group can extend the locomotive instances with their propulsion infor-

mation. The ontology engineer defines the FASTREDSMALLSTEAMLOCOMOTIVE

concept as the set of all Locomotives which are fast, small, red and have steam

propulsion. After defining that concept, all of the existing (and new) instances of

locomotives are categorised automatically and properly.

Based on this discussion, it should be clear that this approach provides the maxi-

mum benefit, if the ontology formalism provides some possibilities to infer the mem-

bership of an instance in a concept automatically. Rector proposed this approach

specifically for description logic-based formalisms (such as OWL-DL), and those

formalisms support that type of inference. But there exist many other formalisms,

where such an inference can be expressed (such as F-Logic), although sometimes

with slightly different semantics (closed-world vs open-world semantics).

Interestingly, independently of Rector, Gu and her colleagues also proposed to

partition complex, semi-formal taxonomies into disjoint tree structures [17]. In this

case, concepts connecting the modules19 must be defined at the meta-level, using

special kinds of the subconcept relations. Although in this case the automatic clas-

sification benefit is clearly lost, they argue that the resulting structure is much more

18 or the STEAM instance of the PROPULSION concept
19 Gu and her colleagues speak of “contexts” in their paper

132 Gábor Nagypál

comprehensive for human beings. This shows that the idea of tree partitioning is

viable also for ontologies using less powerful ontology formalisms.

4.6 Summary

This chapter provided an overview of some important issues of ontology develop-

ment. First, we enumerated the activities of a typical ontology development pro-

cess. After that we described the main ideas of two popular methodologies (On-To-

Knowledge and METHONTOLOGY) for organising these activities into a consistent

framework.

Later, we provided an overview of some generally accepted ontology design prin-

ciples based on a careful review of relevant ontology literature. Finally, we discussed

the tree partitioning technique which can be useful for developing and maintaining

large ontologies.

Because of space limitations and because of the complexity of the topic, we could

only provide an overview of the field, but we gave many useful references throughout

the discussion for the interested reader.

References

1. IEEE Standard for Developing Software Life Cycle Processes. IEEE Std 1074-1995,

IEEE Computer Society, New York, 1996.

2. J.C. Arpı́rez, A. Gómez-Pérez, A. Lozano-Tello, and H.S. Pinto. (ONTO)2Agent: An

Ontology-Based WWW Broker to Select Ontologies. In A. Gómez-Pérez and R.V. Ben-

jamins, editors, Proceedings of ECAI’98 Workshop on Applications of Ontologies and
Problem-Solving Methods, pages 16–24, Brighton, UK, 1998.

3. K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 2000.

4. P.V. Biron and A. Malhotra (eds.). XML Schema part 2: Datatypes. W3C Recommenda-

tion, May 2001.

5. R.J. Brachman, D.L. McGuiness, P.F. Patel-Schneider, and L.A. Resnick. Living with

CLASSIC: When and How to Use a KL-ONE-like Language. In J. Sowa, editor, Princi-
ples of Semantic Networks. Morgan Kaufmann, San Mateo, USA, 1990.

6. D. Brickley and R.V. Guha (eds.). RDF Vocabulary Description Language 1.0: RDF

Schema. Recommendation, World Wide Web Consortium, 2004. Available from http:
//www.w3.org/TR/rdf-schema/.

7. T. Bylander, and B. Chandrasekaran. Generic Tasks for Knowledge-Based Reasoning:

The “Right” Level of Abstraction for Knowledge Acquisition, International Journal of
Man-Machine Studies, issn 0020-7373, 26(2):231–243, Academic Press Ltd, 1987.

8. P. Clark, J. Thompson, and B. Porter. Knowledge Patterns. In A.G. Cohn, F. Giunchiglia,

and B. Selman, editors, KR2000: Principles of Knowledge Representation and Reasoning,

pages 591–600, San Francisco, 2000. Morgan Kaufmann.

9. M. Fernández-López and A. Gómez-Pérez. Deliverable 1.4: A Survey on Methodolo-

gies for Developing, Maintaining, Evaluating and Reengineering Ontologies. Technical

Report, EU IST Project IST-2000-29243 OntoWeb, 2002.

10. M. Fowler. Analysis Patterns: Reusable Objects Models. Addison Wesley, 1997.

4 Ontology Development 133

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Massachusetts, 1994.

12. A. Gómez-Pérez. Handbook of Applied Expert Systems, chapter Knowledge Sharing and

Reuse. CRC Press, 1997.

13. A. Gómez-Pérez. Evaluation of Ontologies. International Journal of Intelligent Systems,

16(3):391–409, 2001.

14. A. Gómez-Pérez, M. Fernández-López, and O. Corcho. Ontological Engineering With
Examples From the Areas of Knowledge Management, e-Commerce and the Semantic
Web. Advanced Information and Knowledge Processing. Springer-Verlag, 1st edition,

2004.

15. T.R. Gruber. Toward Principles for the Design of Ontologies Used for Knowledge

Sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual Analy-
sis and Knowledge Representation, Deventer, The Netherlands, 1993. Kluwer Academic

Publishers.

16. M. Grüninger and M.S. Fox. 7methodology for the design and evaluation of ontologies.

17. H. Gu, Y. Perl, J. Geller, M. Halper, and M. Singh. A Methodology for Partitioning a

Vocabulary Hierarchy into Trees. Artificial Intelligence in Medicine, 15(1):77–98, 1999.

18. N. Guarino. Understanding, Building and Using Ontologies. International Journal of
Human-Computer Studies, 46(2-3):293–310, 1997.

19. N. Guarino and C. Welty. A Formal Ontology of Properties. In Proceedings of 12th Inter-
national Conference on Knowledge Engineering, Modeling and Management, LNCS,

pages 97–112. Springer-Verlag, 2000.

20. N. Guarino and C. Welty. Ontological Analysis of Taxonomic Relationships. In Inter-
national Conference on Conceptual Modeling / the Entity Relationship Approach (ER-
2000), pages 210–224, 2000.

21. N. Guarino and C. Welty. Evaluating Ontological Decisions With OntoClean. Communi-
cations of the ACM, 45(2):61–65, February 2002.

22. N. Guarino and C. Welty. An Overview of OntoClean. In S. Staab and R. Studer, editors,

Handbook on Ontologies. Springer-Verlag, 2004.

23. J. Hunt. Guide to the Unified Process featuring UML, Java and Design Patterns. Springer

Professional Computing. Springer-Verlag, September 2003.

24. D. Jones, T. Bench-Capon, and P. Visser. Methodologies for Ontology Development. In

Proc. IT&KNOWS Conference, XV IFIP World Computer Congress, Budapest, Hungary,

August 1998.

25. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-

Based Languages. Journal of the ACM, May 1995.

26. M.F. Lopez, A. Gomez-Perez, J.P. Sierra, and A.P. Sierra. Building a Chemical Ontology

Using Methontology and the Ontology Design Environment. IEEE Intelligent Systems,

14(5):37–45, January/February 1999.

27. A. Maedche. Ontology Learning for the Semantic Web. Kluwer Academic Publishers,

2002.

28. K. Mahesh. Ontology Development for Machine Translation: Ideology and Methodology,

9 June 1997.

29. D.L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.

Recommendation, W3C, february 2004. available from http://www.w3.org/TR/
owl-features/.

30. B. Motik, A. Maedche, and R. Volz. A Conceptual Modeling Approach for Semantics-

driven Enterprise Applications. In Proc. 1st International Conference on Ontologies,
Databases and Application of Semantics (ODBASE-2002), October 2002.

134 Gábor Nagypál

31. G. Nagypál. Creating an Application-Level Ontology for the Complex Domain of His-

tory: Mission Impossible? In Proceedings of Lernen - Wissensentdeckung - Adaptivität
(LWA 2004), FGWM 2004 Workshop, pages 287–294, Berlin, Germany, 4–6 October

2004.

32. A. Newell. The Knowledge Level. Artificial Intelligence, 18:87–127, 1982.

33. N. Noy. Representing Classes As Property Values on the Semantic Web. Working draft,

W3C, July 21 2004.

34. N.F. Noy and D.L. McGuinness. Ontology Development 101: A Guide to Creating Your

First Ontology. Technical Report KSL-01-05 and SMI-2001-0880, Stanford Knowledge

Systems Laboratory and Stanford Medical Informatics, 2001.

35. N.F. Noy and M.A. Musen. Evaluating Ontology-Mapping Tools: Requirements and

Experience. In J. Angele and Y. Sure, editors, EKAW’02 Workshop on Evaluation
of Ontology-based Tools (EON2002), CEUR Workshop Proceedings, Sigüenza, Spain,

2002.

36. A. Rector. Modularisation of Domain Ontologies Implemented in Description Logics and

Related Formalisms Including OWL. In Proceedings of the International Conference on
Knowledge Capture, pages 121–128. ACM Press, 2003.

37. A. Rector. Representing Specified Values in OWL: “Value Partitions” And “Value Sets”.

Working draft, W3C, 3 August 2004.

38. A. Rector, C. Wroe, J. Rogers, and A. Roberts. Untangling Taxonomies and Rela-

tionships: Personal and Practical Problems in Loosely Coupled Development of Large

Ontologies. In Proceedings of the International Conference on Knowledge Capture, pages

139–146. ACM Press, 2001.

39. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. van de Velde,

and B. Wielinga. Knowledge Engineering and Management–The CommonKADS Method-
ology. MIT Press, 2000.

40. G. Schreiber, B. Wielinga, and W. Jansweijer. The KACTUS View on the ‘O’ Word.

In Proceedings of the IJCAI-95 Workshop on Basic Ontological Issues in Knowledge
Sharing, pages 15.1–15.10, 1995.

41. G. Stumme and A. Maedche. FCA-MERGE: Bottom-Up Merging of Ontologies. In

B. Nebel, editor, Proceedings of the 17th International Conference on Artificial Intelli-
gence (IJCAI-01), pages 225–234, San Francisco, CA, USA, August 4–10 2001. Morgan

Kaufmann.

42. Y. Sure. Methodology, Tools & Case Studies for Ontology Based Knowledge Manage-
ment. PhD thesis, University of Karlsruhe, May 2003.

43. Y. Sure and R. Studer. On-To-Knowledge Methodology. On-To-Knowledge

Project Deliverable 18, Institute AIFB, University of Karlsruhe, 2002. Avail-

able at http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/
OTK-D18_v1-0.pdf\%.

44. B. Swartout, R. Patil, K. Knight, and T. Russ. Toward Distributed Use of Large-Scale

Ontologies. In AAAI’97 Spring Symposium on Ontological Engineering, pages 138–148.

Stanford University, 1997.

45. M. Uschold and M. King. Towards a Methodology for Building Ontologies. In IJCAI’95
Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, Canada, 1995.

46. G. van Heijst, A. Th. Schreiber, and B. J. Wielinga. Using Explicit Ontologies in KBS

Development. International Journal of Humand-Computer Studies, 46(2-3):183–292,

1997.

47. C. Welty and N. Guarino. Supporting Ontological Analysis of Taxonomic Relationships.

Data and Knowledge Engineering, 39:51–74, 2001.

5

Semantic Annotation of Resources
in the Semantic Web

Siegfried Handschuh

National University of Ireland Galway, Ireland, Siegfried.Handschuh@deri.org

Summary. In this chapter, we give a brief introduction into the main idea of the Semantic

Web, namely making better use and enabling more intelligent applications for Web-accessible

information by accompanying them with machine-understandable, semantic meta data; we

sketch the major methodological framework behind, consisting of two intertwined, orthogonal

processes, the knowledge process and the knowledge meta process–the latter is concerned with

ontology engineering, the former uses ontologies for ontology-based meta-data assignment to

Web resources, i.e. for semantic annotation. The major part of the chapter is devoted to the

idea of semantic annotation, requirements and functionalities of annotation tools, an example

implementation and an overview of the state of research and practice in semantic annotation.

5.1 The Semantic Web: Goals and Solution Approach

Before we focus on semantic annotation, this section will introduce the main ideas

of the Semantic Web and Semantic Web technology.

The Semantic Web aims at machine-processable information. The step from the

current Web to the Semantic Web is the step from the manual to the automatic pro-

cessing of information. This step is comparable to the step from the manual process-

ing of goods to the machine processing of goods at the beginning of the industrial

revolution. Hence, the Semantic Web can be seen as the dawn of the informational

revolution.

The Semantic Web enables automated intelligent services such as information

brokers, search agents, information filters, etc. The Semantic Web, which contains

machine-processable information, will enable further levels of software-system inter-

operability.

Technology and standards need to be defined not only for the syntactic represen-

tation of documents (like HTML), but also for their semantic content. Semantic inter-

operability is facilitated by recent W3C standardisation efforts, notably XML/XML

Schema [7], RDF/RDF Schema [8] and OWL (cf. [2, p. 70], [42]). The technology

stack envisioned by the W3C is depicted in Fig. 5.1.

Apparently, XML as well as XML Schema are the second layer above URIs and

Unicode. The third layer is RDF and RDFS. The next layer is the ontology language.

136 Siegfried Handschuh

Fig. 5.1. Semantic Web layer cake

On top of the ontology language, there is a need for a language to express logic,

so that information can be inferred and better put into relation. Once there is logic,

it makes sense to use it to prove things. The proof layer enables everyone to write

logic statements, and an agent can follow these semantic “links” to construct proofs,

so that validity of a statement, especially an inferred statement, can be checked.

The proof layer combined with digital signatures will lead to trust. Consequently,

ontology and ontology-based meta data are the basic ingredients for the Semantic

Web layer cake. An important question is therefore how to create and use ontology

and ontology-based meta data.

5.1.1 Infrastructure for the Semantic Web: The Information Food Chain

Figure 5.2 depicts the information food chain for the Semantic Web introduced in

[12] as a visionary infrastructure for the Semantic Web and its related applications

which are required, e.g., for ontology engineering or for meta-data creation.

The food chain starts with the construction of an ontology describing the know-

ledge structures in the application domain about which we want to process Web-

based information–preferably using a supporting tool for ontology construction.1

The ontology is the foundation for a set of data items. The next part of the informa-

tion food chain is a tool to support the task of structuring the HTML pages. A Web

page annotation tool (cf. Sect. 5.2) provides the means for browsing an ontology and

for selecting appropriate terms of the ontology and mapping them to sections of a

Web page. The Web-page annotation process creates a set of annotated Web pages,

which are availableto an automated agent to achieve his task. Of course, the anno-

1 For example, the Ontology Engineering environment, OntoEdit (cf. [46])

5 Semantic Annotation of Resources in the Semantic Web 137

Fig. 5.2. Information food chain for the Semantic Web

tation process itself has a human component: Although the effort to generate the

annotation of a Web page is of an order lower in magnitude than the creation of the

Web page itself, there has to be some incentive to expend the extra effort. The incen-

tive for the creation of the annotation (which is meta data for the Web page) is visible

on the Web for a community Web portal, which presents a community of interest dis-

tributed on the Web to the outside world in a concise manner. The data collected from

the annotated Web pages simplifies to a significant extent the task of maintaining a

community Web portal because changes are incorporated automatically, without any

manual work. An automated agent itself needs several sub-components: An impor-

tant task of the agent is the integration of data from several distributed information

sources. Because of the need to describe the relationships between the data in a

declarative way (otherwise the agent has to be programmed for every new task), an

agent needs an inference engine for the evaluation of rules and queries. The infer-

ence engine is coupled with a meta-data repository–the memory of an agent as to

where retrieved information is cached. Furthermore, if an automated agent browses

the Web, it will usually encounter data formulated in unknown ontologies. There-

fore, it needs the facility to relate unknown ontologies to ontologies with which it

is already familiar. This facility is an Ontology Articulation Toolkit for information

mediation.

138 Siegfried Handschuh

5.1.2 Processes for the Semantic Web: Knowledge Process and Knowledge
Meta Process

While the information food chain presents necessary tools and infrastructure, this

section presents the underlying processes of ontology and meta-data creation.

Based on the duality of ontology and meta data, two central processes are distin-

guished in [47]: The development of an ontology, named knowledge meta process,

and then the subsequent creation of a knowledge base, named knowledge process

(Fig. 5.3).

The knowledge meta process comprises all aspects that are necessary for the

creation of an ontology as well as its extension and adaption. The knowledge process
describes in particular the steps for the creation and processing of ontology-based

meta data.

5.1.3 Knowledge Meta Process

The knowledge meta process is devoted to the modelling of ontologies. The process

can be regarded as a form of reverse-engineering, because the structure underlying

the resources needs to be derived from the Web resources with the help of domain

experts. But this derivation is not exact: the result, the ontology, and also the process,

the steps to an ontology are variable.

Considering the result, since each ontology designer has a certain application

in mind for which he designs his ontology and has another understanding of the

considered domain, a multitude of ontologies can be created for one domain. The

dependence on an application, however, should be not so strong that it limits the

re-usability of an ontology [41, p. 4]. With regard to the process “no single correct

ontology-design methodology” exists [41, p. 4] which describes the steps for design-

ing an ontology. Proposals for methodologies, however, have been developed by var-

ious researchers such as the Buchanan-Methodology, the Uschold-Methodology [55]

Fig. 5.3. Two orthogonal processes with feedback loops

5 Semantic Annotation of Resources in the Semantic Web 139

and Methontology by López et al. [51]. The methodologies have in common approx-

imately the following four steps: specification, conceptualisation/refinement, imple-

mentation and evaluation. More steps which can be added are a feasibility study

(preceding the four steps mentioned above) and a maintenance phase (following the

four steps mentioned above) [45, p. 2]. The feasibility study should support the deci-

sion if the creation of an ontology is useful in a certain domain of knowledge. The

maintenance phase is important, so that ontologies keep track of the changes in the

real world and are evolving over time.

5.1.4 Knowledge Process

In the knowledge process (Fig. 5.4), which is orthogonal to the knowledge meta

process, meta data is created to describe the relevant information of some resources

with the use of ontology. The resulting meta data consists of instances of a specific

concept connected with properties (attributes and relations) and axioms. The output

of the meta-data creation process is the knowledge base, viz. a collection of this meta

data in a specified formal representation language. In the case that Web resources are

described, the knowledge base or a part of it can be embedded in the existing Web-

page description to provide semantic information for intelligent agents in the WWW.

The knowledge base can be extended by inferring “new” facts on the basis of defined

axioms. This creation process is the topic of this chapter.

As we have seen above and in Chap. 4, much work has been done for developing

agreed-upon, practically useful and scientifically valid ontology-engineering meth-

ods. Compared to this, not much work has already been done, up to now, regarding

methodological support for the design of meta data.

Fig. 5.4. The knowledge process

140 Siegfried Handschuh

5.2 Basics of Semantic Annotation

In the following, we define the terminology, the semantics and the content of meta-

data creation as envisioned in this chapter.

5.2.1 Terminology

The terminology used here has been elaborated because many of the terms that are

used with regard to meta-data creation tools carry several, ambiguous, connotations

that imply conceptually important decisions.

• Ontology: An ontology is a formal, explicit specification of a shared conceptu-

alisation of a domain of interest [25, p. 1]. In our case, an ontology is defined

in RDF(S) or OWL. Hence, an ontology is constituted by statements express-

ing definitions of OWL classes–RDF(S) resources, respectively–and properties

([42], [8]).

• Annotations: An annotation in our context is a set of instantiations attached to an

HTML document. We distinguish (i) instantiations of OWL classes, (ii) instanti-

ated properties from one class instance to a data-type instance–henceforth called

attribute instance (of the class instance), and (iii) instantiated properties from one

class instance to another class instance–henceforth called relationship instance.

Class instances have unique URIs.2 They frequently come with attribute

instances, such as a human-readable label like “Steffen” .

• Meta data: Meta data are data about data. In our context, the annotations are meta

data about HTML documents.

• Relational meta data: We use the term relational meta data to denote the annota-

tions that contain relationship instances.

Often, the term “annotation” is used to mean something like “private or shared

note”, “comment” or “Dublin Core meta data”. This alternative meaning of anno-

tation may be emulated in our approach by modelling these notes with attribute

instances. For instance, a comment note “I like this book” would be related to the

URL of the paper via an attribute instance “hasComment”.

In contrast, relational meta data also contain statements like “Siegfried coop-

erates with Steffen”, i.e. relational meta data contain relationships between class

instances rather than only textual notes.

• Semantic annotation: The term semantic annotation describes a process as well

as the outcome of the process. Hence it describes (i) the process of addition of

semantic data or meta data to the content given an agreed ontology and (ii) it

describes the semantic data or meta data itself as a result of this process.

Figure 5.5 illustrates our use of the terms “ontology”, “annotation” and “relational

meta data”. It depicts some part of the SWRC3 (Semantic Web Research Commu-

nity) ontology. Furthermore, it shows two home pages, viz. pages about Siegfried4

2 For instance, like http://www.aifb.uni-karlsruhe.de/WBS/sst/#Steffen
3 http://ontoware.org/projects/swrc/
4 http://www.aifb.uni-karlsruhe.de/WBS/sha

5 Semantic Annotation of Resources in the Semantic Web 141

Fig. 5.5. Annotation example

and Steffen5 with annotations given in an XML serialisation of RDF facts. The two

persons, Steffen6 and Siegfried7 are denoted by their corresponding URIs. Hence,

the swrc:name of the latter URI is “Siegfried Handschuh”. In addition, there is a

relationship instance between the two persons, viz. they cooperate. This cooperation

information “spans” the two pages.

5.2.2 The Semantics of Semantic Annotation

There are two players in the annotation game, the annotation provider and the anno-

tation consumer. The key is, as Bechhofer et al. point out [4], that consumer and

provider share underlying assumptions about the annotation. Part of this assumption

is the common ontology, but part of it is how the terms of the ontology are to be used.

In the literature about semantic annotation, it is evident that different assumptions

exist about the nature and the scope of semantic annotation.

5 http://www.aifb.uni-karlsruhe.de/WBS/sst
6 URI: http://www.aifb.uni-karlsruhe.de/WBS/sst/#Steffen
7 URI: http://www.aifb.uni-karlsruhe.de/WBS/sha/#Siegfried

142 Siegfried Handschuh

Bechhofer et al. [4] differentiate between the following:

• Decoration: Is the idea of creating a kind of user comment about Web pages. This

is the view that Annotea has adopted for their annotation (cf. [34]).

• Linking: To annotate a document with further links. The provision of dynamic

linking as annotation is used by the COHSE project (cf. Sect. 1.1 in [4]). Anno-

tation within COHSE can be seen as a mechanism that allows the user to specify

possible link anchors within a document, with the anchor being associated with

a conceptual description.

• Instance identification: We are making an assertion that there is some resource

in the Web such that it is an instance of an concept, and the identifier of the

instance, viz. the URI, identifies the resource. This means the instance about the

annotation that is being made is clearly accessed by the given URI.

• Instance reference: We are making an assertion that there is some individual in

the world, such that it is an instance of the concept, and the identifier of the

instance, viz. the URI, identifies not the individual itself, but the reference in a

document to the real world individual. This is the semantic of annotation that is

used by our annotation framework.

• Aboutness: A user expresses that a particular resource (i.e. a Web page) is about

a certain concept, but not an instance of an concept.

• Pertinence: A user expresses that a particular resource (i.e. a Web page) gives

further useful information about a concept.

Our viewpoint of annotation is based on instance reference (cf. Sect. 5.2.1), but we

can emulate most of the other annotation types with our framework.

5.2.3 Layering of Annotation

As shown before, there exist different notions of the semantics of semantic anno-

tation. Additionally, [43] presents a layering of annotation which reflects different

aspects of content to be represented:

• Structural annotation: Used to define the physical structure of the document, its

organisation into head and body, into sections, paragraphs and sentences.

• Linguistic annotation: Associated to a short span of text (smaller than a sentence),

and identify lexical units. They could be referred to also as Textual Annotations
or Lexical Annotation. This corresponds to the grammatical structure in ([20]).

• Semantic annotation: Corresponds to our view of semantic annotation. Similar to

the representation of the logical structure ([20]) of the document.

As mentioned before, our focal point lays on the semantic annotation. However,

we aim to present a generic annotation model that is able to deal with most of the

semantics of semantic annotation, as well as with the aspects or layers of annotation.

5.2.4 Requirements for Semantic Annotation

Given the problems with syntax, semantics and pragmatics in earlier annotation

experiences, e.g. the KA2 initiative [5] for providing semantic markup on HTML

5 Semantic Annotation of Resources in the Semantic Web 143

pages for the knowledge acquisition community, we list here a set of requirements

for semantic annotation:

Consistency: Semantic structures should adhere to a given ontology in order to

allow for better sharing of knowledge. For example, it should be avoided that anno-

tators use an attribute instance, whereas the ontology requires a concept instance.

Proper reference: Identifiers of instances, e.g. of persons, institutes or companies,

should be unique. In fact, in most real-world situations the same object will be given

many URIs, since people create them independently. For instance, the meta data

generated in the KA2 case study contained three different identifiers for the particular

person “Dieter Fensel”. Thus, knowledge about this person could not be grasped with

a straightforward query. To remedy this problem, there are technical (“smushing”)

and logical (e.g. OWL:sameAs) solutions.

Avoid redundancy: Decentralised knowledge provisioning should be possible.

However, when annotators collaborate, it should be possible for them to identify

(parts of) sources that have already been annotated and to reuse previously captured

knowledge in order to avoid laborious redundant annotations.

Relational meta data: Like HTML information, which is spread on the Web,

but related by HTML links, knowledge markup may be distributed, but it should

be semantically related. Current annotation tools tend to generate template-like meta

data, which is hardly connected, if at all. For example, annotation environments often

support Dublin Core [16, 17], providing means to state, e.g., the name of authors of a

document, but not their IDs.8 Thus, the only possibility to query for all publications

of a certain person requires the querying for some attribute like fullname–which is

very unsatisfying for frequent names like “John Smith”.

Dynamic documents: A large percentage of the Web pages are not static docu-

ments. For dynamic web pages (e.g. ones that are generated from a database), it does

not seem to be useful to annotate every single page. Rather one wants to “annotate

the database” in order to reuse it for its own Semantic Web purpose.9

Maintenance: Knowledge markup needs to be maintained. An annotation tool

should support the maintenance task.

Ease of use: It is obvious that an annotation environment should be easy to

use in order to be really useful. However, this objective is not easily achieved,

because meta-data creation involves intricate navigation of semantic structures, e.g.

taxonomies, properties and concepts.

Efficiency: The effort for the production of meta data is an important restraining

threshold. The more efficiently a tool supports meta-data creation, the more meta-

data users tend to produce. This requirement is related to the ease of use. It also

depends on the automation of the meta-data creation process, e.g. on the preprocess-

ing of the document.

8 In the web context, one typically uses the term ‘URI’ (uniform resource identifier) to speak

of a “unique identifier”
9 The huge amount of Web accessible content stored in databases and available through

dynamic Web pages is often called “deep Web” or “hidden Web”. Consequently, the seman-

tic annotation of dynamic Web pages is usually called “deep annotation” [28]

144 Siegfried Handschuh

Multiple ontologies: HTML documents in the semantic web may contain infor-

mation that is related to different ontologies. Therefore, the annotation framework

should cater for concurrent annotations with multiple ontologies.

These requirements can be tackled by combining advanced mechanisms for infer-

encing, fact crawling, document management, meta ontology definitions, meta-data

re-recognition, content generation and information extraction. These components are

explained in following, showing the CREAM framework, an exemplary software

framework for semantic annotation.

5.3 Design of the CREAM Framework for Semantic Annotation

The difficulties sketched before directly feed into the design rationale of an exem-

plary annotation framework. The design rationale links the requirements with the

modules. This results in an N:M matrix (neither functional nor injective). A tabular

overview of such a matrix can be found in [26].

Document editor: The document editor may be conceptually–though not

practically–divided into a viewing component and the component for generating

content.

The document viewer visualises the document contents. The annotator may easily

provide new meta data by selecting pieces of text and aligning it with parts of the

ontology. The document viewer should support various formats (HTML, PDF, XML

etc.). For some formats, the following component for content generation may not be

available.

The document viewer highlights the existing semantic annotation and server-side

markup of the Web page. It distinguishes visually between semantic annotation and

markup that describes the information structure of an underlying database.

The editor also allows the conventional authoring of documents, viz. the content
generation. In addition, instances already available may be dragged from a visualisa-

tion of the content of the annotation inference server and dropped into the document.

Thereby, some piece of text and/or a link is produced taking into account the infor-

mation from the meta ontology (cf. module meta ontology).

The newly generated content is already annotated and the meta ontology guides

the construction of further information, e.g. further XPointers [14, 24] are attached

to instances.

Ontology guidance and fact browser: The framework needs guidance from the

ontology. In order to allow for sharing of knowledge, newly created annotations must

be consistent with a community’s ontology. If meta-data creators instantiate arbitrary

classes and properties, the semantics of these properties remains void. Of course, the

framework must be able to adapt to multiple ontologies in order to reflect different

foci of the meta-data creators. In the case of concurrent annotation with multiple

ontologies, there is an ontology guidance/fact browser for each ontology.

Crawler: The creation of relational meta data must take place within the Semantic

Web. During meta-data creation, subjects must be aware of which entities already

5 Semantic Annotation of Resources in the Semantic Web 145

exist in their part of the Semantic Web. This is only possible if a crawler makes

relevant entities immediately available.

Annotation inference server: Relational meta data, proper reference and avoid-

ance of redundant annotation require querying for instances, i.e. querying whether

and which instances exist. For this purpose as well as for checking of consistency,

we provide an annotation inference server. The annotation inference server reasons

on crawled and newly created instances and on the ontology. It also serves the onto-

logical guidance and fact browser, because it allows to query for existing classes,

instances and properties.

Meta ontology: The purpose of the meta ontology is the separation of ontology

design and use. It is needed to describe how classes, attributes and relationships from

the domain ontology should be used by the annotation framework. Thus, the ontology

describes how the semantic data should look like, and the meta ontology connected

to the ontology describes how the ontology is used by the annotation environment to

actually create semantic data. This is explained in more detail in [26].

Deep annotation module: This module enables the deep annotation scenario. It

manages the generation of mapping rules between the database and the client onto-

logy. For this purpose, it combines the generic annotation stored in the annotation

inference server and the server-side markup provided with the content [28]. On

demand it publishes the mapping rules derived from the generic annotations.

Document management: Considering the dynamics of HTML pages on the web,

it is desirable to store foreign Web pages one has annotated together with their anno-

tations. Foreign documents for which modification is not possible may be remotely

annotated by using XPointer as a addressing mechanism.

Meta-data re-recognition and information extraction: Even with sophisticated

tools it is laborious to provide semantic annotations. A major goal thus is semi-

automatic meta-data creation taking advantage of information extraction techniques

to propose annotations to meta-data creators and, thus, to facilitate the meta-data

creation task. Concerning our environment we envisage three major techniques.

First, meta-data re-recognition compares existing meta-data literals with newly

typed or existing text. Thus, the mentioning of the name “Siegfried Handschuh” in

the document triggers the proposal that the corresponding URI10 is co-referenced

at this point. Secondly, “Wrappers” may be learned from given markup in order to

automatically annotate similarly structured pages. Thirdly, Message extraction sys-

tems may be used to recognise named entities, propose co-reference and extract some

relationship from texts (cf. e.g. [40, 48]). This component can be realised by using

an information extraction system, e.g. Amilcare (cf. [27]).11

Besides the requirements that constitute single modules, one may identify func-

tions that cross module boundaries, such as storage and replication. The CREAM

annotation framework supports two different ways of storage. The annotations will

be stored inside the document, i.e. in the document management component. Alter-

natively or simultaneously, it is also possible to store them in the annotation inference

10 http://www.aifb.uni.de/WBS/sha/#Siegfried
11 http://www.dcs.shef.ac.uk/˜fabio/Amilcare.html

146 Siegfried Handschuh

server. We provide a simple replication mechanism by crawling annotations into our

annotation inference server. Then inferencing can be used to rule out formal incon-

sistencies.

Exemplary Architecture and Implementation of an Annotation Framework

The architecture of the CREAM annotation framework is depicted in Fig. 5.6. The

design pursues the idea to be flexible and open. Therefore, OntoMat, the reference

implementation of the framework, comprises a plug-in structure, which is flexible

with regard to adding or replacing modules.

The core OntoMat (screenshot in Fig. 5.7), which is downloadable12, consists

of an Ontology Guidance and Fact browser (left hand side), a document viewer/ed-

itor (right hand side) and an internal memory data-structure for the ontology and

meta data. However, one only gets the full-fledged semantic capabilities (e.g. Dat-

alog reasoning or subsumption reasoning) when one uses a plug-in connection to a

corresponding annotation inference server.

Fig. 5.6. Architecture of the CREAM annotation framework

12 http://annotation.semanticweb.org/

5 Semantic Annotation of Resources in the Semantic Web 147

Fig. 5.7. Screenshot of OntoMat

5.4 Relevant Inputs for Semantic Annotation

Semantic annotation, as we presented it here, is a cross-sectional endeavour. There

is a number of research communities that have contributed towards achieving the

objectives of semantic annotation. We distinguish four major areas of relevant related

work.

First, there are frameworks for markup in the Semantic Web. Secondly, semantic

annotation may be considered as a particular knowledge acquisition task, where the

most prominent tool is Protégé [18]. Thirdly, there are annotation frameworks, with

a focus on note taking, such as Annotea [34]. And finally, semantic annotation is

achieved by authoring frameworks with an emphasis on meta-data creation.

5.4.1 Knowledge Markup in the Semantic Web

We know of three major early systems that use knowledge markup intensively in the

Semantic Web, viz. SHOE [30], Ontobroker [11] and WebKB [38]. All three of them

rely on markup in HTML pages. They all started with providing manual markup by

editors. However, our experiences (cf. [19]) have shown that text-editing knowledge

markup yields extremely poor results, viz. syntactic mistakes, incorrect references

and all the problems outlined in the scenario section.

148 Siegfried Handschuh

The SHOE Knowledge Annotator is a Java program that allows users to mark-up

Web pages with the SHOE ontology. The SHOE system [37] defines additional tags

that can be embedded in the body of HTML pages. The SHOE Knowledge Annotator

is a little helper (like our earlier OntoPad [21], [11]) rather than a full-fledged anno-

tation environment. WebKB [38] uses conceptual graphs for representing the seman-

tic content of Web documents. It embeds conceptual-graph statements into HTML

pages. Essentially, it offers a Web-based template-like interface such as knowledge

acquisition frameworks described below.

A more recent contribution is the RDF annotator SMORE.13 SMORE allows

markup of images and emails, as well as HTML and text markup. A tool with similar

characteristics is the Open Ontology Forge (OOF) [9]. OOF is seen by its creators

as an ontology editor that supports annotation, taking it a step further towards an

integrated environment for handling documents, ontologies and annotations.

The next group of markup tools is semi-automatic: They have automatic compo-

nents, but assume intervention by the user in the annotation process. In this line, the

tool which is most similar to the presented OntoMat is the system from The Open

University [50] and the corresponding MnM [56] annotation tool. MnM [56] also

uses the Amilcare information-extraction system. It allows the semi-automatic pop-

ulation of an ontology with meta data. So far, they have not dealt with relational meta

data or authoring concerns. Another weakness is that it is restricted to either marking

up the slots for a single concept at a time or marking up all the concepts on a single

hierarchical level of a single ontology (but not their slots).

AeroSWARM14 is an automatic tool for annotation using OWL ontologies, based

on the DAML annotator AeroDAML [35]. This has both a client–server version and

a Web-enabled demonstrator in which the user enters a URI, and the system auto-

matically returns a file of annotations on another Web page. To view this in context,

the user would have to save the RDF to an annotation server and view the results

in an annotation-friendly browser such as Amaya. AeroDAML is therefore not in

itself an annotation environment. SemTag is another example of a tool which focuses

only on automatic mark-up [15]. It is based on IBM’s text-analysis platform Seeker

and uses similarity functions to recognise entities which occur in contexts similar

to marked-up examples. The key problem of large-scale automatic markup is identi-

fied as ambiguity, e.g. identical strings, such as “Niger” which can refer to different

things, a river or a country. A Taxonomy-Based Disambiguation (TBD) algorithm is

proposed to tackle this problem. SemTag is proposed as a bootstrapping solution to

get a semantically tagged collection off the ground. AeroSWARM and SemTag, as

the most large-scale automatic markup systems, focus on class instantiation, in the

goal comparable to another Karlsruhe University approach [10], called PANKOW.

However, AeroSWARM and SemTag also have not dealt with the creation of relation

meta data.

KIM [53] uses information extraction techniques to build a large knowledge base

of annotations. The annotations in KIM are meta data in the form of named entities

13 http://www.mindswap.org/˜aditkal/editor.shtml
14 http://ubot.lockheedmartin.com/ubot/hotdaml/aeroswarm.html

5 Semantic Annotation of Resources in the Semantic Web 149

(people, places, etc.) which are defined in the KIMO ontology and identified mainly

from reference to extremely large gazetteers. This is restrictive, and it would be a

significant research challenge to extend the KIM methodology to domain specific

ontologies. However, named entities are a class of meta data with broad usage, and

the KIM platform is well placed to showcase the kinds of retrieval and data analysis

services that can be provided over large knowledge bases of annotations.

5.4.2 Knowledge Acquisition Frameworks

Semantic annotation targets a roughly similar objective to the instance-acquisition

phase in the Protégé framework [18] (the latter needs to be distinguished from the

ontology-editing capabilities of Protégé). The obvious difference between a semantic

annotation framework and Protégé is that the latter does not (and was not intended to)

support the particular Web setting, viz. managing and displaying Web pages–not to

mention Web page authoring. From Protégé we have adopted in our CREAM design

the principle of a meta ontology that allows a distinction between different ways that

classes and properties are treated.

Another recent knowledge acquisition framework with particular applications

in mind is TRELLIS [23]. It is designed to support argument analysis in decision-

making scenarios. It demonstrates the additional support that can be given to users

when an annotation environment is designed for a specific purpose. For example,

annotations in TRELLIS are in the form of free-text statements. This presents a

problem since statements about the same thing can be phrased differently and con-

sequently not matched up by the user. Therefore a component called ACE has been

built which helps users to formulate statements in ways which are consistent with

terms in the ontology [6]. The annotations in TRELLIS can be output as RDF. How-

ever, perhaps because it is designed as a tool for analysing a wide range of document

formats, the authors do not discuss whether it is possible to anchor annotations to a

particular part of a text.

5.4.3 Note Taker Annotation Frameworks

There is a lot of–also commercial–annotation tools like ThirdVoice15, Yawas [13],

CritLink [58] and Annotea (Amaya) [34]. These tools all share the idea of creating a

kind of user comment about Web pages. The term “annotation” in these frameworks

is understood as a remark assigned to an existing document.

Annotea actually goes one step further. It allows an RDF schema to be used as

a kind of template that is filled by the annotator. For instance, Annotea users may

use a schema for Dublin Core and fill the author-slot of a particular document with

a name. This annotation, however, is again restricted to attribute instances. The user

may also decide to use complex RDF descriptions instead of simple strings for filling

such a template. However, he then has no further support from Amaya that helps him

provide syntactically correct statements with proper references.

15 http://www.thirdvoice.com

150 Siegfried Handschuh

5.4.4 Authoring Frameworks

An approach interesting to authoring is the Briefing Associate of Teknowledge [54].

The tool is an extension of Microsoft PowerPoint. It pursues the idea of producing

PowerPoint documents with meta-data coding as a by-product of document compo-

sition. For each concept and relation in the ontology, an instantiation button is added

to the PowerPoint toolbar. Clicking on one of these buttons allows the author to insert

an annotated graphical element into his/her presentation. Thus, a graphic element in

the presentation corresponds to an instance of a concept, and arrows between the

elements correspond to relationship instances. In order to use an ontology in Pow-

erPoint, one must assign graphic symbols to the concepts and relations, which is

done initially by the visual-annotation ontology editor (again a kind of meta-ontology

assignment). The Briefing Associate is available for PowerPoint documents.

The authoring of hypertexts and the authoring with concepts are topics in the

COHSE project [24]. They allow for the automatic generation of meta-data descrip-

tions by analysing the content of a Web page and comparing the tokens with con-

cept names described in a lexicon. They support ontology reasoning, but they do

not support the creation of relational meta data. It is unclear to what extent COHSE

considers the synchronous production of document and meta data by the author.

The latest contribution to the authoring and annotation of web documents

are Semantic Wikis. Semantic Wikis allow users to make formal descriptions of

resources by annotating the pages that represent those resources. Where a regu-

lar Wiki enables users to describe resources in natural language, a Semantic Wiki

enables users to additionally describe resources in a formal language. By adding

meta data to ordinary Wiki content, users get added benefits such as improved

retrieval, information exchange and knowledge reuse. The most prominent systems

under ongoing development are WikSAR [3], Semantic MediaWiki [57], IkeWiki

[44] and SemperWiki [52]. Most existing Semantic Wikis only allow statements

about the current page. The subject of an annotation is never explicitly stated, but

always implicitly assumed to be the page on which the statement appears.

5.5 Conclusions

Semantic Meta data are, simply expressed, facts that are related to a domain onto-

logy. Though this may appear trivial at first, it easily conflicts with several other

requirements. We also need a meta ontology describing how the domain ontology

should be used by the annotation framework. Furthermore, there is the requirement

for remote storage of annotation, which leads to the need for a robust referencing

scheme, viz. XPointer. Also, there is the need for the provision of meta-meta data,

e.g. author, date, time and location of annotation. In addition, different requirements

exist for different semantics of semantic annotation as well as the need to express

different aspects of the content in meta data, viz. a layering of the annotation (e.g.

structural annotation, lexical annotation and semantic annotation).

5 Semantic Annotation of Resources in the Semantic Web 151

Automatisation is vital to ease the knowledge acquisition bottleneck. To achieve

this, the integration of knowledge extraction technologies into the annotation envi-

ronment has been undertaken. This is used to semi-automatically identify entities

in text that are instances of a particular class and relations between the classes. As

the evaluation in [29] showed, HCI implications are also important here, so that

a semi-automated tool can be used effectively by Web users without expertise in

natural-language processing methods.

Annotation is a potential knowledge acquisition bottleneck as discussed above.

To ease the constriction, annotation has to be carried out by people who are not

specialist annotators. To facilitate the annotation task is especially important for the

success of the Semantic Web. The annotation interfaces must, therefore, bridge the

gap between formal descriptions of knowledge and Web users who understand their

domains of interest. A good approach is therefore a semantic authoring environment,

so that the environment in which users annotate documents is the same as the one in

which they create, read and edit them.

The general problem of meta-data creation remains interesting. In the following,

the open questions that are not yet answered satisfactorily by research are identified:

• First, the question of scalability to more and larger dimensions. Like “what hap-

pens if there are 100,000 people known in your annotation inference server?.”

Even for scientific evaluation experiments, it is still often necessary to prune the

ontology in order to make it feasible for the annotation task.

• Secondly, semantic annotation takes place within the Semantic Web. For the

proper creation of relational meta data, we need unique identifiers of persons,

institutes or companies. While crawling of existing meta data helps to reduce
this problem, it is not solved and possibly may never be.

• Thirdly, we are still in the early stages with respect to providing methodological
guidelines for the purposes of semantic annotation.

• Fourthly, probably the most important for the Semantic Web: How to create

incentives for annotation?

Documents created by Semantic Annotation bring the advantages of semantic search

and interoperability. These benefits, however, come at the cost of an increased author-

ing effort. In this chapter, we have, therefore, presented a comprehensive framework

which supports users in dealing with the documents, the ontologies and the annota-

tions that link documents to ontologies.

Future research challenges include further improvements to automatic annotation

components, such as relation extraction, and developing support systems for onto-

logy evolution. There are also important human–computer interaction challenges

inherent in building integrated systems of this complexity.

As is shown in [1], the notion of semantic annotation is easily lifted from Web

pages to Web services, and software tools for annotation support can be provided, as

well. Similar to the approach presented in this chapter, there are, for instance, also

proposals to use machine learning for semi-automatic semantic annotation of Web

services [33]. In Chap. 11, we also see an example of a Web Service annotation tool.

152 Siegfried Handschuh

References

1. S. Agarwal, S. Handschuh, and S. Staab. Annotation, Composition and Invocation of

Semantic Web Services. Journal on Web Semantics, 2(1):1–24, 2005.

2. G. Antoniou and F. van Harmelen. Web Ontology Language: OWL. In S. Staab and

R. Studer, editors, Handbook on Ontologies, Handbooks in Information Systems, pages

67–92. Springer-Verlag, 2004.

3. D. Aumueller. Semantic Authoring and Retrieval Within a Wiki. In 2nd European Seman-
tic Web Conference ESWC-2005, Heraklion, Greece. May 2005.

4. S. Bechhofer and C. Goble. Towards Annotation using DAML+OIL. In Proceedings
of the Knowledge Markup and Semantic Annotation Workshop 2001 (at K-CAP 2001),
pages 13–20, Victoria, BC, Canada, October 2001.

5. R. Benjamins, D. Fensel, and S. Decker. KA2: Building Ontologies for the Inter-

net: A Midterm Report. International Journal of Human Computer Studies, 51(3):

687–713, 1999.

6. J. Blythe and Y. Gil. Incremental Formalization of Document Annotations through

Ontology-Based Paraphrasing. In Proceedings of the 13th International Conference on

World Wide Web (WWW 2004), New York, NY, USA, 2004, pages 17–22.

7. T. Bray, J. Paoli, and C.M. Sperberg-McQueen. Extensible Markup Language (XML)

1.0. Technical report, W3C, 2004. http://www.w3.org/TR/REC-xml.

8. D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.

Technical report, W3C, February 2004. W3C Working Draft. http://www.w3.org/
TR/rdf-schema/.

9. N. Collier, A. Kawazoe, A. A. Kitamoto, T. Wattarujeekrit, T. Y. Mizuta, and A. Mullen.

Integrating Deep and Shallow Semantic Structures in Open Ontology Forge. Special
Interest Group on Semantic Web and Ontology. JSAI (Japanese Society for Artificial Intel-
ligence), 2004.

10. P. Cimiano, S. Handschuh, and S. Staab. Towards the Self-Annotating Web. In Stuart I.

Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, editors, Proc. of the WWW-
2004, pages 462–471, New York, USA. ACM, May 2004.

11. S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based Access

to Distributed and Semi-Structured Information. In R. Meersman et al., editors, Database
Semantics: Semantic Issues in Multimedia Systems, pages 351–369. Kluwer Academic

Publisher, 1999.

12. S. Decker. Semantic Web Methods for Knowledge Management. PhD thesis, University

of Karlsruhe, 2002.

13. L. Denoue and L. Vignollet. An Annotation Tool for Web Browsers and its Applications to

Information Retrieval. In Proceedings of RIAO-2000, Paris, April 2000. http://www.
univ-savoie.fr/labos/syscom/Laurent.Denoue/riao2000.doc.

14. S. DeRose, E. Maler, and R. Daniel. XML Pointer Language (XPointer). Technical report,

W3C, 2001. Working Draft 16 August 2002.

15. S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S. Rajagopalan,

A. Tomkins, J.A. Tomlin, and J.Y. Zien. SemTag and Seeker: Bootstrapping the Seman-

tic Web via Automated Semantic Annotation. In Proceedings of the 12th International
Conference on World Wide Web, pages 178–186. ACM Press, 2003.

16. Dublin Core Metadata Initiative, April 2001. http://purl.oclc.org/dc/.

17. Dublin Core Metadata Template, 2001. http://www.ub2.lu.se/metadata/DC_
creator.html.

5 Semantic Annotation of Resources in the Semantic Web 153

18. H. Eriksson, R. Fergerson, Y. Shahar, and M. Musen. Automatic Generation of Ontology

Editors. In Proceedings of the 12th International Workshop on Knowledge Acquisition,
Modelling and Management (KAW-99), Banff, Canada, October, 1999.

19. M. Erdmann, A. Maedche, H.-P. Schnurr, and S. Staab. From Manual to Semi-Automatic

Semantic Annotation: About Ontology-Based Text Annotation Tools. In P. Buitelaar &
K. Hasida (eds). Proceedings of the COLING 2000 Workshop on Semantic Annotation
and Intelligent Content, Luxembourg, August 2000.

20. J. Euzenat. Eight Questions about Semantic Web Annotations. IEEE Intelligent Systems,

17(2):55–62, Mar/Apr 2002.

21. D. Fensel, J. Angele, S. Decker, M. Erdmann, H.-P. Schnurr, S. Staab, R. Studer, and

A. Witt. On2broker: Semantic-Based Access to Information Sources at the WWW. In

Proceedings of the World Conference on the WWW and Internet (WebNet-99), Honolulu,
Hawaii, USA, pages 366–371, 1999.

22. D. Fensel, K.P. Sycara, and J. Mylopoulos, editors. ISWC-2003 — Proceedings of the 2nd
International Semantic Web Conference, LNCS 2870. Springer-Verlag, 2003.

23. Y. Gil and V. Ratnakar. Trellis: An Interactive Tool for Capturing Information Analysis

and Decision Making. In Knowledge Engineering and Knowledge Management. Ontolo-

gies and the Semantic Web, 13th International Conference (EKAW-2002), pages 37–42.

24. C. Goble, S. Bechhofer, L. Carr, D. De Roure, and W. Hall. Conceptual Open Hypermedia

= The Semantic Web? In S. Staab, S. Decker, D. Fensel, and A. Sheth, editors, The 2nd
International Workshop on the Semantic Web, CEUR Proceedings, Volume 40, http:
//www.ceur-ws.org, pages 44–50, Hong Kong, May 2001.

25. T.R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 6(2):199–221, 1993.

26. S. Handschuh and S. Staab. Authoring and Annotation of Web Pages in CREAM. In Pro-
ceedings of the 11th WWW 2002, Honolulu, Hawaii, USA, pages 462–473. ACM Press,

2002.

27. S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM — Semi-automatic CREAtion of

Metadata. In Proceedings of EKAW-02, LNCS 2473, pages 358–372, Sigüenza, Spain,

Springer-Verlag, 2002.

28. S. Handschuh, S. Staab, and R. Volz. On Deep Annotation. In Proceedings of the WWW-
2003, Budapest, Hungary, May 2003.

29. S. Handschuh. Creating Ontology-based Metadata by Annotation for the Semantic Web.

Dissertation, University Karlsruhe, 2005.

30. J. Heflin and J. Hendler. Searching the Web with SHOE. In Artificial Intelligence for Web
Search. Papers from the AAAI Workshop. WS-00-01, pages 35–40. AAAI Press, 2000.

31. J. Heflin and J. Hendler. Dynamic Ontologies on the Web. In AAAI-2000 – Proceedings
of the National Conference on Artificial Intelligence. Austin, TX, USA, 2000.

32. J. Hendler and I. Horrocks, editors. ISWC-2002 – Proceedings of the 1st International
Semantic Web Conference, LNCS 2342. Springer-Verlag, 2002.

33. A. Heß, E. Johnston, and N. Kushmerick. ASSAM: A Tool for Semi-Automatically Anno-

tating Semantic Web Services. In Proceedings International Semantic Web Conference
ISWC-04, 2004.

34. J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea: An Open RDF

Infrastructure for Shared Web Annotations. In Proceedings of the 10th International
World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001, pages

623–632. ACM Press, 2001.

35. P. Kogut and W. Holmes. AeroDAML: Applying Information Extraction to Generate

DAML Annotations from Web Pages. 2001.

154 Siegfried Handschuh

36. M.-R. Koivunen and R.R. Swick. Collaboration through Annotations in the Seman-

tic Web. In S. Handschuh and S. Staab (eds.): Annotation for the Semantic Web, IOS

Press, 2003.

37. S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-Based Web Agents. In Pro-
ceedings of the 1st International Conference on Autonomous Agents, Marina del Rey, CA,
USA, February 1997, pages 59–66, 1997.

38. P. Martin and P. Eklund. Embedding Knowledge in Web Documents. In Proceedings of
the 8th International World Wide Web Conference (WWW8), Toronto, May 1999, pages

1403–1419. Elsevier Science B.V., 1999.

39. S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors. ISWC-2004 – Proceedings
of the 3rd International Semantic Web Conference, LNCS 3298. Springer-Verlag, 2004.

40. MUC-7 – Proceedings of the 7th Message Understanding Conference, 1998. http:
//www.muc.saic.com/.

41. N.F. Noy and D.L. McGuinness. Ontology Development 101: A Guide to Creating Your

First Ontology. Technical Report SMI-2001-0880, Stanford Medical Informatics, 2001.

42. OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref,

2004.

43. F. Rinaldi, J. Dowdall, M. Hess, J. Ellman, G.P. Zarri, A. Persidis, L. Bernard, and

H. Karanikas. Multilayer Annotations in Parmenides. In Proceedings of the Knowledge
Markup and Semantic Annotation Workshop, Sanibel, Florida , USA, pages 33–40, 2003.

44. S. Schaffert, A. Gruber, and R. Westenthaler. A Semantic Wiki for Collaborative Know-

ledge Formation. In Semantics-2005. 2005.

45. S. Staab, H.-P. Schnurr, R. Studer, and Y. Sure. Knowledge Processes and Ontologies.

IEEE Intelligent Systems, 16(1), 2001.

46. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit: Collab-

orative Ontology Development for the Semantic Web. ISWC-2002 – Proceedings of the

1st International Semantic Web Conference, pages 221–235.

47. Y. Sure. Methodology, Tools and Case Studies for Ontology based Knowledge Manage-
ment. PhD thesis, University of Karlsruhe, 2003.

48. M. Vargas-Vera, E. Motta, J. Domingue, S. Buckingham Shum, and M. Lanzoni. Know-

ledge Extraction by using an Ontology-based Annotation Tool. In Proceedings of the
Knowledge Markup and Semantic Annotation Workshop 2001 (at K-CAP-2001), pages

5–12, Victoria, BC, Canada, October 2001.

49. M. Vargas-Vera, E. Motta, J. Domingue, S. Buckingham Shum, and M. Lanzoni. Know-

ledge Extraction by Using an Ontology-Based Annotation Tool. In Proceedings of the
Knowledge Markup and Semantic Annotation Workshop 2001 (at K-CAP-2001), pages

5–12, Victoria, BC, Canada, October 2001.

50. Y. Lei, E. Motta, and J. Domingue. An Ontology-Driven Approach to Web Site Genera-

tion and Maintenance. In Knowledge Engineering and Knowledge Management. Ontolo-

gies and the Semantic Web, 13th International Conference, EKAW-2002.

51. Fernández-López, M. (1999). Overview of Methodologies for Building Ontologies. In

Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods:
Lessons Learned and Future Trends. CEUR Publications.

52. E. Oren. SemperWiki: A Semantic Personal Wiki. In Proceedings of the 1st Workshop

on The Semantic Desktop, 4th International Semantic Web Conference, Galway, Ireland.

Available at http://www.m3pe.org/publications.html. November 2005.

53. B. Popov, A Kiryakov, D. Ognyanoff, D. Manov, A. Kirilov, and M. Goranov. Towards

Semantic Web Information Extraction. ISWC-2003 – Proceedings of the 2nd Interna-

tional Semantic Web Conference, LNCS 2870. Springer-Verlag, 2003.

5 Semantic Annotation of Resources in the Semantic Web 155

54. M. Tallis, N. Goldman, and R. Balzer. The Briefing Associate: A Role for COTS Appli-

cations in the Semantic Web. In Semantic Web Working Symposium (SWWS), Stanford,

California, USA, August 2001.

55. M. Uschold and M. Grüninger, (1996). Ontologies: Principles, Methods and Applications.

Knowledge Sharing and Review, 11(2).

56. M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and F. Ciravegna. MnM:

Ontology Driven Semi-Automatic and Automatic Support for Semantic Markup. In

Knowledge Engineering and Knowledge Management. Ontologies and the Semantic Web,

13th International Conference, EKAW-2002, pages 379–391.

57. M. Völkel, et al. Semantic Wikipedia. In Proceedings of the 15th International Confer-
ence on World Wide Web, WWW 2006, Edinburgh, Scotland, May 2006.

58. K.-P. Yee. CritLink: Better Hyperlinks for the WWW, 1998. http://crit.org/

˜ping/ht98.html.

Part III

Semantic Web Services

6

Goals and Vision
Combining Web Services with Semantic Web Technology

Chris Preist

HP Laboratories, Bristol, UK, chris.preist@hp.com

Summary. This chapter introduces the combination of the formerly described Web Services

and Semantic Web technologies to Semantic Web Services. It outlines the vision and goals in

the Semantic Web Services area and clarifies terminology in this field. It defines an abstract

Semantic Web Service architecture and introduces a life cycle of the relationship between a

requester and a provider party. This motivates the subsequent chapters for description, discov-

ery, mediation and invocation of semantically annotated services in the web.

6.1 Semantic Web Services Vision

As we have seen from previous chapters, the technologies provided by the Semantic

Web are working towards a web which is machine-interpretable; a web where com-

puter algorithms are able to process and reason with information which currently is

only available in a human readable form. Web Services technologies, on the other

hand, are working towards an environment where organisations can make some of

their abilities accessible via the Internet. This is done by ‘wrapping’ some compu-

tational capability with a Web Service interface, and allowing other organisations

to locate it (via UDDI) and interact with it (via WSDL). Web Service technology

provides a standard and widely accepted way of defining these interfaces.

The Semantic Web Services vision [1, 2] is to combine these two technologies,

and through this to enable automatic and dynamic interaction between software sys-

tems. Web Service technology allows the description of an interface in a standard

way, but says nothing (in machine-interpretable form) about what the software sys-

tem does, or what sequence of messages is used to interact with it. We can overcome

this lack using Semantic Web technology. We can annotate software being offered

via Web Service interfaces with machine interpretable descriptions describing what

the software does (namely the service it provides a potential user) and how it does it.

Furthermore, with ontologies able to describe the services that can be provided, we

can bring about ‘advertising’ of services in a way which is both rich and machine-

interpretable. This allows more sophisticated discovery of services than is currently

possible with UDDI.

160 Chris Preist

Combining these technologies enables many new things to be done. ‘Services’

as varied as protein analysis, bookselling, translation and animation rendering could

be advertised and discovered automatically on the Internet. A company needing a

service could locate a provider they were previously unaware of, set up a short-term

business relationship and receive the service in return for a payment. All this could be

done automatically and at high speed. Furthermore, several services could be com-

bined into a more complex service, possibly automatically [3]. If one of the compo-

nent services is unavailable, a replacement could be rapidly found and inserted, so

the complex service can still be provided.

Note that we used the word ‘enable’ in the previous paragraph. Semantic Web

Services technology is an enabling technology, so it is necessary but not sufficient

to bring about the vision we have just described. It provides a means for describing

services, and also infrastructural capabilities to discover services and to enable inter-

operation. However, it does not provide the reasoning to decide which service you

want, which provider is ‘best’, how to negotiate the parameters of a service and what

actions to take when using a service. If a service is simple and used in a straightfor-

ward way, this reasoning will also be simple. However, in some of the more ambi-

tious scenarios, complex reasoning such as negotiation or dynamic planning will be

necessary. Hence, Semantic Web Services alone will not bring about this brave new

world – it can do so only in conjunction with other computer science disciplines.

6.2 Example Scenarios

The real value that Semantic Web Services can enable is best illustrated through

some example scenarios which this technology, together with appropriate reasoning

techniques, can bring about. In this section, we introduce four scenarios. Initially, we

present a ‘storyboard’ for each. In subsequent sections, these example scenarios will

be used to illustrate different features of Semantic Web Services.

6.2.1 Scenario A: Overdraft Notification Service

A bank provides an ‘overdraft notification service’ to its customers to help them

manage their account, and to warn them when they are at risk of going overdrawn.

Software at the bank monitors the behaviour of a customer’s account, and keeps track

of when regular payments are made into or out of it. Based on the expected future

transactions in an account, and the current balance, banking software can predict

if the customer is likely to go overdrawn. If this is about to happen, the customer

is warned via an email, text or voice message. To send the warning message, the

bank’s software component uses some message-sending service. It does not have a

pre-selected provider of this service, but instead automatically makes a decision at

the time a message must be sent. To do this, it looks in a directory of available service

providers and the message services they offer, and selects one based on factors such

as cost, reliability and the preferences of the customer receiving the message. It then

6 Goals and Vision 161

sends the message to the provider of that service, which in turn sends a text or voice

message to the customer.

This scenario is described in [4] in more detail.

6.2.2 Scenario B: Intelligent Procurement

A large manufacturing company makes regular purchases of supplies from a vari-

ety of on-line companies. Supplies essential for manufacturing, such as components,

are purchased through a fixed supply chain from providers who have been carefully

vetted to meet the companys requirements. However, less business-critical supplies,

such as stationery, anti-static foot straps or reference books, can be purchased from

any reputable supplier. This provides opportunity for shopping around to get the best

deal. A software agent acting on behalf of the company is given a list of stationery

equipment needed over the next month. It looks in a directory of suppliers the com-

pany considers acceptable for those which are able to supply stationery. The suppliers

provide purchasing websites which use a ‘shopping trolley’ model similar to Ama-

zon’s – a customer browses a catalog, places items it wants onto a list and goes to

a checkout to get a quote for the total package, including postage. They provide a

Web Service front end to these portals, allowing programs to interact with them as

well as people. The software agent visits several such sites simultaneously. It inter-

acts with them, discovering if they have the specific items in stock, and builds up a

‘shopping trolley’ of purchases. On reaching ‘checkout’, it receives a quote for each

as to the total cost of the bundle, including volume discounts. Based on these quotes,

it selects the cheapest and completes the transaction with that supplier, cancelling the

other requests. The supplier then ships the order.

6.2.3 Scenario C: Provision of a Logistics Supply Chain

A company requires the transport of a crate from Bristol to Moscow. It already

has long-term contracts in place for land transportation of crates from Bristol to

Portsmouth, and from St Petersburg to Moscow. However, its usual supplier of ship-

ping services is for some reason unavailable and it needs to rapidly locate and agree

a replacement freight forwarder. A software agent acting on behalf of the company

has detailed information about the transportation task which must be carried out. It

contacts a discovery agent which has access to descriptions of services various organ-

isations are able to provide, and asks for providers able to ship between Portsmouth

and St Petersburg. The discovery agent responds with a list of possible freight for-

warders likely to be able to meet these requirements. The software agent then selects

one or more of the possible freight forwarders, and sends a more detailed description

of the task it requires to be performed, including the date the shipment will arrive at

Portsmouth, and the date it must reach St Petersburg. The freight forwarders respond

with lists of services they can offer which meet these requirements. For example, one

forwarder may say that it has a ship leaving Portsmouth on the required day which

will arrive in St Petersburg the day before the deadline. It will also give the cost of

placing a crate on that ship. The requesting agent then selects one of the proposed

162 Chris Preist

services (possibly by interacting with a user to make the final decision) and informs

the provider of the decision. Effectively, the two parties enter into an agreement at

this point.

As the shipment takes place, it is coordinated by an exchange of messages

between the two parties. The messages use an industry standard, RosettaNet, which

describes the format and order of the messages. The exchange starts when the crate

is about to arrive in Portsmouth, with a RosettaNet Advanced Shipment Notification

being sent by the requester to the freight forwarder, and ends with the sending of

a Proof of Delivery and Invoice by the freight forwarder when the crate arrives in

St Petersburg.

This scenario is described in [5] in more detail.

6.2.4 Scenario D: Free Stock Quote Web Service

A small-time investor has a software package to keep track of his/her share portfolio.

He/she is able to receive updated share prices via Web Services technology. When

he/she connects to the internet, the software searches for services able to provide

share prices. It locates two possible services, and asks the user to select one. One

service gives prices delayed by 1 minute, and requires a subscription of e 10 /per

month to use. The other gives prices delayed by 30 minutes and is free. The investor

chooses the latter, because he/she does not engage in real-time trading, and the soft-

ware package then updates his/her portfolio information whenever he/she is online.

6.3 Key Concepts in Semantic Web Services

We now introduce some key concepts in Semantic Web Services, and show how

these inter-relate. In each case, we illustrate this with examples from the scenarios

introduced in Sect. 6.2. The work presented in this section follows the Semantic

Web–enabled Web Services conceptual architecture [6].

6.3.1 Notion of Service

First, let us define the key concept of service. Intuitively, one party provides a service

to another when the first party does something for the benefit of the second. A service

may be freely given, but is often done for payment. A window cleaner performs the

service of cleaning windows; a hairdresser performs the service of cutting hair. In

Scenario A above, the bank provides the overdraft warning service to its customer;

in Scenario B, the stationery supplier provides the service of sale and shipment of

stationery to the manufacturing company; in Scenario C, the freight forwarder pro-

vides the service of transferring a crate from one port to another. Formally, we can

summarise this by saying that a service is the performance of some actions by one

party to provide some value to another party. Note that it makes sense to talk about a

service in a certain domain. (In Scenario C, the domain would be transport and logis-

tics.) We refer to this as the domain of value of the service. We call the party which

6 Goals and Vision 163

performs the service the service provider and the party which receives the benefit

of the service the service requester. Services can be considered at different levels of

abstraction. A concrete service is a specific performance of actions at a given time

by one party for another. (In Scenario C, a concrete service would be the shipping

of crate 246 on the ship departing from Portsmouth at 9.25 on 11/12/04 and arriving

in St Petersburg at 22.00 on 14/12/04.) However, often when we are reasoning about

services, we do not want to be so specific. In particular, when discussing a hypotheti-

cal service to be performed in the future, we cannot be specific about all of its details.

Hence, we use an abstraction. An abstract service corresponds to some set or class of

concrete services, and allows us to discuss these hypothetical future services without

being precise about all aspects of them. (In Scenario C, the service requester may

want to talk about a hypothetical service which will carry crate 246, departing from

Portsmouth sometime on 11/12/04 and arriving in St Petersburg before 17/12/04.)

6.3.2 Service Representation

One goal of Semantic Web Services is to bring about a computational machine-

readable representation of the service, in terms of the value it provides. This is

referred to as the service description. Usually, a service description will describe an

abstract service, in which case it can be referred to as an abstract service description.

Less often, a concrete service description is used to describe a concrete service.

To describe services, the Semantic Web approach uses techniques based on

knowledge representation, a discipline which has developed a set of formal lan-

guages and techniques for describing knowledge in a way which permits reasoning

with it. When describing a service, there are two key design decisions which must be

made initially. First, what formal language is going to be used to describe it? Should

it be described using horn clause logic, description logic, non-monotonic logic or

some other approach? Different formalisms can be used, and this will be further dis-

cussed in Chap. 7. Secondly, what specific concepts and relations are going to be

permitted in descriptions, and what is the meaning of these? This involves the cre-

ation or selection of an ontology, which provides a structured ontological vocabulary:

a set of concepts and relations which can be used to describe things in the domain

of interest. It is important that the terms the ontology provides allow a specification

of the actions the service consists of, and/or the outcomes it brings about, in the

terminology of the domain of value of the service.

When two parties describe services, they make different choices with regard to

the language and ontology used. As a result, if one party is to reason with a descrip-

tion produced by the other party, then some additional reasoning will be necessary to

translate between the two approaches. This additional reasoning is termed mediation,

specifically ontology mediation. Other forms of mediation may also be necessary,

and we will discuss this further below.

6.3.3 Agents

Having discussed the representation of services, we need to consider the online rep-

resentation of the service requester and provider. If the providing and receiving of a

164 Chris Preist

service is to be automated, then these two parties must have some online presence.

We refer to the software components which represent the parties as agents, with a

service provider agent representing a service provider and a service requester agent

representing a service requester.

These software components are agents in a very precise sense; they act as rep-

resentatives online on behalf of some party. (This is the same sense of the word

‘agent’ as in ‘estate agents’, who act on behalf of a house seller.) Hence, the agent

property is a role the component takes, rather than some intrinsic property of the

component. Hence, these software entities are not necessarily agents in the sense

used in Multi Agent Systems research [7]. Often, they will be reactive not proactive,

and will be hardwired to follow some pre-determined process. For example, a set

of Web Services provided by Amazon make up a service provider agent able to sell

books on behalf of Amazon. However, as these entities become more sophisticated,

and take on further tasks from the party they represent, they will make use of tech-

nology developed by the Multi Agent Systems community. For example, they may

use negotiation algorithms [8] to allow them to agree details of services and prices;

they may use distributed planning [9] to allow complex service composition and they

may use utility theoretic reasoning to decide between possible alternative courses of

action [10] as a service is delivered.

Another consequence of ‘agent’ being a role that a software component takes is

that it can behave as a requester agent at one time, and a provider agent at another.

This can be seen in Scenario A; the bank’s software system acts as a service provider

agent to its customer, providing the service of account warnings. However, to get the

warning message to its customer, the bank’s system behaves as a service requester

and enters into an arrangement with a provider of a message delivery service.

If we are to be precise, we need to make a clear distinction between the service

requester (or provider) and the service requester agent (or provider agent) which

represents it. However, in practice this is not necessary in our subsequent discussions

and we will use ‘service provider/requester’ to refer to the agent also.

6.3.4 Communication

Choreography

When a service is provided online, there must be some interaction between the

provider and the requester. This interaction will require some exchange of messages.

The exchange of messages within an interaction must follow certain constraints if

they are to make sense to both parties. In other words, the message exchange must

proceed according to a certain communication protocol known to both parties. In

the Semantic Web Services world, a communication protocol, which can be multi-

party, is often referred to as a choreography. For consistency with this existing litera-

ture, we will adopt this terminology subsequently. When some exchange of messages

takes place according to the constraints provided by some choreography, we refer to

this as a conversation between two parties which satisfies the choreography.

6 Goals and Vision 165

Interactions about a service may involve more than two parties, playing different

roles. In general, many multi-party interactions can be reduced to a set of two-party

interactions. However, there are some cases where this is not possible. For the pur-

poses of this book, we focus only on two-party interactions; however, many of the

concepts generalise straightforwardly to the multi-party case.

When two parties engage in a conversation, they must each have one or more

communication endpoints to send and receive the messages according to some trans-

port protocol. This is referred to as the grounding of the choreography. In many

cases, service providers will interact via an interface specified in terms of Web Ser-

vice operations. This is particularly the case for simple service provider agents with

no internal state, where their choreography consists simply of a call–response inter-

action. The free stock quote service in Scenario D is of this type. However, there are

other possibilities; the freight forwarder interacts using a complex set of RosettaNet

messages with implicit state information in their sequencing, and these messages

will be transported between the business partners using the RNIF standard.

Semantics in Choreography

As we discussed above, the first technical goal of Semantic Web Services is to pro-

vide machine-readable descriptions of service, to allow them to be reasoned with by

different parties. The second technical goal of Semantic Web Services is to describe

the different choreographies, which parties can use to interact, in a machine-readable

form. This form should represent not only the messages which are exchanged, but

also provide some model for the underlying intention behind the exchange of mes-

sages on the part of both parties. In other words, it should represent the semantics

of the message exchange. In Scenario D, messages are exchanged to build up a sta-

tionery order; semantic representation of this will show that a certain sequence of

messages corresponds to adding an item to the order, another sequence corresponds

to getting a quote for the order, and another sequence corresponds to a final agree-

ment that the order will be processed and payment made.

Doing this will allow software entities to reason about choreographies. For exam-

ple, an entity could use an explicit model of a choreography to dynamically decide

which action to take or message to send next.

6.3.5 Orchestration and Service Composition

As explained above, choreography determines the constraints on the ordering of mes-

sages sent between the service requester and service provider. However, the con-

straints alone are not enough to determine exactly which message is sent when. This

is the role of an orchestration. An orchestration is a specification, within an agent,

of which message should be sent when. Hence, the choreography specifies what

is permitted of both parties, while an orchestration specifies what each party will

actually do.

The real power of orchestration becomes evident when we look at multiple simul-

taneous relationships between agents. So far in this discussion, we have focussed

166 Chris Preist

on a single interaction, with one agent taking the role of service requester and the

other the role of service provider. However, it is clear that in many circumstances

an agent will be involved in multiple relationships; in some, it will be acting as a

service provider, while in others it will be acting as a service requester. For example,

in Scenario A, the bank’s overdraft notification service agent acts as a provider to

the bank’s customer. However, it outsources the task of delivering the notification to

other parties. Hence, it acts as a service requester in relationship with these parties.

Often, such an agent will communicate with several service providers and coor-

dinate the services they provide to produce some more complex service – as, e.g.,

the logistics coordinator does in Scenario C. This act of combining and coordinat-

ing a set of services is referred to as service composition. When a requester agent is

interacting simultaneously with many service providers, an orchestration can specify

the sequencing of messages with all of these, including appropriate dependencies.

The orchestration can be specified in several different ways. The most straightfor-

ward, and least flexible, is to make a design time choice of which service providers

to use, and hard-code the integration logic in the service requester agent. A more

flexible way is to use a declarative workflow language to describe the process of

integrating the interactions with the chosen service providers. This is the approach

taken by BPEL [14]. This is more easily maintainable, but suffers from the draw-

back that if one of the chosen service providers is unavailable, then the overall ser-

vice orchestration will fail. A more robust approach, advocated by WSMF [11], is

not to select the service providers in advance within the orchestration, but instead

merely include descriptions of their required functionality. When the orchestration is

executed, appropriate service providers are dynamically discovered and selected at

run-time.

Having an explicit description of a service orchestration in terms of some process

language has a further advantage. It means that the orchestration can exist indepen-

dently of a specific requester agent, and be passed between agents as a data structure.

This approach is used to a great extent by the OWL-S virtual machine [12]. Rather

than the service requester being responsible for generating an orchestration, any party

can produce one, showing how several services can be combined to produce a more

complex service. In particular, in the case where a single service provider offers a

variety of services, it is more appropriate for the provider to take responsibility to

show how they can be combined in different ways. If this is done in some agreed

standard process language, such as the OWL-S process model [13], and a service

requester has access to a means to interpret that process language, such as the OWL-S

virtual machine, then any such service requester can make use of the complex

service.

6.3.6 Mediation

When an interaction between two parties takes place, there may be further need

for mediation. There are four forms of mediation which could be necessary: data
mediation, ontology mediation, choreography mediation and process mediation. We

will now briefly introduce each.

6 Goals and Vision 167

Data Mediation

A message or fragment of data represents the information it carries in some specific

syntactic format. Different service providers may expect different syntactic formats

for their messages, even though the information carried is equivalent. Data mediation

consists of transforming from one syntactic format to another.

Ontology Mediation

When two parties describe services, they make different choices with regard to the

vocabulary of terms, and therefore ontology, used to do so. As a result, if one party

is to reason with a description produced by the other party, then some additional

reasoning will be necessary to translate between the two approaches. This additional

reasoning is termed ontology mediation.

Protocol Mediation

Two components which are to interact with each other (such as a service requester

and service provider) may each have been designed with a particular interaction

choreography in mind. Unless agreement was reached between the two designers

(either directly or indirectly through the adoption of a standard) then it is unlikely

that the two choreographies will be identical. Protocol mediation is mediation which

reconciles these two choreographies, by translating a message sequence used by one

into a different message sequence used by the other to accomplish the same end.

Process Mediation

Behind any interaction, each party has some internal process which manages the rea-

soning and resources necessary to bring about that interaction. (In many domains of

application, this will correspond to a business process.) In some cases, even though

the two parties are able to interact via some protocol, there may be some differ-

ence between their processes which means this interaction will not succeed. Process

mediation is mediation which reconciles the differences in such processes. This is the

hardest form of mediation, and may in many cases be impossible without engaging

in process re-engineering.

Mediation of these four different kinds is only possible automatically if the mes-

sages and choreographies are annotated semantically. It is key to enabling service

interaction to take place automatically, and so forms a core part of the Semantic Web

Services research programme. Further discussion will be provided in Chap. 10.

Up to now, we have discussed interactions between service provider and ser-

vice requester in general terms, without considering the underlying goals of the

interaction. This is because there are several different goals an interaction can have

behind it. As the relationship between service provider and service requester pro-

gresses, different goals are required. For that reason, we now turn to this relationship.

168 Chris Preist

6.3.7 Life cycle

The life cycle of the relationship between service requester and service provider goes

through four phases: modelling, discovery, service definition and service delivery.

During discovery, a requester attempts to locate possible providers able to give it

the service it requires. During service definition, the requester and provider interact

to define the details of the service which is to be provided. During service delivery,

different kinds of interactions can occur which are associated with the provision of

the service.

Service Modelling Phase

At the outset of the discovery phase, a service requester prepares a description of the

service it is interested in receiving. Because it is unlikely that all details of the service

will be known at the outset (e.g., the provider of the service is not known, and the

cost of the service may not be known), the description will be of an abstract service.

This abstract service description makes up the service requirement description of

the service requester. Similarly, service providers create abstract service descriptions

representing the service they are able to provide. This is referred to as the service

offer description. Note that both the service requirement description and the service

offer description are simply descriptions of a service, and hence use the same con-

cepts and relations in the description. However, in each case, the service description

plays a different role. In the first case, it describes a service which is being looked

for, and in the second case it describes a service which is being provided.

Service Discovery Phase

If the requirement description of a requester and the offer description of a provider

are in some sense compatible, then there is a match and the two parties could go

on to the service definition phase. There are different ways of deciding whether two

descriptions are compatible; these will be discussed in Chap. 8.

To illustrate this, consider Scenario A. The bank is looking for a service provider

able to send a message to the customer. Let us say the customer has chosen to

receive the message via text. The bank’s requester agent creates a service require-

ment description stating that it wants to send a text message of length 112 characters

to a number on Telefonica Movistar, a Spanish mobile network. A provider advertises

a service offer description stating that it is able to send text messages of maximum

length 120 characters to Telefonica Movistar numbers at a cost of e 0.1. These two

are potentially compatible, so a match should be made during discovery.

There are also different architectures which can be used to carry out discovery.

The most common is a centralised discovery ‘service’ which is contacted by the

requester using a simple message exchange protocol.

6 Goals and Vision 169

Service Definition Phase

During discovery, a requester may identify several providers which are potentially

able to meet their needs. From the set of providers identified, the requester may

contact one or more of these and enter into a service definition conversation with

them. Selection of which to contact may simply be random, or may involve some

analysis of the service providers and choice of which appear in some sense ‘best’.

(Recall in Scenario D, the investor chose the cheaper but older service for stock

quotes, because low cost was more important than having immediate information.)

If service definition fails with those selected, the requester has the option to later

contact others which were not initially selected, and try with those.

The service definition phase involves taking an abstract service description of

a provider and refining it so that it describes a specific service which meets the

requester’s needs. One way of conceptualising this is to think of the abstract ser-

vice as having attributes which must be instantiated. In Scenario C, the shipment

service would have attributes including weight of crate, departure and arrival ports,

departure and arrival times, and price. The selection of the values these attributes

take is the role of the service definition phase. Sometimes, it is not necessary to

specify a specific value, but some constraint on a value is adequate. (In Scenario C,

the arrival time might be specified as between 18.00 and 22.00.) This process takes

place through a conversation governed by a service definition choreography.

When a requester enters into service definition phase with several possible

providers, it will often be in an attempt to explore what options the different par-

ties provide in order to select the best. (Recall in Scenario B, the service requester

agent making a stationery purchase goes through the motions of preparing an order

and receiving a quote with several providers.) The requester will complete the ser-

vice definition phase with only one of them, terminating the conversations with those

it has not selected.

If the service definition phase is successfully completed between two parties,

they have agreed a service to be delivered by the provider to the requester, and

can enter into the service delivery phase. Some of the attributes may not be fully

defined, merely constrained. (In Scenario C, the freight forwarder may specify that

the crate must be lighter than 500 Kg.) In this case, it means that one party (usually

the provider) will allow the other to make a selection of attribute value during the

delivery phase. (In Scenario C, the requester will inform the freight forwarder of the

final crate weight in the advance shipment notification message it sends just before

dispatch.) There may be a formal representation of the agreed service description,

which can form part of a contract between the two parties [16].

In many cases, a service definition conversation will not be necessary. The

description of the service by the provider will define fixed values for all the attributes

the provider cares about. The only flexibility in the description will be where a

provider is willing to allow a requester to freely choose. Effectively, the provider

gives a ‘take it or leave it’ description of the service it provides, and the requester

simply selects one. This can be seen in Scenario D. There is no service definition con-

170 Chris Preist

versation between the investment software and the service provider agents. Instead,

the investor simply selects which to use based on his/her preferences.

In some cases, the conversation will involve iterative definition of the service,

selecting from options to create a complete description piece-by-piece. This can be

seen in Scenario B, where the shopping-trolley metaphor is used during service def-

inition. Through an exchange of messages between the two parties, the requester

browses the wares, selects some, gets a final quote and agrees (or not) to purchase

them.

Less often, the conversation may involve negotiation of certain parameters, such

as price. Negotiation involves the iterative relaxing of constraints on values until

some agreement is reached. Negotiation is an important area of agent technology

research,but detailed discussion is beyond the scope of this chapter.

Service Delivery Phase

When the definition of a service has been agreed, then service delivery can take place.

It may be immediate, as in Scenario A where the text message is sent as soon as the

bank confirms its selection. Alternatively, it may take place a while after service def-

inition has been completed, as in Scenario C where the agreement to carry a crate in

a certain ship may be made days or weeks before the actual voyage. Service delivery

may take place entirely off-line, with no communication, as in Scenario A where the

text message is sent by the provider without any further exchange of messages. Alter-

natively, it may involve communication between the two parties. If communication

takes place, this is again governed by an interaction choreography.

Several different types of interaction can occur during service delivery, and each

is governed by a choreography:

1. The service delivery choreography covers the exchange of messages associated

directly with the delivery of the service. In some cases, the service is provided

directly by this exchange of messages, as in Scenario D where the stock quote

data will be carried within a reply message from the quotation Web Service. In

other cases, the exchange of messages is linked with activities occurring in the

real world, as in Scenario C where the messages initiate and control (to a limited

extent) the movement of a crate from Portsmouth to St Petersburg.

2. A monitoring choreography covers the exchange of messages which allow the

service requester to receive information regarding the progress of the service

from the provider. In Scenario C, there is a RosettaNet message exchange, ‘Ship-

ment Status Message’, which allows the service requester to get information

about the progress of the shipment from the freight forwarder. This is an exam-

ple of a monitoring choreography.

3. A cancellation/renegotiation choreography allows the service requester, in cer-

tain circumstances, to cancel or alter the service which they are receiving from

the provider. In Scenario B, we can imagine (as in Amazon) that the purchaser

has the option to review, modify or cancel their order through an exchange of

messages, provided the order has not entered the dispatching process.

6 Goals and Vision 171

6.4 Architecture for Semantic Web Services

Having introduced the concepts used in Semantic Web Services, we now consider

an architecture which can be used to develop and deploy applications. Inevitably, by

moving from a conceptual level to an architecture, certain design decisions will be

made. We do not claim that this is the only way to make such decisions.

In Multi Agent Systems research, a distinction is made between a micro-

architecture and a macro-architecture. A micro-architecture is the internal

component-based architecture of an individual entity within a community. A macro-

architecture is the structure of the overall community, considering each entity within

it as a black box. It is also helpful to consider this distinction in Semantic Web Ser-

vices. In an open community, it is necessary to standardise the macro-architecture

to some extent, but the micro-architecture can be more flexible, with differences in

design between various community members.

6.4.1 Macro-Architecture

Initially, we will present the macro-architecture for our community. In our commu-

nity, there are three possible roles that a software entity can have: service requester

agent, service provider agent and discovery provider agent. In general, an entity may

have more than one role; however, for clarity we will consider each role separately.

To recap from the previous section, a service requester agent acts on behalf of

an individual or organisation to procure a service. It receives a service requirement

description from its owner, and interacts with other agents in an attempt to fulfil the

requirement it has been given. It has some model, in an ontology, of the domain of

the service and also has some model of the kind of actions that can be taken (through

message exchange) in this domain.

A service provider agent is able to provide a service on behalf of an organisa-

tion. It has a service offer description in some domain ontology (ideally, the same as

the requester agent), which describes at an abstract level the kind of services it can

provide. It also has a means to generate more concrete descriptions of the precise

services it can deliver. Furthermore, it has a formal description of the message proto-

col used to deliver the service. This includes mappings from the content of messages

into concepts within the domain ontology. It also includes mappings from message

exchange sequences into actions. In Scenario C, a field in the initial Advance Ship-

ment Notification (ASN) message might map onto the ‘weight’ attribute of the ‘crate’

concept within the domain. The sequence consisting of one party sending the ASN

and the other party acknowledging receipt may correspond to a ‘notify shipment’

action in the domain ontology.

A discovery provider agent has access to descriptions of service offers, together

with references to provider agents able to provide these services. These service offer

descriptions are all in some domain ontology associated with the discovery provider

agent. Within this ontology is a ‘service description’ concept which effectively acts

as a template for the descriptions of services that the discovery provider can contain.

172 Chris Preist

We illustrate the macro-architecture by specifying the interactions which can take

place between the different agents. These interactions are roughly in order of the life

cycle progression introduced in the previous section.

1. Provider agent registering a service offer description

A simple message exchange protocol is used between a provider agent and a

discovery agent. The provider agent sends a register message to the discovery

agent, containing a service offer description in the ontology of the discovery

agent and a URI for the provider agent. The discovery agent replies with an

accept message if it is able to accept and store the description, reject otherwise.

It will only reject a description if the description is not a valid concept in its

ontology, or there is some practical reason it can’t accept it, such as lack of

memory. Prior to this, if the provider agent is not aware of the ontology used

by the discovery agent, it can send a requestOntology message to the discovery

agent. The agent replies with an informOntology message containing the section

of the ontology relevant to the service description. If this is a different ontology

from that used by the service provider agent, then ontology mediation will be

necessary. We assume this takes place within the provider agent. However, in

general it could take place using a third party or within the discovery agent.

2. Requester agent finding possible providers

Discovery takes place through a simple exchange protocol between a service

requester agent and a discovery agent. The requester agent sends a request-

Providers message containing a service requirement description in the ontology

used by the discovery agent. (As above, it can find out what this is using a

requestOntology/informOntology exchange. It may then require ontology medi-

ation, which we assume takes place within the requester agent.) The discovery

agent responds with an informProviders message containing a list of URIs of

service provider agents. These correspond to those provider agents which have

offer descriptions stored within the discovery agent which match (using the dis-

covery agent’s algorithm) with the service requirement description.

3. Requester and provider agents define service

Following discovery, the requester agent exchanges messages with one or more

provider agents to define the service it will receive, and to select which provider

agent to use. In our architecture, we assume a single simple service definition

protocol is used by all requester and provider agents. This protocol is ade-

quate for very many service definition tasks; however, in the general case this

assumption is unrealistic and multiple protocols (and possibly protocol medi-

ation) would be necessary. The FIPA standards [17] provide various possible

negotiation protocols which could be used at this stage. Our simple protocol

consists of two rounds of message exchange. Initially, the service requester agent

sends a requestServices message to each provider agent. The message contains

6 Goals and Vision 173

a service requirement description. The provider agent replies with an inform-

Services message, which contain (almost) concrete service descriptions of the

services it is able to provide that meet the needs of the requester. If the requester

wishes to select one of these, it replies with a selectService message containing

the required service, and the provider responds with confirm. The confirm mes-

sage contains a URI referencing where the description of the choreographies

which will be used during service delivery are to be found. If the requester does

not select one within a certain time window, sending no response to the provider,

this is taken as cancelling. Note that this protocol does not allow negotiation–it

simply allows the service provider to list a set of potentially interesting concrete

services to the requester, and allows the requester to select one of these. Note

also that our protocol does not capture Scenario B, intelligent procurement. The

service selection protocol used in this example is a shopping-trolley protocol.

While this is a natural protocol for human users (who are interested in brows-

ing, and looking at one item at a time), it is less essential for software entities

interacting with the service provider. We can imagine an alternative access proto-

col to shopping sites, similar to the one described here, where a requester agent

submits a list of product descriptions it is interested in, receives a list back of

relevant available products, selects a subset and places an order. However, in

practice, many sites will continue to use the shopping-trolley metaphor meaning

that protocol mediation will be important at this stage. For the purposes of the

architecture presented here, we ignore this additional complexity and assume all

parties use the same service specification protocol.

4. Service delivery

Service delivery starts when one party (depending on the choreography used)

sends an initiating message. Unlike previous stages, many different choreogra-

phies can be used depending on the domain of application of the service. In

Scenarios A and D, the choreography is simply a single message exchange cor-

responding to ‘do the service’, with a reply being ‘I have done the service and

here is the result.’ Scenario B is similar, except the response is ‘I will do the

service’ (and it takes place off-line, via mail.) In Scenario C, the choreography

used at this stage will correspond to the sequence of messages specified by the

RosettaNet standard.

Because of the large variety of choreographies which are possible during service

delivery, it is at this stage that protocol mediation will play the largest role. This will

particularly be the case where the choreography can be more complex, as in Sce-

nario C. For the purposes of this architecture, we assume that any protocol mediation

that is required will take place in the service requester agent and use the choreogra-

phy descriptions referenced by the provider agent. However, mediation can equally

well take place within the provider or within a third party.

Given this assumption, then the macro-architecture appears as follows. Each ser-

vice provider has a description of the service delivery choreography associated with

174 Chris Preist

each service it can provide. At the end of the service definition protocol, as a param-

eter of the confirm message, it informs the requester of a URI which references this

description. The requester is then responsible for accessing this description, inter-

preting it and engaging in a message exchange with the provider which satisfies the

requirements of the choreography described.

6.4.2 Micro-Architecture

Having described the macro-architecture, we now turn to the micro-architecture of

the system. We look at two of the three roles that software entities can have –

requester agent and provider agent – and present a micro-architecture for each. The

micro-architecture of the discovery service provider agent will be covered in Chap. 8.

Note that, unlike the macro-architecture, a micro-architecture is not normative within

a community. The macro-architecture defines the exchange of messages between

entities of different roles, and if the community is to function effectively, this must be

agreed and adhered to (though the provision of protocol mediation within the macro-

architecture allows some flexibility). The micro-architecture of each agent, however,

need not follow some pre-agreed structure. The community can function perfectly

well with any internal structure, provided the functionality the micro-architecture

implements does indeed correspond to the requirements of the macro-architecture.

Figure 6.1 illustrates our architecture for the service requester agent. At the heart

of the agent is the application logic, which is responsible for decision-making with

Application Logic

Discovery and Definition
ComponentService

Requirement
Description

Delivery Component

Provider
Choreography

Description

Message Lift/
Lower

Message
Transport
Routines

Knowledge Base

Fig. 6.1. Architecture of service requester agent

6 Goals and Vision 175

regard to which service to select and how to make use of it. This can include integra-

tion with other back-end systems within the organisation which the service requester

agent represents. It may also access and assert information in the knowledge base.

In other cases, the application logic will be provided by a user interacting through

a user interface; the requester agent effectively acts as an online proxy for the user,

and relays any important decision-making problems to them, acting on their choice.

The first role of the application logic is to define a service requirement descrip-

tion for the service it needs. When this has been done, it passes the description to the

discovery and definition component. This component is responsible for managing

the discovery and service definition choreographies, and sends appropriate messages

to do this as described in the macro-architecture above. The message format and

contents are prepared using the messaging lift/lower component and passed to the

transport routines for transmission via an appropriate transportation protocol. Often,

but not exclusively, these transportation routines will use WSDL Web Service tech-

nology for communicating with the service provider. At points where a decision is

required – namely when one or more provider is to be chosen to contact after dis-

covery and when a service is to be chosen during the selection process – the decision

is passed for the application logic to be made. The message lift/lower component

performs data mediation. When it receives incoming messages, it translates their

contents into semantic information according to an ontology and stores these in the

Knowledge Base. It generates the content of outgoing messages by using facts in

the Knowledge Base to fill fields according to some message schema. When a ser-

vice has been defined, the application logic initiates the delivery process by passing

the URI identifying the delivery choreography to the delivery component. Unlike the

discovery and selection component, which contains hard-wired logic for a single pro-

tocol, the delivery component is able to carry out protocol mediation. It accesses the

description of the choreography given by the service provider. This shows how mes-

sage contents map onto the domain ontology of the knowledge base, and also shows

how sequences of messages correspond to actions within this domain ontology. State

machines describe the order in which actions can take place. The application logic

can request the execution of an action. This will result in the delivery component

initiating an exchange of messages with the service provider. The content of a mes-

sage will be instantiated by accessing the knowledge base and ‘lowering’ the rele-

vant information into the required message format using the lift/lower component.

The message can then be passed to the transport routines for transmission. When a

message is received as part of such an exchange, the contents of the message will

be ‘lifted’ into the knowledge base using the lift/lower component and the deliv-

ery component will note the progress of the message exchange. When an exchange

terminates (either through successful completion or through some failure) the appli-

cation logic is informed of this. The delivery component also handles messages from

the provider which are not part of an exchange initiated by the requester. These cor-

respond to actions within the domain which the provider is initiating. The delivery

component identifies which action they are initiating, ‘lifts’ the message content to

the knowledge base and informs the application logic. It replies (possibly after a

decision from the application logic of how to respond) by ‘lowering’ content into a

176 Chris Preist

message, which is then passed to the transport routines. Full details of this process,

and the architecture used, are given in Chap. 10.

We now turn our attention to the provider agent (Fig. 6.2). Because, in our

architecture, we assume that protocol mediation takes place within the requester,

the provider can be simpler. It also has an application logic component at its heart,

which is responsible for deciding which services to offer a given requester and also

for the provisioning of the service itself. As in the case of the requester, this will

often involve integration with a variety of back-end systems belonging to the ser-

vice provider’s organisation. Initially, the application logic prepares a service offer

description and registers this with the discovery service provider. It also prepares a

choreography description associated with this service, and publishes it on the web,

giving it a URI. From that point on, in our architecture, the provider agent is reactive.

The service definition component has an interface (often, though not exclusively, pro-

vided by Web Service WSDL technology) which allows a requester to submit a ser-

vice requirement description. On receipt of this, the application logic prepares a set

of possible services which satisfy the requirement, and this is sent to the requester

through the definition component interface. If the definition component receives a

selection message from the requester, it responds with a confirm containing the URI

of the choreography description which it obtains from the application logic. The ser-

vice delivery protocol is executed by the service delivery component, again via an

interface which may or may not use WSDL Web Service technology. Unlike the

requester agent, the provider agent does not need to carry out protocol mediation so

the protocol can be hard-wired in the component. Message contents are still lifted

into the knowledge base, for access by the application logic. The application logic

is informed of the progress of the conversation, requested to initiate internal actions

Application Logic

Discovery and Definition Component

Delivery Component

Provider
Choreography

Description

Message
Transport
Routines

Service Offer
Description

Fig. 6.2. Architecture of service provider agent

6 Goals and Vision 177

to bring about the service, and also consulted if a decision is necessary during the

execution of the protocol. In this way, the micro architectures of the two types of

actor can animate the conversations required by the macro-architecture. The macro-

architecture in turn embodies the concepts introduced in our conceptual model of

Semantic Web Services.

6.5 Outlook

In this chapter, we have presented a conceptual model for Semantic Web Services

which is driven from a requirements analysis of several scenarios. Using this con-

ceptual model, we have developed a technical architecture which could be used to

deploy applications of Semantic Web Services. We have introduced the key notions

of discovery, service description, mediation and composition, and shown how they

form part of a service life cycle within our conceptual model. Subsequent chapters

will provide more details of these ideas, and present the techniques available to make

them real.

The architecture presented in this chapter is one possible embodiment of the con-

ceptual model, but others are possible. This particular embodiment has been imple-

mented as part of the EU Semantic Web–enabled Web Services program, and has

been used to create a demonstrator of Semantic Web Services technology in the

domain of logistics supply chain management [5]. If Semantic Web Services are to

be deployed effectively on a large scale, it will be necessary for the community to

reach agreement about how to do this. A conceptual model and flexible architecture

will be a necessary part of this agreement. We believe the ideas presented in this

chapter are a step in this direction.

References

1. S. McIlraith and D. Martin. Bringing Semantics to Web Services. IEEE Intelligent Sys-
tems, 18(1):90–93, 2003.

2. M. Paolucci and K. Sycara. Autonomous Semantic Web Services. IEEE Internet Com-
puting, September 2003:34–41.

3. S. McIlraith and T.C. Son. Adapting Golog for Composition of Semantic Web Services.

Proceedings 8th International Conference on Knowledge Representation and Reasoning,

482–493, 2002.

4. J.M. Lopez-Cobo, S. Losada, O. Corcho, R. Benjamins, M. Nino and J. Contreras.

Semantic Web Services for Financial Overdrawn Alerting. Proceedings of the 3rd Inter-
national Semantic Web Conference (ISWC-2004), 782–796, Hiroshima, Japan, 2004.

5. C. Preist, J. Esplugas-Cuadrado, S.A. Battle, S. Grimm and S.K. Williams. Automated

Business-to-Business Integration of a Logistics Supply Chain using Semantic Web Ser-

vices Technology. Proceedings of the 4th International Semantic Web Conference (ISWC-
2005), Galway, Ireland, 2005.

6. C. Preist. A Conceptual Architecture for Semantic Web Services. Proceedings of the 3rd
International Semantic Web Conference (ISWC-2004), 395–409, Hiroshima, Japan, 2004.

178 Chris Preist

7. M. Wooldridge and N.R. Jennings. Agent Theories, Architectures, and Languages:

A Survey. in Intelligent Agents, Proceedings of the ECAI-94 Workshop on Agent Theories,
Architectures, and Languages, Springer-Verlag, Lecture Notes in Artificial Intelligence,

Vol. 890, Pages 1–39, 1995.

8. N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, C. Sierra and M. Wooldridge.

Automated Negotiation: Prospects, Methods and Challenges. International Journal of
Group Decision and Negotiation, 10(2):199–215, 2001.

9. E.H. Durfee. Planning in Distributed Artificial Intelligence. Foundations of Distributed
Artificial Intelligence:231–245, John Wiley, 1996.

10. M. Barbuceanu and W. Lo. A Multi-Attribute Utility Theoretic Negotiation Architecture

for Electronic Commerce. Proceedings Fourth International Conference on Autonomous
Agents (AGENTS 2000):239–246, 2000.

11. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF Electronic
Commerce: Research and Applications, 1:113–137, 2002.

12. M. Paolucci, A. Ankolekar, N. Srinivasan and K. Sycara. The DAML-S Virtual Machine

Proceedings of the 2nd International Semantic Web Conference (ISWC-2003), 290–305,

Florida, USA, 2003.

13. http://www.daml.org/services/owl-s/
14. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,

D. Smith, S. Thatte, I. Trrickovic and S. Weerawarana. Business Process Execution Lan-

guage for Web Services - Version 1.1. BEA Systems, IBM, Microsoft, SAP AG and Sibel

Systems Whitepaper, 5 May 2003.

15. D. Trastour, C. Bartolini and C. Preist. Semantic Web Support for the B2B E-Commerce

Pre-Contractual Lifecycle Computer Networks, 42(5):661–673, 2003.

16. B. Grosof and T. Poon. SweetDeal: Representing Agent Contracts with Exceptions Using

Semantic Web Rules, Ontologies and Process Descriptions. International Journal of Elec-
tronic Commerce, 8(4):61–98, 2004.

17. The Foundation for Intelligent Physical Agents http://www.fipa.org/

7

Description
Semantic Annotation for Web Services

Holger Lausen1, Rubén Lara2, Axel Polleres3, Jos de Bruijn1 and Dumitru Roman1

1 Digital Enterprise Research Institute (DERI), Innsbruck, Austria

<name>.<surname>@deri.org
2 Tecnologı́a, Información y Finanzas (TIF), Madrid, Spain, rlara@afi.es
3 Universidad Rey Juan Carlos, Madrid, Spain, axel.polleres@urjc.es

Summary. Web Services have added a new level of functionality to the current Web, making

the first step to achieve seamless integration of distributed components. Nevertheless, cur-

rent Web Service technologies only address the syntactical aspects of a Web Service and,

therefore, only provide a set of rigid services that cannot adapt to a changing environment

without human intervention. The human programmer has to be kept in the loop and scalabil-

ity as well as economy of Web Services are limited. The description of Web Services in a

machine-understandable fashion is expected to have a great impact in areas of e-Commerce

and Enterprise Application Integration, as it can enable dynamic and scalable cooperation

between different systems and organisations. These great potential benefits have led to the

establishment of an important research activity, both in industry and in academia, which aims

at realising Semantic Web Services. This chapter outlines aspects of the description of seman-

tic Web Services.

7.1 Modelling Semantic Web Services

Web Services technologies as they stand now provide an abstraction of existing invo-

cation mechanisms. Essentially they are a set of standards that provide a wrapper

on top of an existing software component. The Web Service Description Language

(WSDL) provides means to describe the operations that can be invoked with their

input and output, their name and their endpoint. Those information are sufficient in

order to abstract from the operating system and the programming language used for

a specific component. For an entity using some functionality of a Web Service, those

aspects of the underlying software component are totally transparent.

However, despite the achievements, several aspects remain open. With the tech-

nology described it is only possible to model the functionality of a component by

giving its operation an identifier and to type the associated messages according to

XML-schema data types. For example, a service offering temperature information

for airports might be described by a mandatory input of the type string and a second

optional of the type date and the return value of the type float. The fact that the string

represents a three letter airport code, that the optional date is specified in Central

180 Holger Lausen et al.

European Time and that the result is a temperature measured in degrees of Celsius

can only be described by using “meaningful” identifiers or as textual comment in

the interface description. In both cases the information can help a human developer

using his common sense to use the service in a meaningful way, but for computers

this information is not interpretable.

If we extend this simple example by a second operation that searches airport

codes given the name of a city, additional requirements become obvious. By only

stating the operations by their name and input and output parameters, the order in

which they can be invoked remains open. In order to give the invoking entity this

information, the protocol of the service needs to be described, i.e. that the search

airport code operation can be optionally invoked before the get temperature operation

and that the result of the first can be used as location input for the latter. We refer to

this external behaviour as choreography.

In business scenarios additional needs arise. For example, the transactional

behaviour of the service becomes important, e.g. if and when which transactional

protocol it supports. Some service may support a truly transactional behaviour

according to a well known protocol such as the two phase commit protocol, other

may just offer operations for compensating the effect of a previous invocation. A

money transfer of a banking Web Service may serve as example for the first and a

hotel booking service offering cancellation of reservation as example for the latter.

There are many more aspects to be considered that we will mention during the

description of concrete proposals for the modelling of Web Services. For now we can

already resume that the current standards such as WSDL are mainly concerned about

the syntactic modelling of Web Service, thereby abstracting from low-level aspects

such as a programming language. However, additional semantic aspects need to be

modelled to enable a further automatisation of the use of Web Services.

A natural candidate for such descriptions are logics. They have well-defined

semantics, not determined by a natural language text description, but through a model

theory that exactly specifies which statements are true and which not. Chapter 3

already provided an overview of existing approaches. In this chapter, we will present

two of the conceptual models for the description of semantic Web Services.

7.1.1 Existing Approaches

Major initiatives in the area are documented by recent W3C member submissions:

WSMO [8], OWL-S [30], SWSF [2] and WSDL-S [1]. The proposals defer in scope,

modelling approach and the concrete logical languages used. We will give a short

introduction to all of them; however, due to space limitations we will only describe

two approaches in more detail: OWL-S and WSMO. We selected these propos-

als because they represent the two conceptually different approaches and both are

backed by several existing implementations.

• WSMO: Web Service Modeling Ontology [8] is an initiative to create an onto-

logy for describing various aspects related to Semantic Web Services, aiming

at solving the integration problem. WSMO is developed by the Semantic Web

7 Description 181

Services working group1 of the ESSI cluster,2 which includes more than 50 aca-

demic and industrial partners. We describe WSMO in more detail in Sect. 7.2.

• OWL-S [30], an effort by BBN Technologies, Carnegie Mellon University,

Nokia, Stanford University, SRI International and Yale University to define an

ontology for semantic markup of Web Services. OWL-S is intended to enable

automation of Web Service discovery, invocation, composition, interoperation

and execution monitoring by providing appropriate semantic descriptions of ser-

vices. A more detailed analysis follows in Sect. 7.3.

• SWSF; the Semantic Web Services Framework [2], is a relatively recent attempt

towards a Semantic Web Service annotation framework that greatly benefits from

previous work with its roots in OWL-S and the Process Specification Language

(PSL), standardised by ISO 18269. This framework is a joint proposal by the

Semantic Web Services Language Committee and was also submitted to the W3C

in September 2005. SWSO can be seen as an extension or refinement of OWL-

S. There are many similarities with the OWL-S ontologies, but the important

difference is the expressiveness of the underlying language which is, instead of

OWL, a richer language called the Semantic Web Service Language (SWSL).

However, as opposed to other approaches, we are unaware of any serious SWS

tools and ongoing implementation efforts based on SWSF so far.

• WSDL-S [1] is a rather minimalist approach which aims at a direct extension of

existing “traditional” Web Service descriptions in WSDL with Semantics (indi-

cated by the last letter of the acronym). WSDL-S augments Web Service descrip-

tions in WSDL with semantics by adding respective annotation tags to the XML

schema of WSDL, the proposal picks aspects similar to those in WSMO capabil-

ity definitions or OWL-S profiles, such as precondition and effects. This method

keeps the semantic model outside WSDL, making the approach impartial to any

ontology representation language. Hence, WSDL-S does not fix a specific for-

malism for semantic descriptions and accordingly also does not claim to be a

fully-fledged description framework/ontology, but rather simply adds some use-

ful attributes to WSDL’s XML tags in order to reference semantic annotations.

However, without a certain degree of commitment to a specific language, or at

the very least a definition of how different semantics of usable languages relate

to one another, it is impossible to formally define requests, queries or notions of

“match” between service requests and service descriptions. Therefore, we see it

more as a complementary effort to the other “fully-fledged” frameworks.

In the following, we discuss both OWL-S and WSMO in more detail. Conceptually,

SWSF can be seen similar to OWL-S and thus for a general introduction the explana-

tion of OWL-S should give the reader a sufficient understanding of both frameworks.

WSDL-S can be seen as orthogonal effort to the fully-fledged frameworks; since it

does not define the semantics of the referenced descriptions, one needs an additional

framework for the definition of the semantic information. Since this is the major

focus of the chapter, we deem the previous introductory explanation sufficient.

1 http://www.wsmo.org/
2 http://www.essi-cluster.org/

182 Holger Lausen et al.

7.2 WSMO

The Web Service Modeling Ontology (WSMO) describes all relevant aspects related

to general services which are accessible through a Web Service interface with the

ultimate goal of enabling the (total or partial) automation of the tasks (e.g. discov-

ery, selection, composition, mediation, execution, monitoring, etc.) involved in both

intra- and inter-enterprise integration of Web Services. WSMO has its conceptual

basis in the Web Service Modeling Framework (WSMF) [12], refining and extend-

ing this framework and developing a formal ontology and set of languages.

WSMO Top-Level Elements

Following the key aspects identified in the Web Service Modeling Framework,

WSMO identifies four top-level elements as the main concepts which have to be

described in order to define Semantic Web Services (Fig. 7.1).

1. Ontologies provide the terminology used by other WSMO elements to describe

the relevant aspects of the domains of discourse.

2. Services represent services that could be requested, provided or agreed on by ser-

vice requesters and service providers. These descriptions comprise the capabili-

ties, interfaces and internal working of the service. All these aspects of a service

are described using the terminology defined by the ontologies.

3. Goals describe aspects related to user desires with respect to the requested func-

tionality; again Ontologies can be used in order to define the used domain ter-

minology to describe the relevant aspects of goals. Goals model the user view

in the Web Service usage process and therefore are a separate top–level entity in

WSMO.

4. Mediators describe elements that handle interoperability problems between

different WSMO elements. Mediators are the core concept to resolve incom-

patibilities on the data, process and protocol level, i.e. in order to resolve

mismatches between different used terminologies (data level), in how to com-

municate between services (protocol level) and on the level of combining Web

Services (process level).

Fig. 7.1. WSMO core elements

7 Description 183

Language for Defining WSMO

WSMO is meant to be a meta-model for Semantic Web Services–related aspects.

For defining this model we make use of Meta Object Facility (MOF) [22] specifica-

tion which defines an abstract language and framework for specifying, constructing

and managing technology neutral meta-models. MOF defines a metadata architecture

consisting of four layers:

1. The information layer comprises the data we want to describe.

2. The model layer comprises the metadata that describes data in the information

layer.

3. The meta-model layer comprises the descriptions that define the structure and

semantics of the metadata.

4. The meta-meta-model layer comprises the description of the structure and

semantics of meta-metadata.

In terms of the four MOF layers, the language in which WSMO is defined corre-

sponds to the meta-meta-model layer. WSMO itself constitutes the meta-model layer,

the actual ontologies, services, goals, and mediators specifications constitute the

model layer, and the actual data described by the ontologies and exchanged between

Web Services constitute the information layer. Figure 7.2 shows the relation between

WSMO and the MOF layered architecture.

The most used MOF meta-modelling construct in the definition of WSMO is

the Class construct (and implicitly its class generalisation (sub-Class) construct),

together with its Attributes, the type of the Attributes and their multiplicity specifica-

tions. When defining WSMO, the following assumptions are made:

• Every Attribute has its multiplicity set to multi-valued by default; when an

Attribute requires its multiplicity to be set to ”single-valued”, this will be explic-

itly stated in the listings where WSMO elements are defined.

• Some WSMO elements define Attributes taking values from the union of several

types, a feature that is not directly supported by the MOF meta-modelling con-

structs; this can be simulated in MOF by defining a new Class as super-Class
of all the types required in the definition of the Attribute, representing the union

Fig. 7.2. The relation between WSMO and MOF

184 Holger Lausen et al.

of the single types, with the Constraint that each instance of this new Class is

an instance of at least one of the types which are used in the union; to define

this new Class in WSMO, we use curly brackets, enumerating the Classes that

describe the required types for the definition of the attribute.

In the following, we use listings with the MOF metamodel to illustrate the structure

of WSMO where it supports the understanding of the overall structure. To be brief

some listings are shortened or omitted; the complete specification of WSMO in terms

of MOF can be found in [28].

Illustrating Example

In order to illustrate WSMO, we will adopt the Scenario B introduced in Chap. 6. In

this scenario, shipment services are modelled that offer transportation of goods. The

corresponding domain ontologies respectively define concepts like packages, routes

and locations.

7.2.1 Ontologies

An ontology is a formal explicit specification of a shared conceptualisation [14].

From this conceptual definition we extract the essential components which constitute

an ontology. They define a common agreed upon terminology by providing concepts

and relationships among the concepts.

Although there are currently several standardisations efforts for ontology lan-

guages [16] [10] [17], none of them has the desired expressivity and computational

properties that are required to describe Web Services at a sufficient level of granu-

larity. In the following, we will define an epistemological model which is general

enough to intuitively capture existing languages.

In the following, we will present the conceptual model along with concrete exam-

ples. We will now introduce the elements that constitute an ontology using MOF

notation, defining the class ontology with the following attributes.

Class ontology
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasConcept type concept
hasRelation type relation
hasFunction type function
hasInstance type instance
hasAxiom type axiom

In the following subsections, we will describe all elements in more detail. The illus-

trating examples are given in WSML [9], a language specifically designed to express

the WSMO meta model. Although other concrete languages might be used to express

our model, we chose WSML for its close relationship to the meta model. A general

introduction to the WSML language can be found in Chap. 3. Necessary explanation

are given throughout the text, however, some general remarks beforehand: WSML

7 Description 185

identifiers are URIs, for readability they are abbreviated using the QName [4] mech-

anism. URIs in the default namespace do not need a prefix, other namespaces will

be introduced in the explaining text sections. A QName is written in the format pre-

fix#localPart and will be expended to the full URI during processing.

Non-functional Properties

Non-functional properties are allowed in the definition of all WSMO elements. They

are mainly used to describe non-functional aspects such as creator, creation date,

natural language descriptions, etc. We take the elements defined by the Dublin Core

Metadata Initiative [31] as a starting point and introduce other elements, e.g. the ver-

sion of the ontology (other elements necessary for the description of other elements

of WSMO, e.g. Web Services, are introduced in their corresponding sections).

namespace { ”http://example.org/wsmo#”,
loc ”http :// wsmo.org/ontologies/location#”,
dc ”http :// purl .org/dc/elements/1.1#”}

ontology ”http :// example.org/Routes”
nonFunctionalProperties

dc# title hasValue ”An ontology describing trips and reservations”
dc#creator hasValue ”DERI Innsbruck”
dc#publisher hasValue ”DERI International”
dc#format hasValue ”text/x−wsml”

endNonFunctionalProperties}

The example above illustrates the use of namespace declaration to QNames for read-

ability. Note that those identifiers are only logical identifiers and not physical ones.

The metadata in the non-functional properties can also refer to URIs.

Imported Ontologies

Building an ontology for some particular problem domain can be a rather cumber-

some and complex task. One standard way to deal with the complexity is modularisa-

tion. Imported ontologies allow a modular approach for ontology design and can be

used as long as no conflicts need to be resolved between the ontologies. By import-

ing ontologies all statements of the imported ontology will be virtually included in

the importing ontology. Every WSMO top-level entity may use this import facility

to include the logical definition of the vocabulary used.

Used Mediators

When importing ontologies in realistic scenarios, some steps for aligning, merg-

ing and transforming imported ontologies in order to resolve ontology mismatches

are needed. For this reason and in line with the basic design principles underly-

ing the WSMF, ontology mediators (ooMediator), which are described in detail

in Sect. 7.2.4, are used when an alignment of the imported ontology is necessary.

Such an alignment can be, e.g., the renaming of concepts or attributes. Just like the

importsOntology statement the usesMediator statement is applicable to all top-level

elements; however depending on the element different mediators may be used.

186 Holger Lausen et al.

Concepts

Concepts constitute the basic elements of the agreed terminology for some problem

domain. From a high-level perspective, a concept – described by a concept defini-

tion – provides attributes with names and types. Furthermore, a concept can be a

subconcept of several (possibly none) direct superconcepts as specified by the “isA”

relation.

In the WSMO model, each concept can have a finite number of concepts that

serve as a superconcept for some concept. Being a subconcept of some other concept

in particular means that a concept inherits the signature of this superconcept and the

corresponding constraints. Furthermore, all instances of a concept are also instances

of each of its superconcepts. In the example given, a route in Europe is defined as

subconcept of a general route.

concept routeInEurope subConceptOf route
origin ofType loc#location
destination ofType loc#location

axiom routeInEruope
definedBy

forall ?x (?x memberOf routeInEurope equivalent
?x[destination hasValue ?dest,

origin hasValue ?orig] memberOf trip and
?dest[locatedIn hasValue loc#Europe] and
?orig[locatedIn hasValue loc#Europe]).

A concept provides a (possibly empty) set of attributes that represent named slots for

the data values for instances. An attribute specifies a slot of a concept by fixing the

name of the slot as well as a logical constraint on the possible values filling that slot,

which in the simple case can be another concept. Within the example the domain

of the possible attribute values for origin is restricted to instances of the concept

location (loc# abbreviates the full logical identifier of this external ontology). Note

that in WSMO/WSML we do not restrict ourselves to typing constraints but also

allow the types of slot fillers to be implied by the definition. This can be modelled in

WSML by means of the keyword impliesType replacing ofType. For a more

in-depth discussion we refer the reader to [7, 9].

As every element in WSMO, a concept can be refined by a logical expression.

Additionally to the conceptual model, logical expressions can be asserted to a con-

cept that refines its meaning, e.g. with nuances that are not expressible by attributes

or the “isA” hierarchy. A logical expression can be used to refine the semantics of

the concept. More precisely, the logical expression defines (or restricts) the extension

(i.e. the set of instances) of the concept. Within the example the expression refines a

route to a route in Europe, i.e. restricts all attribute values of origin and destination

to locations that have a locatedIn attribute value indicating them being located in

Europe.

Relations

Relations are used in order to model interdependencies between several concepts

(respectively instances of these concepts). The arity of relations is not limited.

7 Description 187

relation airLineDistance subRelationOf distance
from ofType loc#location
to ofType loc#location
distanceInMeter ofType integer

Every relation can have a finite set of super relations. Being a subrelation of some

other relation in particular means that the relation inherits the signature of this super-

relation and the corresponding constraints. Furthermore, the set of tuples belonging

to the relation (the extension of the relation) is a subset of each of the extensions of

the superrelations. In the example given, we define air-line distance as a sub-relation

of the general distance relation.

Similar to attributes for concepts, each relation has a possible empty set of named

parameters. In case no named parameters are given, a unnamed, ordered list is

assumed. Each parameter is single valued and can have a range restriction in the

form of a concept.

Functions

A function is a special relation, with a unary range and a n-ary domain (parame-

ters inherited from relation), where the range specifies the return value. Functions

can be used, for instance, to represent and exploit built-in predicates of common

datatypes. Their semantics can be captured externally by means of an oracle or it can

be formalised using logical expressions. In WSML there are no extra keywords for

modelling functions, but relations can be used with corresponding refining axioms.

Instances

Instances are either defined explicitly or by a link to an instance store, i.e. an external

storage of instances and their values. An explicit definition of instances of concepts

is as follows:

instance Innsbruck memberOf loc#location
locatedIn hasValue loc#austria

Besides the identifier of the instance (Innsbruck), the concept and the attribute values

are given. These values have to be compatible with the corresponding type declara-

tion in the concept definition. Instances of relations (with arity n) can be seen as

n-tuples of instances of the concepts which are specified as the parameters of the

relation.

In general, instances do not need to be specified using the explicit notation pre-

sented above. Especially for the case when a huge number of instances exist, a link

to a data store can be used [20]. Basically, the approach is to integrate large sets of

instances which are already existing on some storage devices by means of sending

queries to external storage devices or oracles.

188 Holger Lausen et al.

Axioms

An axiom is considered to be a logical expression together with its non-functional

properties. Generally the conceptual model does not assume a particular logical lan-

guage, although it does suggest a language.

7.2.2 Services

The Service element of WSMO provides a conceptual model (a meta model in MOF

terms) for describing in an explicit and unified manner all the aspects of a service,

including its non-functional properties, functionality and the interfaces to obtain it.

An unambiguous model of services with well-defined semantics can be processed

and interpreted by computers without human intervention, enabling the automation

of the tasks involved in the usage of Web Services, e.g. discovery, selection, compo-

sition, mediation, execution or monitoring.

As discussed in Chap. 6, the word service can be understood in different ways,

with slightly different meanings: as provision of value in some domain, as a software

entity able to provide something of value and as a means of interacting online with a

service provider.

WSMO provides a unifying view of a service; the value the service can provide

is captured by its capability, and the means to interact with the service provider to

request the actual performance of the service, or to negotiate some aspects of its

provision, is captured by the service interfaces. The software entity able to provide

the service is transparent to us, and we are only concerned with its interaction style

and with what other services are used to actually provide the value described in the

capability. The distinction made between abstract service and concrete service in

Chap. 6 is not built into WSMO; however, a WSMO capability can be used to model

abstract services, whereas a concrete service is determined during the execution of a

choreography.

Notice that in WSMO the interaction with a service can be realised by using

Web Services in the WSDL [3] sense. However, we are not restricted to WSDL as

the grounding of services.

Fig. 7.3. WSMO service – general description

7 Description 189

Figure 7.3 shows the core elements that are part of the description of a WSMO

service. The main elements of a service description are a capability describing the

value the service can provide and one or more interfaces in which the choreography

and the orchestration of the service are described. The choreography specifies how

the service achieves its capability by means of interactions with its user – i.e. the

communication with user of the service; the orchestration specifies how the service

achieves its capability by making use of other services – i.e. the coordination of other

services.

More precisely, the WSMO service element is defined as follows:

Class service
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type {ooMediator, wwMediator}
hasCapability type capability multiplicity = single−valued
hasInterface type interface

The non-functional properties of a service are aspects of the service that are not

directly related to its functionality; besides the non-functional properties presented

in Sect. 7.2.1, they consist of Web Service specific elements like Accuracy (the error

rate generated by the service), Financial (the cost-related and charging-related prop-

erties of a service [23]), Network-related QoS (QoS mechanisms operating in the

transport network which are independent of the service), Owner (the person or organ-

isation to which the service belongs), Performance (how fast a service request can be

completed), Reliability (the ability of a service to perform its functions, i.e. to main-

tain its service quality) and others.3 The non-functional properties are to be mainly

used for the discovery and selection of services; however, they contain information

that is also suitable for negotiation.

Imported Ontologies are used to import the explicit and formal vocabulary used

in the specification of a service (see Sect. 7.2.1).

A service uses mediators in the following situations: (1) When using hetero-

geneous terminologies and conflicts between them arise; in these cases, a service

can import ontologies using ontology mediators (ooMediators), as explained in Sect.

7.2.1. (2) When it needs to cope with process and protocol heterogeneity when inter-

acting with other services; in this case a wwMediators is used. For a more detailed

description of mediators, see Sect. 7.2.4.

Capability

The functionality offered by a given service is described by its capability; it is

expressed by the state of the world before the service is executed and the state of

the world after successful service provision. The service capability is meant primary

for discovery and selection purposes, i.e. the capability is used by the requester to

determine whether the service meets its needs.

3 For a detailed description of the non-functional properties we refer the reader to [28]

190 Holger Lausen et al.

Class capability
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasPrecondition type axiom
hasAssumption type axiom
hasPostcondition type axiom
hasEffect type axiom

The set of non-functional properties that can be attached to a capability is the one

presented in Sect. 7.2.1. Imported Ontologies and used mediators are defined as in

Sect. 7.2.1.

Preconditions in the description of the capability specify the required state of the

information space before the service execution, i.e. they specify what information a

Web Service expects to provide its service. Preconditions constrain the set of states

of the information space such that each state satisfying these constraints can serve as

a valid starting state (in the information space) for executing the service in a defined

manner.

We extend the already described example and use the ontology presented in Sect.

7.2.1. The following example requires that the information sent to the service must be

an instance of the transportRequest concept together with a credit card information.

The service only accepts such request that require a transport between a location in

England to anywhere in Europe. Note that the restriction on the destination of the

route is inherited from the axiom in the ontology given in the previous section.

precondition
definedBy

exists {?origin, ?destination}
(request[

hasRoute hasValue ?route
hasPackage hasValue ?package
hasCreditCard hasValue ?creditCard

]memberOf transportRequest and
?route[origin hasValue ?origin] memberOf routeInEurope and
?origin [locatedIn hasValue England])

Assumptions in the description of the capability describe the state of the world which

is assumed before the execution of the service. Otherwise, the successful provision

of the service is not guaranteed. As opposed to preconditions, assumptions are not

necessarily to be checked by the service. We make this distinction in order to allow

an explicit notion of conditions on the world state but outside the information space.

Within our example we present an assumption saying that the service will be

provided only if the provided credit card is valid. The validity of the credit card is

specified using the valid relation.

assumption
definedBy

valid (?creditCard).

PostConditions in the description of the capability describe the state of the infor-

mation space that is guaranteed to be reached after the successful execution of the

7 Description 191

service; it also describes the relation between the information that is provided to the

service and its results.

The following example presents a postcondition saying that the information that

the service provides is an instance of the confirmation concept, with the condition

that the item that is confirmed is the trip initially requested.

postcondition
definedBy

confirmationInstance[confirmationItem hasValue request] memberOf confirmation

Effects in the description of the capability describe the state of the world that is

guaranteed to be reached after the successful execution of the service, i.e. if the

preconditions and the assumptions of the service are satisfied.

The following example presents an effect saying that, after the execution of the

service, the balance of the credit card given as input will be deducted by the costs

of the shipment and a contract exists for shipping a package according to the request

specified.

effect
definedBy

creditCardInstance[po#balance hasValue (initialBalanceInstance − transportationCost)]
and shipmentContract(request,package).

Interfaces

An interface describes how the functionality of the service can be achieved (i.e. how

the capability of a service can be fulfilled) by providing a twofold view on the opera-

tional competence of the service: (1) choreography decomposes a capability in terms

of interaction with the service. (2) orchestration decomposes a capability in terms of

functionality required from other services.

This distinction reflects the difference between communication and cooperation.

The choreography defines how to communicate with the service in order to consume

its functionality. The orchestration defines how the overall functionality is achieved

by the cooperation of more elementary service providers.

The Web Service interface is meant primarily for behavioural description pur-

poses of Web Services and is presented in a way that is suitable for software agents

to determine the behaviour of the service and reason about it; it might also be useful

for discovery and selection purposes and in this description the connection to some

existing Web Services specifications, e.g. WSDL [3] could also be specified.

Class interface
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasChoreography type choreography
hasOrchestration type orchestration

192 Holger Lausen et al.

Choreography provides the necessary information to communicate with the ser-

vice. The general model for representing choreographies is a state-based mechanism

and is inspired by the Abstract State Machines [15, 3] methodology. The reason for

choosing ASMs as a basis for WSMO choreography is that ASMs provide a high

flexibility in modelling systems, being at the same time theoretically well founded.

A choreography defines a state signature that is given by elements of the WSMO

Ontology, and it remains unchanged during the execution of the service, a state that

is given by a set of instance statements, and guarded transitions that express changes

of states by means of rules, similar to ASM transition rules. For a more detailed

description of WSMO choreography we refer the reader to [27].

Orchestration describes how the service makes use of other services in order to

achieve its capability. In many real scenarios, a service is provided by using and

interacting with services provided by other applications or businesses. For example,

the booking of a trip might involve the use of another service for validating the credit

card and charging it with the correspondent amount and the user of the booking

service may want to know which other business organisations he she is implicitly

going to deal with.

WSMO introduces the orchestration element in the description of a service

to reflect such dependencies. WSMO orchestration allows the use of statically or

dynamically selected services. In the former case, a concrete service will be selected

at design time. In the latter case, the service will only describe the goal that has to be

fulfilled in order to provide its service. This goal will be used to select at run-time an

available service fulfilling it (i.e. the service user could influence this choice).

7.2.3 Goals

Goals are used in WSMO to describe user’s desires. They provide the means to spec-

ify the requester-side objectives when consulting a Web Service, describing at a high-

level a concrete task to be achieved.

Goals are representations of objectives for which fulfillment is sought through

the execution of Web Services; they can be descriptions of services that would poten-

tially satisfy the user desires.

Notice that WSMO completely decouples the objectives a requester has, i.e. his

goal, from the services that actually can fulfil such goal. Goals are to be resolved by

selecting available services that describe service provision that satisfies the goal. The

definition of a goal is given below:

Class goal
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type {ooMediator, ggMediator}
requestsCapability type capability multiplicity = single−valued
requestsInterface type interface

Given the fact that a goal can represent the service that would potentially satisfy

the user desires, the set of non-functional properties that can be attached to a goal is

7 Description 193

similar to the one attached to Web Services (see Sect. 7.2.2). An extra non-functional

property can be attached to a goal, the Type of Match, which represents the type of

match desired for a particular goal (under the assumption of a set-based modelling

this can be an exact match, a match where the goal description is a subset of the

Web Service description or a match where the Web Service description is a subset

of the goal description; for a detailed discussion refer to [18]). A goal uses imported
ontologies as the terminology to define the other elements that are part of the goal as

long as no conflicts are needed to be resolved.

A goal uses mediators in the following situations: (1) When using heteroge-

neous terminologies, conflicts between them might arise; in these cases, a service

can import ontologies using ontology mediators (ooMediators), as explained in Sect.

7.2.1. (2) When a goal reuses already existing goals, e.g. by refining them; for this,

ggMediators are used (they are explained in more detail in Sect. 7.2.4).

The requested Capability in the definition of the goal describes the capability of

the services the user would like to have.

The Interface in the definition of the goal describes the interface of the service

the user would like to have and interact with.

The following example presents the goal having a contract for a shipment. It only

specifies between which locations some good has to be shipped, but leaves other

details open.

goal havingATransportationContract
capability

effect definedBy
shipmentContract(myRoute,myPackage) and
myRoute[origin hasValue Bristol, detination hasValue Hamburg].

7.2.4 Mediators

Mediation is concerned with handling heterogeneity, i.e. resolving possibly occur-

ring mismatches between resources that ought to be interoperable. Heterogeneity

naturally arises in open and distributed environments, and thus in the application

areas of Semantic Web Services; WSMO defines the concept of Mediators as a top-

level notion.

Mediator orientated architectures as introduced in [33] specify a mediator as an

entity for establishing interoperability of resources that are not compatible a priori by

resolving mismatches between them at runtime. The aspired approach for mediation

relies on declarative description of resources whereupon mechanisms for resolving

mismatches work on a structural, semantic level, in order to allow defining generic,

domain independent mediation facilities as well as reuse of mediators. Concerning

the needs for mediation within Semantic Web Services, the WSMF [12] defines three

levels of mediation:

194 Holger Lausen et al.

1. Data-level mediation – mediation between heterogeneous data sources; within

ontology-based frameworks like WSMO, this is mainly concerned with ontology

integration.4

2. Protocol-level mediation – mediation between heterogeneous communication

protocols; in WSMO, this mainly relates to choreographies of Web Services that

are ought to interact.

3. Process-level mediation – mediation between heterogeneous business processes;

this is concerned with mismatch handling on the business logic level of Web

Services (related to the orchestration of Web Services).

WSMO Mediators realise a mediation-orientated architecture for Semantic Web Ser-

vices, providing an infrastructure for handling heterogeneities that possibly arise

between WSMO components and realising the design concept of strong decou-

pling and strong mediation. A WSMO Mediator connects WSMO components and

resolves mismatches between them with the following specifying the general defini-

tion:

Class mediator
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
hasSource type {ontology, goal, webService, mediator}
hasTarget type {ontology, goal, webService, mediator}
hasMediationService type {webService, goal, wwMediator}

As a mediator can be provided as a service, the same non-functional properties as for

services are used (see Sect. 7.2.2 for what these non-functional properties consist of).

Imported ontologies are used to import the explicit and formal vocabulary used

in the specification of a mediator (see Sect. 7.2.1).

The source component of a mediator defines the resources wherefore hetero-

geneities are resolved; a mediator can have several source components.

The target component of a mediator is the component that receives the mediated

source components.

The mediation service defines the mediation facility applied for resolving mis-

matches. This can be defined in different ways: directly (i.e. explicitly linking to a

mediation service); via a goal that specifies the desired mediation facility which is

then detected by a discovery mechanism; or via another mediator when a mediation

service is to be used that is not interoperable to the mediator.

WSMO Mediator Types

In order to allow resolving heterogeneities between the different WSMO com-

ponents, WSMO defines different types of mediators for connecting the differ-

ent WSMO components and overcome heterogeneities that can arise between the

components: OO Mediators, GG Mediators, WG Mediators and WW Mediators.

All mediators are subclasses of the general WSMO Mediator class defined above,

4 One can further refine this (e.g. as done in Chap. 10) into a syntactic (data) and semantic

(ontology) layer

7 Description 195

whereby a prefix indicates the components connected by the mediator type. The fol-

lowing explains the different WSMO Mediator types, while a general example for

using mediators is provided in the next section.

OO Mediators resolve mismatches between ontologies and provide mediated

domain knowledge specifications to the target component. The source components

are ontologies or other OO Mediators that are heterogeneous and to be integrated,

while the target component is any WSMO top-level notion that applies the integrated

ontologies. The following shows the description specialisation of an OO Meditator:

Class ooMediator sub−Class mediator
hasSource type {ontology, ooMediator}

OO Mediators are used to import the terminology required for a resource description

whenever there is a mismatch between the ontologies to be used. The mediation tech-

nique related to OO Mediators is mainly ontology integration, i.e. merging, aligning

and mapping ontology definitions in order to retrieve integrated, homogeneous ter-

minology definitions.

A GG Mediator connects goals, allowing to create a new goal from existing goals

and thus defining goal ontologies. GG Mediators are defined as follows:

Class ggMediator sub−Class mediator
usesMediator type ooMediator
hasSource type {goal, ggMediator}
hasTarget type {goal, ggMediator}

A GG Mediator might use an OO Mediator to resolve terminology mismatches

between the source goals. Mediation services for GG Mediators reduce or combine

the descriptions of the source goals into the newly created target goal.

A WG Mediator links a Web Service to a Goal, resolves terminological mis-

matches, and states the functional difference (if any) between both. WG Mediators

are defined as follows:

Class wgMediator sub−Class mediator
usesMediator type ooMediator
hasSource type {service, wgMediator}
hasTarget type {goal, ggMediator}

WG Mediators are used to prelink Services to existing Goals, or for handling of par-

tial matches within Web Service discovery. As within GG Mediators, OO Mediators

can be applied for resolving terminological mismatches.

A WW Mediator is used to establish interoperability between Web Services that

are not interoperable a priori. Its definition in the language of WSMO is as follows:

Class wwMediator sub−Class mediator
usesMediator type ooMediator
hasSource type {service, wwMediator}
hasTarget type {service, wwMediator}

196 Holger Lausen et al.

A WW Mediator mediates between the choreographies of Web Services that are

ought to interact, wherefore mediation might be required on the data, the protocol,

and the process level. As within the other WSMO mediator types, OO Mediators can

be applied for resolving terminological mismatches.

7.2.5 Logical Language

A framework for describing the semantics of Web Services needs a solid basis on

some logical formalism which allows to express ontological structures in the used

terminology, conditions over effects, relations between inputs and outputs, etc. in

order to describe the functionality of a service and to allow formal reasoning based

on these descriptions.

As an ongoing effort, the Web Service Modeling Language (WSML) Working

Group5 is working on the specification of a family of languages for the specification

of Ontologies and Web Services, based on the WSMO conceptual model. The fam-

ily of languages, called WSML [9], considers Description Logics as well as Logic

Programming and conceptual modelling as a basis for different language variants.

WSML consists of five different variants. These variants differ in logical expres-

siveness and in the underlying language paradigms and allow users to make the trade-

off between provided expressiveness and the implied complexity for ontology mod-

elling on a per-application basis.

1. WSML-Core is based on the intersection of the Description Logic SHIQ and

Horn Logic, based on Description Logic Programs [13]. It has the least expres-

sive power of all the WSML variants. The main features of the language are

concepts, attributes, binary relations and instances, as well as concept and rela-

tion hierarchies and support for datatypes.

2. WSML-DL captures the Description Logic SHIQ(D), which is a major part of

the (DL species of) OWL [10].

3. WSML-Flight is an extension of WSML-Core which provides a powerful rule

language. It adds features such as meta-modelling, constraints and nonmono-

tonic negation. WSML-Flight is based on a logic programming variant of

F-Logic [19] and is semantically equivalent to Datalog with inequality and

(locally) stratified negation.

4. WSML-Rule extends WSML-Flight with further features from logic program-

ming, namely the use of function symbols, unsafe rules and unstratified negation

under the Well-Founded semantics.

5. WSML-Full unifies WSML-DL and WSML-Rule under a First-Order umbrella

with extensions to support the nonmonotonic negation of WSML-Rule. The

semantics of WSML-Full is currently an open research issue.

The variants follow two alternative layerings, namely WSML-Core ⇒ WSML-DL

⇒ WSML-Full and WSML-Core ⇒ WSML-Flight ⇒ WSML-Rule ⇒ WSML-Full.

5 http://www.wsmo.org/wsml/

7 Description 197

For both layerings, WSML-Core and WSML-Full mark the least and most expres-

sive layers. The two layerings are to a certain extent disjoint in the sense that inter-

operation between the Description Logic variant (WSML-DL) on the one hand and

the Logic Programming variants (WSML-Flight and WSML-Rule) on the other is

only possible through a common core (WSML-Core) or through a very expressive

superset (WSML-Full).

7.3 OWL-S

In this section, we introduce each of the description elements of OWL-S. We will

identify the equivalent or similar concepts in WSMO (if any). OWL-S defines an

upper ontology for services with four major elements (Fig. 7.4).

1. Service: This concept serves as an organisational point of reference for declaring

Web Services; every service is declared by creating an instance of the Service

concept.

2. Service Profile: The profile describes what the service does at a high level,

describing its functionality and other non-functional properties that are used for

locating services based on their semantic description.

3. Service Model: The model of a service describes how the service achieves its

functionality, including the detailed description of its constituent processes.

4. Service Grounding: The grounding describes how to use the service, i.e. how a

client can actually invoke the service.

7.3.1 OWL-S Service

The Service concept in OWL-S links the profile, service model and grounding of

a given service through the properties presents, describedBy and supports, respec-

tively. As an example of the use of the Service concept in OWL-S, the BravoAir

service6 from a fictitious airline is modelled as follows:

Fig. 7.4. OWL-S upper ontology

6 http://www.daml.org/services/owl-s/1.1B/BravoAirService.owl.

This example is part of the OWL-S specification

198 Holger Lausen et al.

<service:Service rdf:ID=”BravoAir ReservationAgent”>
<service:presents rdf:resource=”BravoAirProfile.owl#Profile BravoAir ReservationAgent”/>
<service:describedBy rdf:resource=”BravoAirProcess.owl#BravoAir Process” />
<service:supports rdf:resource=BravoAirGrounding.owl#Grounding BravoAir ReservationAgent”/>

</service:Service>

WSMO also provides a direct link between a Web Service, its capability and its

interfaces (containing the service choreographies and groundings). However, WSMO

explicitly decouples the requester point of view from the provider point of view:

goals are defined independently from Web Services and they are linked through

wgMediators. In addition, the requester and the provider can use different termi-

nologies, as the difference is resolved by the ooMediators used by the wgMediator.

7.3.2 OWL-S Service Profile

In OWL-S, the service profile describes the intended purpose of the service, both

describing the service offered by the provider and the service desired by the

requester. In the following, we go through the details of the OWL-S service profile

and describe their counterparts in WSMO.

Profile Hierarchy

The profile of a Web Service can be positioned in a hierarchy of profiles.7 Positioning

a given service profile in a profile hierarchy is though optional, and a concrete profile

can be directly defined as an instance of the profile class.

As an example, the BravoAir service is categorised as an airline ticketing service

in a hierarchy defining, among others, e-commerce service profiles8:

<owl:Class rdf:ID=”AirlineTicketing ”>
<rdfs:subClassOf rdf:resource=”#E Commerce”/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource=”#merchandise”/>
<owl:allValuesFrom rdf:resource=”#CommercialAirlineTravel”/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

In the example, airline ticketing profiles are defined as a subclass of e-commerce

profiles where the commercialised products are commercial airline travels.

WSMO ggMediators allow the definition of goals by refining existing ones.

Therefore, it is also possible to describe refinement relations between goals, build-

ing a hierarchy of goals through the use of ggMediators. Similarly, OWL-S service

profiles can be positioned in a previously defined hierarchy, WSMO services can be

linked to a goal using a wgMediator.

7 http://www.daml.org/services/owl-s/1.1B/ProfileHierarchy.
html

8 http://www.daml.org/services/owl-s/1.1B/ProfileHierarchy.owl

7 Description 199

Service Name, Contact, Description and Category

The OWL-S service profile includes human-readable information, contained in the

properties serviceName (of type string; maximum one service name), textDescrip-

tion (of type string; maximum one description) and contactInformation (of class

Actor, including information such as name, phone, fax or e-mail). A service categori-

sation is also given, although the classification schemas are not fixed and, therefore,

the range of this property is not specified.9 There are no cardinality restrictions for

the categorisation, i.e. a service can be assigned to none or multiple categories in

different categorisation schemes. The BravoAir example is defined as follows:

<profile:serviceName>BravoAir ReservationAgent</profile:serviceName>
< profile:textDescription >This service...</ profile:textDescription >
<profile:contactInformation>

<actor:Actor rdf:ID=”BravoAir−reservation”>
<actor:name>BravoAir Reservation department</actor:name>
<actor:phone>412 268 8780</actor:phone>
<actor:email>Bravo@Bravoair.com</actor:email>
[...]

</actor:Actor>
</profile:contactInformation>
<profile:serviceCategory>
<addParam:UNSPSC rdf:ID=”UNSPSC−category”>
<profile:value>Travel Agent</profile:value>
<profile:code>90121500</profile:code>

</addParam:UNSPSC>
</profile:serviceCategory>
[...]

This information is expressed in WSMO by using non-functional properties, such

as title, description, identifier, creator, publisher or type. WSMO uses commonly

accepted terminology for these properties (the Dublin Core Metadata Element Set

[32]). Notably, non-functional properties can be defined for any of the core WSMO

elements, and for other elements such as ontology concepts or attributes, while in

OWL-S non-functional properties can be associated only with the service profile.

Profile Parameters

In addition to the above non-functional properties, the OWL-S profile also includes

an expandable list of non-functional properties expressed as service parameters. The

range for the service parameters is not specified.10 For example, the BravoAir profile

is described below:

9 Some examples of possible categorisation such as NAICS or UNSPC

are given in http://www.daml.org/services/owl-s/1.1B/
ProfileAdditionalParameters.owl

10 Examples of such properties are geographic radius or response time (see http://www.
daml.org/services/owl-s/1.1B/ProfileAdditionalParameters.
owl)

200 Holger Lausen et al.

<profile:serviceParameter>
<addParam:GeographicRadius rdf:ID=”BravoAir−geographicRadius”>
<profile:serviceParameterName>BravoAir Geographic Radius</profile:serviceParameterName>
<profile:sParameter rdf:resource=”Country.owl#UnitedStates” />

</addParam:GeographicRadius>
</profile:serviceParameter>

Functionality Description

The OWL-S profile specifies what functionality the service provides. The functional-

ity description is split into the information transformation performed by the service

and the state change as a consequence of the service execution. The former is cap-

tured by defining the inputs and outputs of the service, and the latter is defined in

terms of preconditions and effects. Inputs, outputs, preconditions and effects are nor-

mally referred to as IOPEs. Effects are defined as part of a result. The schema for

describing IOPEs is not defined in the profile, but in the OWL-S process. Instances of

IOPEs are created in the process and referenced from the profile, and it is envisioned

that the IOPEs of the profile are a subset of those published by the process [30].

Inputs and outputs. OWL-S inputs and outputs describe what information is

required and what information is produced by the service. Inputs and outputs are

modelled as subclasses of parameter, which is in turn a subclass of SWRL variable

[17] with a property indicating the class or datatype the values of the parameter

belong to. Local variables can also be used, and they are modelled in the ontology

as subclasses of parameter. Inputs, outputs and local variables have as scope the

process where they appear. The inputs and outputs defined in the service model are

referenced from the profile via the hasInput and hasOutput properties, respectively,

and there are no cardinality restrictions for inputs and outputs Local variables can

be referenced via the hasParameter property. For the BravoAir example, inputs and

outputs are declared in the profile as follows:

<profile:hasInput rdf:resource=”BravoAirProcess.owl#DepartureAirport”/>
<profile:hasInput rdf:resource=”BravoAirProcess.owl#ArrivalAirport”/>
<profile:hasInput rdf:resource=”BravoAirProcess.owl#OutboundDate”/>
<profile:hasInput rdf:resource=”BravoAirProcess.owl#InboundDate”/>
<profile:hasInput rdf:resource=”BravoAirProcess.owl#RoundTrip”/>
[...]

The inputs and outputs are defined in the process11 as part of the different atomic

processes where they appear:

<process:Input rdf:ID=”DepartureAirport”>
<process:parameterType rdf:datatype=”&xsd;anyURI”>Concepts.owl#Airport</process:parameterType>

</process:Input>
<process:Input rdf:ID=”ArrivalAirport ”>
<process:parameterType rdf:datatype=”&xsd;anyURI”>Concepts.owl#Airport</process:parameterType>

</process:Input>
[...]

<process:Output rdf:ID=”FlightsFound”>

11 http://www.daml.org/services/owl-s/1.1B/BravoAirProcess.owl

7 Description 201

<process:parameterType rdf:datatype=”&xsd;anyURI”>Concepts.owl#FlightList
</process:parameterType>

</process:Output>
<process:Output rdf:ID=”ReservationID”>
<process:parameterType rdf:datatype=”&xsd;anyURI”>

Concepts.owl#ReservationNumber
</process:parameterType>

</process:Output>
[...]

Preconditions and effects. Preconditions are conditions on the state of the world that

have to be true for successfully executing the service. They are modelled as condi-

tions, a subclass of expression. Expressions in OWL-S specify the language in which

the expression is described12 and the expression itself is encoded as a (string or XML)

literal. Effects describe conditions on the state of the world that are true after the ser-

vice execution. They are modelled as part of a result. A result has an inCondition,

a ResultVar, an OutputBinding and an Effect. The inCondition specifies the condi-

tion for the delivery of the result. The OutputBinding binds the declared output to

the appropriate type or value depending on the inCondition. The effects describe the

state of the world resulting from the execution of the service. The ResultVars play the

role of local variables for describing results. Conditions, i.e. preconditions defined in

the service model, are referenced from the profile via the hasPrecondition property

and results via the hasResult property, with no cardinality restrictions. The BravoAir

example does not specify any precondition, but one result:

<profile:hasResult rdf:resource=”BravoAirProcess.owl#HaveSeatResult”/>

The result is declared in the service process, as part of the atomic process where

it appears. However, the definition of this result is not complete in the example.

Therefore, we illustrate the definition of results with a more detailed example taken

from [30]. This result declares that the effect of the service is that a purchase is

confirmed, the object purchased is owned by the requester and the credit limit of the

credit card is decreased by the amount of the purchase. The condition for such effect

to happen is that the credit limit of the credit card is bigger or equal to the purchase

amount. The output is a confirmation number for the purchase:

<process:hasResult>
<process:Result>
<process:hasResultVar>
<process:ResultVar rdf:ID=”CreditLimH”>
<process:parameterType rdf:resource=”&ecom;#Dollars”/>

</process:ResultVar>
</process:hasResultVar>
<process:inCondition expressionLanguage=”&expr;#KIF” rdf:dataType=”&xsd;#string”>

(and (current−value (credit−limit ?CreditCard)
?CreditLimH)

(>= ?CreditLimH ?purchaseAmt))
</process:inCondition>
<process:withOutput>
<process:OutputBinding>
<process:toParam rdf:resource=”#ConfirmationNum”/>

12 The use of SWRL [17], KIF [11] or DRS [21] is recommended

202 Holger Lausen et al.

<process:valueFunction rdf:parseType=”Literal”>
<cc:ConfirmationNum xsd:datatype=”&xsd;#string”/>

</process:valueFunction>
</process:OutputBinding>

</process:withOutput>
<process:hasEffect expressionLanguage=”&expr;#KIF” rdf:dataType=”&xsd;#string”>

(and (confirmed (purchase ?purchaseAmt) ?ConfirmationNum)
(own ?objectPurchased)
(decrease (credit−limit ?CreditCard)

?purchaseAmt))
</process:hasEffect>

</process:Result>
</process:hasResult>

State change is described in WSMO by using assumptions and effects. The goal

only defines effects, as the state of the world that is desired. The capability defines

both assumptions (similar to preconditions, but referencing aspects of the state of the

world beyond the actual input) and effects (the state of the world after the execution

of the service). As for preconditions and postconditions, no cardinality restrictions

are placed for assumptions and effects.

The relation between the input and the output, and between the preconditions and

the effects of a Web Service have to be captured in order to accurately describe the

service functionality. If such relation is not provided, then the service only charac-

terises the input and the output, but does not model the function that transforms one

into the other. This relation can be described in OWL-S when defining the result of

the execution of the service, where the (logical) relation between the input, output

and effects is described. In the example above, the inCondition and the effect states

that the credit limit of the credit card given as input will be decreased if the limit was

bigger or equal than the purchase amount before invoking the service. In WSMO,

this relation is described in the definition of postconditions and effects, as can be

seen in the examples.

7.3.3 OWL-S Service Model

In OWL-S, a service model represents how the service works, i.e. how to interoperate

with the service. The service is viewed as a process, and the class ProcessModel is

the root class for its definition. The process model describes the functional properties

of the service, together with details of its constituent processes (if the service is a

composite service), describing how to interact with the service. The functionality

description contained in OWL-S service models corresponds with the capability of a

WSMO Web Service, while the descriptions of how to interact with the Web Service

correspond to WSMO choreographies.

Functionality Description

The functionality description, as for the service profile, is split into information trans-

formation and state change and is expressed in terms of IOPEs (see Sect. 7.3.2).

IOPEs are linked to any process via the properties hasInput, hasOutput, hasPrecon-
dition and hasResult, with no cardinality restrictions.

7 Description 203

Composite process, i.e. processes which contain other processes, can define the

functionality of each individual or (partially) aggregated process. Capabilities in

WSMO provide the functional description described in OWL-S using IOPEs of the

process. Notice that the OWL-S functionality description in the profile (from the

provider point of view) and in the model are merged into a single specification in

WSMO: the Web Service capability. However, the WSMO capability only defines

the overall functionality of the Web Service; for multi-step services, where each step

will provide a particular part of the overall functionality, these partial functionalities

are not reflected in the Web Service capability. The concrete specification of WSMO

choreography clarifies how the steps of complex services are described and whether

the functionality of each individual step, or groups of such steps, is part of these

descriptions.

Atomic Processes

OWL-S distinguishes between atomic, simple and composite processes. OWL-S

atomic processes can be invoked, have no subprocesses and are executed in a single

step from the requester’s point of view. They are a subclass of process and, therefore,

they specify their inputs, outputs, preconditions and effects. The BravoAir service

describes several atomic processes. The atomic processes for getting flight details

and for selecting an available flight are listed below:

<process:AtomicProcess rdf:ID=”GetDesiredFlightDetails”>
<process:hasInput rdf:resource=”#DepartureAirport”/>
<process:hasInput rdf:resource=”#ArrivalAirport”/>
<process:hasInput rdf:resource=”#OutboundDate”/>
<process:hasInput rdf:resource=”#InboundDate”/>
<process:hasInput rdf:resource=”#RoundTrip”/>
<process:hasOutput rdf:resource=”#FlightsFound”/>

</process:AtomicProcess>

<process:AtomicProcess rdf:ID=”SelectAvailableFlight”>
<process:hasInput rdf:resource=”#FlightsAvailable” />
<process:hasOutput rdf:resource=”#SelectedFlight” />

</process:AtomicProcess>

Simple Processes

OWL-S simple processes are not invocable and they are viewed as executed in a

single step. They are used as elements of abstraction, although this kind of processes

is not illustrated in the BravoAir example. The functionality of a simple process,

when it is the only process of the service, can be described by a WSMO capability as

part of a Web Service description with no grounding information, i.e. not invocable.

Composite Processes

OWL-S composites are decomposable into other processes. OWL-S provides a set of

control constructs such as sequence or split (for a complete account of the available

204 Holger Lausen et al.

control constructs we refer the reader to [30]) which are used to define the control

flow inside the composite process. In addition to the control constructs, means to

declare the data flow between processes are provided in the latest version of OWL-S.

Processes are annotated using the binding class. A binding is declared as a process

which consumes data from other processes which declares what other process and

which concrete process parameter the data comes from. The example below defines

one of the composite processes of BravoAir for booking a flight. It is a sequence of

processes, from which the first one is to perform the login, and the second one is to

complete the reservation. The process for completing the reservation takes data from

the parent process (the ChosenFlight input to the parent process) and uses it as the

input for its own ChosenFlight input:

<process:CompositeProcess rdf:ID=”BookFlight”>
<process:composedOf>
<process:Sequence>
<process:components>
<process:ControlConstructList>
< list:first >
<process:Perform rdf:ID=”PerformLogin”>
<process:process rdf:resource=”#LogIn”/>

</process:Perform>
</ list:first >
< list:rest >
<process:ControlConstructList>
< list:first >
<process:Perform>
<process:process rdf:resource=”#CompleteReservation”/>
<process:hasDataFrom>
<process:Binding>
<process:toParam rdf:resource=”#ChosenFlight”/>
<process:valueSource>
<process:ValueOf>
<process:theVar rdf:resource=”#ChosenFlight”/>
<process:fromProcess rdf:resource=”Process.owl#TheParentPerform”/>

[...]

WSMO can model OWL-S composite processes by defining complex (multi-step)

service choreographies. One important difference between OWL-S and WSMO is

that the former only defines the externally visible behaviour of the Web Service,

while WSMO also models how the service makes use of other services to provide its

functionality. While WSMO choreographies describe how to interact with the service

from a requester perspective, WSMO orchestrations describe how the service acts as

a requester for other services in order to complete the functionality declared in its

capability. The orchestration defines what Web Services will be invoked or what

goals have to be fulfilled (enabling automatic location of suitable services), together

with how to interact with such services.

7.3.4 OWL-S Service Grounding

The grounding in OWL-S provides the details of how to access the service, mapping

from an abstract to a concrete specification of the service.

OWL-S links a Web Service to its grounding by using the property supports.

A Web Service can have multiple groundings and a grounding must be associated

7 Description 205

with exactly one service. These groundings are associated with the atomic processes

defined in the service model, although this association is not described in the model

but only in the grounding. Therefore, the groundings for the atomic processes of the

model can be located only by navigating from the service model to the service (via

the describes property), and from there to the service grounding (via the supports
property).

OWL-S does not dictate the grounding mechanism to be used. Nevertheless the

current version of OWL-S provides a predefined grounding for WSDL, mapping

the different elements of the Web Service to a WSDL interface. An OWL-S atomic

process is mapped to a WSDL operation, and its inputs and outputs to the WSDL

input and output message parts, respectively. Such mappings are also established in

the WSDL description, using the WSDL 1.1 [3] extensibility elements.

7.3.5 OWL-S Languages

OWL-S is an ontology specified in OWL. Actual OWL-S Web Service specifications

are created by subclassing and instantiating the classes of OWL-S. Thus one can say

that the OWL language together with the OWL-S vocabulary makes up the OWL-S

Web Service specification language.

However, it has been recognised that OWL alone is not enough for the specifi-

cation of the behaviour of Web Services. The major problem is that OWL does not

allow chaining variables over predicates, which makes it impossible to, e.g., specify

the relationship between input and output, which is necessary to formally describe

the behaviour of any software component [26]. Therefore, OWL-S allows the user a

choice of different languages for the specification of preconditions and effects. How-

ever, the interface between the input and the output, which are described in OWL, and

the formulae in the precondition and the effect, is not clear. It is especially important

to know how these interact, because it is already possible to specify conditions on the

input and the output through complex OWL descriptions. The OWL-S coalition rec-

ommends the use of either SWRL, KIF or DRS for the specification of preconditions

and effects.

SWRL

The Semantic Web Rule Language [17] is an extension of OWL, which adds sup-

port for Horn rules over OWL DL ontologies. Instead of arbitrary predicates, SWRL

allows arbitrary OWL DL descriptions in both the head and the body of the rule,

where a unary predicate corresponds with an OWL class and a binary predicate cor-

responds with an OWL property. Predicates with higher arity are not allowed. How-

ever, n-ary predicates can always be encoded in a description logic knowledge base

by “emulating” relation parameters through the introduction of a number of func-

tional properties.

The authors of SWRL have demonstrated that the language is undecidable. This

undecidability is mainly caused by allowing existential quantification in the head of

the rule (inherited from OWL), combined with chaining variables over predicates

(inherited from Horn logic).

206 Holger Lausen et al.

KIF

The Knowledge Interchange Format (KIF) is a standards-proposal from the 1990s for

the interchange of knowledge between knowledge bases. The language is constructed

in such a way that it can be used to capture the semantics of most knowledge bases.

As such, it is an extension of the first-order logic with reification.

KIF currently has only a normal text syntax and thus each KIF expression in an

OWL-S description consists of text and thus does not benefit from validation and

parsing services offered by XML and RDF parsers/validators.

DRS

DRS (Declarative RDF System) is an OWL ontology, which provides a vocabulary

for writing down arbitrary formulas. DRS does not prescribe the semantics of formu-

las written down using its vocabulary. Thus, when using DRS to specify Web Ser-

vices, the user will have to find a way outside the language to agree on the semantics

of the description.

7.4 Summary and Outlook

We have presented in detail two of the Semantic Web Service frameworks that are

proposed by academic and industrial research. Despite different origins and back-

grounds, both frameworks share a number of similarities. First of all they are using

formal logics to define the meaning of Web Services. Both frameworks have some

notion of precondition and postcondition as well as dynamic aspects.

However, while WSMO explicitly defines the orchestration of the service,

describing what other services have to be used or what other goals have to be fulfilled

to provide its functionality, OWL-S does not model this aspect of a Web Service, but

does define the choreography of a service.

While an OWL-S request is formulated as the description of a profile which char-

acterises the service being sought and thus uses a single modelling element for both

views, WSMO explicitly reflects the separation of providers and requesters concerns

by defining goals and Web Service capabilities separately.

WSMO relies on loose coupling with strong mediation. Different kinds of medi-

ators are used to link together the core WSMO elements, dealing with the hetero-

geneity problems inherent to a distributed environment. OWL-S does not explicitly

consider the heterogeneity problem in the language itself, treating it as an archi-

tectural issue, i.e. mediators are not an element of the ontology but are part of the

underlying Web Service infrastructure [25].

From a more conceptual point of view, the most striking difference is the way the

meta models of the respective approaches are defined: WSMO follows a language

specification similar to MOF (Meta-Object Facility) [29], in the sense that the lan-

guage specification layers are clearly separated and different languages can be used

to express WSMO. In OWL-S, the meta-meta model is specified using OWL and

actual descriptions consist of subclasses and instances of the OWL-S ontology.

7 Description 207

It has been recognised that OWL is not expressive enough for all description

aspects and thus in the OWL-S approach other languages are syntactically integrated

(such as SWRL, KIF or DRS). Combinations with SWRL or the purely syntactic

framework of DRS lead to inherent undecidability or leave semantics open from the

start.

WSMO has designed from the beginning a set of layered languages. The layered

logical analysis of decidable semantic fragments combining conceptual modelling

with rules in the WSML Core, DL, Rule and Flight species seems more focused than

the current suggestions in OWL-S.

Although work in the area of an overall framework for Semantic Web Services

is now already a research issue for a couple of years, maturity is not yet reached:

In summer 2005, the W3C organised a workshop on Frameworks for Semantics in
Web Services13 to clarify the different views of the community and explore current

chances for standardisation. Over 80 participants from industry and academia pre-

sented their proposals, but despite many conceptual overlaps, one intent of the work-

shop did not yet succeed: In the details of the deployed technologies the community

is still far from agreement and therefore not ready for a rapid move towards stan-

dardisation.

Although activities towards standardising an overall Semantic Web Services

framework have been stalled by W3C for the moment, standardisation organisations

such as the Organisation for the Advancement of Structured Information Standards
(OASIS)14 and also W3C itself have in between established several working groups or

technical committees to develop and standardise particular aspects around Semantic

Web Service technologies.

Within the W3C a more light weight approach has been chartered: The Semantic
Annotations for WSDL Working Group aims to add minimal semantic extensions to

WSDL. WSDL itself only specifies a way to describe the abstract functionalities of

a service and concretely how and where to invoke it. The WSDL 2.0 specification

does, however, not include semantics in the description; thus two services can have

similar descriptions with totally different meanings or similar meanings with com-

pletely different descriptions. The objective of the Semantic Annotations for WSDL

Working Group is to develop a mechanism to enable semantic annotation of WSDL

descriptions. This mechanism will take advantage of the WSDL 2.0 extension mech-

anisms to build a simple and generic support for semantics in Web Services.

References

1. R. Akkiraju et al. Web Service Semantics - WSDL-S. W3C Member Submission. Novem-

ber 2005. Available from http://www.w3.org/Submission/WSDL-S/.

2. S. Battle et al. Semantic Web Services Framework (SWSF). W3C Member Submission.

May 2005, Available from http://www.w3.org/Submission/2005/07/.

13 http://www.w3.org/2005/01/ws-swsf-cfp.html
14 http://www.oasis-open.org

208 Holger Lausen et al.

3. E. Börger. High Level System Design and Analysis using Abstract State Machines.

In D. Hutter and W. Stephan and P. Traverso and M. Ullmann, editor, Current Trends in
Applied Formal Methods (FM-Trends 98), number 1641 in LNCS, pages 1–43. Springer-

Verlag, 1999.

4. T. Bray, D. Hollander, and A. Layman. Namespaces in XML. W3C Recommendation.

January 1999, Available from http://www.w3.org/TR/REC-xml-names.

5. D. Brickley and L. Miller. FOAF Vocabulary Specification, 2004. Available from http:
//xmlns.com/foaf/0.1/.

6. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description

Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March 2001.

7. J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL DL vs. OWL Flight: Conceptual

Modeling and Reasoning for the Semantic Web. Technical Report DERI-TR-2004-11-10,

DERI, November 2004.

8. J. de Bruijn et al. Web Service Modeling Ontology (WSMO). W3C Member Submission

3 June 2005, Available from http://www.w3.org/Submission/WSMO/.

9. J. de Bruijn, editor. The WSML Family of Representation Languages. 2005. WSMO

Deliverable D16, WSMO Working Draft, 2005, latest version available at http://
www.wsmo.org/TR/d16/d16.1/.

10. M. Dean and G. Schreiber, editors. OWL Web Ontology Language Reference. 2004. W3C

Recommendation 10 February 2004.

11. KIF. Knowledge Interchange Format: Draft Proposed American National Standard. Tech-

nical Report NCITS.T2/98-004, 1998. available from http://logic.stanford.
edu/kif/dpans.html.

12. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Electronic
Commerce Research and Applications, 1(2), 2002.

13. B.N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combin-

ing Logic Programs With Description Logic. In Proc. Intl. Conf. on the World Wide Web
(WWW-2003), Budapest, Hungary, 2003.

14. T.R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5:199–220, 1993.

15. Y. Gurevich. Evolving Algebras 1993: Lipari Guide, pages 9–36. Oxford University

Press, Inc., 1995.

16. P. Hayes. RDF Semantics. W3C Recommendation, February 2004, Available from

http://www.w3.org/TR/rdf-mt/.

17. I. Horrocks et al. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

W3C Submission, May 2004, Available from http://www.w3.org/Submission/
2004/SUBM-SWRL-20040521/.

18. U. Keller, M. Stollberg, and D. Fensel. Woogle Meets Semantic Web Fred. In Proceedings
of the Workshop on WSMO Implementations (WIW 2004), volume Vol-113, 2004.

19. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-

Based Languages. Journal of the ACM, 42(4):741–843, 1995.

20. A. Kiryakov, D. Ognyanov, and V. Kirov. A Framework for Representing Ontologies

Consisting of Several Thousand Concepts Definitions. DIP Deliverable D2.2, Ontotext

Lab, 2004.

21. D. McDermott. DRS: A Set of Conventions for Representing Logical Languages

in RDF. Available from http://www.daml.org/services/owl-s/1.1B/
DRSguide.pdf, January 2004.

22. Object Management Group Inc. (OMG). Meta Object Facility (MOF) Specification v1.4,

2002.

7 Description 209

23. J. O’Sullivan, D. Edmond, and A. ter Hofstede. What is a Service?: Towards Accu-

rate Description of Non-Functional Properties. Distributed and ParallelDatabases, 12(2-

3):117–133, 2002.

24. M. Paolucci, A. Ankolekar, N. Srinivasan, and K. Sycara. The DAML-S Virtual Machine.

In International Semantic Web Conference (ISWC 2003), 2003.

25. M. Paolucci, N. Srinivasan, and K. Sycara. Expressing WSMO Mediators in OWL-S. In

D. Martin, R. Lara, and T. Yamaguchi, editors, Proceedings 1st International Workshop
SWS’2004 at ISWC-2004, volume 119, CEUR-WS.org/Vol-119/, November 2004.

CEUR-WS.org.

26. J. Penix and P. Alexander. Towards Automated Component Adaptation. In Proceedings of
the 9th International Conference on Software Engineering and Knowledge Engineering,

June 1997.

27. D. Roman, editor. WSMO Choreography. WSMO Choreography Working Draft D14v0.3.

April 2006, Available from http://www.wsmo.org/TR/d14/.

28. D. Roman, H. Lausen, and U. Keller, editors. Web Service Modeling Ontology (WSMO).
WSMO Working Draft D2v1.2, April 2005. Available from http://www.wsmo.
org/TR/d2/.

29. The Object Management Group. Meta-Object Facility. Technical Report, 2004. Available

from http://www.omg.org/technology/documents/formal/mof.htm.

30. D. Martin et al. OWL-S: Semantic Markup for Web Services. W3C Member Submission,

November 2004, Available from http://www.w3.org/Submission/2004/07/
31. S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin Core Metadata for Resource Dis-

covery. RFC 2413, IETF, September 1998.

32. S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. RFC 2413 - Dublin Core Metadata for
Resource Discovery, September 1998.

33. G. Wiederhold. Mediators in the Architecture of the Future Information Systems. Com-
puter, 25(3):38–49, 1994.

8

Discovery
Identifying Relevant Services

Stephan Grimm

FZI Research Center for Information Technologies, University of Karlsruhe, Germany

stephan.grimm@fzi.de

Summary. Web Services expose machine-processable interfaces that provide flexible access

to their functionality in network environments for realising application integration scenarios.

As any other web resource, it is desirable to locate and get access to Web Services by specify-

ing relevant properties in the form of a request, similar to how websites are located via search

engines. When annotated with semantic information about their functionality, Web Services

can be located based on their actual capabilities rather than on their interfaces only. Discovery

is the task of locating Web Services by means of their semantic annotations. This typically

involves matching of semantic capability descriptions for requested service against those for

advertised services. This chapter discusses the notion of discovery of services in the Semantic

Web. It gives an overview on approaches to realise discovery by different matching techniques

and elaborates on matching of service annotations within the description logic formalism. This

particular approach is illustrated by an example taken from the logistics domain.

8.1 Notion of Discovery

In the vision of the Semantic Web, human users are replaced by computational agents

which are supposed to access the content and service functionality offered in the

web on their behalf. Since these agents can not interpret webpages and Web Service

documentation as humans can, web content and service endpoints are semantically

annotated with machine-interpretable meta data. To be an effective surrogate for the

human, the agent must be able to reason about this meta data. One of the tasks that

involves such reasoning is for the agent to discover relevant service providers, i.e.

to decide whether a certain service endpoint can be used to fulfil its current mis-

sion. With respect to Semantic Web Services this means that parties who offer their

services via the Internet semantically annotate the Web Services that provide access

to these services by means of machine-interpretable meta data that tells an agent

“what the service does”. Hence, Web Services are the technical means to realise the

services offered in some domain of value and the semantic annotation of Web Ser-

vices describes the capabilities of these services, as motivated in Chap. 6. On the

other hand, parties who request services via the Internet need to locate the means to

access provided services which meet their requirements. Discovery of services in the

212 Stephan Grimm

Semantic Web is the process of locating the means to access provided services with

relevant capabilities, based on semantic annotation.

In the vision sketched above, discovery is to be performed fully automated, since

there is no human in the loop who could help the agent in judging whether a service

offer is relevant or not. To this end, all the pieces of semantic annotation involved

must be machine-understandable in order for the agent to put them together and to

draw the correct conclusions. To achieve this, discovery of services in the Seman-

tic Web exploits expressive knowledge representation formalisms and sophisticated

automated reasoning techniques.

8.1.1 Discovery Based on Semantic Annotation

We call the annotation that specifies the semantics of a service a semantic service
description, or service description for short. In general, such a semantic service

description covers many different aspects of the service, ranging from the actual

capabilities in the domain of value to the ontological grounding of service param-

eters at the message exchange level. In any of the phases of discovery, execution,

composition, etc., different subsets of these aspects are taken into account. Since, in

the first place, the finding of relevant service offers should be based on “what the ser-

vice does” while details about how to communicate with the service’s interface play

a minor role, we base our notion of discovery on the specification of the capabilities

a service provides in its domain of value. In the context of discovery, we therefore

understand a semantic service description also as semantic capability description.

Figure 8.1 depicts the role of semantic capability descriptions in a generic

discovery scenario. In this scenario, providers of services make use of capability

Fig. 8.1. Discovery based on semantic service descriptions

8 Discovery 213

descriptions to publish their service offers, while a requester party issues a service

request in the same way. In their semantic descriptions, they both refer to services

in some domain of value. On the interface level, the providers implement Web Ser-

vices that realise these services as a technical means to access their functionality and

to make use of the value they provide. Inline with the Semantic Web idea, a ser-

vice description annotates a Web Service interface and it describes the service in the

domain of value which this interface provides access to.

The Web Services and semantic descriptions on the levels of interface and seman-

tic annotation are computational objects that reside within the scope of the machine’s

information space. Contrarily, the entities in the domain of value cannot be directly

processed within this information space but have their representation through the

ontological descriptions involved. Ontologies play a major role in describing the

meaning of content in the Semantic Web. In our discovery scenario they have a

twofold use: on the one hand upper-level service ontologies, like WSMO or OWL-

S introduced in Chap.7, form the basis for modellers to express service semantics

in terms of generic service-related constructs; on the other hand domain ontologies

are plugged in to describe service capabilities in terms of the domain of value of a

service. By making use of knowledge representation techniques and methodologies

described in the Chaps. 3 and 4, semantic capability descriptions try to capture “what

a service does” in the form of ontological descriptions.

The semantic capability descriptions serve as input for the discovery process,

which compares the requester’s description with those of providers to figure out

which service offer is relevant for the request. This means that discovery operates on

the ontological descriptions of the capabilities of a service rather than on specifica-

tions of Web Service interfaces. As a result, the discovery process returns references

to service descriptions considered relevant, together with references to their associ-

ated Web Service interfaces. The requester agent has then the possibility to further

investigate the relevant service offers either by looking at their semantic descriptions

in more detail or by directly calling the Web Service interface.

8.1.2 Discovery and Pre-contractual Negotiation

According to Chap. 6 there is a point in time in the lifecycle of service usage when

a contract between the requester and the provider of the service is established. Prior

to this point the phases of service discovery and service definition aim towards

establishing the contract, being the requirement for the delivery of the service to

be carried out. The phase of discovery is distinct from the phase of service defi-

nition and chronologically precedes it. The service definition can also be seen as

pre-contractual parameter negotiation, since to define the concrete service to be car-

ried out the service parameters have to be negotiated and fixed. This distinction is

depicted in Fig. 8.2 and characterised in the following paragraphs.

Discovery Phase

The parties involved in discovery are a requester and several providers of services.

During the discovery process the capability descriptions for abstract services of these

214 Stephan Grimm

time
] X[

Discovery
][

Negotiation Execution
][

contract
established

X

contract
fulfilled

X

provider
chosen

Fig. 8.2. Different phases around discovery

parties are consulted. As a result, discovery leads to the selection of service offer

descriptions of providers that are relevant with respect to the service requirement

description of the requester. In this sense, discovery aims towards the choice of the

service provider. This means that successful discovery does not necessarily lead to a

contract between the two parties – service definition due to pre-contractual parame-

ter negotiation can still fail after potential service providers have been successfully

identified. On the other hand, failure of discovery means that there are no potential

providers who could meet the requester’s requirements.

Negotiation Phase

The parties involved in parameter negotiation are a requester and one single provider

whose service offer description has been identified as relevant. In general, pre-

contractual negotiation can require the requester to negotiate with several potential

providers; however, the actual process of negotiation can be seen as bilateral. During

this process there is communication between the two parties, which already involves

invocation of the provider’s Web Service interface. As a result, parameter negotia-

tion finally leads to the choice of the service provider and to a contract between the

requester and this provider, if successful. Failure of pre-contractual negotiation with

a particular service provider means that the two parties could not establish a con-

tract. Failure of pre-contractual negotiation as a whole means that finally none of the

potential providers was feasible to establish a contract with the requester.

8.1.3 Different Interpretations of Discovery

Based on the distinction between the phases of discovery and pre-contractual nego-

tiation, the notion of discovery is that of “identifying service offers that meet a

requester’s needs”. This notion can be interpreted in different ways. A weak inter-

pretation is to assume that the capability descriptions of services are specified on

a very abstract level which does not detail enough information to assure successful

service definition. According to the terminology introduced in Chap. 6, this would

result in capability descriptions describing abstract services. A strong interpretation

is to assume that capability descriptions provide access to detailed information about

the contracts that can finally be agreed on by requesters and providers, respectively.

This would result in capability descriptions describing concrete services. One can

think of cases in between these two extremes and gradually move from abstract to

concrete descriptions, including more and more detailed information about service

definition.

8 Discovery 215

In [17] the authors distinguish between “correct” and “complete” service descrip-

tions. Applying this idea to our capability descriptions, a description is “correct” if

any concrete service it allows is also covered by the abstract service that the modeller

intends to describe with it. On the other hand, a description is “complete” if it allows

any concrete service the modeller intends to be covered. Achieving correctness here

means to interpret the notion of discovery in the strong sense, assuring successful

service definition. However, [17] states that correctness cannot be achieved often

and that a natural interpretation for discovery, therefore, is to have complete but not

necessarily correct capability descriptions.

For the presentation in this chapter, the notion of discovery is interpreted in a

rather weak sense. This way it is clearly separated from pre-contractual negotiation

and the two problems of discovery and parameter negotiation can be tackled inde-

pendently from each other. For an agent, this means that discovery is only part of its

job in achieving the fulfillment of its goal. Once a service has been discovered, the

agent still needs to communicate to the interface that realises this service in order to

figure out if it is the right one to consult.

8.2 Discovery in Case Study Scenarios

This section illustrates the notion of discovery by revisiting the example case studies

listed in Chap. 6. For each of the example scenarios, discovery is identified and

characterised in the context of the particular use case.

8.2.1 Scenario A

In the first scenario, customers of a bank are notified when they are at risk of

going overdrawn. Here the requested service is that of notification via email or

voice message. The overdraft controlling software running at the bank acts as the

service requester agent that issues a request to a central discovery service in the

web. Provider agents of notification services and others register their service offers

with this central discovery service. The capability descriptions of both requester

and providers describe the kind of notification they require or offer with some

details about the way of notification, cost, reliability, etc. The discovery service

sorts out those service offers that are suitable for the currently issued request. The

requester agent then gets in contact with one or more of the potential notification

service providers to negotiate about the details and picks the one that best fits its

preferences.

8.2.2 Scenario B

In the second scenario the purchase of non-critical supplies is automated in an

electronic procurement setting. Here, online sales services for certain supplies are

requested by the company’s e-procurement software, acting as the requester agent.

216 Stephan Grimm

To maximally benefit from the dynamic market situation, the requester agent should

be provided with the currently available sales service offers at any time it requests a

certain kind of purchase. Therefore, it issues a request to a central discovery service

whenever a new purchase is to be made. Via semantic matchmaking of capability

descriptions, discovery detects the currently available service providers that could

deliver the purchase. The capability descriptions here capture the type of online shop

and some details on the products covered by the purchase. In this scenario, discov-

ery precedes a more complex pre-contactual service definition phase with extensive

parameter negotiation.

8.2.3 Scenario C

In the third scenario, logistics providers in a transport chain shall be replaced on

demand. Here the requested service is conveyance of goods from one location to

another. The requester agent is the software that puts together the pieces of the trans-

portation chain, running at the site of the customer company. Logistics providers

register their service offers to a central discovery service accessible to customers and

suppliers in the logistics domain. The capability descriptions involved specify the

kind of transportation, locations of origin and destination, the type of cargo and vehi-

cle, etc. Discovery detects which of the logistics providers currently registered could

fill in the broken part of the transportation chain, by looking at the specified capabili-

ties. By pre-contractual negotiation with the potential candidates the requester agent

then picks the most preferable one to fix the chain.

8.2.4 Scenario D

In the fourth scenario, a share portfolio management software updates stock prices

with recent Information looked up in the Internet. Here the requested service is

retrieving online stock quote information. The requester agent that looks up this

service is the portfolio management software. It has a fixed capability description

requiring stock quote prices, although it might be possible to parameterise details on

the conditions about price and delay time. Discovery looks up the stock quote ser-

vices currently available in the web. Here pre-contractual service definition contains

a manual step, leaving the final decision of which service to use to the human, after

having collected all information that is necessary to support this decision.

8.3 Discovery Frameworks

The former sections have introduced the notion of service discovery in the Seman-

tic Web and have shown discovery by example in different case study scenarios. A

discovery framework is the conceptual frame that allows to realise such scenarios.

It describes all the methods and components needed to operationalise discovery. An

8 Discovery 217

implementation of a discovery framework needs to instantiate these methods and

components, and to interrelate them in a discovery architecture. This section charac-

terises a discovery framework on a general level, while Sect. 8.4 describes an exam-

ple for a concrete discovery framework realised with the description logics formalism

and applied to the logistics-centred Scenario C.

Basically, a discovery framework needs to specify the following two essential

things:

1. How capability descriptions of services are modelled.

2. How capability descriptions are compared in terms of relevance.

These two aspects are intertwined with each other and for both of them a discovery

framework must define precise methods and the components to support these meth-

ods. Defining the relevance comparison mechanism alone is not sufficient, since it

is then not clear what kind of descriptions serve as input. Instead, the comparison

method must take into account the specifics of the chosen way of modelling and

the modelling method must be suitable for the chosen way of how comparison is

performed.

8.3.1 Modelling Service Semantics with Respect to Discovery

A discovery framework not only determines which formalism is used to represent

service semantics but also specifies the way of how to utilise this formalism to model

capability descriptions. This means that the modeller has to adhere to certain rules

of modelling that might restrict him in freely using what the formalism offers.

Fixing an Ontological Vocabulary

In particular, a discovery framework should define the domain-independent part of

the ontological vocabulary in terms of which capability descriptions are to be defined.

This determines the general service model that discovery processes can assume when

interpreting capability descriptions. This part of the ontological vocabulary is usu-

ally being fixed by choosing an upper-level ontology for services, such as WSMO

or OWL-S (see Chap. 7). In opposite to a domain ontology, an upper-level ontology

provides a very general conceptual model, e.g. for services, that is independent from

any application domain. In fact, an upper-level service ontology can be seen as an

ontology whose domain is that of “services”. Therefore it provides basic concepts, as

e.g. “Service”, “ServiceParameter”, “ServiceCondition”, etc., which form the foun-

dation of any capability description.

To completely describe the capability of a service, additional vocabulary is

required, originating in an ontology for a particular domain of value. For a service

within the logistics domain, e.g., a capability description would include concepts like

“Transportation”, “Container” or “Location”. Several domain ontologies modelling

different aspects can be combined, such as a logistics ontology together with an

ontology for geographic knowledge about the regions and locations that are relevant

218 Stephan Grimm

for the transportation of goods. In opposite to the service-specific vocabulary, such

domain-specific knowledge is not fixed by the discovery framework – modellers can

refer to arbitrary domain ontologies.

The way in which such a combined ontological vocabulary for service and

domain knowledge can be used is manifold. It can, e.g., be extended on the con-

ceptual level by introducing new concepts in relation to existing ones, or existing

concepts can be instantiated and their relations filled with values. Depending on

the underlying knowledge representation formalism, capability descriptions can be

modelled at the conceptual level, at the instance level, as a mix of both or in terms

of complex logical formulas. In any case the discovery framework should fix this

modelling choice and precisely define how a capability description, modelled in the

chosen way, is to be interpreted for discovery purposes.

Abstracting from Concrete Services

In the sense of a weak interpretation of discovery, as introduced in Sect. 8.1, capabil-

ity descriptions describe abstract services that generalise from the concrete services

to be performed. In the modelling phase, requesters and providers do not want to

explicitly list all the concrete services they are willing to accept. Instead they want

to use a narrow set of modelling constructs, based on the underlying knowledge rep-

resentation formalism, to represent the set of all these concrete services. An example

of how to abstract from concrete services is given by the following DL expression

D ≡ Shipping � ∀ item.CargoContainer � ∃ payment.CreditCard

Here the capability description D is defined as a concept representing a shipping

service for which all conveyed items must be cargo containers and for which the

required way of payment is via credit card. It can be interpreted such that all instances

of the concept D are the concrete services this description abstracts from. One such

concrete service would ship two cargo containers to be paid with VISA card, another

one three cargo containers to be paid with Master card, etc. The domain and ser-

vice specific terms are supposed to be defined in appropriate domain and upper-level

ontologies.

A similar service is modelled by the following WSML expression, describing an

effect within the capability description for a WSMO Web Service.

effect
definedBy

?service memberOf Shipping[item hasValue ?i, payment hasValue ?p]
and ?i memberOf CargoContainer
and ?p memberOf CreditCard.

Here the respective service is required to be of type Shipping and to have val-

ues of type CargoContainer and CreditCard for the properties item and payment,
respectively.

8 Discovery 219

Meeting the Modeller’s Intuition

Providing a formalism together with a restricting set of rules for how to use it still

leaves the modeller with the difficult task of formulating capability descriptions in

logical expressions or other formal means of description. This strategy is often not

feasible in a real world setting, especially when modelling is to be performed by

end-users with no expertise in knowledge representation. For this reason, a discovery

framework would also benefit from providing a methodology for modelling capabil-

ity descriptions that allows modelling on an intuitive level. The modeller’s intuition

can be better met abstracting from knowledge representation formalisms and build-

ing layers on top of them.

A first step in this direction is to paraphrase formal modelling constructs, as

done in the context of [19] for the OWL ontology language. There, the OWL-DL

class constructors are paraphrased with natural language sentences that capture their

exact meaning. This helps the modeller in understanding the underlying expression

but does not ease the burden of its sometimes non-intuitive complexity. Here a dis-

covery framework could define a set of intuitive modelling primitives that map to

formal constructs, layered on top of the chosen formalism. While this is difficult to

do for a certain formalism, like OWL-DL, in general, it seems to be feasible when

the specific features of modelling service semantics can be taken into account. The

intuitive modelling primitives are then tailored for describing the capabilities of a

service.

8.3.2 Matching Capability Descriptions

As described in Sect. 8.1, discovery is performed by comparing capability descrip-

tions to figure out which provided service is relevant for a specific request. This

comparison is also referred to as matching. As its core functionality, a discovery

framework must specify how the matching of capability descriptions is carried out.

Matching Behaviour

Discovery can be seen as a retrieval problem where all the service offers relevant for

a service request are to be returned. To realise this retrieval task, the matching func-

tionality needs to decide for any service offer whether it is relevant for the service

requirement. Therefore, the input parameters of the matching process are the capa-

bility description of the service requirement and a capability description of a single

service offer. In addition, the domain knowledge which the two capability descrip-

tions refer to must also be input to the matching process, since the decision is to

be made with respect to the ontologies used. In the simple case, the outcome of the

matching process is a boolean result, i.e. the service offer is either relevant or not.

In frameworks which try to rank the potential service offers according to their

relevance, the outcome of the matching process reflects a degree of matching. Since

220 Stephan Grimm

the description of capability semantics is based on symbolic knowledge representa-

tion formalisms, it is hard to measure the degree of matching in terms of numbers.

In [15] there has been proposed a discrete scale with four partially ordered degrees

of matching, which are detailed in Sect. 8.4.

Realisation of Matching

In knowledge representation and automated reasoning, the way of processing know-

ledge and reasoning about descriptions under consideration of domain-level facts is

to apply logical inferencing. A discovery framework must specify how logical infer-

ences are applied to realise matching. This, in turn, strongly depends on the chosen

way of modelling capability descriptions. For example, if service offers are mod-

elled in the form of ontological instances, the matching process will probably per-

form some kind of instance retrieval. If, on the other hand, all capability descriptions

are modelled in the form of ontological concepts, some kind of conceptual match-

making has to be carried out, as described later in Sect. 8.4. Logical inferences are

executed by a reasoner as a separate component of the discovery framework used in

the matching process.

The problem of matching can either be fully solved within the underlying logi-

cal formalism or partly outside. In the first case, capability descriptions are directly

represented with elements of the formalism, e.g. concepts, and in the matching pro-

cess inferences are applied on these elements, e.g. a single inference whose out-

come reflects the desired relevance. An example of this approach is given in Sect.

8.4. Alternatively, inferences can be applied to parts of capability descriptions, e.g.

to single parameters of a service, and in the matching process the partial results are

combined using application logic algorithms. This approach is, e.g., followed in [15].

Matching Abstract Descriptions

Following Sect. 8.3.1, modellers abstract from concrete services in their capability

descriptions. The basic idea of matching an abstract capability description of a ser-

vice request against an abstract capability description of a service offer is to deter-

mine whether there is a concrete service that is captured by both these descriptions.

If so, the requester and provider can potentially agree on at least one of the concrete

objects to be delivered by the service, i.e. their descriptions have some overlap. In

[17] this is stated as the “minimal functionality” required by a discovery system.

Recalling the distinction between the service discovery and service definition

phases, this minimal functionality assures those providers to match for which there

is at least the possibility to meet the specified requirements. At the same time, it

filters out those who can by no means meet the request since there is no overlap of

the descriptions.

8.3.3 Architectural Issues

When semantic descriptions of services are publicly advertised, issues of archi-

tectural organisation of the involved service repositories or registries arise. Most

8 Discovery 221

discovery approaches investigated in the context of Semantic Web technologies focus

on the actual matching of service descriptions and take a centralised architectural

view, with a single service registry. Other approaches, in particular those investi-

gated in the context of distributed information systems, take scalability issues into

account and investigate scenarios in which repositories of service descriptions are

spread over a multitude of nodes in a peer-to-peer network.

In the following paragraphs, three such architectural views are sketched and char-

acterised according to their degree of distributedness.

Centralised Discovery

In a centralised architectural view, there is a single service registry and repository as

entry point for requester and provider agents who participate in discovery. Providers

publish semantic descriptions of their service offers with this central repository,

while requesters query it on the basis of semantic descriptions of their requirements.

This central registry/repository can be a (semantically annotated) Web Service itself.

Whenever a request is issued, the respective semantic service description is itera-

tively matched against the descriptions of all the registered service offers.

In the light of costly matching techniques based on logical inferencing, such a

strategy is feasible only in controlled environments with a small number of avail-

able services, such as company-internal intranet applications or closed community

portals. In open environments where service repositories grow large quickly, it is

desirable to distribute the registry or repository functionality over several nodes,

which allows for parallelisation of matching or for pre-selection of appropriate sub-

repositories.

Hierarchical Discovery

A first step towards scalability by distribution is to spread service offer descriptions

over several thematically clustered repositories, while a single registry still serves as

the central entry point for requesters and providers. The single repositories can be

organised in a hierarchy of topics, similar to the taxonomic classification schemes

used in UDDI1 (see Chap. 2). An incoming request is then directed to a repository

that fits its specific topic, and the full logical matchmaking is only applied locally to

thematically relevant service offer descriptions.

Distributed Discovery in Peer-To-Peer Networks

In a fully distributed architectural view, the functionality of both repository and reg-

istry for service offer descriptions is organised in a decentralised way. Service adver-

tisements are published in a peer-to-peer network of registries, and requesters can

query for services using any registry as their entry point. The peer-to-peer based

registries then take care of routing the request to the peer that can answer it.

1 http://www.uddi.org

222 Stephan Grimm

References to approaches that consider peer-to-peer aspects in the context of the

Semantic Web and service discovery are [26, 20, 25, 22].

8.3.4 Predominant Discovery Approaches

There are various efforts that investigate different techniques for matching semantic

service descriptions in the context of discovery. Many of them are tightly coupled to

one of the prevalent Semantic Web Services annotation frameworks, such as OWL-

S, WSMO or WSDL-S, and exploit framework-specific description characteristics.

This subsection gives a brief overview on such existing approaches for discovery

frameworks, before the following section describes a particular approach based on

matching through description logic inferencing in detail.

Matching Service Descriptions with DL Inferencing

Principally independent from any of the Semantic Web Services annotation frame-

works mentioned in Chap. 7, the matching of concept-based descriptions by using

description logic inferencing has been investigated in the context of e-Business ser-

vice discovery in [24, 4, 23]. The basic idea behind this discovery approach is to rep-

resent service descriptions as DL concepts and to check whether two such descrip-

tions intersect or show even stronger overlap.

The general matching technique has been applied to OWL-S service profiles in

[10], extended by the ideas of different degrees of matching from [15]. Also in the

context of WSMO discovery, this technique is described as one of several alterna-

tives in [7, 6]. Peculiarities of the involved DL inferencing have been studied in

more detail in [5], while standard inferences have been extended towards more finer-

grained ranking strategies in [13] and [3]. Recently, in [21] the same matching tech-

nique has been investigated in the light of non-monotonic extensions to DL that allow

to overcome some problems due to the open-world assumption.

In Sect. 8.4, this approach to matching semantic service descriptions is investi-

gated in detail.

Retrieval of WSDL-S Descriptions

Within the Semantic Web Services activities around the METEOR-S2 project, the

MWSDI (METEOR-S Web Services Discovery Infrastructure)[25] realises a dis-

covery approach for WSDL-S descriptions in a UDDI-based environment. In com-

parison to the discovery efforts in other frameworks, like OWL-S or WSMO, this

approach uses rather light-weight semantics for matching, based on the semantic tags

in WSDL-S descriptions and on UDDI-specific search facilities. It follows a bottom-

up strategy by starting from existing Web Service technologies, namely WSDL and

UDDI, extending them by ontological lifting of input and output parameters.

2 http://lsdis.cs.uga.edu/projects/meteor-s/

8 Discovery 223

Since WSDL-S does not commit to a specific Web Service ontology or language,

as do OWL-S or WSMO, one of its characteristics is that semantic information in

WSDL-S tags can be expressed in a wide range of standards, languages and for-

malisms including, e.g., RDF(S) or even legacy UML descriptions. This is possible

because the matching techniques employed in MWSDI mostly work on the labels

(and some taxonomic and property-related structure) of ontological elements, using

various concept similarity measures. Mappings from service parameters to ontolog-

ical concepts are captured in UDDI-specific tModels and UDDI’s retrieval facili-

ties are used to perform discovery. On the other hand, these techniques do not fully

exploit logical inferencing with ontologies that have some richer axiomatisation.

An elaborate description of this approach to discovery can be found in [14],

where the different similarity measures that affect the matching are also detailed.

Matching of OWL-S Service Profiles

In the scope of the OWL-S3 framework, an algorithm [15] has been devised for

the matching of OWL-S service profiles based on inferencing with input and out-

put parameters. Within this algorithm, the characteristics of the state-transformation-

based description model [12] (see also Chap. 7) in the service profile is implic-

itly taken into account by handling inputs and outputs of requesters and providers

differently.

The algorithm applies logical inferencing separately to pairs of input and output

concepts. It recognises different degrees of match (described in Sect.8.4.3) by detect-

ing the taxonomic relation between an input and an output concepts with respect to

the involved domain ontologies. In contrast to how service descriptions are handled

in the DL-based matching approach mentioned before, here the service profile is

not (logically) reasoned about as a whole; it is rather interpreted in the sense of a

container whose elements point to concepts in an ontology.

This strategy for matchmaking has also been combined with UDDI, in that a sep-

arate matching module works on top of a UDDI registry. The details of the matching

algorithm and its use with service registries is described in detail in [15].

Discovery in WSMO

In the WSMO Semantic Web Services annotation framework, efforts on discovery

are rather following a top-down strategy, starting from the WSMO conceptual model

for services. Here, discovery operates on WSMO capability elements (see Chap. 7)

as abstract semantic service descriptions, while concrete input and output parameters

and other communication details are treated in a separate interface element. Thus, the

grounding of service descriptions in WSDL specifications does not affect discovery.

Due to this separation, and to the conceptual top-down nature of the approach,

WSMO discovery is currently farther away from integration with concrete Web Ser-

vice technologies (e.g. WSDL and UDDI) and from implementation in tools than

3 http://www.daml.org/services/owl-s/1.0/

224 Stephan Grimm

MWSDI or OWL-S matchmaking. An overview on the conceptualisation of discov-

ery frameworks building on WSMO is given in [7]. Similar to the distinction made

in [12] for OWL-S service profiles, this overview work supports discovery strategies

for both an abstract concept-based description model as envisioned for the DL-based

discovery approach described in Sect. 8.4, and a state-transition-based description

model. However, the focus within WSMO is clearly set to a description of pre- and

post-states with respect to service execution, and publications that follow this line

for discovery and matching are [6, 9, 8]. In contrast to OWL-S matchmaking, but

similar to the DL-based matching elaborated in Sect. 8.4, this work tries to capture

the meaningful processing of logical expressions in capability descriptions within the

underlying knowledge representation formalism rather than in an explicit algorithm.

Rule-Based Discovery within SWSF

The SWSF initiative (see Chap. 7) is a very recent effort to establish a Semantic

Web Services annotation framework, and due to its early stage there is not much

work on discovery published. The material available at [2] describes a discovery use

case where service descriptions are expressed in the SWSL-Rules formalism and

discovery is realised by executing rule-based queries. Details on the idea of how

querying is performed with transaction logic – a rule-based formalism that supports

the explicit representation of change – can be found in [9], which describes early

work on discovery in the context of WSMO.

8.4 Discovery by Description Logic Inferencing

This section describes an approach to discovery based on capability descriptions for-

mulated in description logic (DL). Consequently, DL inferences are used to perform

matching of capability descriptions. The usage of DL as a knowledge representation

formalism is motivated by its close relation to OWL [16], the proposed ontology

language for the Semantic Web (see Chap. 3).

The subsequent subsections describe how the modelling and matching of capabil-

ity descriptions, i.e. the two corner stones of a discovery framework, can be realised

using DL description and inferencing techniques.

8.4.1 DL-Based Modelling of Service Semantics

It is important to precisely define the way how capability descriptions are modelled

and how these descriptions are to be interpreted, i.e. what their intuitive meaning

is. This subsection describes how the constructs of the DL formalism can be used

to formulate capability descriptions. The intuitive meaning of these descriptions is

based on the distinction between abstract and concrete services, as mentioned in

Sect. 8.3.

8 Discovery 225

Capability Descriptions in DL

Within the DL-based approach we call the concrete services to be delivered service
instances. A service instance can be seen as a contract between a requester and a

provider, defining all the necessary details to perform the business interaction associ-

ated with the service. In the logistics scenario, such a service instance would exactly

specify the information about which item to be shipped, together with its size and

weight, the date and time when shipping is to be performed, the locations of ori-

gin and destination, etc. This reflects the instantiation of all the parameters of the

shipping business transaction in form of articles of agreement which the two parties

want to appear in their contract. Such a service instance can be understood as a graph

whose nodes and arcs represent the concrete service properties. In Fig. 8.3, there are

two examples of service instances depicted as graphs: shipping1 represents a service

instance for shipping a package of 50 kg from Plymouth to Bremen, while shipping2
captures the shipping of a 25 kg barrel from Dover to Hamburg. In the DL formal-

ism, such a service instance graph maps to the relational structure in an interpretation

I, connecting individuals of a domain ΔI through roles. (For an introduction to DL

interpretations and semantics, see e.g. [1].)

In their capability descriptions, requesters and providers of services want to

express which service instances they are willing to accept, i.e. which ones they

request or provide, respectively. However, they do not want to list all the different

service instances explicitly; instead they want to make use of semantically rich con-

structs provided by the DL-based modelling framework for expressing requests and

offers in a compact way – i.e., they want to describe an abstract service. Describing

a set of objects in DL is done by using concepts. Thus, the set of service instances

acceptable to a requester or provider maps to the extension SI of a DL concept S
that represents the abstract service to be described. A feature of DL is that complex

concepts can be formed out of simpler ones. In this sense S is described by a DL

concept expression that is composed from the basic concepts of, e.g., the logistics

domain. More generally, the concept S is specified by a set of DL axioms D which

we associate with the capability description of a service.

Figure 8.3 shows an example of a capability description for a service offer for

some provider as a set of DL axioms Dp specifying the service concept Sp. Sp
I is

the extension of the service concept Sp and contains all the service instances this

provider is willing to accept. To specify which service instances belong to Sp
I , the

capability description Dp consists of two axioms: the first one restricts the concept

Sp to shipping of items with a weight less than or equal to 50 kg from cities in the

UK to cities in Germany, while the second one assures that instances of shipping

services actually specify locations for origin and destination (exactly one for each).

By the capability description Dp the provider accepts the set of service instances in

the extension Sp
I of the service concept; among others, the two service instances

for shipping a 50 kg package from Plymouth to Bremen and for shipping a 25 kg

barrel from Dover to Hamburg both belong to this set. Hence, the provider would

agree on contracts that meet the constraints on the service parameter configurations

as specified in the capability description Dp
I .

226 Stephan Grimm

shipping1

BremenPlymouth

from to

PackageX
item

50 kg

weight

. . .

shipping2

HamburgDover

from to

BarrelY
item

25 kg

weight

service instances

(Sp)I

Capability Description

shipping1

BremenPlymouth

from to

PackageX
item

50 kg

weight

. . .

shipping2

HamburgDover

from to

BarrelY
item

25 kg

weight

service instances

(Sp)I

Capability Description

Fig. 8.3. DL concepts for expressing service capability descriptions

The concept expressions in the axioms of Dp are build up from basic concepts

and roles taken from the logistics domain, such as Shipping, Container, item, etc.

These concepts and roles are defined in domain ontologies which the requesters and

providers commonly refer to. In DL such domain ontologies map to a DL knowledge

base KB that contains the axioms which capture the domain knowledge stated there.

Incomplete Capability Descriptions

By describing an abstract service, the main purpose of a capability description is to

capture a set of service instances which vary on several parameters. Hence, capabil-

ity descriptions introduce variance on service properties. In [5] two different kinds of

variance have been identified that are desirable to be modelled in capability descrip-

tions:

1. Variance due to intended diversity: The modeller of a capability description

intends to accept a variety of different service instances. For example, a logistics

provider offers shipping between various different pairs of cities in the UK and

Germany, i.e. they want to cover shipping service instances for all possible such

pairs.

2. Variance due to incomplete Knowledge: The modeller of a capability description

wants to leave details about certain properties of a service unspecified. For exam-

ple, a logistics provider does not specify which kind of containers they support,

since this might be dependent on a complex business logic which shall not be

captured by the capability description but off-loaded to a parameter negotiation

phase.

With its model-theoretic interpretations inherited from first-order logic, the DL for-

malism adheres to an open-world semantics. This means that for things not fully

8 Discovery 227

specified in a knowledge base there are several ways of how to interpret the situa-

tion, which map to the different models (i.e. valid interpretations) of the knowledge

base. With any of these models we associate a possible world in which incomplete

knowledge is resolved in a different way.

Due to its open-world semantics, a feature of DL is to deal with incomplete infor-

mation. This allows a DL-based discovery framework to support capability descrip-

tions that do not fully specify all of the service details. Thus, the capability descrip-

tions formulated in terms of DL axioms and concept expressions can capture the

variance introduced before in a compact way.

Figure 8.4 depicts the two different kinds of variance along two dimensions.

The vertical dimension reflects variance due to intended diversity by a multitude

of service instances within one possible world. The horizontal dimension reflects

variance due to incomplete knowledge by several possible worlds in each of which

unspecified information is resolved in a different way.

In DL, a possible world that resolves incomplete knowledge in a certain way

maps to an interpretation I that is a model of KB ∪ D. Variance due to intended

diversity is reflected by the service concept SI containing several instances, whereas

variance due to incomplete knowledge is reflected by KB ∪ D having several models

I1, I2, In the example, the logistics provider does not want to miss any pair, of

UK and German cities in the variety of accepted service instances. At the same time

they are indifferent about the type of item to be shipped, such as package or barrel.

Possible World 1 Possible World 2
possible worlds

m
ul

tip
le

se
rv

ic
es

SI1 SI2

S “Shipping containers from UK to Germany”

shipping1

tofrom

item

50 kg

Packagex

Plymouth Bremen

weight

itemshipping2

tofrom

25 kg

Barrely

Plymouth Bremen

weight

itemshipping3

tofrom

50 kg

Packagex

Dover Hamburg

weight

shipping1

tofrom

item

50 kg

Packagex

Plymouth Bremen

weight

itemshipping2

tofrom

50 kg

Packagex

Dover Hamburg

weight

Possible World 1 Possible World 2
possible worlds

m
ul

tip
le

se
rv

ic
es

SI1SI1 SI2

S “Shipping containers from UK to Germany”

shipping1

tofrom

item

50 kg

Packagex

Plymouth Bremen

weight

shipping1

tofrom

item

50 kg

Packagex

Plymouth Bremen

weight

itemshipping2

tofrom

25 kg

Barrely

Plymouth Bremen

weight

item

itemshipping2

tofrom

25 kg

Barrely

Plymouth Bremen

weight

itemshipping3

tofrom

50 kg

Packagex

Dover Hamburg

weight

shipping3

tofrom

50 kg

Packagex

Dover Hamburg

weight

shipping1

tofrom

item

50 kg

Packagex

Plymouth Bremen

weight

shipping1

tofrom

item

50 kg

Packagex

Plymouth Bremen

weight

itemshipping2

tofrom

50 kg

Packagex

Dover Hamburg

weight

shipping2

tofrom

50 kg

Packagex

Dover Hamburg

weight

Fig. 8.4. Two different kinds of variance in capability descriptions along two dimensions

228 Stephan Grimm

Sometimes it is difficult, or even impossible, to exactly specify the desired set of

acceptable service instances, while leaving things unspecified at the same time. For

example, if the provider wants to exclude possible worlds in which not all cities are

covered by some service instance, this has to be stated explicitly by the axioms in

the description Dp. One possible way to do this is through a special kind of range-

coverage axioms [5] introduced in a subsequent section.

Another possibility to avoid undesired variance due to incomplete knowledge has

been investigated in [21]. There a non-monotonic extension to DL in the form of an

epistemic operator is used to realise a local closed-world assumption for capability

descriptions. In this way, parts of a description can be prevented from varying over

all possible worlds where desired.

Methodology for Intuitive Modelling

Having determined the intuitive meaning of different elements in the DL formalism

for modelling capability descriptions, it is still not straightforward for a modeller

to describe the capabilities of a service. The DL-based discovery framework should

also provide some methodological guidelines of how to apply the different constructs

to certain cases to meet the modeller’s intuition, as mentioned in Sect. 8.3.

Unfortunately, finding such a modelling methodology has not been paid much

attention to in the work around the predominant Semantic Web Services annotation

frameworks in general, and also not for the presented DL-based capability descrip-

tions in particular. However, as a first step towards an intuitive methodology for

modelling capability semantics in DL, a characterisation of service property restric-

tions has been suggested in [5]. The idea is to provide a set of intuitive modelling

primitives that map to underlying DL constructs, introducing a layer of abstraction

in between the modeller and the details of the logical formalism.

The axioms in a capability description D constrain the set of acceptable service

instances in SI by restricting various properties of the service. In our DL-based capa-

bility descriptions, such service properties map to DL roles and can be restricted with

respect to certain characteristics. The following is a list of possible characteristics

according to [5].

• Variety

A property can either be restricted to a fixed value or it can be ranging over

instances of a certain concept. This can be expressed with qualifying DL concept

constructors, such as ∀ r.{i} and ∀ r.C, respectively. For any acceptable service

instance, the value of such a property must either be a certain individual or a

member of a certain class.

• Availability

A property can either be obligatory, requiring all acceptable service instances

to have a value for it, or optional, allowing service instances without a property

value. By using existential quantification of the form ∃ r.� service instances are

required to have a value for r.

8 Discovery 229

• Multiplicity

A property can either be multi-valued, allowing service instances with several

different property values, or single-valued, requiring service instances to have at

most one value for the property. By the number restriction ≤ 1 r, a property can

be marked as single valued.

• Coverage

A property can be explicitly known to cover a range. If it is range-covering,

the service description enforces that in every possible world, for any value in

the range, there is an acceptable service instance with this property value. This

introduces variance due to intended diversity and can be expressed by including

an additional axiom of the form C 	 ∃ r−.S in D, where the concept C is the

range of the property r to be covered.4 Conversely, a non-range-covering property

induces variance due to incomplete knowledge, as in different possible worlds

different subsets of the range will be covered.

Building on such a characterisation, a next step would be to a set of intuitive

modelling primitives which combine the different kinds of property restrictions

and give them an intuitive interpretation. Domain experts could then formulate

capability descriptions on an intuitive level, abstracting description logic–specific

technicalities.

8.4.2 DL Inferences for Matching Capability Descriptions

To carry out the task of discovery, a capability description for a requested service

has to be matched against a capability descriptions for a provided service. Within

a DL-based discovery framework this matching is based on DL inferences such

as satisfiability or subsumption checks. Since the matching has to be done with

respect to the domain knowledge, the inferences to be applied operate on con-

cepts S specified in capability descriptions D as well as on the knowledge base

KB. Matching a requester’s capability description Dr against a provider’s capabil-

ity description Dp with respect to a domain knowledge base KB is formally captured

by a boolean function match(KB, Dr, Dp) that specifies the way of how to apply DL

inferences.

In the literature three different DL inferences relevant for discovery have been

proposed [24, 15, 5], based on the notions of intersection, subsumption and non-

disjointness. Subsumption is sometimes counted for two different inferences, since

it can be applied in two directions.

On an intuitive level the different behaviour of these inferences is grounded

in the different ways of how to treat variance due to intended diversity and vari-

ance due to incomplete knowledge during the matching process. Variance due to

intended diversity can be treated such that either all or just some of the intended

4 This is obtained by transforming the axiom ∀ x : C(x) → ∃ y : [r(y, x) ∧ S(y)] into

description logic by standard manipulation of first-order formulas

230 Stephan Grimm

alternatives are considered relevant, which maps to subsumption or intersection of

concepts, respectively. Variance due to incomplete knowledge can be treated such

that a match can either be established regardless of how incomplete knowledge is

resolved or such that the existence of some way to resolve incomplete knowledge is

sufficient, which maps to entailment or satisfiability inferences. The following para-

graphs explain how these ways of treating variance are combined in the different

inferences.

Inferences for Matching

Intersection: Intersection matching directly follows the intuition of checking for a

non-empty intersection of the sets of service instances associated to the requester’s

and provider’s capability descriptions, as suggested in [24].

Inference: Satisfiability of Concept Conjunction
Function: matchint(KB, Dr, Dp)
Formula: Sr � Sp is satisfiable w.r.t. KB ∪ Dr ∪ Dp

Situation:

Intuition: Is there a way to resolve unspecified issues such that Dr and Dp

specify some common service instance?

Intersection matching uses concept satisfiability as a standard DL inference sup-

ported by any DL reasoner. The function matchint(KB, Dr, Dp) adds all the axioms

in the requester’s and the provider’s capability descriptions to the domain know-

ledge and checks, with respect to this extended knowledge base, whether the concept

formed by the conjunction of Sr and Sp is satisfiable. In DL a concept is satisfi-

able with respect to a knowledge base if there exists a model of the knowledge

base in which the concept has a non-empty extension. Since the conjunction of Sr

and Sp in fact intersects the two associated sets of acceptable service instances, this

inference checks whether these sets can have at least one element in common, i.e.

whether there is some possible world I in which Sr
I ∩ Sp

I �= � holds. Thus, if

matchint(KB, Dr, Dp) = true, the capability descriptions of the requester and the

provider allow at least one service instance on which they both agree. According

to [17] this is the minimum requirement for a discovery matching procedure – i.e.,

if matchint(KB, Dr, Dp) = false then discovery must definitely filter out this provider

because there is no possible overlap in the descriptions.

Subsumption: The idea behind subsumption matching is to check whether the

requested service capability is a specialisation of the provided one or vice versa.

Therefore, it comes in two flavours, ⇒ and ⇐, as the subsumption relation is not

symmetric and can be applied in two directions.

8 Discovery 231

Inference: Entailment of Concept Subsumption
Function: matchsub⇒(KB, Dr, Dp)
Formula: KB ∪ Dr ∪ Dp |= Sr 	 Sp

Situation: (Sr)I1

(Sp)I1

. . .

(Sr)I2

(Sp)I2

(Sr)I1

(Sp)I1

(Sr)I1

(Sp)I1

. . .

(Sr)I2

(Sp)I2

(Sr)I2

(Sp)I2

Intuition: Do the service instances of Dp encompass the service instances of

Dr, regardless of how unspecified issues are resolved?

Inference: Entailment of Concept Subsumption
Function: matchsub⇐(KB, Dr, Dp)
Formula: KB ∪ Dr ∪ Dp |= Sp 	 Sr

Situation: (Sp)I1

(Sr)I1

. . .

(Sp)I2

(Sr)I2

(Sp)I1

(Sr)I1

(Sp)I1

(Sr)I1

. . .

(Sp)I2

(Sr)I2

(Sp)I2

(Sr)I2

Intuition: Do the service instances of Dr encompass the service instances of

Dp, regardless of how unspecified issues are resolved?

Also subsumption matching directly maps to a standard DL inference pro-

vided by DL reasoners, namely entailment of concept subsumption. The func-

tion matchsub(KB, Dr, Dp) adds all the axioms in the requester’s and the provider’s

capability descriptions to the domain knowledge and checks whether from this

extended knowledge base it follows that one of the concepts Sr and Sp is sub-

sumed by the other one. In DL a concept A is subsumed by a concept B if, for

any model of the knowledge base, all the individuals that belong to A also belong

to B. If matchsub⇒(KB, Dr, Dp) = true then in every possible world the requester’s

set of acceptable service instances is fully contained in the provider’s – that is

Sr
I ⊆ Sp

I . In this case the requester can be assured that each of their acceptable

service instances is also acceptable to the provider, regardless of how incomplete-

ness in capability descriptions is interpreted. In [15] this is called a plugin-match.

If matchsub⇐(KB, Dr, Dp) = true then in every possible world the provider’s set of

acceptable service instances is fully contained in the requester’s – that is Sp
I ⊆ Sr

I .

In this case the requester can be assured that each service instances acceptable to

the provider is covered by their request, regardless of how incomplete capability

descriptions are interpreted. In [15] this is called a Subsumes-match. An equivalence-

match according to [15] denotes the situation when both matchsub⇐(KB, Dr, Dp) and

matchsub⇐(KB, Dr, Dp) return a positive result, such that the two sets coincide.

Non-Disjointness: The idea behind non-disjointness matching is to combine the

weak intersection match with the strong notion of entailment [5].

232 Stephan Grimm

Inference: Entailment of Concept Non-Disjointness
Function: matchndj(KB, Dr, Dp)
Formula: KB ∪ Dr ∪ Dp ∪ {Sr � Sp 	 ⊥} is unsatisfiable

Situation:

(Sp)I1

(Sr)I1

. . .

(Sp)I2

(Sr)I2

(Sp)I1

(Sr)I1

. . .

(Sp)I2

(Sr)I2

(Sp)I2

(Sr)I2

Intuition: Do Dr and Dp specify some common service instance, regardless

of how unspecified issues are resolved?

Non-Disjointness matching does not directly match to a standard DL inference

but it can be realised with common DL reasoners via a disjointness axiom and know-

ledge base satisfiability. The function matchndj(KB, Dr, Dp) adds all the axioms in

the requester’s and the provider’s capability descriptions to the domain knowledge

together with an additional axiom that assures the concepts Sr and Sp to be dis-

joint. It then checks whether this extended knowledge base is unsatisfiable. In DL a

knowledge base is unsatisfiable if there does not exist any model for it – that is,

it contains contradictory statements. Like intersection matching, non-disjointness

matching checks for a non-empty intersection of the two sets of acceptable ser-

vice instances. However, in contrast to intersection matching, here the intersec-

tion must be non-empty regardless of how incomplete knowledge is resolved –

that is, it checks whether Sr
I ∩ Sr

I �= � is true in every possible world. Thus, if

matchndj(KB, Dr, Dp) = true then the capability descriptions of the requester and the

provider allow at least one common service instance, independent from the interpre-

tation of incompleteness in the descriptions.

Discussion of Inferences by Example

In this paragraph the three different inferences are discussed by applying them to an

example scenario taken from the logistics domain. In this scenario a requester looks

for a logistics services that supports shipping from certain cities in the UK. There are

two providers, A and B, one offering shipping from cities in the UK and another one

offering shipping from cities in the US. The example is very reduced since it is sup-

posed to serve a comprehensive analysis of the behaviour of the different inferences.

The situation is described by the following specifications of capability descriptions

and domain knowledge in DL.

KB = { UKCity(Plymouth) , Shipping 	 = 1 from }

Dr = { Sr ≡ Shipping � ∀ from.{Plymouth, Dublin} ,
∃ from−.Sr(Plymouth) ,
∃ from−.Sr(Dublin) }

8 Discovery 233

DpA = { SpA ≡ Shipping � ∀ from.UKCity ,
UKCity 	 ∃ from−.SpA }

DpB = { SpB ≡ Shipping � ∀ from.USCity ,
USCity 	 ∃ from−.SpB }

Our intuition tells us that provider A should match with the request, since one of the

alternatives for the city of origin is covered by what they offer – namely Plymouth

is a city in the UK. On the other hand, provider B should not match, since neither

alternative for the requested city of origin is covered by what they offer – neither

Plymouth nor Dublin are cities in the US. The following paragraphs discuss whether

the different inferences yield the intuitively desired matching behaviour.

Intersection: Applied to the example, matchint(KB, Dr, DpA) yields a positive result

because the concept Sr � SpA is satisfiable with respect to KB ∪ Dr ∪ DpA . Fig. 8.5a

depicts one possible world I describing the situation of the example scenario. In DL

terms I is a model of KB ∪ Dr ∪ Dp . In this possible world, there is one service

instance for shipping from Plymouth and another one for shipping from Dublin – the

two alternatives specified by the requester – both of which belong to the requester’s

set of acceptable service descriptions. Since in I Plymouth is a UK city, the first of

these two service instances is also contained in the set SpA of provider A; thus the

sets Sr
I and SpA

I have a non-empty intersection. The existence of this one possible

world I is already sufficient for provider A to match the request.

On the other hand, matchint(KB, Dr, DpB) also yields a positive result, which does

not meet our intuition formulated before. Again, Fig. 8.5a gives the answer for why

this behaviour is correct in the sense of how intersection matching is defined. In the

particular possible world I, the individual Plymouth happens to be both a UK and

a US city. Indeed, the facts in the knowledge base given by KB ∪ Dr ∪ DpA do not

prevent Plymouth from being a US city, such that the possible world depicted in Fig.

8.5a is a perfectly valid model of this extended knowledge base.

To overcome this problem, modellers should impose additional constraints to

reduce variance due to incomplete knowledge. In this particular example, an addi-

tional disjointness axiom UKCity � USCity 	 ⊥ in the domain knowledge base KB
would prevent any individual from being a UK city and a US city at the same time.

Subsumption: When applying subsumption matching to the example, neither

matchsub⇒(KB, Dr, DpA) nor matchsub⇐(KB, Dr, DpA) do yield a positive result. In the

a) b)

(Sr)
I

(UKCity)I

(City)I

Plymouth

Dublin from

from

(SpA)I

(USCity)I

(SpB)I

from

from

(Sr)
I(UKCity)I

(City)I

Plymouth

Dublin from

from

(SpA)I

(USCity)I

(SpB)I
from

a) b)

(Sr)
I

(UKCity)I

(City)I

Plymouth

Dublin from

from

(SpA)I

(USCity)I

(SpB)I

from

from

(Sr)
I

(UKCity)I

(City)I

Plymouth

Dublin from

from

(SpA)I

(USCity)I

(SpB)I

from

from

(Sr)
I(UKCity)I

(City)I

Plymouth

Dublin from

from

(SpA)I

(USCity)I

(SpB)I
from

(Sr)
I(UKCity)I

(City)I

Plymouth

Dublin from

from

(SpA)I(SpA)I

(USCity)I

(SpB)I

(USCity)I

(SpB)I
from

Fig. 8.5. Model-theoretic situations for shipping services

234 Stephan Grimm

possible world of Fig. 8.5a, neither of the two sets Sr
I and SpA

I does fully contain

the other. (The same holds for provider B.) The existence of this one possible world

is already enough to let subsumption matching fail here, since it requires set contain-

ment in every possible world.

It seems to be difficult to apply the subsumption inference in the general case,

where neither one of the two capability descriptions involved is likely to be subsumed

by the other as a whole. One possibility to overcome this problem would be to avoid

combining several alternatives for a property value in a disjunctive way, as done in

Dr by the requester here. Instead, the requester could have separated the two alter-

native cities of origin in two distinct capability descriptions in order to issue them

independently from each other and to combine the results in a post-processing step.

Non-disjointness: Applying non-disjointness matching to the example achieves the

desired discovery behaviour, since matchndj(KB, Dr, DpA) yields a positive result

whereas matchndj(KB, Dr, DpB) does not. Figure 8.5b depicts a situation that is pro-

totypical for all the models of KB ∪ Dr ∪ Dp . By specifying that the property from
is range-covering, provider A ensures that there is a service instance for shipping

from each UK city in every possible world. Thus, a service instance for shipping

from Plymouth yields a match since Plymouth is a UK city in each possible world.

Furthermore, there is at least one possible world in which Plymouth is not a US city,

since it has not been explicitly specified as such. Therefore, the capability descrip-

tion of provider B does not match with the capability description of the requester.

The existence of one such possible world where Plymouth is not a US city is already

sufficient for provider B to not match, since entailment here checks for non-empty

intersections in every possible world.

Although in this particular example non-disjointness matching works out well,

it has some deficiencies which make it problematic to use in a DL-based discovery

framework. The reason is that it requires modellers to make use of range-covering

property restrictions in order to reduce variance due to incomplete knowledge, as

introduced earlier in this section. As described in [5], however, problems arise if

several range-covering property restrictions need to be combined in one capability

description. To give an example, suppose that provider A would also include the city

of destination in the description and require it to be a UK city as well, covering the

same range as the city of origin. This would be achieved by including the two axioms

SpA 	 ∃ to.UKCity and UKCity 	 ∃ to−.SpA , yielding the description D′
pA

. In this

way, the ranges of the two properties from and to would be covered separately but

not in combination – i.e., not all pairs of values (f , t) with f , t ∈ UKCityI would be

covered by service instances in SpA
I . There exists, e.g., a valid model of KB ∪ D′

pA
in

which there is no service instance for shipping from Plymouth to Dover, even if both

these cities are explicitly required to be UK cities by appropriate A-Box assertions.

What the provider really would like to express is the coverage of the combined range

UKCity × UKCity for the combination of the two properties. To express the coverage

of a range C1 ×C2 for two properties at once, one needs the following formula stated

in first order predicate logic:

∀ x1, x2 : C1(x1) ∧ C2(x2) → ∃ y : [r1(y, x1) ∧ r2(y, x2) ∧ S(y)].

8 Discovery 235

Unfortunately, this formula cannot be translated to DL as it is no longer in the two-

variable fragment of first-order predicate logic.

8.4.3 Possible DL-Based Discovery Frameworks

Regarding Sect. 8.3, a discovery framework should relate modelling and matching

of capability descriptions. Thus, a DL-based discovery framework should specify

the way in which the modelling techniques from Sect. 8.4.1 are to be combined

with the inferences from Sect. 8.4.2. The discussion of the behaviour of the different

inferences by an example has already shown that their usefulness depends on the

way in which capability descriptions and domain knowledge are modelled.

There are several possibilities of how the matching of capability descriptions

can be realised by applying the inferences introduced before. In the following two

paragraphs, they are discussed with regard to the way of how capability descriptions

and domain ontologies are modelled.

Using a Single Inference

Applying a single inference tries to solve the problem of matching within the scope

of DL by solely using logical inferencing. Some remarks on the single usage of each

inference follow.

Intersection: As discussed in Sect. 8.4.2, intersection matching is the weakest check

that can be performed. It is very good in telling us that two capability descriptions

do not match. If matchint(KB, Dr, Dp) = false then we can be sure that Dr and Dp

are incompatible. On the other hand, it gives less information about whether two

capability descriptions match; if matchint(KB, Dr, Dp) = true then we know that the

two parties can potentially agree on a common service instance only under certain

circumstances.

A DL-based discovery framework that realises matching by intersection alone,

therefore, needs to require modellers of capability descriptions and domain know-

ledge to exclude some undesirable cases of matching by formulating additional con-

straints that reduce variance due to incomplete knowledge. Such constraints can be

disjointness axioms or maximum cardinality restrictions, as exemplified in the dis-

cussion of the intersection inference. Since intersection matching is based on satisfia-

bility, the existence of one possible world for the intersection is sufficient for yielding

a positive result. Therefore, modellers have to make sure that no such possible world

exists accidentally. One way of introducing a rather restricting way of modelling is

to replace subsumption by disjoint partitioning as, e.g., suggested in [19]. Applied

to a taxonomy of cities as in the example, this technique makes sure that any two

sibling city concepts in the hierarchy are disjoint by default.

A remaining problem, however, is that intersection matching is vulnerable to

including externally specified domain knowledge in the matching process. For exam-

ple, if some provider introduces a concept that is neither known to the requester nor

to the commonly used domain ontology, then this concept is likely to produce an

236 Stephan Grimm

undesired positive matching result. Neither the requester nor the commonly used

domain ontology have the chance to put any constraints on this concept, e.g. by

making it disjoint from other concepts. A discovery framework using intersection

matching together with disjoint partitioning of taxonomies must therefore specify a

way of how to handle external domain ontologies or it must prohibit their inclusion.

Subsumption: The natural direction in which to apply subsumption seems to be

matchsub⇒(KB, Dr, Dp), requiring that the requested capability is more specific than

the provided capability. Naturally, the provider offers many options of which only

some have to be of interest for the requester. Due to the strong notion of entailment,

a discovery framework using subsumption would not have the problem of yielding

false positive matches based on externally specified domain knowledge, as inter-

section matching has. However, it is arguable whether subsumption can provide a

natural way of matching when capability descriptions represent sets of acceptable

service instances. The discussion of the behaviour of the subsumption inferences has

shown that there are cases in which desired positive matches are not recognised by

the matching procedure. In frameworks where subsumption has been used, it has

been applied to parts of a service description only [13, 15], as e.g. to the types of

input and output parameters. Thus, it seems to better fit in frameworks where the

matching problem is tackled by a combination of logical inferences with algorithmic

processing outside logical reasoning, as discussed below.

Non-disjointness: As seen in the discussion of the inferences, non-disjointness

matching is also based on the strong notion of entailment. Therefore, it requires

modellers to make sure that the service characteristics they encode in their capa-

bility descriptions hold in every possible world. One way to do this is by making

use of range-covering property restrictions, as described in Sect. 8.4.1. However, a

DL-based discovery framework based on non-disjointness matching in combination

with a requirement for range-covering property restrictions in capability descriptions

would lack expressivity due to the limitations of DL. A naive way of overcoming

this problem would be to replace axioms for range-coverage by appropriate A-Box

assertions, assuring that all individuals within the range are covered one by one.

Although these A-Box assertions could possibly be generated automatically out of

range-covering property restrictions and the domain knowledge, this would lead to

exponential blow-up in the number of A-Box assertions. Therefore, it would make

sense to extend such discovery frameworks by moving towards a more expressive

knowledge representation formalism.

Using a Combination of Inferences

A DL-based discovery framework can also combine the different inferences instead

of using just a single one. In this way, the problem of matching is no longer tackled

within logical reasoning alone but involves some algorithmic processing, yielding a

more complex matching process. Variants of this approach apply DL inferences to

match (parts of) capability descriptions and combine the intermediary results from a

DL reasoner by means of algorithmically formulated steps.

8 Discovery 237

In [15, 10], there has been proposed a degree of matching by defining an order on

the different inferences. The following five degrees of matching have been identified:

1. fail – the intersection between two descriptions is empty

2. intersect – the intersection between two descriptions is non-empty

3. subsume – subsumption between two descriptions holds in the ⇐ direction

4. plugin – i.e. subsumption between two descriptions holds in the ⇒ direction

5. exact – i.e. subsumption between two descriptions holds in both directions (⇔)

Obviously, if two descriptions are equivalent, i.e. their degree of matching is

exact, then they also subsume each other pairwise . Furthermore, if one description

subsumes another one, i.e. their degree of matching is either plugin or subsume, then

their intersection cannot be empty. Therefore, the order for the degrees of matching

is fail ≺ intersect � subsume−plugin � exact with exact being the most desirable

match. There have been proposed matching algorithms that determine the degree of

match for parts of service descriptions [15] as well as for the whole description [10].

8.4.4 DL-Based Discovery Applied to a Logistics Scenario

This section describes the application of a DL-based discovery framework on a more

elaborate example taken from the logistics domain. In opposite to the mini example

in Sect. 8.4.2, here the focus is set on how the different parts of the discovery frame-

work interact rather than on the technicalities of the inferences used for matchmak-

ing. The framework uses DL-based intersection matching together with a modelling

strategy that puts sufficient constraints on domain-level knowledge, including dis-

jointness between siblings in a taxonomy. The example is taken from an industrial

scenario described in [18], corresponding to Scenario C.

Example Setting

In this scenario, a requester requires a logistics service to ship a cargo freight between

certain locations. There are several providers of logistics services who are being

matched against the request by the discovery system. Two of them are potential can-

didates to agree on a contract for the shipping order. After refining the request such

that no aircrafts are allowed to convey the freight, one of these potential providers is

dropped out due to a company-internal policy for aircraft transportation between cer-

tain regions. This conclusion, drawn by the discovery system, involves some complex

reasoning in which several independent sources of knowledge need to be combined.

Domain knowledge – The domain knowledge used in this example is captured in the

logistics ontology Olog. It refers itself to two more general domain ontologies, one for

geographical knowledge Ogeo and one for technical knowledge about vehicles Otec.

For reasoning, all the referred domain ontologies must be included in the knowledge

base, i.e. KB = Olog ∪ Ogeo ∪ Otec. The following set of DL axioms shows an excerpt

of the geographic knowledge about cities in Ogeo.

238 Stephan Grimm

Ogeo ⊃{ City 	 � , EUCity 	 City , ContinentalEUCity 	 EUCity ,
UKCity 	 EUCity , ContinentalEUCity � UKCity 	 ⊥ ,
GermanCity 	 ContinentalEUCity , EnglishCity 	 UKCity ,
EnglishCity(Plymouth) , GermanCity(Hamburg) }

The top-level concept City is split in EUCity and others are not listed here. EUCity
is partitioned in ContinentalEUCity and UKCity, since geographically the UK forms

an island which is not connected to the European continent. For each of these two

subregions, a representative country is chosen to further specialise it, i.e. EnglishCity
and GermanCity. For both of these two countries, there is one exemplary city mod-

elled as an individual, i.e. Plymouth and Hamburg. This forms the geographic know-

ledge which the logistics ontology Olog will refer to. The other external source of

knowledge for Olog is given by the following excerpt of the technical ontology about

vehicles.

Otec ⊃ { Vehicle 	 � , OverlandVehicle 	 Vehicle , OverseaVehicle 	 Vehicle ,
GroundVehicle 	 OverlandVehicle , Aircraft 	 OverlandVehicle ,
OverseaVehicle � GroundVehicle 	 ⊥ , Ship 	 OverseaVehicle ,
Ship � Aircraft 	 ⊥ OverseaVehicle ≡ Ship � Aircraft }

The top-level concept Vehicle is split in OverseaVehicle; and OverlandVehicle; how-

ever, these two are not disjoint. In fact, an Aircraft can be used to transcend both

solid ground and water, whereas a Ship can only be used on waterway. Notice that

Otec |= Aircraft 	 OverseaVehicle.

The logistics domain ontology Olog uses the concepts defined in Ogeo and Otec to

form new knowledge based on them and also introduces new concepts and roles. The

following axioms describe containers to be used as items for shipping.

Olog ⊃ { Container 	 � , CargoContainer � TankContainer 	 ⊥ ,
CargoContainer 	 Container , TankContainer 	 Container }

There are two different kinds of containers, one for cargo and one for liquid goods.

The following fragment connects the already defined concepts in Ogeo, Otec and Olog

to a central concept for a shipping service by introducing roles with appropriate

domain and range restrictions.

Olog ⊃ { � 	 ∀ location.City , ∃ location.� 	 Shipping ,
from 	 location , to 	 location ,
� 	 ∀ vehicle.Vehicle , ∃ vehicle.� 	 Shipping ,
� 	 ∀ item.Container , ∃ item.� 	 Shipping }

The top-level concept Shipping acts as the domain for all the roles introduced. The

location role splits into the subroles from and to. By setting City as the range of

the location role and Vehicle as the range of the vehicle role, the external ontologies

Ogeo and Otec are referred to within Olog. Setting Container as the range of the item
role refers to an internal concept, introduced within Olog itself. As the most impor-

tant concept, Olog defines Shipping, which is further characterised by the following

axioms.

8 Discovery 239

Olog ⊃{ Shipping 	 = 1 from � = 1 to � = 2 location ,
Shipping 	 ∀ location.UKCity � ∀ location.¬UKCity �
(∃ location.UKCity � ∃ location.¬UKCity � ∃ vehicle.OverseaVehicle) }

The Shipping concept represents the actual Service to be carried out, describing its

capability. The locations of origin and destination are required to be unique and there

cannot be any other specialised locations than these two. The second of the axioms

shown above ensures that an OverseaVehicle is used whenever shipping is conducted

between the UK and locations outside the UK as, e.g., continental Europe. It captures

three cases in a disjunctive clause: either all locations are UK cities or none of the

locations is a UK city or one of them is and the other is not, in which case the vehicle
role is restricted appropriately.

Requested service: The capability description describing the service requirement

issued by the requester is specified by the following axiom.5

Dr = { Sr ≡ Shipping � = 1 item �
∃ from.{Plymouth} � ∃ to.{Hamburg} �
∃ item.(CargoContainer � ∀ weight. =200) }

The required service is shipping cargo from Plymouth to Hamburg. There is just one

item to be shipped and this freight weighs 200 kg. For refinement of this request, the

use of aircraft as vehicle is prohibited by adding the following axiom, yielding the

description D′
r.

D′
r = Dr ∪ { Sr 	 ∀ vehicle.¬Aircraft }

Provided services: There are four service providers involved in this scenario, named

A, B, C and D. The capability descriptions of the services they offer are given by the

following sets of axioms.

DpA = { SpA ≡ Shipping � ∀ location.EUCity �
∀ item.(TankContainer � ∀ weight. ≤1000) }

DpB = { SpB ≡ Shipping � ∀ location.EUCity ,
SpB 	 ∀ location.UKCity � ∀ location.ContinentalEUCity �
(∃ location.UKCity � ∃ location.ContinentalEUCity �
∀ vehicle.¬Ship) }

DpC = { SpC ≡ Shipping � ∀ location.City �
∀ item.CargoContainer � ∀ vehicle.¬Aircraft }

5 In these descriptions, the discovery framework exploits the concrete domain approach (see

e.g. [11]) to include reasoning with numbers. Expressions like =200 and ≤1000 are concrete

domain predicates which express, in this case, numbers equal to 200 and numbers less or

equal to 1000, respectively

240 Stephan Grimm

DpD = { SpD ≡ Shipping � ∀ location.UKCity �
∃ item.(∀ weight. ≤100) � = 1 item }

Provider A ships between any EU cities but only tank containers with a maximum

weight of 1000 kg. Provider B also ships between any EU cities without a restric-

tion on the item to be conveyed. However, for some reasons provider B follows a

company-internal policy according to which shipping between the UK and conti-

nental Europe is not to be carried out by ship. Provider C ships cargo containers

worldwide but does not offer transportation by aircraft. Provider D ships within the

UK only and conveys anything in small single units weighing at most 100 kg.

Discovery Results

In this example scenario, the discovery system retrieves Dr as a request and con-

sults a repository containing the capability descriptions of the services offered by

the providers. For each of these descriptions, the intersection matching function is

used to check whether this particular offer is relevant for the request. The result of

discovery here is the set

{X ∈ {A, B, C, D} | matchint(KB, Dr, DpX) = true}.

In the first step of the scenario, this is the set {B, C}, meaning that the providers B

and C match the request formulated in Dr. After refining the request and replacing

Dr by D′
r in a second step, the result is reduced to the set {C}, leaving provider C as

the only one matching the request.

Provider A is ruled out in both cases because they do not support cargo contain-

ers. The request description requires any instance of the concept Sr to point to an

instance of CargoContainer via the item role. On the other hand, via the item role

any instance of the concept SpA can only point to instances of TankContainer. Since

the two concepts CargoContainer and TankContainer are declared to be disjoint in

Olog, the extension of Sr � SpA must be empty in every model of KB ∪ Dr ∪ DpA .

Provider D is ruled out for two reasons: they neither support locations outside

the UK nor items weighing more than 100 kg. Notice that the axiom Container 	
= 1 weight in Olog prohibits models in which there is no weight specified for a

container, such that the two universal restrictions in Dr and DpD cannot be satisfied

trivially.

Provider C matches in both cases. The concept Sr �SpC allows models in which a

cargo container is shipped between the requested cities and in which vehicle points to

anything but an aircraft. In consequence, this vehicle must be a ship in these models

because from the characterisation of Shipping in Olog, together with the axioms in

Otec and Ogeo, it can be derived that transportation between the UK and continental

Europe can be conducted only via ship or aircraft.

Provider B matches with the original request Dr but not with the refined request

D′
r . Its description DpB is split in the definition of the service concept SpB and an

additional policy that further constrains this concept. The restriction of locations to

EU cities is compatible with the restrictions in Dr, since both Plymouth and Hamburg

8 Discovery 241

are cities in the EU. The policy, on the other hand, prohibits the vehicle to be a ship

in cases where one of the two location roles points to a UK city and the other one to a

non-UK city, as required by Dr. Figure 8.6 depicts the situations of the two matching

cases involving (a) Dr and (b) D′
r. Part (a) of Fig. 8.6 shows a model of KB∪Dr ∪DpB

in which the intersection of Sr
I and SpB

I is non-empty. The concept OverseaVehicle
is modelled such that it is exhaustively partitioned by the disjoint concepts Aircraft
and Ship. The existence of this model is sufficient for matchint(KB, Dr, DpB) to be

true. On the other hand, the model shown in part (b) of Fig. 8.6 is characteristical

for all the models of KB ∪ D′
r ∪ DpB . In all of them, instances of Sr point to oversea-

vehicles that are not-aircrafts, whereas instances of SpB point to oversea-vehicles that

are not-ships. Hence, there is no model in which the extensions Sr
I and SpB

I have a

common instance.

Characteristics of the DL-Based Logistics Example

There are some aspects worth mentioning about the presented logistics-centred dis-

covery example, characterising the applied discovery framework in a more general

view.

Due to the choice of the intersection matching inference, together with the com-

pact form of abstract capability descriptions with open-world semantics, discov-

ery here realises a pre-filtering of relevant services, as discussed in Sect. 8.1. The

requester and provider agents need to negotiate about the logistics-specific parame-

ters of shipping contracts, which probably also requires sophisticated AI techniques,

either similar or complementary to the automated reasoning that is performed during

discovery.

Furthermore, the peculiarities of the chosen intersection matching inference

shifts some of the effort necessary to separate out the relevant services to the mod-

eller of capability descriptions. In the example, sibling concepts in taxonomies, such

as various concepts for cities, explicitly need to be declared disjoint in order to pre-

vent false positive matches, as discussed in Sect. 8.4.2.

On the other hand, the example shows that there can be variety in independently

modelled sources of knowledge even within a relatively small set of ontologies build

up according to a predetermined way of modelling. In the example, most of the par-

��������	�
����I
�	�
����I

����
I

��
���I �����I

vehicle����������I

��������	�
��� � ��
���I

�� �� ��������	�
����I
�	�
����I

����
I

��
���I
�����I

vehicle
����������I

��������	�
���
� ��
���I

��������	�
���
� ����������I

vehicle

Fig. 8.6. Model-theoretic situations for matching DpB with a) Dr and b) D′
r

242 Stephan Grimm

ties involved formulate their ontologies or capability descriptions without knowledge

of each other. The geographic ontology, as well as the ontology about vehicles, are

independent domain ontologies that can be reused in many scenarios. The logistics

domain ontology depends on these two but it can itself be reused in related scenarios.

Requesters and providers of services formulate capability descriptions with respect

to the logistics domain ontology but independently from each other. Moreover, a sin-

gle party, like provider B in the example, can combine several independently formu-

lated pieces of knowledge to form their capability descriptions: the company-internal

policy is being combined with any capability description issued by provider B. The

benefit of independently formulated ontological descriptions is that different know-

ledge engineers can focus on the conceptualisation of the domain they are the experts

for. Synergy arises from putting together these pieces of knowledge, when the sys-

tem carries out complex reasoning which no single knowledge engineer had in mind

at the time of modelling.

8.5 Outlook

Adding semantics to descriptions of services offered in the web allows for high pre-

cision finding of relevant services by applying logics-based matching techniques.

However, matching based on logical inferencing is computationally costly and

demands high-quality semantic service descriptions. To realise a practical discovery

framework for large-scale real-world scenarios, the different techniques for matching

and retrieval need to be combined appropriately with regard to architectural issues.

Discovery could be approached in a two (or multi) step way, starting with conven-

tional keyword-based filtering or pre-selection of thematically scoped service repos-

itories based on taxonomies for service classification; then, logics-based matching

techniques are applied on a reduced set of remaining capability descriptions that

focus on a particular fine-grained domain of interest.

Concerning the quality of service annotation, practical discovery frameworks

need to specify precise guidelines of how to formulate capability descriptions. More-

over, they should provide the user with a more intuitive way of modelling, introduc-

ing layers of abstraction in between the technical details of logical formalisms and a

more service-based view.

The logics-based description and matching of service capabilities is still an issue

of current research activities. This involves the selection of a knowledge repre-

sentation formalism together with appropriate inferencing schemes, as well as the

choice of which kind of information to include in descriptions. Both the open-

world and closed-world paradigms are being investigated for service discovery in

approaches using description logic and rule-based inferencing, respectively. For

capability descriptions of services, various annotation frameworks include informa-

tion about input and output parameters, state-transition-based notions, explicit taxo-

nomic classification or high-level abstract properties of a service.

8 Discovery 243

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, January 2003.

2. S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer,

D. Martin, S. McIlraith, D. McGuinness, J. Su, and S. Tabet. Semantic Web Services

Framework (SWSF). W3C Member Submission. Available at http://www.w3.org/
Submission/2005/07/, May 2005.

3. B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani. On Automating Web

Service Discovery. VLDB Journal, 14(1), 2005.
4. J. Gonzales-Castillo, D. Trastour, and C. Bartolini. Description Logics for Matchmaking

of Services. In Proceedings of the KI-2001 Workshop on Applications of Description
Logics, volume 44. CEUR Workshop Proceedings (http://ceur-ws.org), 2001.

5. S. Grimm, B. Motik, and C. Preist. Variance in e-Business Service Discovery. In Pro-
ceedings 1st International Workshop SWS’2004 at ISWC-2004, November 2004.

6. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services.

In Proceedings of the 2nd European Semantic Web Conference (ESWC), 2005.
7. U. Keller, R. Lara, and A. Polleres. WSMO D5.1 discovery. http://www.wsmo.

org/TR/d5/d5.1/v0.1/, 2004.
8. U. Keller, H. Lausen, and M. Stollberg. On the Semantics of Functional Descriptions of

Web Services. In Proceedings of the 3rd European Semantic Web Conference (ESWC),
2006.

9. M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A Logical

Framework for Web Service Discovery. In Proceedings of the 1st International Workshop
SWS’2004 at ISWC-2004, November 2004.

10. L. Li and I. Horrocks. A Software Framework For Matchmaking Based on Semantic

Web Technology. In Proceedings of the 12th International World Wide Web Conference
(WWW-2003), pages 331–339. ACM, 2003.

11. C. Lutz. Description Logics with Concrete Domains—A Survey. In Advances in Modal
Logics, volume 4. King’s College Publications, 2003.

12. D.L. Martin, M. Paolucci, S.A. McIlraith, M.H. Burstein, D.V. McDermott,

D.L. McGuinness, B. Parsia, T.R. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K.P.

Sycara. Bringing Semantics to Web Services: The OWL-S Approach. In J. Cardoso and

A.P. Sheth, editors, Semantic Web Services and Web Process Composition, First Inter-
national Workshop, SWSWPC 2004, San Diego, CA, USA, July 2004, Revised Selected
Papers, volume 3387 of LNCS, pages 26–42. Springer-Verlag, 2004.

13. T.D. Noia, E.D. Sciascio, F.M. Donini, and M. Mogiello. A System for Principled Match-

making in an Electronic Marketplace. International Journal of Electronic Commerce,

2004.
14. S. Oundhakar, K. Verma, K. Sivashanmugam, A. Sheth, and J. Miller. Discovery of Web

Services in a Multi-Ontology and Federated Registry Environment. International Journal
of Web Services Research, 1(3), 2005.

15. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Service

Capabilities. In Proceedings of the 1st International Semantic Web Conference (ISWC),
pages 333–347, 2002.

16. P.F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language; Seman-

tics and Abstract Syntax. http://www.w3.org/TR/owl-semantics/, Novem-

ber 2002.
17. C. Preist. A Conceptual Architecture for Semantic Web Services. Proceedings of the 3rd

International Semantic Web Conference (ISWC), 2004.

244 Stephan Grimm

18. C. Preist, J. Esplugas-Cuadrado, S. Battle, S. Grimm, and S. Williams. Automated B2B

Integration of a Logistics Supply Chain Using Semantic Web Services Technology. In

Proceedings of the 4th International Semantic Web Conference (ISWC), 2005.

19. A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens, H. Wang,

and C. Wroe. OWL Pizzas: Common errors & common patterns from practical experience

of teaching OWL-DL. In Proceedings of the Eleventh International Conference on World
Wide Web, pages 89–98, 2002.

20. M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. A Scalable and Ontology-Based P2P

Infrastructure for Semantic Web Services. In P2P-02: Proceedings of the Second Interna-
tional Conference on Peer-to-Peer Computing, page 104, Washington, DC, USA, 2002.

IEEE Computer Society.

21. S. Grimm, B.Motik, and C.Preist. Matching Semantic Service Descriptions with Local

Closed-World Reasoning. In Proceedings of the 3rd European Semantic Web Conference
(ESWC), 2006.

22. I. Toma, B. Sapkota, J. Scicluna, J.M. Gomez, D. Roman, and D. Fensel. A P2P Dis-

covery mechanism for Web Service Execution Environment. Proceedings of the 2nd
International WSMO Implementation Workshop (WIW-2005), June 2005.

23. D. Trastour, C. Bartolini, and J. Gonzales-Castillo. A Semantic Web approach to ser-

vice description for Matchmaking of Services. In Proceedings of the First Semantic Web
Working Symposium. http://www.semanticweb.org/SWWS/program/, 2001.

24. D. Trastour, C. Bartolini, and C. Preist. Semantic Web Support for the Business-to-

Business e-Commerce Lifecycle. In Proceedings of the 11th International Conference
on World Wide Web, pages 89–98, 2002.

25. K. Verma, K.Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller.

METEOR-S WSDI: A scalable P2P infrastructure of registries for semantic publication

and discovery of web services. Information Technology and Management, 6(1):17–39,

2005.

26. L. Hung Vu, M. Hauswirth, and K. Aberer. Towards P2P-based Semantic Web Service

Discovery with QoS Support. Workshop on Business Processes and Services (BPS), in
conjunction with the Third International Conference on Business Process Management,
2005.

9

Composition
Combining Web Service Functionality in Composite
Orchestrations

Laurent Henocque and Mathias Kleiner

LSIS laboratory, University of Saint-Jerome, France

ILOG S.A, France

laurent.henocque@gmail.com,mathias.kleiner@lsis.org

Summary. This chapter deals about Semantically annotated Web Service (SWS) composi-

tion, one of the main challenges for the Semantic Web. We define the principles of SWS

composition as well as the difficulties it raises. We follow with an overview of the differ-

ent approaches envisioned in the research community. We also present an efficient solving

method for this problem based on configuration. This technic uses a constrained object model

as knowledge representation, which we precisely define in this chapter.

9.1 Definition of SWS Composition

Composition is defined in Chap.6 as the “act of combining and coordinating a set

of Semantic Web Services (SWS)”. Under such a definition, composition naturally

refers to the process involved in computing such a combination. On the other hand,

the product of “service composition” is called an “orchestration”. This chapter hence

considers issues that arise when addressing the task of automatically or manually

designing an orchestration from a set of available Web Services.

We place ourselves in the scope of automatic or computer-aided, goal-oriented

SWS composition, with immediate applications to Business Process Modelling or

the Semantic Web. The basic assumptions for composing SWS is that there exists a

form of directory listing of SWS that document their choreography using a workflow

ontology, as well as a directory listing of transformations that are usable to mediate

between workflows having incompatible message-type requirements. How and when

a proper list of elementary workflows and transformations can be produced is beyond

the scope of this chapter, and is treated as if it was available to the program from

the start. In other words, we do not consider here the functionalities involved in

helping an end-user to produce, document and/or publish the related elements. The

corresponding issues about the description of SWS are presented in Chap. 7.

246 Laurent Henocque and Mathias Kleiner

9.1.1 Goal-Oriented Semantic Web Service Composition

We assume the composition process to be goal oriented. On low-level grounds, this

can be understood as follows: a user describes his/her overall goal by specifying

the list of message types he/she can possibly input to the system (e.g. credit card

number, expiry date, budget, yes/no answer, etc.) involving restrictions on their types

and attributes, and the precise (set of) message(s) that must be output by the system

(e.g. a plane ticket reservation electronic confirmation, his/her “objective”), again

involving restrictions on their types and attributes. Based upon these elements, an

automatic or assisted composer will attempt to produce an orchestration, which at

least produces all expected outputs, and at most expects all possible input messages.

According to this viewpoint, the goal is essentially formulated as a list of expected

outputs.

This option cannot be sustained in the general case, because there are too many

candidate Web Services that can expect or produce target messages, specifically if

mediation comes into play. Mediation indeed broadens the scope of search for can-

didate Web Services to a composition. The complexity of producing valid composi-

tions from such requirements, in a real life, scalable situation, is simply too high.

There also exists at least one other reason why composition cannot be achieved

simply from the statement of required outputs/possible inputs. Although a composer

may perfectly match input/output messages based on their types and restrictions, it

cannot be expected that such a process remains possible in the presence on seman-

tic ambiguities. Just consider a simple example. Imagine the process of generating

a composite virtual travel agency Web Service. The target service combines flight

reservation WS, hotel reservation WS for all travel locations, and activity WS for

booking activities in all locations. An automated composer cannot discover by itself

that the city for the first hotel night is the same as the arrival city for the flight. Indeed,

all the Web Services involved here have cities as essential input or output items.

We therefore claim that the user of a composition tool must be able to formulate a

composition request by manipulating, organising and placing constraints on abstrac-

tions of Web Services and their I/O messages. This is required to remove semantic

ambiguities on the one hand, and obviously results in reducing the complexity. This

claim is supported by other authors as in [38]. Under such settings, we have the

following definitions:

• An atomic goal is an abstraction of all the Web Services that expect/produce

messages that belong to exactly the same ontologies. The corresponding Web

Services may differ in the restrictions they impose to I/O data, and also in the

non-functional properties. They may also significantly differ in their choreogra-

phies (for instance, an online payment Web Service may expect the credit card

number before the purchase pricing details, or the opposite).

• A role is the abstraction of the messages exchanged by goals (the counterpart of

inputs/outputs of the matching SWSs). Roles have names, and may be bound to

ontologies.

• A composition goal is a set of atomic goals together with the inter-connection

and constraints that apply to roles and goal properties.

9 Composition 247

It may first be noticed that atomic goals, bound by further constraints in a composi-

tion goal, can be readily exploited to query Semantic Web Service discovery engines.

We will give further details on how to express composition goals in Sect. 9.6.

9.1.2 A Glance at the Composition Process

Based upon what precedes, composing can be best viewed as a two-stage operation.

In the first step, the user designs a composition goal by selecting appropriate

atomic goals from a goal repository. It is possible that an automatic composer auto-

matically completes a partially valid composition goal to help the user build his/her

request. The composition goal can be exploited to generate requests to the discov-

ery engine. The main input received from this discovery is the set of choreographies

bound to the target Web Services.

In the second step, the composer creates an orchestration of SWSs by replacing

atomic goals with matching SWSs, taking into account their messages exchange pat-

terns (choreographies). Among other possibilities covered later in this chapter in the

state of the art section, this can be achieved using configuration techniques, as was

shown feasible in [1] and [2]. The binding to actual SWS and messages may then

either be performed by the composition program or be left open for runtime (lazy)

evaluation. Indeed, all the SWS that match a given goal and have the same choreog-

raphy can be freely interchanged in a valid orchestration. This optionally allows for

runtime selection based upon non-functional properties, for instance.

9.1.3 Context for Goal-Oriented SWS Composition

SWS Descriptions

We will consider Semantic Web Services to be described on three levels:

1. The capability states the mandatory inputs, outputs, preconditions and effects

of the service (all taken from a specific given ontology), as well as its non-

functional properties.

2. The choreography describes how the service can be consumed from a user point

of view (messages exchange patterns).

3. The optional orchestration describes the workflow of the service, including inter-

nal computations and calls to external SWSs (especially in composed SWSs).

Orchestration is generally hidden to the user.

The focus of such descriptions is on interfaces, meaning that the service functionality

does not need to be mentioned further from the published orchestration. This three

fold viewpoint over SWS interfaces is commonly accepted in the Semantic Web,

although there exists other ways to describe Semantic Web Services (most often, only

names differ but the basic elements are the same). We will thus use this representation

in the following sections.

In the rest of the chapter, we have chosen to illustrate various notions using the

rather complex “producer/shipper” example from [38]. This example assumes the

248 Laurent Henocque and Mathias Kleiner

Fig. 9.1. The shipper service capability

existence of two elementary SWS, one being responsible for giving a product quote

from a product description, and the other having the capability to produce a shipping

quote (and organise the shipping of course) if possible. The usefulness of this exam-

ple stems from the fact that the participant’s choreographies are tightly interleaved

in a solution. This results from the fact that neither the producer WS nor the shipper

WS are “one shot” Web Services. Instead, in both cases, the WS remains “alive”

during the whole execution. Using these elements, we illustrate SWS description in

Fig. 9.1 and 9.2. The choreography is expressed using a subset of the UML2 activity

diagrams presented in [2], and we will use the same language for orchestrations.

Atomic Goals

A user looking for a particular SWS will express requirements allowing to discover a

target candidate. Such requirements are called atomic goals. A goal is more general

than a SWS, in that it may match a number of registered SWSs and can hence be seen

as a SWS abstraction. Defining a goal is like designing a query that can be used to

Shipper Request

Offer Answer

Shipper Offer

Confirmation Details

Handle Request

Handle Reply

Confirmation

[Negative Answer] [Positive Answer]

Offer Answer

Fig. 9.2. The shipper choreography

9 Composition 249

retrieve concrete SWSs from a repository (a process known as discovery). Therefore,

an atomic goal is defined in the same way as a SWS capability, specifying what we

want to realise and what we will provide. In what follows, we call input and output
roles the abstraction of input and output messages mentioned at the goal level. Roles

do not need to pertain to an ontology,1 though they can be constrained to.

Figure 9.3 illustrates an atomic goal where we specify a destination city the

matching SWS has to provide.

Choice of a Workflow Language

We consider SWS choreographies and orchestrations defined using a variant of

extended workflow nets, as are UML2 activity diagrams [20] or the YAWL language

[51]. In order to adapt to market trends, the choice made focused on a relevant subset

of UML2 activity diagrams as a language for describing choreographies and orches-

trations. The underlying semantic model is close to that of coloured2 Petri nets, under

specific “traverse-to-completion” semantics.3 UML diagrams generally receive poor

acceptance from the scientific community, because of patent ambiguities,at both the

syntactic and semantic levels. By isolating a useful subset of UML2AD, we have

the possibility to wipe out all ambiguities. At the syntactic level, this is enforcing

appropriate restrictions to the graphic language wherever needed, and documenting

them by constraints. In order for the model constraints to be unquestionable, we are

using the Z mathematical (relational) language instead of the - again controversial –

OCL (UML’s Object Constraint Language). At the semantic level, the translation

from activity diagrams to abstract state machines [7] results in applying unambigu-

ous operational semantics to the chosen subset.

We do not need, however, to consider here operational semantics for the selected

workflow language, since we solely need to syntactically deal with workflows (i.e.

reason about how to combine, extend, interleave them). We hence focus on the prop-

erties of the corresponding metamodel. Indeed, we treat workflow composition as the

Fig. 9.3. The shipping atomic goal

1 Often, role names suffice to define the appropriate bindings
2 In a CPN (coloured Petri net), messages (tokens) have types
3 Essentially, these semantics as introduced in the UML superstructure aim at preventing

flow starvation in case of token competition

250 Laurent Henocque and Mathias Kleiner

process of connecting input and output message flows to pre-existing or added work-

flow items, like fork, join nodes or auxiliary user input handling actions. Hence, the

only elements retained for composition are the structural properties of workflows,

messages and transformations. We do not need to emulate workflows in any case,

but can formulate some constraints that to some extent guarantee the viability of the

result (some constraints guarantee that a composite workflow will not be subject to

starvation).

A Test Case: The Producer–Shipper Problem

The previously described general context for SWS composition is envisioned in sev-

eral research papers [12, 38]. As an archetypal problem, the “producer–shipper” use

case which originates from [38] was selected to introduce the required notions. The

problem there is to compose a valid workflow from a producer workflow and a ship-

per workflow. One difficulty is that the execution of both workflows must be inter-

leaved. Briefly stated, the producer outputs results that must be fed into the shipper

so that both their “offers” can be aggregated and presented to the user. This inter-

connection remains unknown to the external user. Experimental evidence on the pos-

sibility to address this problem using constraint-based configuration was published

in [2]. The producer–shipper example is interesting in many points:

• Both the shipper and the producer make an offer corresponding to the user

request, which are aggregated to make a global offer that may later be accepted

or rejected by the user. Note that the shipper needs input data from the producer

to build its offer.

• Both the producer and the shipper are specified using full-fledged partial4 work-

flows, and do not simply amount to simple isolated activities.

• The two workflows cannot be executed one after the other, but they must be inter-

leaved, as each one must wait for the other offer to obtain an OfferAcceptance

and therefore complete the transaction.

• The ShipperWorkflow needs a data as input (here a “size”), which can only be

obtained by extraction (i.e transformation) on the ProducerOffer, a very frequent

situation.

• Finally, the goal is decomposed into two sub-goals: the producer and the shipper

order confirmations.

The user of an SWS composition system expects in return for his/her input a com-

plete “composite” SWS, that interleaves the execution of several of the elementary

argument SWS choreographies, while ensuring that all possible integrity constraints

remain valid. Among such constraints are those that stem from the metamodel itself:

for instance, some constraints state that two or more choreographies should not be

4 Here, “partial” means that the diagram is not complete in the UML sense, since it lacks

actual connections to the external participants. Normally, a diagram where input/output

pins are not connected is not valid

9 Composition 251

inter-blocking, all waiting for some other to send a message for instance. Other con-

straints are more problem specific, like those stating for instance that an item being

shipped is indeed the one that was produced.

9.1.4 Brief Introduction to Configuration

A configuration task consists in building (a simulation of) a complex product from

components picked from a catalog of types. Neither the number nor the actual

types of the required components are known beforehand. Components are subject to

relations, and their types are subject to inheritance relationships. Constraints (also

called well-formedness rules) generically define all the valid products. A configura-

tor expects as input a fragment of a target object structure, and expands it to a solution

of the configuration problem, if any, adding necessary elements during search. This

problem is semi-decidable in the general case. The reader can refer to [30] for an

extensive introduction to configuration.

A configuration program is well described using a constrained object model in

the form of a standard class diagram (as illustrated by the simplified UML2AD meta-

model fragment in Fig. 9.4), together with well-formedness rules or constraints.

Technically, solving the associated enumeration problem can be made using vari-

ous formalisms or technical approaches: extensions of the CSP paradigm [34, 16],

knowledge-based approaches [48], terminological logics [35], logic programming

(using forward or backward chaining, and non-standard semantics) [46], object-

oriented approaches [30, 48]. Our experiments were conducted using the object-

oriented configurator Ilog JConfigurator [30].

Currently, there exists no universally accepted language for specifying con-

strained object models. The choice of UML/OCL is advocated [14], and is realistic in

many situations, but has some drawbacks due to a number of weaknesses. As shown

in [2, 23], the Z relational language has enough expressive power and extensibility to

properly address the task of specifying a constrained object model, without requiring

to use an ad hoc object-oriented extension of Z.

Chapter 3 introduces logical formalisms used for describing ontologies in the

scope of the Semantic Web. A natural question is why do we need another language

here (i.e. UML + Z) and cannot use the existing. Ontology languages usually bear

strong relationships with description logics, and thus belong to the broad category

of “predicate calculus”. Ontology languages of practical use (as OWL or WSML)

are generally restricted to match the properties of the associated theorem provers. In

contrast to this, the choice of UML + Z addresses several issues:

• preserve the possibility of using widely accepted graphical notations

• do not commit to a logical style (e.g. description logics in the case of OWL)

• take advantage of the expressiveness of Z as a set theoretic-based relational lan-

guage for specification, not being bound by the limitations of some or another

predicate calculus variant.

A configurator can be used to find valid instances of a constrained object model.

An object-oriented configurator like Ilog JConfigurator represents its catalog of

252 Laurent Henocque and Mathias Kleiner

types using an object model involving classes, attributes and relations between these

classes. Class relations are inheritance or associations. Class to class associations are

implemented using roles on objects on each opposite side. Each object role is imple-

mented using a set variable. A complete search procedure enumerates all the model

instances that are compatible with the constraints.

Fig. 9.4 illustrates a simplified constrained object model, here a meta-model for

workflow activities, using a UML class diagram. UML diagrams mention some of

the model constraints, most notably relation cardinalities. Figure 9.4, for instance,

states that a message relates to at most one activity. There is, however, no possi-

bility in the general case to graphically cover the whole range of constraints that

may occur in an object model, thus advocating the use of an additional constraint

language as Z.

9.1.5 From Configuration to Workflow/SWS Composition

Configuration emerges as an AI technique with applications in many different areas,

where the problem can be formulated as the production of a finite instance of an

object model subject to constraints. Reasoning about workflows falls into this cat-

egory, because a workflow description is an instance of a given metamodel (as

Activity

−Active:boolean

−Relation:Owner

FinalNode

InitialNode

Decision
Transformation

Action

Join

Merge

Fork

Message

−Active:boolean

−Order:Boolean
theInputs

*

theOutputs

*
isOutputOf0..1

isInputOf0..1

ControlFlow ExternalSignal

Fig. 9.4. Simplified meta-model for workflow activities

9 Composition 253

is the UML metamodel for activity diagrams [20]). Composing workflows is a

configuration problem in that in so doing one must introduce an arbitrary number

of previously non-existent transitions (“fork”, “join”, “split”, “merge”, “transforma-

tions”, predefined user-interactions sequences), and interconnect input and output

message pins provided they have compatible types.

An SWS composition system in our sense expects

• a list of potentially usable workflows

• the ontologies for the data types

• a goal to be satisfied by the result composition

• a list of the data input the end-user can provide.

In our approach, the simplest form of a composition request is defined as a sin-

gle message, according to an appropriate/specific ontology, connected to the final

node of the composite workflow (the objective). The inputs provided by the user

are modelled as available external signals. A more elaborated language for express-

ing composition goals is presented in Section sec:corel allowing to place additional

constraints on the requested composite SWS.

9.2 Composition in Case Study Scenarios

From the scenarios introduced in Chap. 6, only B and C involve composition.

9.2.1 Scenario B

Here, each supplier considered by the purchasing software agent may have a distinct

choreography. We are now used to see such supplier sites behave as standard Internet

sites, hence may feel that their behaviour is fairly comparable. The shopping-trolley

metaphor is indeed a must in this area. There may exist differences though, in the way

some interactions are handled. For instance, payment data may be asked for accord-

ing to a given sequence on one site, or payment interaction may be kept internal or

redirected to another specific web site, etc. In that case, the purchasing agent must

adapt to the variety of choreographies of its suppliers so as to enter valid conversa-

tions with them. Generating such a valid conversation (i.e. by adapting one’s orches-

trations to a remote’s choreography) can be viewed as a simple form of composition.

Indeed, it may not be the case that the client software agent has enough knowledge

to perform such computations, in which case external “composition” skills may be

required.

9.2.2 Scenario C

This scenario involves semantic discovery and process/protocol mediation as in Sce-

nario B for the first “shipper selection” phase. Then, in the second phase, that we

will refer to as a “tracking” phase, the shipper Web Service and the company’s track-

ing Web Service enter a complex interaction, based upon Rosetta net messages. It

254 Laurent Henocque and Mathias Kleiner

is realistic to imagine that both services obey to their own choreographies. Organ-

ising this interaction hence is not an easy task, which can be viewed as a first class

composition problem. A realistic viewpoint over the resulting situation is the follow-

ing: the coordinator process that actually executes is an orchestration involving both

existing “tracking” software on the client side, and the shipper’s tracking software

on the other side. Such a coordination obviously requires the execution of various

mediators, and the capacity to adapt distinct and complex choreographies on either

side. This is a composition problem.

9.3 State of the Art

Automated workflow or SWS composition is a field of intense activity, with applica-

tions to at least two wide areas: Business Process Modelling and (Semantic) Web

Services. Tentative techniques to address these problems are experimented using

many formalisms and techniques, among others Situation calculus [32], Logic pro-

gramming [44], Type matching [11, 10], coloured Petri nets [12], Linear logic [40],

Problem-solving methods [4, 19, 49], AI Planning [9, 38], Markov decision pro-

cesses [13] and constraint-based configuration [1, 2].

The current section attempts to present in greater detail the viewpoints and sci-

entific options considered by the scientific community on this subject.

9.3.1 Essential “Design by Composition” Issues

Web Service design requires the description of a complex process in the presence

of asynchronous (web based) communication , parallel execution of tasks or sub-

services, external events, arbitrary interruption points, exception handling, etc. In

order to specify such a composite Web Service, it is necessary to define the chain-

ing and parallelisation of activities (the workflow), to describe the dynamic produc-

tion and transfer of data (the data flow), to define states (asynchronous systems may

conditionally remain forever in a given state with no ongoing activity) to deal with

explicit time for timeout events of activity duration, for instance.

Promoting of the reusability of services is an issue long studied in the field of

Business Process Reengineering. Data flows must be adapted to accommodate dis-

tinct yet compatible specifications of input/output data. Equally, when Web Services

are seen as asynchronous agents that are to be combined, their externally published

behaviour (called their choreography) must be compatible in order to allow compo-

sition. Finally, in order to design a Web Service by combining others, it is necessary

to know what to combine. Hence, there must exist semantically enriched databases

of Web Services that describe their capabilities in the most abstract manner, and are

queried according to practical goals.

Workflows and Workflow Patterns

A workflow is the chaining of elementary activities required to perform a task. Work-

flows are usually modelled using graph-related diagrams or structures, with/without

9 Composition 255

support for a notion of state (as in Petri nets or UML state diagrams). Workflow

editing and executing tools are numerous, either in the field of Business Process

Management or more recently in the field of Web Service design. The properties

of workflow systems differ in general, and their expressive power can be compared

against the list of workflow patterns. The workflow patterns site proposes a compari-

son of Web Service composition languages and tools with respect to the 20 identified

workflow patterns in [53]. One essential contribution of the workflow patterns has

been to demonstrate that stateless workflow languages cannot support several impor-

tant patterns, such as “milestone” or “interleaved parallel execution”, for example.

This advocates the use of Petri nets, for instance the Petri net extension YAWL [51],

designed to explicitly support all of the 20 patterns, a strong requirement in SWS

composition.

Data Flows, Data Creation and Deletion

Processes transport, transform, use, create or delete data. Data flows map onto the

workflow by adding details about the kind of data that is being processed. Useful

known extensions to Petri nets are “coloured” Petri nets [24], where structured data

is referred to by a colour. Each token carries some piece of data. Tokens may appear

or disappear as a result of firing transitions. Also, transitions may or may not be

fired depending on the token(s) colour(s) and the valuation of their incoming arcs.

The latest version of UML2 activity diagrams has taken the change to token-flow

semantics.

States

States are essential in modelling workflows, and proved to be mandatory in order

to implement all the workflow patterns. A process or Web Service may wait forever

in a state, whereas transitions may be instantaneous (although most languages now

have abandoned the instantaneous semantics for transitions in favour of the “Run

To Completion” semantics where transitions, actions and events may last till their

completion, as, e.g., in the UML semantics for state diagrams). However, there is

a strict difference in the status of a “state” in Harel statecharts for instance[22], or

in Petri net–based semantics. In the former, states have names and are first-class

constructs. In Petri nets, the state is implicit, characterised by an a priori unknown

number and locations of tokens. It is now well understood that state machines (as are

UML2 Harel Statechart–based state diagrams) are not fully adapted to implement

workflows, hence to reason about SWS composition.

Explicit Time

Explicit time is required in workflows for several reasons, like timeouts for instance.

In order to compose workflows, it is necessary to account for such time informa-

tion. Most workflows, however, can abstract time in favour of explicit, time unaware

256 Laurent Henocque and Mathias Kleiner

dependencies (sequence, split, join). Note that composite Web Service description

must abandon the concept of a global time, since processes run on distant and non-

synchronised machines.

Data Adaptation: Adapters and Bridges

Data adaptation is a key issue in workflow composition, since process/service opti-

mal reuse may lead to services having compatible, yet non-identical corresponding

data types. It is thus essential to mediate between data formats to ensure that Web

Services can be composed.

Discovery: Capabilities and Goals

In order to compose Web Services, it is necessary to find candidates for composition.

This issue is covered in detail in Chap. 8 about discovery. Web Services are adver-

tised (roughly) by their programming interface in WSDL. Semantic Web Services are

advertised by a formal description of their capability, using a language like WSML or

OWL, for instance. Finding a candidate Web Service for composition (i.e. for solv-

ing a given, maybe intermediate, goal) amounts to finding a Web Service’s capability

which can provably be shown to address the goal. This issue is much more general

than the one currently addressed by tools that simply exploit the WSDL information

published by Web Services (e.g. DAML-S Matchmaker [37]) and, depending upon

the language chosen for implementing goal and capability, ontologies may require

the intervention of a reasoner.

9.3.2 Essential “Automatic Composition” Issues

In order to automatically compose a Web Service from others, it is necessary to

reason about the logical properties of their descriptions. The chosen service capa-

bilities must be adequate with respect to the target goal, and must also be compat-

ible. Automated reasoning about capabilities and their compatibility remains as a

challenging problem in the general case. Reasoning requires that the Web Service

specifications are formulated in one or a combination of formal methods. A formal

method requires: the following

• a formal language: syntax and semantics that allow formal specification,

• a proof system allowing formal reasoning.

A proof system often does not capture the entirety of the underlying language

because of tractability5 or decidability6 issues. Even though in one sense or another,

all formal methods are “logical”, and they fall into several more specific categories,

5 Tractability – some problem instances yield combinatorial explosion, the space search

remains finite, but no answer can be expected in an acceptable time frame
6 Decidability – the search space is infinite, and not finitely representable, no program can

ever span it

9 Composition 257

depending on whether they are logic oriented (based upon an extension of predicate,

modal or higher-order logic + predefined axioms), algebraic (based upon the defini-

tion of operations and equations over a set) or model based (allowing the reuse of

predefined components, e.g. Petri nets).

Formal Language

In order to reason about data and processes, formalisms endowed with both syntax

and semantics are required. Reasoning about workflows, for instance, disqualifies

a language like BPEL7 (which still remains a choice when execution must be per-

formed) or other such business process flow representation languages since they are

programming languages, and operate at the execution level, even though attempts

exist to give them a logical foundation, at least to a restricted subset.

Reasoning about Time

If the formalism used to describe the Web Services involves time, then there must be

support for reasoning about such a “time”. Even though explicit (absolute) time is

apparently not an issue, temporal relationships may occur. Many constraints involv-

ing time (e.g. precedence constraints) can be efficiently handled, while others render

the problems intractable (e.g. “no overlap” constraints).

Reasoning About Actions and State Change

An inherent difficulty in workflows stems from the fact that transitions affect the

world’s state. Data (such as resources) may be created, deleted or modified, which

must be accounted for by the formal language and reasoning system. Formalisms

like linear logic, situation calculus or Petri nets account for this to a variable extent.

As a consequence of the desirable modular expression of actions and their effects,

a problem emerges called the “frame problem”: how does the world state behave

when a transition occurs that solely mentions its immediate effects (for instance, if

an action describes its effects on an object, it normally says nothing about the rest

of the world, which normally, but not always, remains unaffected). The problem

has attracted the attention of many researchers, and generally requires some form

of non-monotonic reasoning.8 A typical solution to the frame problem is to con-

sider that what is unmentioned remains unchanged, if compatible with the theory

axioms.

7 http://www-128.ibm.com/developerworks/library/specification/
ws-bpel/

8 A form of reasoning is non-monotonic when some consequences of a theory need to be

withdrawn if the theory is incrementally updated, this is what happens when default or

preferred inferences are performed

258 Laurent Henocque and Mathias Kleiner

Reasoning About Objects and Concepts

As Web Services are to be semantically advertised, their description will be made

using various ontologies. Matching a goal against the capabilities of advertised Web

Services requires reasoning about the data described by the used ontologies. In the

most general case, the level of reasoning required is that of first-order theorem

proving.

Reasoning About Graphs

A workflow is a graph. In order to compose workflows, it is necessary to compose

graphs. The work in [12] addresses this in a very pertinent way, even though it pro-

vides no hints whatsoever as to how to “automatically” do this in the presence of

data flows.

Proof Procedure or Reasoning Tool

The language chosen to model the capabilities of Web Services, as well as the goals

used to query them, must come along equipped with a reasoning tool if one ever

wants to automate the composition process.

9.3.3 Formal Foundations to Web Service Composition

This section lists known scientific approaches to Semantic Web Service composition.

Each subsection briefly presents the folllowing:

• core features and expressive power of the formalism

• tools that implement it, either in isolation or in combination (e.g. as a subset of

the language)

• experiments conducted in the field of automatic Web Service composition

and concludes with a tentative critical analysis of the pros and cons of using the

technology (availability of reasoners, complexity, expressive power, etc.).

The present subsection attempts to produce an exhaustive list of the logical for-

malisms considered or used for SWS composition in recent publications. To give

quick hints of the broad category to which each formalism or technique belongs, we

attach to the names a category among First-Order Logic, Modal Logic, Algebras,

Higher order calculus, Graphical/Semi formal methods, Meta models, Constraint

programming.

Situation Calculus (First-Order Logic)

In the Situation Calculus (SC) [41], originally proposed by McCarthy and Hayes in

1969, first-order logic is applied to the description of world states (or situations) and

side effect actions. Situation Calculus allows one to reason about valid moves, reach-

able situations and raises issues of strong concern in AI planning such as the frame

9 Composition 259

problem. The essential idea in Situation Calculus is to replace predicates by fluents,

predicates indexed with situations. SC introduces special predicates like “poss” (can

an action be performed in a given situation?), “holds” (is a formula true in a given

situation) and “do” (perform an action provided its preconditions are met). Precon-

ditions are naturally stated using “poss”. Standard Situation Calculus does not allow

reasoning about explicit time, nor about concurrent or continuous actions. It is very

well suited, however, to deal with change.

Golog [29] is a high-level specification language built on top of the situa-

tion calculus, with knowledge and sensing actions. Golog introduces a number

of extra logical constructs for assembling primitive actions, defined in SC, so

as to form complex actions that may be viewed as programs. These constructs

are familiar to process designers: sequences, tests, non-deterministic choice of

actions or arguments, non-deterministic iteration, conditional and loops. Existing

Golog interpreters are Prolog based. In [32], the Golog extension ConGolog (“con-

current” Golog) is shown to be suitable for Web Service composition with two

extensions. To circumvent the fact that the “sequence” Golog construct is static,

and allows for no insertion of actions, [32] introduces an extraneous “Order”

construct, which allows the dynamic insertion of an action so as to fulfil pre-

condition conditions. The authors warn that the new construct potentially intro-

duces important combinatorial overhead and should be used with care. How-

ever, they claim their translation introduces no extra overhead with respect to the

original problem. The approach exhibits significant customisation and reasoning

possibilities.

Process Specification Language (First-Order Logic)

Among applications of first-order logic relevant to Web Service composition, we

must cite the Process Specification Language (PSL) [42]. PSL also builds on sit-

uation calculus and defines a neutral representation for manufacturing processes.

Process data is used throughout the life cycle of a product, from early indications

of manufacturing process flagged during design, to process planning, validation,

production scheduling and control. In addition, the notion of process also under-

lies the entire manufacturing cycle, coordinating the workflow within engineer-

ing and shop floor manufacturing. The PSL language is formally based upon the

Knowledge Interchange Format, used to formally define ontologies of processes.

PSL-Core is based upon first-order theory, with four basic classes (Object, Activ-

ity, Activity Occurrence and Timepoint) and four basic relations (Participates-in,

Before, BeginOf, and Endof). Objects can come into existence (e.g. be created) and

go out of existence, e.g. be “used up” as a resource) at certain points in time. PSL

provides explicit time, and the full language incorporates Situation Calculus. PSL

statements being logical, any process specification in this language can be logically

exploited, manually or using a theorem prover. Although no scientific account has

yet been provided on using PSL in the scope of Web Service modelling, the lan-

guage offers the potential to design Web Services by composition, or automate the

process.

260 Laurent Henocque and Mathias Kleiner

Description Logic (First-Order Logic)

Description logics are knowledge representation languages tailored for expressing

knowledge about concepts and concept hierarchies, in a sub language of predicate

calculus. Description logics have had strong connections with the Semantic Web

since its inception, as they provide the formal foundations to ontologies and onto-

logy reasoning, as implemented in OIL and later OWL. Description logics can be

viewed as allowing a form of object-oriented knowledge representation while ben-

efiting from the soundness of a logical formalism. The composition of Web Ser-

vices described via OWL ontologies hence depend upon various forms of description

logic–based ontology reasoning. Description logics are irrelevant to Web Service

composition beyond the fact that they may be chosen to represent goal/capability

ontologies. DL formalisms build a common foundation for frame-based systems,

semantic networks and KL-ONE-like languages, object-oriented representations,

semantic data models and type systems. Their basic building blocks are concepts,

roles (binary relations) and individuals. Each description logic language defines con-

structs (intersection, union, role quantification, etc.) used to define new concepts and

roles. The main reasoning tasks in DLs are classification, satisfiability, subsumption

and instance checking. A whole family of knowledge representation systems have

been built using these languages and for most of them complexity results for the

main reasoning tasks are known. Constraint-based configurators [26], as used in the

area of SWS composition, also have strong connections with description logics.

Frame Logic (First-Order Logic)

Frame logics [27] provide a formalism for object-oriented logic programs. A formal

account for object identity, inheritance and methods vs functions is achieved in the

language, which is hence suitable not only for various object-oriented database rea-

soning schemes on the one hand, but also for ontology reasoning in the context of the

Semantic Web. F-Logic allows for the description of method and function signatures.

The semantics of Frame logic rely upon skolemisation and Herbrand structures, with

an extension to account for object equality. Reasoning about F-Logic programs is

possible using Prolog-based approaches as in the program Flora-2.9

Transaction Logic (First-Order Logic)

Transaction logic (TR) accounts in a declarative fashion for logical theory update,

with applications to databases and logic programs [6]. Transaction logic allows one

to specify and execute procedures that permanently update a logic program. The

Horn version of TR supports SLD resolution and can be easily automated. What

really differs with respect to other logics for change is that transactions are natively

executable as logic programs. In combination with F-Logic, TR lets the user for-

malise the behaviour of methods that change the internal state of objects. This com-

bination is implemented in the Flora-2 system. No research report to date accounts

9 http://flora.sourceforge.net/

9 Composition 261

for Web Service composition using F-logic + Transaction logic. A difficulty with

using this combination of languages stems from the necessity to fit the descriptions

within a Horn subset of logic, which often requires expert intervention.

Logic Programming (First-Order Logic – Horn Clauses)

The work in [44] illustrates the possibility of using Prolog to interactively gener-

ate Web Service compositions based on their semantic descriptions (originally in

WSDL). This approach emphasises the possibility of viewing Web Service composi-

tion as a recursive process, and advocates the use of well-known AI techniques in the

field. Specifically, the possibility offered by Prolog for an end-user to interactively

control a composition program is interesting. Such a system can efficiently exploit

semantic conditions, and can also explore an entire combinatorial search space. The

authors of [44] claim their system gives a straightforward account of WSDL spec-

ifications. The prototype implementation performs on the basis of previously dis-

covered Web Services, hence does not contribute to the discovery process. The lim-

itations of using (standard) logic programming are as usual: because of the Horn

clause (rule like) subllanguage, direct support for some logical expressions turns out

to be difficult, such as those involving disjunctions or existential quantifiers. Such

a system can, however, non-deterministically explore the complete search space of

possible compositions and account for many constraints. The work in [11, 10] uses

recursive algorithms in a forward/backward chaining spirit closely related to logic

programming.

Type Matching (Type Systems)

The cost of Web Service discovery queries, together with expected non-availability

of advertised choreographies and capabilities offering exact matches, induces a

promising way of composing Web Services on the basis of partial matches of their

input/output data types. Type description/reasoning itself can be performed in one

or another language, from description logics to “mixins”-based languages. In that

case composition algorithms themselves range from ad hoc recursive procedures

to standard logic programming forward/backward chaining. Type matching–based

composition hence deserves a separate section in this review. The work in [11, 10]

details an algorithm for Web Service composition with partial type matches, and

shows that such an approach significantly improves the number of successful compo-

sitions. Interestingly enough, the composition algorithm interleaves the composition

task with Semantic Web Service discovery, which addresses two practical problems:

1. The discovery process should be as efficient as possible, and type inference can

in many cases be made very efficient (for that purpose, [11] uses numeral repre-

sentations of types).

2. The number of discovery queries should be limited as much as possible, due

to the significant overload induced by complex remote queries performed on

potentially huge databases.

262 Laurent Henocque and Mathias Kleiner

Partial type-matching approaches to Web Service composition reinforce the intu-

ition that an essential issue regarding this problem has to do with the type of data

exchanged between peer services (this is also a leading intuition in problem-solving

methods). Partially matching inputs/outputs can be adapted, reorganised, grouped

together, so as to build a working system from disparate and literally incompati-

ble elements. In that sense, reasoning about type compatibility appears as a central

requirement to Web Service composition, prior to more advanced forms of reasoning.

Petri Nets (First-Order Logic – Model Based)

Petri nets provide distributed operational semantics for processes, and unlike most

processes algebraic options offer techniques for quantitative analysis. Petri nets

are useful for their computational semantics, ease of implementation and ability to

address both offline analysis tasks such as Web service composition and online exe-

cution tasks such as deadlock determination, resource satisfaction and quantitative

performance analysis. Compared to other stateless workflow languages, Petri nets

allow for modelling states (an essential issue concerning two important workflow

patterns as advocated in [53]). Also, compared with other formalisms (e.g. Situa-

tion Calculus), Petri nets offer an interesting account of the frame problem. Mapping

to and from Petri net representations and process languages is often acknowledged.

However, [50] argues that the usability of Petri nets exceeds that of (current) pro-

cess languages because the graph structure of workflows is more easily rendered

with this formalism than using algebraic descriptions which are linear or tree struc-

tured by construction. Petri nets are suitable for modelling, analysing and prototyp-

ing dynamic systems with parallel activities, so distributed planning lends itself very

well to this approach. The main contribution we expect from Petri nets is their ability

to improve the representation of complex services and to allow their dynamic coor-

dination and execution. The Petri net model mainly offers the following advantages:

• natural and graphical expression of the synchronisation of parallel activities

• clear decomposition of processing (transitions) and sharing data (places)

• scheduling of actions (causal and temporal relationships) of services

• dynamic allocation of tasks

• qualitative and quantitative analysis of Petri net models.

Useful Petri nets in the field of Web Service description and composition are hierar-

chical high-level Petri nets: the tokens are “coloured”, which means that they carry

data (the net hence offers both the data flow and the work flow views), they account

for time, and they are hierarchical: a transition can represent an entire (sub) Petri net.

A generalisation known as Recursive Coloured Petri nets could be found in [43, 31].

The usefulness of high-level Petri nets in the field of Web Service composition is

assessed by several recent results. Reference [57] practically illustrates how coloured

Petri nets can be generated from BPEL specifications, which allows detailed account-

ing for the compatibility of the choreographies. Reference [12] details the viewpoints

one can have when composing Petri net–based choreographies and orchestrations,

and the level of control that can be achieved.

9 Composition 263

Petri nets easily support variants without losing their elegance. For instance, [51]

presents an extension to high-level Petri nets called YAWL that implements in a

straightforward way all of the workflow patterns described in [53]. Considering the

expressivity of YAWL together with the interesting Petri net-based contribution to

Web Service composition in [12], Petri nets and their extensions clearly are a poten-

tially major option for Web Service composition.

Temporal Logic of Actions (Modal Logic)

The temporal logic of actions (TLA) is a logical formalism for specifying and rea-

soning about concurrent systems. Systems and their properties are represented in the

same logic, so the assertion that a system meets its specification and the assertion that

one system implements another are both expressed by logical implication. TLA+ is

presented in [28]. This extension to TLA offers a logic with sets and structures, plus

action and temporal operators. The logic does not allow the modelling of explicit

time. TLA+ was shown to be useful in formally specifying a Web Service protocol

called the Web Service transaction protocol [25]. TLA+ is suitable for model check-

ing, for instance, when using the TLC program. Dealing with the composition of

Web Services when specified in TLA+ has not been proposed to date, as far as we

know.

Modal Action Logic (Modal Logic)

Multi agent systems [56] share a lot in common with the Semantic Web. Formal

agent conversation languages may be applied in some cases to workflow composi-

tion problems because they also deal with protocols. The full interaction of several

agents can be perceived as a complex choreography in a SWS sense. As an example

of the proximity of the two fields, in [3] Web Services are viewed as actions, either

simple or complex, characterised by preconditions and effects. Also, interaction is

interpreted as the effect of communicative action execution, so that it can be rea-

soned about. The formal language used is a modal action and belief logic DyLog.

DyLog is well suited for reasoning about world change and actions, and being based

upon logic programming the reasoning possibilities offered by the language are real.

However, the combination of modal operators and logic programming makes it a tool

for experts, which could be a challenging issue to SWS composition.

Process Algebras, CCS and Pi Calculus (Algebras)

The use of process algebraic languages (like CCS [33] or Pi Calculus, but also CSP

(Constraint Satisfaction Problem) and LOTOS) which originate from the rich field of

concurrent programming and systems has been advocated for Web Service compo-

sition. The constructs of several process languages for the Semantic Web (XLANG,

WSCI) have been “a posteriori” formally grounded on process algebras. The work

in [8] details a possible formal account of WSCI using CCS, and points to accurate

264 Laurent Henocque and Mathias Kleiner

bibliography in the field. Model checking methods can be used to automate or assist

the composition/validation process.

CCS [33] is the simplest process algebra. A CCS grammar is defined using “pro-

cesses”, “channels”, data items and sequences of values. A process can be prefixed

by an atomic action, or composed with other processes, either in parallel‘||’ or by

means of the choice‘+’ operator. Atomic actions are either the internal (or silent)

action “T”, input actions (a message “x” is received from a channel “a”) or output

actions (a message is sent through a channel). The operational semantics of CCS

is defined by a transition system where standard rules model parallel and choice

operators, and synchronisation is produced by the parallel composition of two com-

plementary actions.

In spite of its simplicity, CCS presents a high expressive power, capable of cap-

turing WSCI as illustrated in [8]. Ad hoc and more complex process algebras than

CCS can be designed to formally define core subsets of process languages. The work

in [54] illustrates this, giving precise formal description of the semantics of a core

subset of BPEL. The originality of the process algebra in [54] is that besides standard

process algebra constructs (e.g. choice, sequence) it provides notations for iterative

cycles and variable assignment (that stem from standard programming languages).

The Cashew [36] language offers interesting compositionality properties,

together with explicit support for several workflow patterns, as well as external vs

internal choice.

Linear Logic (Higher-Order Calculus)

Linear logic (LL) [18] is an extension of classical logic to model a notion of evolv-

ing state by keeping track of resources. Other resource aware logics were developed

before, but LL has attracted a lot of research attention. Specifically, LL has well

defined semantics and provers are available. The paper [40] proposes an application

of LL to Web Service composition. The authors claim that the WSDL presentation

of a Web Service can be automatically translated to a set of LL axioms. Then, they

use a prover for the multiplicative propositional fragment of LL to infer the com-

position of a Web Service. The target Web Service is described as a sequent in LL,

to be proved by the proof system. The context is a restrictive case (the “core” Web

Service is known, but not some of its value added sub services). Being complete,

the system can generate all possible compositions. Each composition, available as

a sequent proof, can be translated to a BPEL workflow. This original approach still

faces several limitations, acknowledged by the authors themselves (“the full automa-

tion of the composition process is a difficult problem”), like the fact that the logic

used is “only” propositional.

Coordination Languages (Higher-Order Calculus)

Coordination languages are an active field of research in the scope of multi agent

systems. Mobile agents bear some resemblance with Web Services. They commu-

nicate through protocols and require a form of discovery mechanism. The language

KLAIM (Kernel Language for Agent Interaction and Mobility) is a higher order

9 Composition 265

calculus for mobile processes, inspired by the LINDA model, which relies on the

concept of tuple space (the tuple space is a common store used to synchronise data

and processes) and O’Klaim (Object-Oriented Klaim) [5] is a linguistic extension of

Klaim with object-oriented features. One issue of potential significance with respect

to Web Service discovery/composition is the fact that the language models mobile

“mixins”. A mixin is a form of dynamically resolved subclass. The essence of a mixin

is to describe a fraction of a programming interface, which can be treated as a type in

its own right. Mixins can be statically simulated by multiply inherited interfaces in

UML/Java/C++, for instance. The fact that a Web Service offers some type of data or

functionality in its capability could be achieved by the object representing that capa-

bility being an instance of a given mixin, no matter what its actual type is. Mixins

appear as a useful concept in relation to data adaptation or mediation: they describe

the fact that a data structure of a “don’t care” type holds a specific data item (for

instance, a “date” or a “price”).

Problem-Solving Methods (Meta-Model)

The problem-solving method (PSM) [4] describes the foundational ontologies for

the UPML language [15]. As such, PSM is not a formal system, but forms a model

of processes that can be used to compose semantically described Web Services. The

work in [19] describes a possible framework for using PSM in that objective. The

essence of PSM is to provide a distinction between methods and their abstraction

called tasks, and to focus on the inputs and outputs of tasks and methods, described

using ontology-based pre/post conditions. This approach treats workflows as sec-

ondary relative to the logical conditions necessarily matched by viable processes.

For instance, the preconditions satisfied by composite tasks must match the precon-

ditions of their starting subtasks. This viewpoint is essential to Web Service com-

position, where determining whether Web Services are I/O compatible is necessary

even before testing that their choreographies are compatible.

The intuitions underlying the PSM model can be related with practical exper-

imentations conducted with the Ariadne mediator system, as documented in [49].

This work shows how input/output requirements for Web Services can be exploited

using a simple forward chaining algorithm, according to the following idea: the user

feeds in the system with a description of the data they can provide, plus a description

of the data they request from the (dynamically composed) system. The composition

algorithm recursively loops adding Web Services that produce some of the desired

information. Each new required input not currently available is further treated as

desired. The system stops when a set of Web Services has been constructed that

produces the expected output from the available initial input. Although [49] does not

account for the compatibility of Web Services choreographies, the proposed working

system validates several important intuitions regarding Web Service composition.

(AI) Planning (FOL, Constraint Programming)

Beyond complex compatibility issues, Web Service composition can obviously be

viewed as a planning problem: we look for a plan of actions (i.e. Web Services)

266 Laurent Henocque and Mathias Kleiner

which guarantees that the target objective will be reached. This particular view of

the composition problem is covered by the work in [9], where state descriptions are

ambiguous and operator definitions are incomplete. The same viewpoint is chosen

in the library for interactive Web Service composition SWORD [39] where the plans

are generated using a rule-based forward chaining algorithm.

Hierarchical Task Network (HTN) planning is an AI planning methodology that

creates plans by task decomposition. This is a process in which the planning system

decomposes tasks into smaller and smaller subtasks, until primitive tasks are found

that can be performed directly. SHOP2 is a domain-independent HTN planning sys-

tem. An application of Shop2/BPEL to Web Service composition is presented in [45]

and [55].

SAT (Satisfiability Problem)- based planning is largely studied, because of the

possibility to exploit efficient heuristics and cuts (as, e.g., in Graphplan), and also

thanks to recent improvements in SAT solving alone. The system Blackbox uses

Graphplan as a front-end to the most efficient SAT solver to date. Modern plan-

ners read their input in (a subset of) the “Planning Domain Definition Language”

(PDDL), a language for describing planning problems. PDDL supports conditional

effects, dynamic universes (object creation and destruction), universal quantification

and domain axioms over stratified theories, but limited support to object oriented

constructs beyond simple types. Actions are defined not only in terms of their pre-

conditions and effects, but also by their expansion: possible subactions that can be

used to implement the action itself. PDDL also allows the statement of goals as func-

tion free first-order predicate logic statements. Although translating arbitrary PDDL

planning descriptions to SAT may yield significant formula expansion, SAT-based

planning deserves some interest if Web Service composition is to be performed using

constraint programming techniques.

Non-linear Discrete Optimisation (Constraint Programming)

An original viewpoint over Web Service composition is advocated in [17] where

the composition problem is viewed as a non-linear discrete optimisation problem,

called Activity Resource Assignment problem (ARA), in the presence of an opti-

misation criterion. The requester for a composite Web Service expects to maximise

their utility. The model involves activities, resources, activity constraints (tempo-

ral and/or preferences) and relationships. Despite the fact that the given problem

is NP-complete, the authors claim that the structure inherent to the problem ren-

ders the computations easier. It also does not seem to be possible by this method to

address first-level logic issues, like the dynamic creation of data. Nevertheless, this

appears as an interesting, constraint programming–based contribution to the compo-

sition problem.

Other approaches explicitly referring to constraint satisfaction, to some extent

related to constraint-based configuration are advocated in [16, 48]. These approaches

clearly influenced our own proposal, presented further in the chapter.

9 Composition 267

Configuration (Constraint Programming)

As presented earlier, configuration is an evolution of constraint programming dealing

with constrained object models. Using configuration was proved useful to compos-

ing workflows in [1]. The present chapter will enter into greater detail about the

possibilities offered by this kind of techniques.

9.4 A Language for Choreography and Orchestration

We choose a comprehensive subset of UML2AD10 as a language for expressing

choreographies and orchestrations. This choice is a pragmatic compromise meant

to ensure sufficient coverage of workflow patterns [53] and business usage compli-

ance. This decision is also backed by several significant moves made by the Business

Process Modelling community recently, including the merger of BPMI and OMG.

Among other workflow languages exists YAWL [52], certainly the best choice

with respect to workflow pattern coverage, but still lacking widespread editor sup-

port. YAWL diagrams also end up not being easily readable to untrained eyes which

introduces an extra difficulty: users would have to learn YAWL in addition to what

they already know. YAWL authors themselves acknowledge the fact that UML2AD,

although with some ambiguities, provides good support for all workflow patterns.

We are aware of a number of difficulties raised by ambiguities in the UML2

specifications. The chosen subset solves these issues both at the denotational level

and at the operational level.

At the denotational level, we are using a subset of the Z language [47] to doc-

ument the diagram restrictions that we have chosen to enforce. Although these

restrictions do not impair expressiveness, they significantly enhance the rigour of

the associated diagrams. Z allows for a fully formal and unquestionable specifica-

tion of metamodel constraints which replaces equivalent – but less readable – OCL

statements.

9.4.1 Token-Flow Semantics: Introduction

UML2 Activity Diagrams being built on token-flow semantics, we will give here its

main principles11 to help the reader understand the following sections. Diagrams are

composed of nodes and edges. Upon execution, an information going through an

edge (we will say “traversal” of an edge) is called a “token”, and multiple tokens can

traverse the same edge at different times. When a token is removed, we will say it is

“consumed” (most often by a node, but some constructs allow to consume tokens in

10 The UML documentation is available at http://www.uml.org/, and more specifically

11 Further explanations can be found in the UML2AD specification

cally at http://www.omg.org/technology/documents/modeling_spec\
_catalog.htm\#UML

268 Laurent Henocque and Mathias Kleiner

an entire region). Tokens which do not contain any data are called “control” tokens.

The arrival of tokens in a node fires its execution depending on the node type (some

will require all incoming edges to receive tokens while others start when at least one

incoming edge receives a token). This formalism is very natural in the sense that a

user can easily simulate the execution by tracking creations and traversals of tokens

in the diagram.

9.4.2 The UML2AD Subset as a Constrained Abstract Model

This section describes the precise UML2AD subset used in both choreography and

orchestration. This description is presented using a subset of the UML metamodel,

involving class diagrams as usual to introduce the concepts. The specification below

only slightly differs from the corresponding subset of the official UML specifica-

tion [21]. It restricts it in some places, and introduces a limited number of extra

classes.

In order to produce an unquestionable specification, we have chosen not to use

the UML constraint language OCL (as in [1]), but instead a fragment of the Z lan-

guage, as shown in [2, 23]. This offers several advantages:

• The limitations brought by the exclusive use of the dotted notation in OCL are

overcome using Z, a language with extremely rich expressiveness.

• All workflow well formedness rules can be stated unambiguously.

• The constraints as listed in Z receive a direct translation to configuration rules in

ILOG JConfigurator.

• Z is extensible: it allows the declaration of user defined operators that comple-

ment the syntax. We use this feature to introduce the largely accepted dotted

notation. As often as required and possible, Javascript or OCL like dotted state-

ments will be used.

Each diagram introduces a number of classes, their relations, and attributes. Together

with the diagram are the following points:

• Classes – the formal declaration of diagram classes.

• Attributes – the formal declaration of attributes as Z functions.

• Relations and roles: the formal declaration of relations (as Z relations) and roles

as Z functions.

• Semantics – the operational semantics of the workflow constructs, which impact

the ASM (Abstract State Machines) translation but are not presented other than

textually here.

• Constraints – the structural (well-formedness) constraints. They are presented

as Z axioms using the previously declared classes and relations, preceded by a

textual version of the constraint.

Before entering the metalanguage description, we present the logical constructs used

for the Z specification. We use Z in the sole purpose of formulating the object model

constraints, which complements the UML class diagrams. Extra definitions required

to properly type check the document can be kept invisible because they are implicit

9 Composition 269

from the class diagrams. These definitions merely duplicate the class, relation and

multiplicity declarations, as well as any constraint made explicit or implicit in the

UML diagrams.

We are using a specific prelude file12 which defines an enumerated type called

UNIVERSE (the set of all objects) and three dereferencing operators, which can be

used for the statement of linear dereferencing chains, as is common in languages like

JavaScript or UML’s OCL. Dereferencing a role or attribute on a single object occurs

as a “.”. Dereferencing a set to obtain a set occurs as a “ →”. Dereferencing a set

to obtain a bag occurs as a “�”. Using these definitions, roles in the standard sense

(the opposite viewpoints of a binary relation) as well as relations can be dereferenced.

Apart from this, all possible Z constructs can be used to formulate model constraints,

among which: | denotes a restriction on the domain of the variables the constraint

applies to, • denotes the core of the constraint, applying to the domain defined in the

head.

Activity Groups

The class diagram for activity groups is presented in Fig. 9.5.

Semantics

• Groups have no special semantics. They just enable grouping together a part of

an activity. Web Service choreographies can be represented as a group.

• InterruptibleRegions are used to model external choices, as required in the ship-

per choreography example. The operational semantics of this construct are that

Fig. 9.5. Overview – activity groups

12 The prelude file “umzprelude.tex” can be obtained at http://www.esil.univ-mrs.
fr/˜henocque/umz/umzprelude.tex

270 Laurent Henocque and Mathias Kleiner

whenever a token traverses an interrupting edge (an edge pointed by the “inter-

rupts” relation), all other tokens of the region are consumed.

Constraints

• InterruptibleRegions: Interrupting edges have source in the region and target

outside the region

∀ x : ActivityEdge; y : InterruptibleActivityRegion | y = x.interrupts •
x.isOutputOf .nodeGroup = y ∧
x.isInputOf .nodeGroup �= y

Activity Nodes and Edges

The class diagrams for activity nodes and edges are presented in Figs. 9.6 and 9.7.

The operational semantics of object and control flows are described in the UML as

“traverse-to-completion” semantics. The aim of these semantics is to allow work-

flow not to enter undue self-blocking states, which could be caused, for instance,

by tokens mistakenly sent to an alternative outgoing path, and thus missing for a

synchronisation to occur via an other outgoing path.

The currently presented subset of UML2AD diagrams overcomes most difficul-

ties by disallowing random alternative routes, outgoing actions. In other words, when

a token is produced by an action, it is presented to an output pin that has no more

than one edge connected.

Fig. 9.6. Activity nodes

Fig. 9.7. Activity edges

9 Composition 271

• Object Flows – carry data tokens.

• Control Flows – carry control tokens.

• Guards – conditions expressing which decision node’s outgoing edge will receive

a token.

Constraints

• Only edges outgoing from a decision node can have a guard. Decision nodes are

visually and formally presented with the other control nodes later in the docu-

ment in Fig. 9.8:

∀ e : ActivityEdge; g : Guard | g = e.guard • e.isOutputOf ∈ DecisionNode

• Only one edge outgoing from the same decision node can have an else condition

as the guard:

∀ n : DecisionNode •
#{e : ActivityEdge | n = isOutputOf (e) ∧ e.guard = else} = 1

• Control flows may not have object nodes at either end:

∀ e : ControlFlow •
e.isInputOf /∈ ObjectNode ∧ e.isOutputOf /∈ ObjectNode

Fig. 9.8. Control nodes

272 Laurent Henocque and Mathias Kleiner

Fig. 9.9. Action nodes and object nodes

Action and Object Nodes

The class diagram for action and object nodes is presented in Fig. 9.9. Action nodes

denotes that a local action is realised at this node. Pins are used to receive and send

data tokens. The inputs are synchronised (all incoming edges and input pins have to

carry a token for the action to start).

OOMediator does not belong to the original UML2AD specification. They are

introduced here as a special sub-type of ActionNode having no side effects: such

mediators are required to transform data.

AbstractEvent does not either occur in the original UML2AD specification.

Being non-executable, an AbstractEvent has to be specialised in a concrete model.

Constraints

• ObjectFlow connects exclusively an output pin to an input pin (with the exception

of decision and merge control nodes).

∀ n : ActivityNode; f : ObjectFlow | f .isOutputOf = n •
n ∈ InputPin ∨ n ∈ MergeNode ∨ n ∈ DecisionNode

∀ n : ActivityNode; f : ObjectFlow | f .isInputOf = n •
n ∈ InputPin ∨ n ∈ MergeNode ∨ n ∈ DecisionNode

• The downstream object node type must be the same of the upstream object node

type

∀ f : ObjectFlow; s, t : Pin |
s = isOutputOf (f) ∧ t = isInputOf (f) •

s.ontology = t.ontology

• AcceptEvent instances have no incoming activity edge

∀ e : ActivityEdge • e.isInputOf /∈ AcceptEvent

9 Composition 273

• SendEvent instances have no outgoing activity edge

∀ e : ActivityEdge • e.isOutputOf /∈ SendEvent

Control Nodes

Semantics

• AbstractSplit – this is an additional construct from UML2AD specification. Not

executable: any AbstractSplit has to be specialised

• AbstractJoin – this is an additional construct from UML2AD specification. Not

executable: any AbstractJoin has to be specialised

• MergeNode – any token offered on any incoming edge is offered to the outgoing

edge

• DecisionNode – each token arriving can traverse to only one outgoing edge

• ForkNode – incoming token duplicated to outgoing edges

• JoinNode – when all incoming edges have tokens, one is created on outgoing

edge. Only one incoming edge can be an object flow. Outgoing edge can be an

object flow only if there is an object flow among the incoming edges (in this case,

the incoming data token is sent to the outgoing edge)

• Flow Final – consumes one token

• Activity Final – all tokens in the activity are consumed

Constraints

• AbstractSplit – 1 incoming edge only

∀ x : AbstractSplit • #(x.incomingEdges) = 1

• AbstractJoin – 1 outgoing edge only

∀ x : AbstractJoin • #(x.outgoingEdges) = 1

• JoinNode – Only one incoming edge is an object flow

∀ x : JoinNode • #((x.incomingEdges) ∩ ObjectFlow) ≤ 1

• InitialNode – no incoming edge

∀ x : InitialNode • x.incomingEdges = �

• FinalNode – no outgoing edge

∀ x : FinalNode • x.outgoingEdges = �

• DecisionNode – the edges coming into and out of a decision node must be either

all object flows or all control flows

• MergeNode – the edges coming into and out of a decision node must be either

all object flows or all control flows

∀ x : ActivityNode | x ∈ DecisionNode ∪ MergeNode •
(x.incomingEdges ∪ x.outgoingEdges) ⊂ ObjectFlow ∨
(x.incomingEdges ∪ x.outgoingEdges) ⊂ ControlFlow

274 Laurent Henocque and Mathias Kleiner

Graphical Representation

The graphical representation of all the workflow constructs presented so far is

sketched in Fig. 9.10. These graphics mostly respect the UML2 superstructure

specification.13

Usage and Tool Support

Concluding this section, we outline the already existing tool support for UML2

activity diagrams allowing it to be used as the user language for behaviour inter-

face descriptions. A facility for editing, browsing and maintaining choreography and

orchestration descriptions as UML2 Activity Diagrams is intended to be integrated

within Web Service editing and management environments. In order to allow usage

of existing infrastructure for managing choreography and orchestration descriptions

as UML2 activity diagrams, these can be stored as WSML ontologies. Hence, UML2

descriptions can be stored, retrieved and interchanged by ontology infrastructures.

9.5 Composing Workflows Using Configuration

As shown in [1, 2], SWS choreographies can be efficiently composed using the

subset of UML2AD presented previously. Rather than explaining the whole process

in detail (the reader can refer to those papers for further explanations), we will

outline here its main principles through the “producer–shipper” example.

A configuration tool uses a library of available elements to construct a valid

instance of the constrained object model it is based on. The configuration-based com-

poser is launched with the following input:

• output (objective and root object for configuration) of the composed workflow: a

confirmation of a product being purchased and shipped

• inputs the user can provide to the system: a product name, a shipping destination,

acceptance and rejection upon receiving offers

• a library of available mediators

• a library of available SWSs, among which we find the shipper (its capability

is presented in Fig. 9.1 and its choreography is presented in Fig. 9.2) and the

producer (its capability and choreography are similar to the shipper’s capability

and choreography modulo the ontology of inputs/outputs)

The composer uses all those elements to create a workflow composed of the needed

choreographies adding during the process all necessary elements in order to obtain

a valid workflow. This composed workflow instance follows the presented abstract

model, with the following additions:

13 http://www.uml.org/

9 Composition 275

Construct Notation Construct Notation
AcceptEventAction

Action

ActivityFinal

DecisionNode

FlowFinal

ForkNode

Shortcut notation for

AcceptEventAction

Shortcut notation for

same partner send
and receive events

Shortcut notation for

SendEventAction

InitialNode

JoinNode

MergeNode

SendEventAction

ControlFlow

ObjectFlow

n a

b

b

a

n

n

Fig. 9.10. Graphical representation for the UML2AD adapted subset constructs

• The tool propagates an “activity” attribute to all nodes and edges which denotes

whether this part of the workflow is used during execution. Indeed, some execu-

tion paths of the choreographies may not be needed for the desired behaviour,

and thus it is not needed to find elements providing their incoming tokens.

276 Laurent Henocque and Mathias Kleiner

Fig. 9.11. Choreography of the producer-shipper composed Web Service

• In order to link choreographies exchanged messages between them, a new con-

straint states that a necessary(active) “ReceiveEvent” has to be linked to a cor-

responding “SendEvent” of the same type (i.e. consuming tokens from the same

concept).

From this composed workflow it is then possible to extract

• the choreography of the composed Web Service (only elements regarding user

interaction) as presented in Fig. 9.11

• the orchestration of the composed Web Service (not including SWSs choreogra-

phies but signals pointing to them) as presented in Fig. 9.12

• the capability of the composed Web Service, constructed from the user request.

9.6 A Flexible Composition Request Language

9.6.1 Aims and Requirements of a Request Language

In the previous section, we have used a sole message as the goal for composition.

However, as discussed in Subsect.9.1.1, a composer will often need more precise

requests in order to directly create the truly desired composed Web Service, thus

avoiding many valid but unrealistic solutions. Let us take a virtual travel agency

Semantic Web Service as example, which uses external SWSs to book hotels and

trips. Those external SWSs may take a “city” message as input to know the location

of the desired hotel, or the departure and destination locations. If we let the composer

9 Composition 277

U
se

r

P
ro

du
ct

 N
am

e

P
ro

du
ce

r
R

eq
ue

st
M

ak
er

 (
M

ed
ia

to
r)

P
ro

du
ce

r
O

ffe
r

T
o

S
iz

e
M

ed
ia

to
r

P
ro

du
ct

S
iz

e

Pr
od

uc
er

Sh
ip

pe
r

S
hi

pp
er

 R
eq

ue
st

M
ak

er
 (

M
ed

ia
to

r)

D
es

tin
at

io
n

G
lo

ba
l O

ffe
r

P
ac

ki
ng

 (
M

ed
ia

to
r)

P
ro

du
ce

r
R

eq
ue

st
P

ro
du

ce
r

O
ffe

r
P

ro
du

ce
r

A
ns

w
er

P
ro

du
ce

r
C

on
fir

m
at

io
n

D
et

ai
ls

S
hi

pp
er

R
eq

ue
st

S
hi

pp
er

O
ffe

r
S

hi
pp

er
A

ns
w

er
S

hi
pp

er
C

on
fir

m
at

io
n

D
et

ai
ls

G
oa

l O
ffe

r
G

lo
ba

l A
ns

w
er

G
lo

ba
l C

on
fir

m
at

io
n

D
et

ai
ls

G
lo

ba
l A

ns
w

er

U
np

ac
ki

ng
 (

M
ed

ia
to

r)
G

lo
ba

l C
on

fir
m

at
io

n
D

et
ai

ls
 M

ak
er

 (
M

ed
ia

to
r)

P
os

iti
ve

A

ns
w

er

N
eg

at
iv

e
A

ns
w

er

G
oa

l
F

ai
lu

re

G
oa

l
S

uc
ce

ss

Fig. 9.12. Orchestration of the producer-shipper composed Web Service

compute any possible solutions, we will obtain some workflows where departure is

used as the hotel city, which certainly is not the intended behaviour.

In order to express such internal requirements, we present in this section a flex-

ible composition request language. Flexible means it should be possible for a user

to express simple requests (which need to be extended) or precise ones. This allows

278 Laurent Henocque and Mathias Kleiner

end-users (as individuals using a web-based “on-the-fly” composition service), who

do not necessarily have skills to manipulate complex constructs, to formulate a min-

imal request and let the tool extend it to possible complete requests among which

he/she can choose the desired behaviour. However, it also leaves the possibility for

middle-users (as industrials designing their composite Web Service) to precisely

specify how the composed workflow should behave.

Another important feature of a composing request language is that it should stay

at the most possible abstract level, such as the goal level presented in sect. 9.1.1. Stay-

ing at this abstract level allows users to work solely on the semantic relations and

properties of their composed Web Service, ignoring the technical details of chore-

ographies. It also gives the advantage of pruning the search space in the workflows

composition phase, as only SWSs matching the selected atomic goals will be taken

into consideration.

9.6.2 An Abstract Model for the Composition Request Language

We present in Figs. 9.13 and 9.14 the composition goal language used to formulate

requests to the composer, as an UML abstract model together with Z constraints

specifying well formed composition goals.

Semantics

• Atomic goals: Abstractions of SWS’s. Used to perform discovery thus making

the matching SWS’s available for composition in the solution workflow.

• Roles: Inputs and outputs of matching SWS’s. Internal roles can be used to

denote intermediate objects in the orchestration. Each role has a concept taken

from an ontology.

• Value Constraints: The solution workflow respects any given value constraints.

– Unary Value Constraints: The solution workflow ensures that the specified

object will respect given (ranged) values.

– Relational Value Constraints: The solution workflow ensures that the speci-

fied objects will respect given constraint between them.

• Dataflow Constraints: The solution workflow ensures the existence of a specific

dataflow between sources and targets.

– IdentityFlow: The dataflow between the source and the targets makes no

change to data. Source and targets concepts must be the same.

– OperationFlow: The dataflow will perform an operation on sources’ tokens

values to obtain targets. Only applicable to integers and floats.

– MediationFlow: The dataflow between sources and targets needs to use a

specific mediator.

– AggregationFlow: The dataflow will aggregate sources into the composite

concept target.

– ExtractionFlow: The dataflow will extract parts of the composite concept

source into the targets.

9 Composition 279

Fig. 9.13. Goals, roles and concepts

– DecisionFlow: The dataflow will go from source to different targets depend-

ing on the constraint text. Source and targets concepts must be the same.

– MergeFlow: The dataflow takes any incoming source and delivers it to target.

Source and targets concepts must be the same.

Constraints

• Goals to roles relations reciprocity:

∀ n : AbstractGoal •
inputs(n) = {e : Role | e.goal = n}

∀ n : AbstractGoal •
outputs(n) = {e : Role | e.goal = n}

∀ n : AbstractGoal •
internals(n) = {e : Role | e.goal = n}

280 Laurent Henocque and Mathias Kleiner

Fig. 9.14. Goal and role constraints

• Sources of dataflows must be of class OutputRole or InternalRole:

∀ n : Role | #(n.isSourceOf) > 1 •
n ∈ OutputRole ∨
n ∈ InternalRole

• Targets of dataflows must be of class InputRole or InternalRole:

∀ n : Role | #(n.isTargetOf) > 1 •
n ∈ InputRole ∨
n ∈ InternalRole

• Sources and targets of IdentityFlow, DecisionFlow and MergeFlow must share
same concept type:

∀ n : DataflowConstraint | (n∈ IdentityFlow ∨ n ∈ MergeFlow ∨ n∈DecisionFlow) •
(sources(n) → concept = targets(n) → concept

• DecisionFlow has only one source:

∀ n : DecisionFlow •
#(n.sources) = 1

9 Composition 281

• MergeFlow has only one target:

∀ n : MergeFlow •
#(n.targets) = 1

• ExtractionFlow has only one source, which concept is composite and targets have

atomic concepts included in the source:

∀ n : ExtractionFlow •
#(n.sources) = 1 ∧ sources(n) → concept ∈ CompositeConcept
∧ targets(n) → concept ∈ AtomicConcept
∧ targets(n) → concept ⊂ sources(n) → concept → concepts

• AggregationFlow has only one target, which concept is composite and sources

have atomic concepts included in the target:

∀ n : ExtractionFlow •
#(n.targets) = 1 ∧ targets(n) → concept ∈ CompositeConcept
∧ sources(n) → concept ∈ AtomicConcept
∧ sources(n) → concept ⊂ targets(n) → concept → concepts

Graphical Representation

We provide a graphical representation based on UML2 activity diagrams in order

to draw composition goals in a user-friendly environment. Figure 9.15 lists all con-

structs and their graphical notation.

�������	��

�����������	��

���	�������
����
��
����
�����

�������������

��
�����������

�����
�����������

������� �������� ���������������

��������������
������
����������������
��

����������
������
����������������
��

�����
���
�

��!�����"���
����� ���� ����

������������

������������

������������ ������������

������������

������������ ������������

������	�������!!
"��	�
����#

��$���
%���&�"��	�
����!!
"��	�
����#

��$���
%���&�"��	�
����!!
"��	�
����#

���������������&�"��	�
����!!
����

��'*�����%����!!
�������"��	�
����

���	�
�����
���	�
����+��,�

Fig. 9.15. Graphical representation for composition goal constructs

282 Laurent Henocque and Mathias Kleiner

CompositionRequest

constraint:
PC.type={Book, CD}

PR:Product Request

PC:Product Conf

Fig. 9.16. Graphical example of a composition request (partial composition goal)

9.6.3 Overall Composition Process

We are now able to identify a complete process for efficient SWS composition. In the

first step, the composer receives a request which might need to be extended to a full

and valid composition goal, following the abstract model presented in the present

section. This solving is efficiently done using configuration technics. We give an

�������������

#��$ ��

���	�
�����
0�1���23�%��+4+0"1���23�%�� ���	�
�����

0�1"�3�%��+4+0"1"�3�%��
���	�
�����
0�1���23�%��+4+5���25

���	�
�����
0�1"�3�%��+4+6"�5

���	�
�����
��	�70�3�%��445���258+�+0�1���2
��	�70�3�%��445"�58+�+0�1"�

������	�������!!
0�1*���	���

��9�
;�����!!
0"1��
;�

���������������&�"��	�
����!!
���210�0"1�%��

��$��
%���&�"��	�
����!!
���2<0�1�%��

���������������&�"��	�
����!!
"�<0�0"1�%��

��$��
%���&�"��	�
����!!
"�<0�1�%��

0��0
�*&��+��>&�	�

0"�0
�*&��+"��

0"1���2�0
�*&��+"�� 0"1"��0
�*&��+"��

0�1���2�0
�*&��+��>&�	� 0�1"��0
�*&��+��>&�	�

Fig. 9.17. Graphical example of a full and valid composition goal

9 Composition 283

example of a simple request and its extension to a full-composition goal in Figs.

9.16 and 9.17. This configuration process is similar to the one presented in Sect. 9.5.

The tool searches for a valid instance of the constrained abstract model, using the

outputs of the request as root objects. The available elements are the ones given in

the request, as well as a library of atomic goals, mediators and operations.

Discovery is then executed on the basis of the atomic goals present in the final

composition goal in order to retrieve matching SWSs and their choreographies.

Finally, the composer is able to compose those workflows as shown in Sect.

9.5, following the additional constraints and objectives of the composition goal, and

extract the orchestration, choreography and capability of the composed Semantic

Web Service.

9.7 Outlook

To summarise this chapter, we may say SWS composition is a field of intense

research and one of the most challenging problem for the Semantic Web. We have

shown it is well viewed and efficiently solved as a constraint-based configuration

problem. We isolated a constrained abstract model for composing workflows in such

a way. We have also pointed out the necessity of a flexible request language and

presented an abstract model for it. The research community is going to face many

issues in the future about composition, among which we can see scalability (the high

number of SWSs expected to be available on the web might require the addition of

local search technics), reliability of composed Web Services, compensation (foresee

possible execution problems and create relevant alternative paths) and trust between

partners in the composition.

References

1. P. Albert, L. Henocque, and M. Kleiner. Configuration Based Workflow Composition.

In Proceedings of International Conference on Web Services ICWS’05, pages 285–292,

Orlando, Florida, USA, 2005.

2. P. Albert, L. Henocque, and M. Kleiner. A Constrained Object Model for Configuration

Based Workflow Composition. In Revised Selected papers of the Third International
Conference on Business Process Management Workshops BPM-05-WSCOBPM, pages

102–115, Nancy, France, September 2006.

3. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning About Interaction Protocols

for Web Service Composition. In Proceedings of 1st International Workshop on Web
Services and Formal Methods (web service-FM 2004), Pisa, Italy, February 2004.

4. V.R. Benjamins and D. Fensel. Editorial: Problem Solving Methods. Special Issue on
Problem-Solving Methods. International Journal of Human-Computer Studies (IJHCS),
49(4):305–313, 1998.

5. L. Bettini, V. Bono, and B. Venneri. O’klaim: A Coordination Language with Mobile

Mixins. In Proceedings of COORDINATION-2004, pages 20–37. LNCS, Springer-Verlag

2004.

284 Laurent Henocque and Mathias Kleiner

6. A. J. Bonner and M Kifer. Transaction Logic Programming. Technical Report CSRI-323.

Technical report, CSRI, November 1995.

7. E. Börger and R. Stärk. Abstract State Machines. A Method for High-Level System Design
and Analysis. Springer-Verlag, 2003.

8. A. Brogi, C. Canal, and A. Pimentel, E.and Vallecillo. Formalizing Web Services Chore-

ographies. In Proceedings of 1st International Workshop on Web Services and Formal
Methods (web service-FM 2004), Pisa, Italy, February 2004.

9. M. Carman, L. Serafini, and P. Traverso. Web Service Composition as Planning. In Pro-
ceedings of ICAPS-03 International Conference on Automated Planning and Scheduling,

Trento, Italy, June 2003.

10. I. Constantinescu, W. Binder, and B. Faltings. Flexible and Efficient Matchmaking and

Ranking in Service Directories. In 2005 IEEE International Conference on Web Services
(ICWS 2005), pages 5–12, Florida, USA, July 2005. IEEE Computer Society.

11. I. Constantinescu, B. Faltings, and W. Binder. Large Scale, Type-Compatible Service

Composition. In IEEE International Conference on Web Services (ICWS 2004), pages

506–513, San Diego, USA, July 2004. IEEE Computer Society.

12. R. Dijkman and M. Dumas. Service-Oriented Design: A Multi-Viewpoint Approach,

CTIT Technical Report Series No. 04-09. Technical Report, Centre for Telematics and

Information Technology, University of Twente, The Netherlands, February 2004.

13. D. Prashant, R. Goodwin, R. Akkiraju, and K. Verma. Dynamic Workflow Composi-

tion Using Markov Decision Processes. International Journal of Web Services Research,

2(1):1–17, January – March 2005.

14. A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. Configuration Knowledge Repre-

sentation Using UML/OCL. In Proceedings of the 5th International Conference on The
Unified Modeling Language, pages 49–62. Springer-Verlag, 2002.

15. D. Fensel, E. Motta, F. van Harmelen, V. R. Benjamins, M. Crubézy, S. Decker, M. Gas-

pari, R. Groenboom, W. E. Grosso, M. A. Musen, E. Plaza, G. Schreiber, R. Studer, and

B. J. Wielinga. The Unified Problem-Solving Method Development Language UPML.

Knowledge and Inference Systems, 5(1):83–131, 2003.

16. G. Fleischanderl, G. Friedrich, A. Haselböck, H. Schreiner, and M. Stumptner. Con-

figuring Large-Scale Systems With Generative Constraint Satisfaction. IEEE Intelligent
Systems, Special issue on Configuration, 13(7), 1998.

17. R. Ginis and K.M. Chandy. Service Composition Issues for Distributed Business Pro-

cesses. In Proceedings of the 2003 International Conference on Web Services (ICWS
2003), pages 27–33, Las Vegas, Nevada, USA, June 23 - 26 2003.

18. J.-Y Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.

19. A. Gómez-Pérez, R. González-Cabero, and M. Lama. A Framework for Design and Com-

position of Semantic Web Services. In Semantic Web Services, 2004 AAAI Spring Sym-
posium Series, pages 113–120, March 2004.

20. Object Management Group. UML v. 2.0 Specification. OMG, 2003.

21. Object Management Group. UML 2 Superstructure. Technical Report 2.0, OMG, 2004.

22. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, 8:231–274, 1987.

23. L. Henocque. Modeling Object Oriented Constraint Programs in Z. RACSAM (Revista
de la Real Academia De Ciencias serie A Mathematicas), Special Issue about Artificial
Intelligence and Symbolic Computing, pages 127–152, 2004.

24. K. Jensen. Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use.
Volume 1 and 2. Springer-Verlag, 1997.

9 Composition 285

25. J.E. Johnson, D.E Langworthy, L. Lamport, and F.H. Vogt. Formal Specification of a

Web Services Protocol. In G. Zavattaro and M. Bravetti, editors, Proceedings of the 1st
International Workshop on Web Services and Formal Methods, Pisa, Italy, February 2004.

26. U. Junker and D. Mailharro. The Logic of ILOG (j)Configurator: Combining Constraint

Programming With a Description Logic. In Proceedings of Workshop on Configuration,
IJCAI-03, pages 13–20, 2003.

27. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-

Based Languages. Journal of the ACM, 42(4):741–843, 1995.

28. L. Lamport. Specifying Concurrent Systems with TLA+. Calculational System Design,

173:183–247, March 1999.

29. H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. Golog: A Logic Program-

ming Language for Dynamic Domains. Journal of Logic Programming, 31(1-3):59–84,

1997.

30. D. Mailharro. A Classification and Constraint Based Framework for Configuration. AI-
EDAM, Special Issue on Configuration, 12(4):383 – 397, 1998.

31. S. Marcus and J. McDermott. SALT: A Knowledge Acquisition Language for Propose

and Revise Systems. Journal of Artificial Intelligence, 39(1):1–37, 1989.

32. S. McIlraith and T. Son. Adapting Golog for Composition of Semantic Web Services. In

Proceedings of Conference on Knowledge Representation and Reasoning, April 2002.

33. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

34. S. Mittal and B. Falkenhainer. Dynamic Constraint Satisfaction Problems. In Proceedings
of AAAI-90, pages 25–32, 1990.

35. B. Nebel. Reasoning and Revision in Hybrid Representation Systems. LNAI 422,

Springer-Verlag, 1990.

36. B. Norton, S. Foster, and A. Hughes. A Compositional Operational Semantics for OWL-

S. In Proceedings 2nd Workshop on Web Services and Formal Methods (WS-FM 2005),
2005.

37. M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara. Semantic Matching of Web Ser-

vices Capabilities. In Proceedings of the 1st International Semantic Web Conference
(ISWC), 2002.

38. M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and Monitoring

Web Service Composition. In Proceedings of the Workshop on Planning and Schedul-
ing for Web and Grid Services held in conjunction with ICAPS-2004, Whistler, British

Columbia, Canada, June 2004.

39. S.R. Ponnekanti and A. Fox. Sword: A Developer Toolkit for Web Service Composition.

In Proceedings of the 11th International WWW Conference, pages 83–107, Hawaii, May

2002.

40. J. Rao, P. Kungas, and M. Matskin. Logic-Based Web Service Composition: From Service

Description to Process Model. In Proceedings of the 2004 IEEE International Conference
on Web Services, ICWS 2004, San Diego, California, USA, July 2004.

41. R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, 2001.

42. C. Schlenoff, M. Gruninger, M. Ciocoiu, and J Lee. The Essence of the Process Spec-

ification Language. Transactions of the Society for Computer Simulation International,
Special Issue on Modeling and Simulation in Manufacturing Systems, 16, No. 4:204–216,

December 1999.

43. A.E.F. Seghrouchni and S Haddad. A Recursive Model for Distributed Planning. In

Proceedings of the 2nd International Conference on Multi-Agent Systems (ICMAS-96),
pages 307–314, Kyoto, Japan, 1996. IEEE.

286 Laurent Henocque and Mathias Kleiner

44. E. Sirin, J. Hendler, and B. Parsia. Semi Automatic Composition of Web Services Using

Semantic Descriptions. In Proceedings of the ICEIS-2003 Workshop on Web Services:
Modeling, Architecture and Infrastructure, Angers, France, April 2003.

45. E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN Planning for Web Service

Composition Using SHOP2. Journal of Web Semantics, 1(4):377–396, 2004.

46. T. Soininen, I. Niemelõ, J. Tiihonen, and R. Sulonen. Unified Configuration Knowledge

Representation Using Weight Constraint Rules. In ECAI-2000 Configuration Workshop,

2000.

47. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall originally, now

J.M. Spivey, 2001.

48. M. Stumptner. An Overview of Knowledge-Based Configuration. AI Communications,

10(2):111–125, June 1997.

49. S. Thakkar, C.A. Knoblock, J.L. Ambite, and C. Shahabi. Dynamically Composing Web

Services From On-Line Sources. In Proceedings of AAAI-02 Workshop on Intelligent
Service Integration, Edmonton, Canada, July 2002.

50. W. van der Aalst. Pi Calculus Versus Petri Nets: Let us Eat Humble Pie Rather Than

Further Inflate the Pi Hype. BPTrends, 3(5):1–11, May 2005.

51. W.M.P. van der Aalst, L. Aldred, and M. Dumas. Design and Implementation of the

YAWL System. QUT Technical Report, FIT-TR-2003-07. Technical report, Queensland

University of Technology, Brisbane, 2003.

52. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.

Information Systems, 30(4):245–275, 2005.

53. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow

Patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

54. M. Viroli. Towards a Formal Foundation to Orchestration Languages. In Proceedings
of 1st International Workshop on Web Services and Formal Methods (web service-FM
2004), Pisa, Italy, February 2004.

55. M. Vukovic and P. Robinson. Adaptive, Planning Based, Web Service Composition for

Context Awareness. In Proceedings of the 2nd International Conference on Pervasive
Computing, Vienna, Austria, 2004.

56. M. Wooldridge. Introduction to Multi Agent Systems. Wiley, 2002.

57. X. Yi and K. Kochut. A CP-Nets-Based Design and Verification Framework for Web

Services Composition. In proceedings of 2004 IEEE International Conference on Web
Services, July 2004, San Diego, California, USA, July 2004.

10

Mediation
Bridging between Heterogeneous Web Service Systems

Oscar Corcho, Silvestre Losada and Richard Benjamins

Intelligent Software Components, S.A. (iSOCO), Madrid, Spain,

{ocorcho,slosada,rbenjamins}@isoco.com

Summary. This chapter covers the mediation aspect in a Semantic Web Services environ-

ment. Mediation components should allow any service to speak with any other service in

a scalable manner, overcoming the heterogeneity of data formats, terminologies, interaction

styles, etc. In this chapter, we decompose mediation in three levels, according to the classi-

fication provided in Chap. 6: (1) data mediation, concerned with the transformation of the

syntactic format of the messages exchanged by Web Services; (2) ontology mediation, con-

cerned with the transformation of the terminology used inside the messages exchanged and

(3) protocol or choreography mediation, concerned with the problem of non-matching mes-

sage interaction patterns. Business process mediation is not considered, since it requires to

perform a task of process re-engineering that is outside the context of research in Semantic

Web Services.

10.1 Notion of Mediation

The interaction of Semantic Web Services in an application is centred on two com-

plementary principles [7].

1. Strong de-coupling of the various components that realise the application,

including the hiding of information based on the difference of internal business

intelligence and public message exchange protocol interface descriptions.

2. Strong mediation services enabling anybody to speak with everybody in a scal-

able manner, including the mediation of different data formats, terminologies,

interaction styles, etc.

This chapter is focused on the second architectural principle. According to it, medi-

ation can be described as a process for settling a dispute between two parties where

a third one is employed whose task is to try to find common ground that will resolve

inconsistencies between their respective conceptualisations of a given domain.

The mediation problem has been widely addressed in the literature in the con-

text of system integration. For example, component-based software development

introduced the so-called adapters [10], aimed at enabling the reuse of descriptions

288 Oscar Corcho et al.

of objects by making it possible to combine objects that differ in their syntactical

input and output descriptions. Also in software engineering, the notion of connec-

tors is introduced [11]. Connectors are software pieces that establish the relation-

ships between different components and mediate between their interaction styles,

i.e. between their different business logics.

We can find similar examples in the knowledge engineering area. Adapters [8]

were introduced in knowledge-based systems so as to facilitate knowledge reuse.

The objective of adapters in this context is to decouple the elements of a knowledge

model, by encapsulating them and explicitly modelling their interactions. In the con-

text of heterogeneous and distributed information systems, the notion of mediators

appears, together with the notion of wrappers [22]. Mediators translate user queries

into sub-queries on the different information sources that are accessed through the

use of wrappers and integrate the sub-answers received from each of the information

sources. In other words, mediators are defined as entities for establishing interoper-

ability of resources that are not compatible a priori by resolving mismatches between

them at runtime.

In summary, mediators are used to overcome the heterogeneity problems between

different sources of information, different software components and different know-

ledge elements. These problems are usual in current system integration, and espe-

cially in more open contexts such as those of service-oriented architectures (together

with one of their common deployments: Web Services).

As described in Chap. 6, the heterogeneity problem must be handled at different

levels. These levels of heterogeneity are usually classified as follows:

• Data mediation : It is concerned with the transformation of the syntactic format

of the messages exchanged by different services. That is, the service requester

may provide an input for the service provider that is not in the format that the

latter is expecting, and vice versa. For instance, the parameter values in a SOAP

message may appear in different places of the message body or header, with

different orders, etc.

• Ontology mediation : It is concerned with the transformation of the semantic

models used by the service requester and provider to express the messages that

they exchange. It is likely that the service requester and the service provider will

use different ontologies (with different degrees of complexity) to refer to the

content of their messages.1

• Protocol mediation : Also known as choreography mediation, it is concerned with

the problem of non-matching message interaction patterns. That is, two or more

services exchanging messages may use different interaction patterns (e.g. one of

them sends only one message while the other expects two).2

1 In the context of WSMO, described in Chap. 7, this type of mediators would correspond to

the so-called ooMediators
2 In the context of WSMO, this type of mediators would correspond to the so-called

wwMediators. The other types of mediators (ggMediators and wgMediators) do not cor-

respond to this classification

10 Mediation 289

• Process mediation : Also known as business process mediation, it is concerned

with the alignment of business processes that have different conceptual models,

although the effect or result of executing the processes may be compatible. For

example, a marketplace service may implement the notion of “shopping basket”

while one of its clients may implement the notion of “one-stop shop” for buying

and selling products.

10.1.1 Mediation in the Macro-Architecture and Micro-Architecture

Section 6.4 of chap. 6 described an architecture for the deployment of applications

using Semantic Web Services. Following some of the proposals in Agent Technol-

ogy research, it identified two types of architecture: macro-architecture and micro-

architecture, each of them focused on different aspects of the general framework.

We will follow the same approach to describe the role of mediation in the context of

Semantic Web Service applications.

From a macro-architectural point of view, the role of the different types of medi-

ation in each of the possible interactions is described in Table 10.1.

The table shows that data mediation is only used in the case of service deliv-

ery, i.e. when the actual service is executed. The reason for this is that for other

aspects like discovery or negotiation of the service provision there is no need to spec-

ify the concrete values for the parameters that will be inside each of the messages

exchanged.

On the contrary, ontology mediation is needed for all the possible interactions

identified in the macro-architecture. It may be needed in the process of registra-

tion with a discovery agent, because the latter may be using a different ontology for

service description. It may also be needed in the process of discovering available

services, since the ontology used by the service requester might be different to those

of the service providers registered in the discovery agent. It may be needed in the

definition of the service provision made by the service requester and provider, for

the same reason given above. And it may be needed during the service delivery, i.e.

during the service execution.

Protocol mediation is not needed for the service registration and discovery, since

the process to be followed for registering and querying is already known by all the

parties. But it may be needed for service definition, where the protocol is negotiated,

Table 10.1. The role of mediation in the SWS macro-architecture defined in Sect. 6.4

of Chap. 6

data ontology protocol

mediation mediation mediation

1. service offer registration X
2. service request X
3. service definition requester-provider X X
4. service delivery X X X

290 Oscar Corcho et al.

and for service delivery, where the existence of different message exchange patterns

has to be overcome in the communication.

Let us now see how the different levels of mediation are applied in the context of

the micro-architectures presented in Sect. 6.4 of Chap. 6.

Figure 10.1 summarises the role of mediation from the point of view of the ser-

vice requester. Data mediation is performed by the message lift/lower component,

which transforms incoming and outgoing messages to a canonical format that can

be used by the rest of the modules. Ontology mediation takes place between the

discovery/definition component and the application logic component, and between

the delivery component and the application logic. Finally, protocol mediation takes

place in the delivery component, using the choreography descriptions referenced by

the provider agent during the service definition interaction.

Figure 10.2 summarises the role of mediation from the point of view of the ser-

vice provider. Data and ontology mediation take place in the same locations of the

architecture as in the service requester case. The only difference is related to the role

of protocol mediation, as aforementioned: the service provider just provides descrip-

tions of its choreography to the service requester, and hence no mediation takes place

here at the protocol level.

In the following sections, we will provide a general overview of the current state

of the art in mediation in the first three of the aforementioned levels. We start posi-

tioning mediation in the context of the case study scenarios defined in Chap. 6. Then

we will describe some of the existing approaches to data, ontology and protocol

mediation. We exclude process mediation from this chapter because it is out of the

scope of current research in Semantic Web Services. As aforementioned, process

Application Logic

Discovery and Definition
ComponentService

Requirement
Description

Delivery Component

Provider
Choreography

Description

Message Lift/
Lower

Message
Transport
Routines

Knowledge BaseKnowledge Base

Data
mediation

Message
Transport
Routines

Message
Lift/

Lower

Ontology
mediation Discovery and

Definition
Component

Ontology
mediation Protocol

mediation

Delivery Component

Application
Logic

Service
Requirement
Description

Provider
Choreography

Description

Fig. 10.1. Mediation from the point of view of the service requester

10 Mediation 291

Application Logic

Discovery and Definition
ComponentService

Requirement
Description

Delivery Component

Message Lift/
Lower

Message
Transport
Routines

Knowledge Base

Ontology
mediation

Delivery Component

Message
Lift/

Lower

mediation
Data

Message
Transport
Routines

Ontology
mediation

Discovery and
Definition

Component

Knowledge Base

Application
Logic

Fig. 10.2. Mediation from the point of view of the service provider

mediation normally needs of a process re-engineering task to achieve a successful

interaction between the services involved in a conversation. Some of the concrete

approaches described in each of the following sections are taken from the work

performed in the context of the SWWS project. Finally, we provide the conclusions

to the work presented and describe what we think will be the future trends in media-

tion in the Semantic Web Services domain.

10.2 Mediation in Case Study Scenarios

This section illustrates the notion of mediation by revisiting the example case studies

listed in Chap. 6. For each of the example scenarios, mediation is identified and

characterised in the context of the particular case study.

10.2.1 Scenario A

In this scenario, the needs of the customer notification agent will be mainly related to

data and ontology mediation. Data mediation will be needed because the information

obtained from the banks with respect to the current balance of different accounts, the

information about consumer good companies with respect to future payments to be

done, and the data sent through any of the different user notification means (SMS,

e-mail, etc.) will be available in different formats (services from different banks and

consumer good companies will use different formats for dates and currency amounts,

and different notification means will need different types of formats for sending the

text of the notification, among others). Ontology mediation will be needed because

each service will probably be using a different terminology to refer to the customer

292 Oscar Corcho et al.

information (a bank may classify its customers according to their age while another

may classify them according to their employment status, and have different informa-

tion in each case), to the payment details, etc.

10.2.2 Scenario B

In this scenario, there are similar needs for data and ontology mediation. Each sta-

tionery provider will be using different terms to refer to the same object, and the

formats used in each case will be different. There is no need for more types of medi-

ation since the protocol used for defining the sequence of messages is clear (that of

a shopping basket) and all the services that participate in a conversation share that

model.

10.2.3 Scenario C

In this scenario, besides the need for data and ontology mediation already pointed out

for the other scenarios, we may need to perform some kind of protocol mediation.

Though the scenario is defined in Chap. 6 as one where all the services involved in the

communication use the same model for exchanging messages (RosettaNet), we could

easily imagine that one of them uses a different one, such as EDIFACT, for receiving

and forwarding logistic requests. In that case, the exchange of messages between

different services will be different (one message in RosettaNet can correspond to

several messages in EDIFACT and vice versa, one message may not need to be sent

in the another protocol, etc.)

10.2.4 Scenario D

Finally, this scenario will be one where, again, data and ontology mediation will be

needed, with no clear role for protocol or process mediation.

10.3 Data Mediation

Data mediation is specific of the syntax transformation that takes place during mes-

sage exchange between a service requester and the service provider, or between a set

of cooperating parties participating in a choreography. Hence, its main function is to

provide syntax transparency that guarantees information flow between them, trans-

forming the input and output data of the Web Services so that they can be handled

by the corresponding parties.

As described in the introduction to this chapter, data mediation is only used dur-

ing the service delivery phase (i.e. on service invocation), which is the moment when

actual data is transported from one service to another.

The mismatches that can appear in the data mediation layer are of many different

types: the message generated by the service requester may contain more or less infor-

mation than the information needed by the service provider, the information may be

provided with a different structure, using a different encoding scheme, etc.

10 Mediation 293

There are mainly two alternatives to perform transformations in the data media-

tion layer:

1. One-step transformation approaches: This type of transformation deals at the

same time with all the transformations to be made to the syntax, structure, encod-

ing, etc. of the messages exchanged.

2. Multi-step transformation approaches: This type of transformation divides the

transformation process in several steps: (1) extract data from the native source

message syntax into a data mediation syntax and structure (normally known as

lifting); (2) perform the ontology mediation (described in the next section) in

that common syntax; (3) write the mediated data to the native target message

syntax (normally known as lowering).

From both approaches, the second one is normally easier to build (and especially

to maintain), even if it requires more programming effort than the first one. How-

ever, most of the existing implementations of data mediation components rely on

ad hoc solutions based on the first approach. That is, the data mediation component

is implemented specifically for each pair of service requester and provider, all the

transformations are done in one step, making them more difficult to maintain when

there is a change in the requester or provider and less reusable, and finally the corre-

sponding code is generated in a general-purpose programming language.

In the next section, we describe one possible implementation of a data mediation

component,3 based on a multi-step transformation approach. This implementation

has been created and evaluated in the context of the SWWS project.

10.3.1 An Implementation of a Data Mediation Component

As commented above, this section presents a possible implementation of a data medi-

ation component based on a multi-step approach. This component, which can be used

both by the service requester and by the service provider, consists of two subcompo-

nents:

1. A lifting component, which transforms the content of the incoming message

(normally available in XML format) into a normalised format (e.g. a set of RDF

statements). The RDF statements generated are related to an ontology, which

may be available either in RDF Schema or in OWL. The RDF statements rep-

resent instances of that ontology and values for the properties defined for that

ontology, and this information comes from the original message received by the

component.

2. A lowering component, which concretises outgoing messages following a sym-

metric process to that of the lifting component. This component transforms RDF

code that has been used or generated by the service (for instance, as a result

of its execution) into another format usable by the service provider or requester

(normally XML).

3 The contents of this section are based on an earlier version from Steve Battle – HP labs

294 Oscar Corcho et al.

Though the subsequent use of the RDF statements generated during the lifting pro-

cess is not a matter of the data mediation component, it is important to mention that

normally these statements will be inserted into a knowledge base, which can then be

used by the service during its execution (e.g. for ontology mediation purposes).

Let us describe now with more detail how we implemented each of these com-

ponents in the context of the SWWS project.

The Lifting Subcomponent

The subcomponent described in this section is a generic piece of software that can

take a message in XML and generates the corresponding set of RDF statements

according to a set of mapping rules specified by a user. These mapping rules deter-

mine how each of the parameters and values inside the XML message have to be

transformed into RDF statements according to a RDF Schema or OWL ontology.

The lifting process performed by this subcomponent consists of two consecutive

stages:

1. The XML message is transformed to RDF according to an OWL ontology that

resembles the message structure (i.e. it can be considered as an ontology of XML

Schema). This means that every XML element and XML attribute corresponds

to a RDF property, that every XML sequence corresponds to an rdf:Seq, etc.

2. The RDF model is transformed into another RDF model that is in conformity

with the domain ontology that is going to be used to describe the message con-

tent. This second stage can be performed by means of rules.

We describe the two stages in the following in more detail by giving examples.

1st Stage – XML Transformation to RDF

Transformation of XML Elements and Attributes. The central idea of the first stage

of the lifting process is that every XML element name and every XML attribute
name maps to an RDF property, viewing the XML structure as a relational model

between parent nodes and their children. Pragmatically, this first transformation pro-

cess brings the message data into the RDF realm, allowing subsequent inference to

take place.

Alternative approaches have been proposed to this idea, including the transforma-

tion of element names into RDF Schema class names, and then only XML attributes

would be identified with RDF properties. However, this transformation is not uni-

formly applied and neither can it be recovered from the schema.

Transformation of XML Schema Simple and Complex Types. Furthermore, proper-

ties can be further classified into object and datatype properties (this is not possible

in RDF Schema, but in OWL). XML Schema describes them in terms of simple

and complex types. Simple XML Schema datatypes are mapped onto OWL datatype
properties, which relate a resource and a typed literal. Untyped simple XML Schema
types are interpreted as plain literals. For derived simple types, the property defini-

tion uses only the base type from which it is derived. The content of enumerations

can be preserved as property restrictions.

10 Mediation 295

XML Schema ComplexTypes are described using sequence, all and choice com-

positors. For each XML Schema complex type, we create a new resource that rep-
resents the class and use it to define the rdf:type of the product information (where

the type has a global name). Complex types may also support mixed content models

with interspersed text. In this case, the rdf:value property is used where a singular

literal will not do.

XML is not strictly a tree, but a tree with pointers as described by IDs and

IDREFs. Rather than preserve the IDREF datatype, we interpret it as a URI–defined

relative to the document base. IDREFs are an exception where a simple type does

not refer to a literal value.

Preservation of the XML Sequencing. A naive translation of XML into RDF has the

side effect of losing the sequencing implicit in the XML. From the two approaches

that could be taken to represent sequencing with RDF containers (RDF lists and RDF

sequences), we choose sequences, using the rdf:Seq primitive.

Summary of Transformations. The XML Schema–based mapping is summarised in

Table 10.2.

Example
As a simple example, let us consider the XML message below (a response to a

request to add an item to the order). This reports on the status of an operation to

add an item to the order (addToOrder).

<?xml version="1.0"?> <ns:addLineToOrder
xmlns:ns="http://ontology.hpl.hp.com/slms/addLineToOrderResponse.xsd">

<STATUS><![CDATA[TRUE]]></STATUS>
<ErrorFlag><![CDATA[False]]></ErrorFlag>

</ns:addLineToOrder>

Assuming that the base URI of the previous XML document is http://
example.com/slms/addlinetoorder1.xml, after the first stage of lifting

the following RDF code is generated:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:j.0=
"http://ontology.hpl.hp.com/slms/addLineToOrderResponse.xsd/addLineToOrder/"

Table 10.2. Summary of transformations from XML to RDF

XML Schema RDF

Element Property

Attribute (except ID) Property

Attribute (ID) Resource URI

Predefined simpleType (not IDREF) Typed literal

Untyped simpleType Plain literal

Complextype (named) Resource type

Sequence compositor Rdf:Seq

Literals in mixed content Rdf:value properties

Restriction (base type) Typed literal

Attribute group Resource type

296 Oscar Corcho et al.

xmlns:j.1="http://ontology.hpl.hp.com/slms/addLineToOrderResponse.xsd/">
<rdf:Description rdf:about="http://example.com/slms/addlinetoorder1.xml">
<j.1:addLineToOrder rdf:parseType="Resource">
<j.0:ErrorFlag rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>False</j.0:ErrorFlag>
<j.0:STATUS rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>TRUE</j.0:STATUS>

</j.1:addLineToOrder>
</rdf:Description>

</rdf:RDF>

Observe that all of the elements that appeared in the original XML message

(addLineToOrder, STATUS, ErrorFlag) are mapped to RDF properties. The type

information for these properties (xsd:string) has been recovered from the XML

Schema referenced from the XML message.

2nd Stage – Transformation of the Canonical RDF Model into a Domain Model. The

second stage consists in manipulating the raw RDF output obtained in the previous

stage so that it conforms to a specific domain ontology, which defines the content of

the original message. This may involve changes to the structure of the output as well

as name changes.

Example
Below we show an example of a set of rules4 (variables are preceded by a ques-

tion mark ‘?’). These rules replace the values ‘TRUE’, ‘FALSE’, ‘True’ and ‘False’

with lowercase equivalents. They also cast the property names into a different

namespace as it is irrelevant that they are defined locally within the ‘addLine-

ToOrder’ element (see ‘j.0’). Finally, they skip over the property that corre-

sponds to the document element (‘addLineToOrder’), which contains no additional

content.

@prefix ns:
<http://ontology.hpl.hp.com/slms/addLineToOrderResponse#>

@prefix j.0:
<http://ontology.hpl.hp.com/slms/addLineToOrderResponse.xsd/

addLineToOrder/>
@prefix j.1: <http://ontology.hpl.hp.com/slms/addLineToOrderResponse.xsd/>

(?x j.1:addLineToOrder ?y) -> (?y eg:lift ?x).
(?x eg:lift ?z), (?x j.0:STATUS ’TRUE’) -> (?z ns:status ’true’).
(?x eg:lift ?z), (?x j.0:STATUS ’FALSE’) -> (?z ns:status ’false’).
(?x eg:lift ?z), (?x j.0:ErrorFlag ’True’) -> (?z ns:errorFlag ’true’).
(?x eg:lift ?z), (?x j.0:ErrorFlag ’False’) -> (?z ns:errorFlag ’false’).

Once, that this transformation has been done, we want to obtain only the properties

with the ’ns’ prefix (which corresponds to http://ontology.hpl.hp.com/
slms/addLineToOrderResponse\#). The final result for the original XML

message is as follows:

4These rules are defined using the Jena rule language. Jena is a library for the manage-

ment of OWL and RDF(S) ontologies, developed by HP Labs (see http://jena.
sourceforge.net/). This is just an implementation option and any other alternative

could have been used

10 Mediation 297

<rdf:RDF
xmlns:ns="http://ontology.hpl.hp.com/slms/addLineToOrderResponse#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description
rdf:about="http://ontology.hpl.hp.com/slms/addlinetoorder1.xml">
<ns:status>true</ns:status>
<ns:errorFlag>false</ns:errorFlag>

</rdf:Description>
</rdf:RDF>

This message contains the RDF statements that can now be used by the service to

execute its business logic. A summary of the transformations that have been per-

formed in this example is given in Fig. 10.3.

Lowering

The lowering subcomponent is also a generic piece of software that can be considered

as the reverse of the lifting one. That is, it takes a model in RDF and generates the

corresponding XML message, according to a set of mapping rules specified by a

user and to an XML Schema that defines how the resulting XML message has to be

created.

As in the case of lifting, the lowering process consists of two consecutive stages:

the first one where the original RDF model, based on a domain ontology, is trans-

formed into an RDF model that resembles the XML Schema of the message that has

��������	�
����
� �����������
���������������������
���������������
������������

���������	�
����
��

Fig. 10.3. Lifting process for an incoming XML message

298 Oscar Corcho et al.

to be output; and a second step where that canonical RDF model is transformed to

XML according to the XML Schema that it has to follow.

The first stage is based on the use of mapping rules as the ones presented in the

case of lifting. In the second stage, the lowering process navigates RDF statements

downstream (moving from subject to object) so as to construct an XML document

object model from the root element. The local names of the matched properties must

match the local names of attributes and elements defined in the XML Schema. Fur-

thermore, the namespaces must follow the conventions defined by the mapping that

preserve the scope of XML Schema components.

Since the basis of these processes is very similar to the one used in the lifting

component, we will not give too much details about it but just an example of how it

can be used.

Example
For this example, we will construct the outgoing message representing the request to

add a line to an order. This line specifies that the cost centre has the value 999. The

raw RDF input representing this message is shown below.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ns="http://ontology.hpl.hp.com/slms/addLineToOrder#">

<rdf:Description rdf:about="http://example.com/slms/addlinetoorder.xml">
<ns:costCentre>999</ns:costCentre>

</rdf:Description>
</rdf:RDF>

The XML Schema which the output message must comply with is shown below. It

shows that we need to specify an XML element called Field1 and its corresponding

value using an XML element called Value1.

<?xml version="1.0" encoding="UTF-8"?> <xs:schema
targetNamespace="http://ontology.hpl.hp.com/slms/addLineToOrder.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="addLineToOrder" form="qualified">

<xs:complexType>
<xs:sequence>
<xs:element name="Field1" type="xs:string" minOccurs="0"/>
<xs:element name="Value1" type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

The first stage consists in obtaining an RDF model that resembles the XML Schema

that we want to comply with. This will be done by means of the rule specified below.

The left-hand side of the rule detects the presence of the cost-centre property and

translates this into the appropriate document structure including the document ele-

ment property ‘addLineToOrder’ and the separate ‘Field1’ and ‘Value1’ properties.

@prefix ns: <http://ontology.hpl.hp.com/slms/addLineToOrder#>
@prefix j.0: <http://ontology.hpl.hp.com/slms/addLineToOrder.xsd/>
@prefix j.1:
<http://ontology.hpl.hp.com/slms/addLineToOrder.xsd/addLineToOrder/>

(?x ns:costCentre ?c) -> (?x j.0:addLineToOrder ?y), (?y j.1:Field1
’COST CENTER’), (?y j.1:Value1 ?c).

10 Mediation 299

As a result of the application of this rule, the following piece of RDF code is

obtained:

<rdf:RDF
xmlns:j.0="http://ontology.hpl.hp.com/slms/addLineToOrder.xsd/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:j.1="http://ontology.hpl.hp.com/slms/addLineToOrder.xsd/addLineToOrder/">
<rdf:Description rdf:about="http://example.com/slms/addlinetoorder.xml">
<j.0:addLineToOrder rdf:parseType="Resource">

<j.1:Field1>COST CENTER</j.1:Field1>
<j.1:Value1>999</j.1:Value1>

</j.0:addLineToOrder>
</rdf:Description>
</rdf:RDF>

Now the second stage starts. The property names in the RDF statements above are

defined relative to the target namespace of the XML Schema http://ontology.
hpl.hp.com/slms/addLineToOrder.xsd. The response from this call is

the corresponding XML that has to be output, conforming with the XML Schema.

<?xml version="1.0"?> <ns1:addLineToOrder
xmlns:ns1="http://ontology.hpl.hp.com/slms/addLineToOrder.xsd">

<Field1>COST CENTER</Field1>
<Value1>999</Value1>

</ns1:addLineToOrder>

10.4 Ontology Mediation

The objective of ontology mediation in the context of Semantic Web Services is

to produce mappings between the conceptualisations of the service provider and

requester (or in a more general way, among the services involved in a choreography).

It differs from data mediation both in the scope of the mediation performed (focused

on overcoming the heterogeneity of semantic models instead of the message syntax)

and in the tools used for that purpose, as we will explain later.

As described in the introduction to this chapter, ontology mediation is normally

needed in all of the Semantic Web Service interactions identified in our macro-

architecture: on service offer registration by a service provider, on service request

by a service requester, on the definition of a service provision between the service

requester and provider and on service delivery.

The reason for this is that the services involved in a choreography may use dif-

ferent semantic models to represent the data that they are exchanging. While the

service requester may use the parameter departurePlace as the departure port name

for a freight service, the service provider receiving the message may be expecting

that the departurePlace is the name of the city and the name of the country from

which the freight service will be done.

As specified in Chap. 3, ontologies are shared models of a domain, which means

that if the services involved in a choreography share the same ontology then there will

be no problems on understanding the content of the messages that they are exchang-

ing (after data mediation in the case of service invocation or for service discovery,

registration, etc.). However, this is not always the case when any set of services

300 Oscar Corcho et al.

exchange messages. That is, there are cases where the service requester and provider

do not share the same ontology. In that case, there are differences in the concep-

tion of the domain that may affect the effective communication between them. These

differences are commonly known as mismatches, which are overcome by ontology

mediation.

According to the literature, ontology mediation can be accomplished following at

least two different strategies: alignment and merge. Ontology alignment is defined as

“a set of correspondences between two or more (in case of multi-alignment) ontolo-

gies (by analogy with DNA sequence alignment)” [2]. Ontology merge is defined

as “the creation of a new ontology from two or more (possibly overlapping) source

ontologies; this concept is closely related to that of integration in the database com-

munity” [2]. In other words, ontology alignment is accomplished by establishing

links between the different source ontologies, which are kept separated, while onto-

logy merge consists in joining the source ontologies into a single ontology that com-

prises all the information of the sources.

Although they have different purposes (keeping source ontologies separated or

transforming them to a single ontology), ontology alignment and merge can be per-

formed with similar algorithms, techniques and tools. Among them we can cite the

PROMPT tool suite [19], the MAFRA framework [15], the Chimaera tool [16],

RDFT [20], GLUE [5], OntoMap [14] and Semantic Matching [6]. There are also

integrated systems that cover the problem of ontology alignment and merge and that

propose algorithms and techniques as well, such as InfoSleuth [9], ONION [18],

OBSERVER [17] and MOMIS [1], among others.

It is not the objective of this section to provide an extensive discussion about

the current state of the art on ontology alignment and merge, but to comment on

the solutions to the ontology mediation problem in the context of Semantic Web

Services. For extensive surveys of the state of the art on ontology alignment and

merge, we recommend reading [12], [13] and [4]. They all provide a good overview

and classification of the state of the art on ontology mediation methods and tools, as

well as a characterisation of the different types of ontology mismatches that can be

found between heterogeneous ontologies. Besides these readings, in the EON2004

workshop5 proceedings we can find ontology alignment and merge experiments that

have been carried out with some of these tools.

10.4.1 An Implementation of an Ontology Mediation Component
for Semantic Web Services

Ontology mediation methods, techniques and tools usually consist of two steps. First

the mappings between the concepts and relations of the ontologies used by the ser-

vices are established. These mappings are usually known as mapping rules, even

though they are not necessarily implemented as rules. Then these mapping rules are

executed to transform the messages that are being exchanged or the goals and capa-

bilities of the service requesters and providers. Figure 10.4 illustrates this process,

5 http://km.aifb.uni-karlsruhe.de/ws/eon2003

10 Mediation 301

mapping rules

Requester Provider
Data

Mediator

<?xml …<env:Envelope …
…
<p:departing>New York</p:departing>

</env:Envelope>

<?xml …<env:Envelope …
…
<q:departing>JFK</q:departing>

</env:Envelope>

Fig. 10.4. Ontology mediation for the exchange of messages between Web Services

showing how the message content would be transformed according to the mapping

rules defined between two services.

As described in Chap. 8, the goals of a service requester can be described either

as instances of the requester ontologies, where the specific values for the service

parameters are specified, or as class expressions based on the requester ontologies,

which define in a more abstract way the requester goal without specifying the actual

values for the service parameters.

We will show now an ontology mediation approach that has been implemented

in the context of the SWWS project, following the first approach. That is, we assume

that goals are described as instances of the requester ontologies, with specific values

for their properties. In this context, ontology mediation consists in transforming the

instances of the service requester ontologies into instances of the service provider

ontologies. These transformations are executed from the mappings between the ser-

vice requester and provider ontologies, which may have been derived using any of

the ontology merge and alignment approaches aforementioned or specified manually.

Let us assume that we are in the context of the first case study described in

Chap. 6, the one about a financial overdraft notification service. We will focus

on the notification part of the service. Let us also consider that there are a set of

Semantic Web Services that provide different types of notification services for users

(notification by e-mail, phone, SMS, etc.).

302 Oscar Corcho et al.

Figure 10.5 shows graphically part of the ontology that the service requester (the

system that decides whether notifying users or not) uses for representing notifica-

tions. This ontology contains concepts like notification, notificationByFax, notifi-

cationByPhone, notificationByPostalMail, etc. Besides this, it models more general

concepts like users, postal addresses, dates and times, etc.

-cost : float
-ntf_body : string

notification

-ntf_subject : string

notificationByFax

-ntf_subject : string
-ntf_urgent : string = no

notificationByPost notificationBySMS

-ntf_subject : string
-ntf_cc : string

notificationByEMail

-dayOfMonth : int
-monthOfYear : int
-year : int

date

-hourOfDay : int
-minuteOfHour : int
-secondOfMinute : int

time

dateAndTime

*

-date

*

*

-time

*

*

-ntf_date

*

-phn_number : string

fax

-pm_address : string
-pm_zipCode : string
-pm_city : string
-pm_state : string
-pm_country : string

postalAddress

-phn_number : string

phone

-name : string
-surname : string
-login : string

user
* -ntf_from

*

-email_account : string

emailAccount

-ntf_usesContactInfo*

*

-ntf_usesContactInfo*

*

-ntf_usesContactInfo*

*

-ntf_usesContactInfo*

*

Fig. 10.5. Notification ontology of the service requester (source ontology)

-phn_number : string

notification

-dayOfMonth : int
-monthOfYear : int
-year : int

date

-hourOfDay : int
-minuteOfHour : int
-secondOfMinute : int

time

dateAndTime

*

-date

*

*

-time

*

*

-time

*

-msg_from : string
-msg_body : string

message* -content

*

-cost : float

payment

*

-payment

*

Fig. 10.6. Notification ontology of the service provider (target ontology)

10 Mediation 303

-cost : float
-ntf_body : string

notification

-ntf_subject : string

notificationByFax

-ntf_subject : string
-ntf_urgent : string = no

notificationByPost notificationBySMS

-ntf_subject : string
-ntf_cc : string

notificationByEMail

-dayOfMonth : int
-monthOfYear : int
-year : int

date

-hourOfDay : int
-minuteOfHour : int
-secondOfMinute : int

time

dateAndTime

*

-date

*

*

-time

*

*

-ntf_date

*

-phn_number : string

fax

-pm_address : string
-pm_zipCode : string
-pm_city : string
-pm_state : string
-pm_country : string

postalAddress

-phn_number : string

phone

-name : string
-surname : string
-login : string

user
* -ntf_from

*

-email_account : string

emailAccount

-ntf_usesContactInfo*

*

-ntf_usesContactInfo*

*

-ntf_usesContactInfo*

*

-ntf_usesContactInfo*

*

-phn_number : string

notification

-dayOfMonth : int
-monthOfYear : int
-year : int

date

-hourOfDay : int
-minuteOfHour : int
-secondOfMinute : int

time

dateAndTime

*

-date

*

*

-time

*

*

-time

*

-msg_from : string
-msg_body : string

message* -content

*

-cost : float

payment

*

-payment

*

Fig. 10.7. Mapping rules for mediation between the two notification ontologies

Figure 10.6 shows graphically part of the ontology used by the service provider

(in this case the service in charge of notifying users by SMSs). We can see that both

services use the concept notification to refer to the notification to be sent. However,

the properties of this concept are not exactly the same in both ontologies (they use

different names in some cases, the structure is different for some of them, where a set

of datatype properties in one case is transformed into an object property where the

range is another concept, etc.). Besides this, in the source ontology there is a classi-

fication of different types of notifications, according to the type of medium used to

send it, while in the target ontology there is only one type of notification considered,

since the service provider only deals with messages sent by SMS. Finally, we can

see that both services use the same representation for timestamps (represented by the

304 Oscar Corcho et al.

dateAndTime, date and time concepts in both ontologies), so there will be no need

for mediation in this specific piece of information.

Figure 10.7 shows some of the mediation rules needed to generate instances

of the concept notificationBySMS of the service provider ontology given a set of

instances from the service requester ontology.

In the current version of the software that is in charge of the ontology media-

tion process, the mediation rules are specified in an ad hoc language, which is not

presented here since we have not considered it necessary to explain the process fol-

lowed. These rules can be easily implemented using other more common mapping

specification formalisms, such as the ones described in [2] or [4].

10.5 Protocol Mediation

Protocol mediation intends to map the patterns of conceptually similar but mechan-

ically different interaction protocols sharing a similar conceptual model of a given

domain. It can happen either between two functionally similar protocols or on the

part of a service requester adapting its behaviour to the interface offered by a service

provider.

A protocol is a set of activities and transitions with conditions for such transi-

tions. Depending on the specific process, these tasks are a combination of distributed

services, which can themselves be composite. In the context of Semantic Web Ser-

vices, they are used for the following purposes:

• Choreography, where protocols are seen as a set of message exchanges between

participants which are bound to occur in given sequences.

• Orchestration, where a protocol is seen as a partial order of operations that need

to be executed.

• Collaboration, where protocols are considered as relations between participants

of the service with the aim to combine their capabilities and solve complex prob-

lems via composition.

The interaction patterns of several Web Services involved in a communication do

not always have a precise match, i.e. do not always follow exactly the same pattern

in realising a complex process. Sometimes there can be mismatches like the ones

identified in [3] and summarised in Fig. 10.8:

• Unexpected messages: One of the parties does not expect to receive a message

issued by another. For instance, in a commercial transaction with a credit card a

service sends the credit card type, the credit card number, the expiration date, the

full name and the pin code, while the service that receives those messages does

not expect to receive a pin code, since it does not use it.

• Messages in different order: The parties involved in a communication send and

receive messages in different orders. In the previous case the sender may send

the messages in the order specified above while the receiver expects first the full

name and then the rest of the messages.

10 Mediation 305

• Messages that need to be split: One of the parties sends a message with mul-

tiple information inside it, which needs to be received separately by the party

with which it is communicating. In the previous example, the sender sends the

expiration date in one message, while the receiver expects it as two messages,

indicating the expiration month and the expiration year, respectively.

• Messages that need to be combined: One of the parties sends a set of messages

that the receiver expects as a single message with the multiple information. In

the previous example we can think of the inverse situation to the one presented

(the expiration date is sent in two different messages and the receiver expects it

in a unique message).

• Dummy acknowledgements or virtual messages that have to be sent: One of

the parties expects an acknowledgement for a certain message, but the receiver

does not issue such acknowledgement; or the receiver expects a message that the

sender is not prepared to send.

All these mismatches can be combined to form other types of mismatches, hence

adding more complexity to the task of dealing with mismatches. In fact, after the

definition of a complex service one must determine the compatibility of the external

visible behaviours of the Web Services involved in the communication, and deter-

mine the correctness and validity of the resulting complex service.

Reference [21] describe the implementation and use of a solution in the logistics

domain. This solution is based on the existence of a general abstract state machine

that represents the overall state of the communication between parties, and a set of

abstract machines for each of the parties in the conversation, which specify their state

and the sets of actions to be performed when they receive a set of messages or when

they have to send a set of messages.

Fig. 10.8. Set of message interaction mismatches that can appear in a Web Service communi-

cation (from [3])

306 Oscar Corcho et al.

In the context of the WSMO initiative, [3] describe the approach taken for the

design and implementation of the process mediator for the Semantic Web Service

execution engine WSMX. This approach is similar to the one described in [21], since

it is based on the use of an abstract machine with guarded transitions that are fired by

the exchange of messages and the definition of choreographies for each of the parties

involved in the communication.

10.6 Outlook

This chapter has covered the current major trends on mediation in the context of

Semantic Web Services. According to the conceptual architecture presented in Chap.

6, mediation and decoupling are the most important principles to be considered in the

development of Semantic Web Service architectures. Mediation services are those

that resolve inconsistencies between two or more parties involved in a conversation

(a sequence of message exchanges in order to achieve a goal).

Mediation can be considered at many different levels, from simpler transforma-

tions between formats to more complex transformations of message exchange pat-

terns. However, all of these transformations have to be coordinated and most of them

are usually necessary in any message exchange between two heterogeneous services.

This chapter has been structured according to a classification of mediation layers that

considers mediation problems at the data, ontology, protocol and process levels. We

have described the current state of the art in mediation approaches and we have given

some indications on possible solutions to this problem, most of them based on the

work done in the context of the SWWS project. Process mediation has not been con-

sidered in this chapter because it falls outside the current context of Semantic Web

Service research.

The notion of mediation appeared a long time ago and much effort has been done

to date in order to solve the mediation problems that appear in open environments

such as those of Semantic Web Services. However, there is still a long way to go

in all aspects of mediation in order to achieve a fully automatic mediation platform

that is able to make any set of services interoperate without any need of manual

intervention.

All the solutions presented in this chapter require much user intervention: the

lifting and lowering rules used for data mediation have to be specified manually and

are difficult to derive automatically; the mappings between ontology components are

normally supervised by human users, although some of the current ontology align-

ment and merge tools already provide suggestions about possible mappings; and the

choreographies used in protocol mediation have to be created with the help of chore-

ography editors. As a consequence of the high degree of user intervention needed to

create the appropriate mediation services, the process of building an application out

of several pre-existing Web services still requires an important amount of effort, and

mediators are still difficult to build and maintain.

We think that the future trends in mediation in the Semantic Web Services envi-

ronment will go in the following directions:

10 Mediation 307

• Providing more degree of automation in the generation of mediation rules, map-

pings and choreographies.

• Facilitating the debugging and maintenance of previously generated mediation

rules, mappings and choreographies.

• Facilitating the reuse of existing mediation components by the use of mediation

patterns.

Only if these aspects are considered in the following years, it will be possible to

completely automate the process of combining different Semantic Web Services and

hence exploiting the full potential of adding semantics to current Web Services.

References

1. S. Bergamaschi, S. Castano, and M. Vincini. Semantic Integration of Semistructured and

Structured Data Sources. SIGMOD Record, Special Issue on Semantic Interoperability in
Global Information, 28(1), March 1999.

2. P. Bouquet, J. Euzenat, E. Franconi, L. Serafini, G. Stamou, and S. Tessaris. Specifica-

tion of a Common Framework for Characterizing Alignment. KnowledgeWeb Project

Deliverable D2.2.1, 2004.

3. E. Cimpian and A. Mocan. Process Mediation in WSMX. WSMO Working Draft D13.7

v0.1, 2005.

4. J. de Bruijn, F. Martı́n-Recuerda, D. Manov, and M. Ehrig. State-of-the-Art Survey on

Ontology Merging and Aligning. SEKT Project Deliverable D4.2.1, 2004.

5. A. Doan, J. Madhaven, P. Domingos, and A. Halevy. Ontology Matching: A Machine
Learning Approach, pages 397–416. Springer-Verlag, 2004.

6. F. Giunchiglia and P. Shvaiko Semantic Matching. Knowledge Engineering Review,

18(3), 2003.

7. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Electronic
Commerce Research and Applications, 1(2):113–137, 2002.

8. D. Fensel and R. Groenboom. Specifying Knowledge-Based Systems with Reusable

Components. In Proceedings of the 9th International Conference on Software Engineer-
ing & Knowledge Engineering (SEKE-97), Madrid, Spain.

9. J. Fowler, M. Nodine, B. Perry, and B. Bargmeyer. Agent-Based Semantic Interoperability

in Infosleuth. SIGMOD Record, 28(1), 1999.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley,

1995.

11. D. Garlan and D.E. Perry. Introduction to the Special Issue on Software Architecture.

IEEE Transactions on Software Engineering, 21(4), 1995.

12. A. Gómez-Pérez, M. Fernández-López, and O. Corcho. Ontological Engineering: With
Examples From the Areas of Knowledge Management, e-Commerce and the Semantic
Web. Springer-Verlag, 2004.

13. J. Euzenat et al. State of the Art on Current Alignment Techniques. KnowledgeWeb

Project Deliverable D2.2.3, 2004.

14. A. Kiryakov, K. Simov, and M. Dimitrov. OntoMap: Ontologies for Lexical Semantics. In

G. Angelova, K. Bontcheva, R. Mitkov, N. Nicolov, and N. Nikolov, editors, Proceedings
of the Euroconference Recent Advances in Natural Language Processing (RANLP-2001),
pages 142–148, Tzigov, Bulgaria, 2001.

308 Oscar Corcho et al.

15. A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA: A Mapping Framework for

Distributed Ontologies. In A. Gómez-Pérez and R. Benjamins, editors, Proceedings of
the 13th European Conference on Knowledge Engineering and Knowledge Management
(EKAW-2002), Sigüenza, Spain, 2002.

16. D. McGuinness, R. Fikes, J. Rice, and S. Wilder. The Chimaera Ontology Environment.

In P. Rosenbloom, H.A. Kautz, B. Porter, R. Dechter, R. Sutton, and V. Mittal, editors,

Proceedings of the 17th National Conference on Artificial Intelligence (AAAI00), pages

1123–1124, Austin, Texas, 2000.

17. E. Mena, A. Illarramendi, V. Kashyap, and A. Sheth. OBSERVER: An Approach for

Query Processing in Global Information Systems Based on Interoperation Across Pre-

Existing Ontologies. Distributed and Parallel Databases, 8(2):223–271, 2000.

18. P. Mitra, G. Wiederhold, and M. Kersten. A Graph-Oriented Model for articulation of

Ontology Interdependencies. In Proceedings of Conference on Extending Database Tech-
nology (EDBT 2000), Konstanz, Germany, March 2000.

19. N.F. Noy and M.A. Musen. PROMPT: Algorithm and Tool for Automated Ontology

Merging and Alignment. In Proceedings 17th National Conference on Artificial Intelli-
gence (AAAI-2000), Austin, Texas, USA, July/August 2000.

20. B. Omelayenko. RDFT: A Mapping Meta-Ontology for Business Integration. In Pro-
ceedings of the Workshop on Knowledge Transformation for the Semantic Web at the
15th European Conference on Artificial Intelligence (KTSW-2002), pages.

21. C. Preist, J.E. Cuadrado, S. Battle, S. Williams, and S. Grimm. Automated Business-

to-Business Integration of a Logistics Supply Chain using Semantic Web Services Tech-

nology. In Proceedings of the 4th International Semantic Web Conference (ISWC-2005),
Galway, Ireland, 2005.

22. G. Wiederhold. Mediators in the Architecture of Future Information Systems. IEEE
Computer, 25(3):38–49, March 1992.

Part IV

Tools and Use Cases

11

Tools for Semantic Web Services
Support for Development and Deployment

Anupriya Ankolekar1, Massimo Paolucci3, Naveen Srinivasan2 and Katia Sycara2

1 AIFB University of Karlsruhe, Germany, ankolekar@aifb.uni-karlsruhe.de
2 Carnegie-Mellon University, Pittsburgh PA, USA, paolucci@docomo.com
3 NTT DoCoMo Eurolabs, München, Germany, {naveen,katia}@cs.cmu.edu

Summary. In this chapter, we present an overview of selected tools and systems available for

developing Semantic Web Services. We examine five prominent tools for developing Semantic

Web Services and align them to the Semantic Web Service deployment lifecycle presented in

Chap. 6. In particular, we describe the development of OWL-S services using tools, such as the

OWL-S IDE and the OWL-S Editor; the development of WSMO services, through the WSMO

set of tools and IRS-III; and finally, the annotation of services in WSDL-S through the tool

MWSAF. Each of these tools cover the steps in the Semantic Web Services deployment and

usage lifecycle to varying extents. Some of them, such as MWSAF, focus on only one stage

of the lifecycle, whereas other tools, such as the OWL-S IDE and WSMO set of tools, cover

all stages.

11.1 Introduction

Semantic Web Services promise to facilitate the discovery and composition of Web

Services. However, the development and deployment of Semantic Web Services is

quite complex and its adoption within the industry has been relatively slow. A prime

factor in this is the significant human effort required to create semantic service offer

and request descriptions and then to monitor the invocation and execution of the Web

Services. The widespread availability of usable and comprehensive tools can mitigate

this by supporting developers in creating semantic service descriptions from the code

they write and in simulating Web Service execution. A number of tools and systems

have therefore been developed within the Semantic Web Services community to sup-

port, in particular the semantic annotation of Web Services and their deployment.

In this chapter, we review five prominent tools and discuss how they support the

Semantic Web Service deployment lifecycle discussed in Chap. 6. The first two tools

support the annotation of Web Services in OWL-S, namely the OWL-S IDE1 and the

OWL-S Editor2; the next two support the deployment of WSMO-annotated services,

1 http://projects.semwebcentral.org/projects/owl-s-ide
2 http://owlseditor.semwebcentral.org/

312 Anupriya Ankolekar et al.

namely WSMX3 and Internet Reasoning Service (IRS) III4; and finally, we examine

the METEOR-S Web Service Annotation Framework5 (MWSAF), which supports

the addition of WSDL-S annotation to Web Services.

While certain tools such as the OWL-S IDE and WSMX attempt to provide a

complete environment for Web Service developers, from modelling the service to

executing it, other tools focus on a few stages of the lifecycle, e.g. MWSAF and

the OWL-S Editor which primarily focus on semantic annotations of Web Services.

Before we examine each of these tools in detail and their support of the Semantic

Web Service deployment lifecycle, we first discuss a number of Web Service ‘tool-

lets’, freely available small programs, which primarily perform syntactic transforma-

tions between Web Service descriptions in various languages. Many of the tools we

will discuss build on these small programs, which are useful tools in their own right.

11.1.1 Web Service Tools

Since Semantic Web Services essentially add semantic annotations to Web Services,

many Semantic Web Service tools build on established Web Services tools. In most

cases, they are ‘tool-lets’ rather than tools, being small programs that perform a

narrowly defined task, such as automatically generating sample WSDL descriptions

from Java classes. Table 11.1 lists these existing Web Service tools, which primarily

convert one kind of service description into another. In the following, we go through

each of these tools in detail.

Java2WSDL

The Java2WSDL tool generates WSDL descriptions from Java classes. It is part of

the Apache Axis SOAP toolkit [2], originally developed by IBM and now an Apache

open source software development project. The same toolkit also provides the

WSDL2Java tool, which generates Java proxies and skeletons for to-be-implemented

Table 11.1. An overview of freely available tools that convert between various forms of Web

Service descriptions

Tool-let Description

Java2WSDL Converts Java interfaces and classes into WSDL

descriptions

WSDL2Java Generates Java stubs from WSDL descriptions

WSDL2OWL-S Converts WSDL descriptions into OWL-S Profile,

Process Model and Grounding

Java2OWL-S Converts Java classes into WSDL files

OWL-S2UDDI Converts OWL-S Profiles to UDDI advertisements

3 http://www.wsmx.org/
4 http://kmi.open.ac.uk/projects/irs/
5 http://lsdis.cs.uga.edu/projects/meteor-s/mwsaf/

11 Tools for Semantic Web Services 313

services described in WSDL. To develop a Web Service, a developer can first write a

Java interface of the Web Service, which can then be used to develop WSDL descrip-

tions for the Web Service using the Java2WSDL tool. The WSDL descriptions can

be used to develop stubs, skeletons and bindings for useful Java classes using the

WSDL2Java tool. For a flavour of the transformation, the Java function below:

String addWidget(String name, Double price)

generates the following WSDL fragment:

<operation name="addWidget"
returnType="xsd:string"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<parameter name="name" type="xsd:string"/>
<parameter name="price" type="xsd:double"/>

</operation>

and the WSDL fragment 6

<service name="AddressBookService">
<port name="AddressBook"

binding="tns:AddressBookSOAPBinding">
<soap:address location="http://localhost:8080/axis/

services/AddressBook"/>
</port>

</service>

will generate the following Java interface:

public interface AddressBookService
extends javax.xml.rpc.Service {

public String getAddressBookAddress();

public AddressBook getAddressBook()
throws javax.xml.rpc.ServiceException;

public AddressBook getAddressBook(URL portAddress)
throws javax.xml.rpc.ServiceException;

}

WSDL2OWL-S

The WSDL2OWL-S tool,7 developed as part of the OWL-S, toolsuite,8 converts

WSDL Web Service interface descriptions into OWL-S, generating a complete

OWL-S Grounding, a partial OWL-S Process Model and Profile for the WSDL ser-

vice. In addition, the tool generates OWL classes for user-defined Java classes used

6 taken from the Axis User Guide at http://ws.apache.org/axis/java/
user-guide.html

7 http://www.daml.ri.cmu.edu/wsdl2owls/
8 http://www.daml.ri.cmu.edu/tools

314 Anupriya Ankolekar et al.

in the Java service class.9 The generated Grounding is clearly complete, because

the WSDL file contains all the information necessary to invoke the Web Service.

However, the WSDL file is only a partial description of the Web Service, so the

generated OWL-S Process Model and Profile are stubs and need to be manually

enriched with semantic information. This includes defining composite processes in

the Process Model, describing the service capability descriptions within the Profile

and XSLT transformations from the WSDL XSD types to OWL ontologies. Note

that a tool converting process descriptions in the opposite direction, namely using

the OWL-S Grounding to generate WSDL descriptions of the Web Service, would

also be useful, e.g., if the Web Service is semantically specified before being actually

implemented. Such a tool is however yet to be developed to our knowledge.

Java2OWL-S

The Java2OWL-S tool,10 also part of the OWL-S toolsuite, combines the Apache

Axis Java2WSDL converter and the WSDL2OWL-S converter to provide a partial

translation from Java classes to OWL-S descriptions. As with the WSDL2OWL-S

tool, this tool generates a complete OWL-S Grounding, and a partial OWL-S Process

Model and Profile for the service implemented by the Java class. In addition, the tool

generates OWL classes for user-defined Java classes used in the Java service class.

OWL-S2UDDI

The OWL-S toolsuite also contains a OWL-S2UDDI Converter,11 which embeds

OWL-S profile descriptions in the corresponding UDDI advertisements. These

UDDI advertisements can then be published in any UDDI registry and then dis-

covered by service requesters. A matchmaker that understands OWL-S can use the

UDDI registry to discover Web Services and then make use of any additional OWL-S

semantic annotations that may exist to describe them.

OWL-S API

In addition to these tools, most Semantic Web Service tools also make use of

an OWL-S API, developed independently by both CMU12 and University of

Maryland, 13 which provides programmatic access to OWL-S service descriptions.

The OWL-S API provides Java classes and methods to extract information from an

9 The OWL-S ontology defines classes that are required for the description of the Web Ser-

vice, such as the Processes it contains and their Inputs and Outputs. In addition to

these, a semantic service description refers to OWL ontologies that describe the data being

exchanged by the Web Service, such as Book or Ticket
10 http://projects.semwebcentral.org/projects/java2owl-s/
11 http://owl-s2uddi.projects.semwebcentral.org/
12 http://www.daml.ri.cmu.edu/owlsapi/
13 http://www.mindswap.org/2004/owl-s/api/

11 Tools for Semantic Web Services 315

Fig. 11.1. An overview of tools for generating annotations from Java code and vice versa

OWL-S description or to generate an OWL-S description. The CMU OWL-S API is

based on the Jena [9] OWL models and API.

The functionality of the tools described above is depicted in Fig. 11.1.

11.2 Lifecycle of Semantic Web Services

The deployment and usage of Semantic Web Services follows a particular lifecycle

of interactions between service requester and service provider as described in Chap.

6. The lifecycle begins with the modelling of the service and request by the service

provider and requester, respectively, in the service modelling stage. Then service

requests and service offers14 are matched in the service discovery phase, possibly

through a third-party matchmaker. Once a set of potential service providers have

been identified for a service request, the service definition stage takes place, where

the selected services are configured to result in concrete services that can be deliv-

ered. There is an additional pruning of service providers that takes place at this stage,

resulting in a single concrete service, which is eventually delivered to the service

requester in the service delivery stage. A developer developing a Web Service would

need to go through the service modelling stage to develop a semantic description of

the Web Service, simulate the service discovery and definition phases to ensure the

Web Service can be discovered and configured correctly. Finally, the developer may

wish to simulate the service delivery to verify that the developed Web Service func-

tions correctly in all stages of the Web Service lifecycle. A service requester, user or

developer would typically need to go through all four stages in order to develop and

use a Web Service.

Most Semantic Web Service tools focus on the service modelling stage, since

adding semantic annotations to a service description require most human effort. The

14 Note: In the following, when we refer to Web Service or service descriptions, we will

be referring specifically to semantic service offer descriptions. Similarly, semantic service

request descriptions will be referred to as service requests or simply requests

316 Anupriya Ankolekar et al.

Fig. 11.2. Semantic Web Service tool support for the various stages of the Semantic Web

Service deployment lifecycle

other stages are generally less well supported. Accordingly, our discussion of the

tools will be most detailed for the first stage. Figure 11.2 shows the Semantic Web

Service lifecycle and classifies prominent tools with respect to the lifecycle stages

they support. The five tools are the OWL-S IDE, the OWL-S Editor, the METEOR-S

Web Service Annotation Framework (MWSAF), the IRS-III and the WSMX tool-

suite. The first two tools, the OWL-S IDE and the OWL-S Editor support OWL-

S service description creation, the MWSAF supports developing WSDL-S descrip-

tions and the last two tools, IRS-III and WSMX support WSMO service description

creation.

11.3 Service Modelling

In the service modelling stage, both service provider and service requester prepare

service offer descriptions and service requirement descriptions respectively. There

are two ways in which a developer may construct a service offer description. On the

one hand, the developer may first develop a Web Service and then describe the func-

tionality provided within a service offer description. In this case, the developer first

implements the Web Service, then generates a WSDL [3] specification to describe

the invocation interface of the Web Service. If the Web Service is to be annotated

11 Tools for Semantic Web Services 317

semantically, then the developer will define additional OWL-S or WSMO specifica-

tions to describe the Web Service in terms of its goals and process flow. To describe

the semantics of the data exchange during the Web Service invocation, the devel-

oper will choose ontologies, specifically concepts and relations in certain ontologies.

Finally, the service description will be published with a registry or directory service.

We call this approach the code-driven approach, as it uses an existing Web Service

implementation as the starting point to derive a service offer description. This is com-

monly the case when Web Services are being developed to expose the functionality

of legacy systems, where most of the functionality of the system has already been

implemented, but is unavailable to the outside world.

If, on the other hand, the Web Service is to be developed from scratch, another

possibility is to treat the service offer description as a high-level description of

the required functionality of the Web Service and then partially generate the code

required to implement the Web Service. This could be termed the model-driven
approach. In this case, first the service offer description is developed using appro-

priate ontologies, then the orchestration or process model is used to define stubs and

skeletons for the implementation of the Web Service. This implementation is in turn

used to generate a WSDL grounding and as in the code-driven approach, the service

description is finally published with a registry or some form of directory service.

Ideally, tools that support the creation of service offer descriptions and the corre-

sponding Web Service need to support both approaches, since most developers will

go through a combination of a code-driven and model-driven approach to arrive at

the final semantic description and Web Service. As described in Sect. 11.1.1, sev-

eral tools have been developed to automate some of the steps of each approach. In

the code-driven approach, for instance, the tools Java2WSDL, WSDL2OWL-S and

Java2OWL-S can support the creation of partial OWL-S specifications from Java

code. Similarly, for the model-driven approach, a tool such as WSDL2Java can assist

in the implementation of the Web Service. The set of stubs and skeletons generated

by the tool can be instantiated by the Web Service developer into concrete classes

that perform the functionalities promised by the service description. A smart tool

could even exploit the interaction protocol specified in the OWL-S description to

define implementation classes within generated Java code, reducing the burden of

implementation on the Web Service developer.

Developing the service requirement description is considerably simpler than

developing the service description. In order to produce a service requirement descrip-

tion, a service requester needs to first decide which capabilities of the desired Web

Service to discover. The desired capabilities then need to be represented to a direc-

tory service, such as a UDDI server, in order for the service discovery to take place.

These capabilities are described at a high level by making use of appropriate OWL

ontologies. This requires support in the form of making ontologies available and

findable. In addition, we require a user interface to allow people to express goals

and requirements. Having developed the service requirement description, the service

requester finally needs to publish the request to a registry.

This stage is the most fundamental in the Semantic Web Service lifecycle and

is supported by all the five tools. The OWL-S IDE and OWL-S Editor support the

318 Anupriya Ankolekar et al.

modelling and specification of the Web Service in OWL-S, WSMX and IRS-III sup-

port the same in WSMO and MWSAF supports annotating WSDL files with addi-

tional lightweight semantics, such as UML. We now examine each of the tools and

their support for service modelling in detail.

11.3.1 OWL-S IDE

The OWL-S IDE [11] is an Eclipse [8] plug-in providing an integrated development

environment (IDE) to support Web Service developers in both the implementation of

Web Services and in the generation of OWL-S descriptions of their Web Services.

As an Eclipse plug-in, the OWL-S IDE can make use of Eclipse’s Java IDE and

community-built software development tools to enable the design of a Web Service

using UML, the implementation of the Web Service in Java and the deployment of

the Web Service, all within a single uniform environment. The OWL-S IDE aug-

ments the available Eclipse tools and extends the current Web Service development

process by allowing a developer to additionally construct OWL-S semantic descrip-

tions of the Web Service. The OWL-S IDE supports both Web Service developers

and Web Service requesters: Web Service developers can generate the OWL-S ser-

vice descriptions directly from the Java code that implements the Web Service and

then deploy and register the Web Service with a UDDI server. Web Service requesters

can define an OWL-S Profile of the desired Web Service and use it to query a UDDI

server, all within Eclipse. Furthermore, the OWL-S IDE can also assist Web Service

requesters develop the client-side code for interaction with the Web Service.

In particular, the OWL-S IDE supports Web Service developers in performing

the following tasks:

1. Code-driven approach

a) Develop and modify the implementation of a Web Service through the

Eclipse environment.

b) Generate a WSDL description of the service from the complete Web Service

implementation.

c) Generate an OWL-S description of the Web Service from WSDL.

d) Develop an OWL-S ontology to describe the Web Service using OWL

ontologies.

e) Publish a service description with UDDI.

f) Deploy the Web Service by publishing the Web Service implementation,

WSDL and OWL-S descriptions on a Web server.

2. Model-driven approach

model-driven approach, Given OWL-S descriptions of a Web Service to be built:

a) Automatically derive Web Service code through the OWL-S Process Model.

b) Develop and modify the implementation of a Web Service through the

Eclipse environment.

c) Publish a service description with UDDI.

d) Deploy the Web Service by publishing the Web Service implementation,

WSDL and OWL-S descriptions on a Web server.

11 Tools for Semantic Web Services 319

Support for developing and modifying the Java implementation of the Web Service

in Step 1a is not really part of the OWL-S IDE, but is provided in the Java plug-

in for Eclipse and is well-integrated with the OWL-S IDE plug-in. Assuming the

developer has defined a Java interface to expose particular capabilities of the Web

Service, Steps 1b and 1c can be accomplished through the Axis Java2WSDL con-

verter and the WSDL2OWL-S converter, respectively. The result of these two steps

is a complete WSDL description, and schematic OWL-S Profile, Process Model and

Grounding. These schematic descriptions contain placeholders for OWL-S atomic

processes, a mapping between atomic processes and WSDL operations, and place-

holders for inputs and outputs in the Profile. However, since WSDL does not provide

any semantic annotations, these descriptions do not have any semantic descriptions

of the inputs and outputs. In addition, since WSDL does not impose any order on the

invocation of operations, the OWL-S descriptions also do not contain any specifica-

tion of the Web Service control flow.

A screenshot of the OWL-S IDE in Fig. 11.3 shows four different panes of the

plugin. The tree pane labelled A presents the elements of an OWL-S description in

a hierarchical fashion, allowing the user to browse through the hierarchical structure

and select an element to edit or to add an attribute to an element. The action pane

and the form pane marked as B and C respectively are responsive to the selection

in the tree pane. The action pane displays the controls such as adding and deleting

Fig. 11.3. Main layout of the OWL-S IDE

320 Anupriya Ankolekar et al.

of attributes that are pertinent to the element selected in the tree pane. Similarly,

the form pane displays the attributes of the element in a form-like manner, which

may be modified. Pane G is a file navigation window contributed directly by the

Eclipse framework and is used to browse and manipulate the file system and manage

projects in the Eclipse workspace. The outline pane marked as F displays a tree-

based synopsis of the file that is being edited. Finally, error pane labelled D displays

information of about the errors in the OWL-S file that is being edited.

The main editor pane (with labels A–C) displays four editors to support the

manipulation of different fragments of the OWL-S descriptions, namely the Profile

Editor, the Process Model Editor, the Grounding Editor and the Service Editor. For

each, it provides two modes for editing OWL-S files: form-based editing and text-

based editing. The form editor provides guidance to the developer on what informa-

tion should be added at each stage of the compilation of the OWL-S description. For

instance, in the compilation of a process, it requires the developer to enter the inputs,

outputs, preconditions and effects. Each of these is, in turn, a form that requires the

developer to enter the appropriate information. If the information entered is not cor-

rect the developer is flagged an error that he/she can immediately fix.

Within the OWL-S IDE, the service descriptions can either be generated from

scratch or by editing an existing OWL-S description. The latter case (Step 1d)

may involve editing the schematic service descriptions generated in the previous

step from WSDL descriptions. The OWL-S Editor provides form-based editing or

text-based editing (label E), using, e.g. the SWeDE OWL plug-in for Eclipse [13].

SWeDE (Semantic Web Development Extendable Framework) is an Eclipse-based

OWL editor with several useful features such as syntax highlighting, autocompletion

and error-detection, and integrates existing tools like the OWL Validator, Kazuki

(OWL to Java code generator) and DumpOnt (Ontology Visualiser). More experi-

enced developers may wish to use the text-based editing capabilities of the OWL-S

IDE to more expeditiously develop OWL-S ontologies to describe concepts specific

to the Web Service being annotated. The result of this process is a complete OWL-S

description of the Web Service that specifies the semantics of all inputs and outputs,

the preconditions and effects, and the complete control flow and data flow of the Web

Service.

The Profile Editor

The Profile Editor supports the developer in the following two tasks: the first one

is the editing of the Service Profile of the Web Service and the second one is the

registration and querying with an UDDI server. Figure 11.4 displays the form-based

editor that is used to compile an OWL-S Profile. The leftmost selection of the OWL-S

Profile Editor shows the hierarchal structure of the profile file that is being Edited.

The action pane shows the list of actions that can be performed on the node that is

selected, in this case a profile is selected in the tree structure. The form pane displays

the attributes of the node that is selected.

11 Tools for Semantic Web Services 321

Fig. 11.4. The OWL-S IDE Profile Editor

Process Model Editor

The Process Model Editor supports the developer in the generation of the Process

Model using the same approach as the Profile Editor. It also provides a form-based

editor to define processes and their control flow and data flow. The tree structure

in the form editor supports drag and drop operations, to facilitate the definition of

control flow and dataflow in composite processes. When adding a new composite

process, we add the components of the process which constitutes the control flow

of a process. Figure 11.5 displays a screenshot of the Process Editor, as a composite

process is being defined. When displaying a composite process in the process tree, its

components are displayed in a nested manner, so that the control flow of the process

model can be understood just by following the process tree structure. A dataflow

link between two components of the composite process is added by selecting one of

the components and selecting the appropriate action from the action pane, such as

adding an input or output. In order to add a dataflow link between two components,

we need three pieces of information: first the name of the input of the component

that needs the data, second the name of the component that generates the data and

finally the name of the input or output in the other component that actually has the

data.

Grounding Editor

The Grounding Editor supports the compilation of OWL-S grounding descriptions.

In order to compile the grounding description, two files are required: an OWL-S Pro-

cess Model description file, containing information about atomic processes of the

322 Anupriya Ankolekar et al.

Fig. 11.5. The OWL-S IDE Process Editor

Web Service, and a WSDL file that contains information about the operations and

messages exchanged. Once these two files are loaded into the editor, the Ground-

ing Editor generates OWL-S grounding descriptions, essentially information, such

as which process in the process model description maps to which operation in the

WSDL file, which input/output of a process maps to which message in the WSDL

file. OWL-S service descriptions generated by the WSDL2OWL-S converter already

have a reasonably comprehensive Grounding, but if otherwise, the OWL-S IDE sup-

ports a developer in manually defining the Grounding through the Grounding Editor.

Fig. 11.6 displays a screenshot of the Grounding Editor.

Service Editor

The service editor assists the developer in compiling OWL-S service descriptions.

The function of the service description is to bind the Profile, the Process Model and

the Grounding descriptions of a Web Service explicitly, since the links between them,

e.g. between the inputs in the Profile and in the Process Model, are only implicit

otherwise. To build a service description in the OWL-S IDE, a Profile, Process Model

and Grounding for the service are all loaded independently and then linked with the

service description.

11.3.2 OWL-S Editor

The OWL-S Editor [6] takes a slightly different approach to supporting Semantic

Web Service development. The OWL-S Editor is being developed as a plug-in for

11 Tools for Semantic Web Services 323

Fig. 11.6. The OWL-S IDE Grounding Editor

Protégé [10], on top of the existing Protégé OWL plug-in. Due to its foundations in

Protégé, an ontology editor, the OWL-S Editor provides good support for the cre-

ation of service domain ontologies in OWL and the development of valid service

descriptions in OWL-S based on these ontologies. In particular, it provides support

for constructing mutually consistent OWL-S service profiles and OWL-S service

process models, such that, e.g., they refer to the same input parameters. The con-

trol flow of an OWL-S process model can be visualised and edited in a UML-like

Activity Diagram (Fig. 11.7). The left pane of the screenshot displays the top-level

OWL-S Process in a hierarchical tree structure, while the right pane displays the

same process workflow graphically. Similarly, the data flow of the process model

can also be visualised and defined graphically (Fig. 11.8).

The inputs, outputs, preconditions and results of an OWL-S description are

defined using a Protégé-like interface (Fig. 11.9). The OWL-S Editor provides basic

support for mapping an OWL-S Grounding to a WSDL file. Given a WSDL file

for a Web Service, the OWL-S Editor uses the WSDL2OWLS tool15 to generate an

OWL-S description for the Web Service.

The OWL-S Editor provides good support for the service modelling phase, pri-

marily the service offer description creation. Although it follows the code-driven

approach, assuming that the implementation and possibly WSDL description of

the Web Service already exists, unlike the OWL-S IDE, it does not interface with

the actual implementation code of a Web Service, relying on at most the WSDL

file. The WSDL description need only be annotated appropriately to make it use-

ful in the OWL-S world. Interestingly, the OWL-S IDE and the OWL-S Editor

15 This tool is part of the OWL-S API from the University of Maryland

324 Anupriya Ankolekar et al.

Fig. 11.7. Defining a composite process in the OWL-S Editor

have complementary perspectives: the former focusses on deriving OWL-S service

descriptions from the implementation code of a Web Service, the latter on modelling

OWL-S service descriptions as ontology-based descriptions. Combining the two per-

spectives in a single tool would enable developers to model OWL ontologies, OWL-S

service descriptions and Web Service implementation in one coherent environment.

However, there is currently no such tool in existence.

Moving to the WSMO world, there are two tools that support creating WSMO

annotations for Web Services: the WSMO Studio and IRS-III. We next examine these

two tools, albeit in less detail than the previous two.

WSMO Studio

The WSMO initiative supports a detailed form of service discovery, which is imple-

mented in the WSMX execution environment. WSMX provides a reference imple-

mentation of the WSMO framework for Semantic Web Services and supports the

development of WSMO-based Web Services from modelling (through WSMO Stu-

dio) to orchestration and choreography. It provides a set of APIs and UIs to allow

developers to interact with WSMX across the different phases of the Semantic Web

Service deployment lifecycle.

The focus of WSMX and IRS-III (discussed later) is on various kinds of medi-

ation to reduce or remove interoperability problems between service requesters and

11 Tools for Semantic Web Services 325

Fig. 11.8. Defining dataflow within the OWL-S Editor

service providers. Not surprisingly, the tools that have been produced by these

two projects facilitate the creation and use of mediators, components that mediate

between two Web Services or between a Web Service and a service requester. Archi-

tecturally, WSMX provides a broker between a set of Web Services and any potential

client (Fig. 11.10). As a broker, WSMX not only mediates between the client and the

services, but also provides a number of interfaces that support the client and the ser-

vices in their activities. The WSMO registration process allows a service provider

to advertise its service with WSMX. With respect to the lifecycle, the registration

process is within the service modelling phase. Essentially, in this phase, the Web

Services Modelling Ontology Studio (WSMO Studio), an Eclipse plug-in similar to

326 Anupriya Ankolekar et al.

Fig. 11.9. Specifying inputs, outputs, preconditions and results in the OWL-S Editor

the OWL-S IDE, is used to create WSMO descriptions of ontologies, goals, Web

Services, mediators and choreography descriptions. WSMO Studio is intended to

function as a front-end for the WSMX execution environment and supports the stor-

age and retrieval of WSML descriptions in remote service, goal, mediator and onto-

logy repositories. Furthermore these descriptions are validated and stored for future

use. One important aspect of this process is the generation of adapters that translate

from the internal data representation of the Web Service to the WSML descriptions

that are used by WSMX in its operations. One important result of using adapters is

Fig. 11.10. Services in the WSMX architecture

11 Tools for Semantic Web Services 327

Fig. 11.11. The WSMO Studio concept editor

the abstraction from the actual implementation of the Web Service, to the abstract

description of the service in the WSML semantic language.

Figure 11.11 displays a screenshot of the Web Services Modelling Toolkit

(WSMT) (which builds on WSMO Studio), in particular an editor that allows the

editing of concepts in WSML ontologies. WSMO Studio has several other editors,

such as a service editor to edit service descriptions, a repository editor and a chore-

ography editor (Fig. 11.15).

IRS-III

Through its long evolution, the IRS system [7] converged on an architecture in which

clients interoperate directly with a broker that selects the most appropriate service

to satisfy the client’s needs. In turn, each Web Service essentially exposes a Prob-

lem Solving Method (PSM) which performs the actions that are required to satisfy

the requirements of the client. The tools that are available for IRS-III, the WSMO-

compliant version of IRS, facilitate the retrieval and registration of ontologies, Web

Services and goals with the IRS server. In this sense, the IRS-III tools support the

developer through the whole development process by providing an implicit checklist

of tasks that the developer needs to perform.

A screenshot of the IRS-III browser is shown in Fig. 11.12. The top pane displays

a WSMO ontology and the goals, Web Services and mediators defined through the

ontology. The lower pane displays details on a chosen element of the ontology, in

this case the European-exchange-rate-web-service. Fig. 11.13 presents

328 Anupriya Ankolekar et al.

a screenshot of the IRS-III interface for editing the semantic description of a Web

Service.

In terms of functionality, the IRS-III system primarily supports a developer in

performing the following tasks:

1. Find or create an appropriate ontology.

2. Find or create an appropriate goal description.

3. Find or create an appropriate mediator description.

4. Find or create a number of related Web Services.

Fig. 11.12. The main IRS-III browser window

11 Tools for Semantic Web Services 329

Fig. 11.13. Defining a Web Service in IRS-III

5. Link the Web Services to the goal created in 2 through mediators

6. Use the Web Services for publishing services (Java or Lisp code).

7. Invoke services through the invocation of the Goal.

The actual implementation of some of these tasks is delegated to other tools. Specif-

ically, the implementation of the Web Service may be done through LISP or Java16

development environments. In addition, the IRS-III system provides a means to link

these implementations to their semantic service descriptions in IRS-III.

11.3.3 MWSAF

MWSAF (METEOR-S Web Service Annotation Framework) addresses the problem

of annotating WSDL documents to compile them into WSDL-S [1]. WSDL-S is a

relative newcomer on the semantic service description scene. We first present a brief

description of WSDL-S before describing MWSAF in detail.

16 IRS-III supports services implemented in these two languages only

330 Anupriya Ankolekar et al.

WSDL-S

In contrast to the previous four tools, which focus on annotating Web Services

either with OWL-S descriptions or with WSMO descriptions, WSDL-S takes a

wider approach to the semantic description of Web Services. Rather than assum-

ing that Web Services need to be described using only OWL or WSMO annotations,

WSDL-S allows a wide range of annotations such as RDF, UML legacy descriptions

of the service, existing business taxonomies such as NAICS, and OWL. The end-

result is that the developer can annotate his/her services using any information that

is available although, of course, different annotations of the service may not be com-

patible with each other. Thus, a client that is using OWL to describe services will not

be able to exploit UML annotations of the Web Service.

The second intuition behind WSDL-S is that WSDL is such a widely accepted

standard to describe Web Services that it should necessarily be exploited. Therefore,

WSDL-S adds semantic annotations to Web Services by exploiting the extensibility

elements provided by WSDL. As a consequence, WSDL-S does not really invent a

new language, in the sense of the language invented by OWL-S or WSML. Rather,

it defines a set of “standard” tags to be used in the extensibility elements of WSDL,

which a service developer can use to annotate the semantics of the different elements

of the WSDL description. In principle, WSDL-S has two uses: the first one is to

facilitate the interaction between Web Services and their clients by defining a map-

ping from the XML messages that are passed between the client and the service, and

the semantic annotation of these services. The second use of WSDL-S is to improve

discovery by searching for services on the basis of their semantic annotation.

WSDL-S allows three types of annotation of the service description. First, it

allows an annotation of the XML schema that defines the format of the messages

that are exchanged between the client and the server (representing the inputs and out-

puts of relevant operations). These annotations, in turn, take two forms: the user may

directly annotate the elements of the XML schema, defining therefore the semantics

of the individual atomic elements, or it can annotate the entire XML schema. In the

latter case, WSDL-S allows the use of XSLT scripts to specify how the semantics of

the individual pieces compose in the semantics of the complete structure. The sec-

ond annotation is at the level of operations, in which the developer can specify the

preconditions to the use of an operation, and the effects that result from the use of

that operation. The third and last type of annotation is the specification of the type of

service on the basis of some taxonomy of services.

Because WSDL-S is used at both discovery and invocation time, it comes out as

an hybrid of the OWL-S Profile and Grounding. In principle, the information that it

provides can be used to improve the automatic generation of both the OWL-S Profile

and Grounding given the WSDL-S description of the service. Superficially, the use

of WSDL-S could help tools such as WSDL2OWL-S (which would then become

WSDL-S2OWL-S) that translate WSDL into OWL-S. But this gain would come at

the cost of a more expensive generation of WSDL specifications. The current WSDL

generation tools, such as Java2WSDL, perform a syntactic translation from the pro-

grammer’s code written in Java to the corresponding XML specification. Still, this

11 Tools for Semantic Web Services 331

translation would fail to generate the annotation of the message types or the precondi-

tions and effects of operations. The automatic generation of such annotation from the

plain Java code is a very challenging problem. Ultimately, a tool like WSDL2OWL-S

should be defined in two steps: the first one a translation from WSDL to WSDL-S

and the second one a translation from WSDL-S to OWL-S. To the extent that OWL

is used as annotation language, the second step may be reduced to a simple syntac-

tic re-writing of the OWL-S functional properties,17 the first step however requires

active annotation on the side of the developer.

The MWSAF Tool

The goal of MWSAF is to facilitate the annotation task, rather than generating the

annotation automatically. MWSAF proposes three panes to the developer, as shown

in Fig. 11.14. On the left side, the WSDL description of the Web Service is shown,

on the left side the ontology is displayed and in the centre pane the mappings are

displayed. The developer can perform the semantic annotation directly by using the

select buttons at the bottom of the Web Service and ontology panes and then adding

an annotation, or by asking the tool to propose an annotation automatically. In the

latter case, the tool would display one such annotation and its degree of confidence

in the correctness of the annotation. For instance, the derivation shown in Fig. 11.14

shows that the tool suggested an association between the element High in the Web

Service definition with the concept trade high in the ontology with a confidence

level equal to 0.38333. The developer can then either accept the suggestion or reject

it by clicking on the select box next to it. In terms of the Web Service deployment

lifecycle of Sect. 11.2, MWSAF primarily helps a service provider develop semantic

annotations for a WSDL Web Service, in the service modelling phase.

Furthermore, it is critical for the subsequent matchmaking process that both the

service offer description and the service requirement description use the same onto-

logy concepts and relations in the descriptions. This necessitates some method for

the service requester and provider to find commonly used ontologies and express

their descriptions within them. Typically, this might be accomplished by querying

a registry service, e.g. a UDDI server, for its ontologies. However, the ontologies

used by services registered with the UDDI server may not always correspond to the

ontologies used by a service requester in his/her own context. In this case, ontology

mediation (see Chap. 10) needs to take place to relate the service requester’s own

ontologies to the ontologies she must express her service request in. When there

are multiple possible ontologies for service requests, this situation can be problem-

atic, since one does not know which ontology to map to, to get desired or desirable

services.

17 Still some care has to be taken here. First, OWL-S defines conditional outputs and effects

to account for the fact that the outputs of the service may not be deterministic and always

predictable. Second, the annotation would not help with the specification of non-functional

properties

332 Anupriya Ankolekar et al.

Fig. 11.14. The MWSAF tool for annotating Web Services in WSDL-S

11.4 Service Discovery

In this phase, one or more service offer descriptions have been found to match a

service requirement description by a matchmaking service. In this case, the ser-

vice requester must be notified of the match. It is possible that the matched service

may not match the service requester’s requirements exactly or that there may be no

matches for the service request. In this case, the service requester may need to refine

or reformulate the service requirement description or proceed to another matchmak-

ing service. The service discovery process may itself be a multi-stage process, as

the requester may evaluate how well matched services fit his/her requirements and

based on his/her analysis modify him/her service request and initiate service dis-

covery again. Most of the tools discussed thus far provide only minimal support for

a single-step discovery process and no support for a multi-stage service discovery

process.

The OWL-S IDE supports publishing a developed Web Service with a UDDI

server (a kind of registry service) and deploying it on a Web server. The OWL-S Pro-

files are first translated into UDDI service descriptions using OWL-S2UDDI. The

UDDI descriptions are then published to a UDDI registry using a UDDI client. Sim-

ilarly, a Web Service requester could define a profile of a desired Web Service within

11 Tools for Semantic Web Services 333

the OWL-S IDE Profile Editor, describing the inputs it should take and the outputs

it should return. Essentially, the developer compiles the profile of the “perfect” Web

service he/she would like to work with. This profile is translated into a UDDI repre-

sentation and used to query a UDDI registry, which returns a set of matching services.

The OWL-S Editor does not support service discovery.

To support service discovery, WSMX provides the facilities that allow the

requester to describe the capabilities that it needs, and the matching process that

perform the selection of the most appropriate service. Discovery is performed in two

phases: first a Matchmaker is called to locate all the existing services that match the

requirements of the requester and second a Selector is called to select the service

that more closely fits the requirements of the requester. In this process, the Match-

maker and the Selector can invoke Data Mediators to resolve eventual mismatches

between the goals of the service and the requirements of the requester. Although

technical details on both the Matchmaker and the Selector are scant, since both com-

ponents are still under development, the Selector seems to cover the service definition

phase that allows WSMX to evaluate how the service meets the requirements of the

requester. Nevertheless, WSMX provides a very different discovery process than the

process proposed by UDDI [14] or its semantic derivatives [15, 12] in which the

broker goes beyond finding services and extends into making important decisions on

which service the requester is going to use.

MWSAF itself does not support service discovery. A proposal to incorporate

WSDL-S annotations within UDDI descriptions has been described in [15] and [4],

but, as far as we know, it is not yet integrated with WSDL-S. WSDL-S could be

mapped to UDDI by exploiting the WSDL to UDDI mapping [5], but it will still

require a mapping of the semantic annotations to UDDI elements. One way to do

such a mapping has been proposed in [15], but it is restricted only to inputs and

outputs, and no description is provided on how to map preconditions and effects

(though such a generalisation is quite straightforward). The second aspect of the

service discovery that must be specified is the matchmaking mechanism, since the

native mechanisms in UDDI will not be able to support the inferences required by

WSDL-S.

11.5 Service Definition

This is one of the most complex stages of the Web Service interaction lifecycle,

where a service requester is faced, as a result of the service discovery stage, with

several providers who could potentially meet the requester’s needs. The service

requester now selects one or more service providers and enters into a service defini-

tion conversation with them. During the Web Service definition, the abstract service

description of each selected service provider is instantiated with concrete values for

the required attributes and parameters of the service. This yields a concrete Web Ser-

vice for each of the service providers that the service requester can compare in order

to find the most appropriate Web Service for his/her requirements. There may be

some negotiation of price and other attributes before the Web Service can be finally

334 Anupriya Ankolekar et al.

chosen. If the service requester is a human user, the list of service providers needs

to be presented to the user, with some of the key distinguishing attributes of the Web

Services highlighted. Once a Web Service has been chosen, the service definition

conversations with the rest of the service providers are terminated. The configuration

of the chosen service description may then be formally represented within a contract

between the service provider and requester. Tool support for this stage would need to

include support for managing the multiple conversations of the client with multiple

service providers.

Tool support for this stage is rudimentary, since most of the tools cover develop-

ment of the Web Service rather than actual deployment. Thus, they try to ensure that

the Web Service being developed can be discovered in the previous stage and then

at best, just present the list of discovered services in this stage, relying on the user to

select one manually. This is the case for the OWL-S IDE, since once again the discov-

ery process will select Web services that are only ‘similar enough’ to the Web service

that was originally requested. The client developers can use the descriptions of these

services to decide which one to use and to decide whether he/she needs to gather

additional information by invoking additional Web services. Knowing which service

to use is still only part of the story. Code to interact correctly with the found Web

Service must still be written. The problem here is that the Process Model specifies

the order in which the Web service expects information and what type of informa-

tion the Web service needs. Any violation of such order, or a violation of the type of

information expected by the Web service, would lead to a failure of the inter action.

To control the interaction process, the OWL-S IDE supports the automatic genera-

tion of Web service specific interfaces to the OWL-S Virtual Machine (VM), which

executes OWL-S Process Models. The OWL-S VM takes the OWL-S specification

and executes it, but it has to ask to the client what information to send, and which

non-deterministic choices to make. By implementing the interface, the developer is

obliged to provide the functionalities that support the OWL-S VM in its interaction

with the Web service.

Since the OWL-S Editor does not support service discovery, this stage is also

trivial, in that only one service is present anyway, the Web Service being described.

The OWL-S Editor does allow the user to select values for input parameters of the

Web Service, which is then subsequently executed. Since both WSMX and IRS-III

are broker-based architectures, it is somewhat unclear how this stage is supported

within WSMX and IRS-III, since service definition is not an explicit component of

the WSMO Semantic Web Services framework.

11.6 Service Delivery

Once a service definition has been agreed upon, the last stage in the lifecycle, service

delivery, can take place. When the service delivery involves the exchange of multi-

ple messages between the service provider and the requester, an interaction chore-

ography is required. This is particularly so when the solution of the problem of the

requester may involve more than one service, and may therefore result in more than

11 Tools for Semantic Web Services 335

one service being involved. This stage is currently somewhat ill-defined. There are

several issues that need to be resolved about the role of choreography in Semantic

Web Services, who defines the choreography or orchestration of a service and how to

monitor the execution of a choreography and orchestration. It is therefore supported

to varying extents by Semantic Web Services tools.

From the point of view of OWL-S, the interaction choreography is the respon-

sibility of the client. The service definition and choreography essentially occur on

the part of the client and are enabled by OWL-S, but not modelled explicitly within

it. OWL-S thus describes the orchestration of a Web Service. In fact, since OWL-S

has a well-defined scope in describing a Web Service and how to interact with it,

choreography is out of bounds for OWL-S. Accordingly, both the OWL-S IDE and

the OWL-S Editor have little or no support for choreography.

On the other hand, choreography is critical in the WSMO world and WSMO Stu-

dio Choreography Editor (Fig. 11.15), in particular, supports it extensively. WSMX

also provides a Choreography Engine, which is used to manage the communication

patterns required by the Web Service. Because WSMX is a brokered architecture, it

can make strong assumptions about the interaction and deployment of Web Services

that are not made by other development environments such as the OWL-S IDE or

the OWL-S Editor. The centralised structure of WSMX provides, at least in prin-

ciple, the ability to control the composition of Web Services so that choreography

languages provided by the WSMO framework can be applied. In a totally distributed

architecture, such languages are very difficult to apply or outright impossible. As a

sidenote, one aspect that is left unclear is how the assumptions that are built into

WSMX carry over to WSMO. Whereas WSMX imposes a centralised architecture,

presumably, WSMO may be implementable also in totally distributed architectures.

With respect to the actual service invocation, this is supported to some extent by

all of the above-described tools except MWSAF. If the WSDL file of the OWL-S

description is hooked up to a real running Web Service, both the OWL-S IDE and

the OWL-S Editor can be used to execute the Web Service. In this case, the user

is typically presented with a window to select values of input parameters based on

predefined parameter types. In WSMX, there is a component called the Communi-
cation Manager that invokes selected Web Services. The communication Manager

is responsible for controlling the data transmission between the two parties and,

specifically, it performs lifting and lowering transformations between the semanti-

cally described information that is provided by the services and the XML data that is

transmitted through the wire.18 As in the case of the discovery process, the interac-

tion between two services may also involve the use of Data Mediators that transform

the incoming data from the ontologies used by the requester to the ontologies used

by the provider. IRS-III also supports invocation of a given Web Service, both for

debugging a Web Service and for providing the basis for an interaction tool between

the user and the Web Service.

18 Lifting corresponds to translating from XML to WSML, lowering is the opposite trans-

formation from WSML to XML. For more information on ontology mediation, refer to

Chapter 10

336 Anupriya Ankolekar et al.

Fig. 11.15. The WSMO Studio Choreography Editor

11.7 Conclusions

In this chapter, we reviewed a number of existing tools to support developers trying to

deploy and use Semantic Web Services. The OWL-S IDE builds on the Eclipse soft-

ware development platform to support all four stages of the Semantic Web Service

deployment lifecycle. The OWL-S Editor builds on the Protégé ontology develop-

ment platform to support three stages of the lifecycle, i.e. service modelling, service

definition and service delivery, but not service discovery. The MWSAF tool supports

a developer primarily in the service modelling phase. IRS-III and WSMO Studio also

support the developers in all four stages of the service deployment lifecycle.

As Semantic Web Service standards stabilise and become part of the software

development process, these tools will probably also merge and become more closely

tied with existing software development environments and tools. Currently, very few

of the tools really support the model-driven approach to developing a Web Service,

although this is likely to be a fairly common use case for Web Service developers, in

particular if they use models for their standard code development process. Thus, an

important area to address in the future is how a model of the Web Service described

in OWL-S or UML with additional semantic annotations can be used to directly

develop the implementation code, at least partially. In addition, a verification mod-

ule that can check the correctness of the semantic descriptions would be very useful.

For example, the verification module could check the correctness of an OWL-S Pro-

cess Model, of the mapping between the OWL-S Grounding and the corresponding

WSDL file etc. helping a developer detect problems at development and compilation

time and thus reducing the likelihood of execution time errors.

11 Tools for Semantic Web Services 337

References

1. R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth, and K. Verma.

Web Service Semantics - WSDL-S. A joint UGA-IBM Technical Note, version 1.0, April

2005.

2. Axis web site. http://ws.apache.org/axis/.

3. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Service Description

Language (WSDL 1.1). http://www.w3.org/TR/wsdl.

4. J. Colgrave, R. Akkiraju, and R. Goodwin. External Matching in UDDI. In Proceedings
of the 2nd International Conference on Web Services (ICWS-2004), 2004.

5. J. Colgrave and K. Januszewski. Using WSDL in a UDDI Registry, Version 2.0.2 - Tech-

nical Note. Technical Report uddi-spec-tc-tn-wsdl-v2, OASIS, 2004.

6. G. Denker, D. Elenius, and D. Martin. The OWL-S Editor. http://owlseditor.
semwebcentral.org/.

7. J. Domingue, L. Cabral, F. Hakimpour, D. Sell, and E. Motta. IRS-III: A Platform and

Infrastructure for Creating WSMO-Based Semantic Web Services. In Proceedings of the
Workshop on WSMO Implementations (WIW 2004), Frankfurt, Germany, 2004.

8. Eclipse. http://www.eclipse.org.

9. Jena. http://jena.sourceforge.net/.

10. N. F. Noy, R. W. Fergerson, and M. A. Musen. The Knowledge Model of Protégé-2000:

Combining Interoperability and Flexibility. In 2nd International Conference on Know-
ledge Engineering and Knowledge Management (EKAW-2000), Juan-les-Pins, France,

2000.

11. N. Srinivasan, M. Paolucci, and K. Sycara. CODE: A Development Environment for

OWL-S Web Services. Demo paper in 3rd International Semantic Web Conference, 2004.

12. N. Srinivasan, M. Paolucci, and K. Sycara. An Efficient Algorithm for OWL-S Based

Semantic Search in UDDI. In Proceedings of the 1st International Workshop on Semantic
Web Services and Web Process Composition (SWSWPC-2004), San Diego, California,

USA, 2004.

13. SWeDE. http://owl-eclipse.projects.semwebcentral.org/.

14. UDDI. http://www.uddi.org.

15. K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller. METEOR-

S WSDI: A Scalable Infrastructure of Registries for Semantic Publication and Discovery

of Web Services. Journal of Information Technology and Management, Special Issue on
Universal Global Integration, 6(1):17–39, 2005.

12

Ontology-Based Change Management
in an eGovernment Application Scenario

Ljiljana Stojanović

FZI Research Center for Information Technologies, University of Karlsruhe, Germany

ljiljana.stojanovic@fzi.de

Summary. Permanent changes in the environment (political, economical and ecological)

cause frequent changes in the governments’ regulations that may affect public administra-

tion processes, online services and software systems. To reduce “time-to-market” with regard

to new decisions, regulations, and law, it is necessary to equip public administration with tools

supporting the agile response to changes. In this chapter we present an ontology-based system

for managing changes in the eGovernment domain. The novelty of the approach lies in the

formal verification of the service description as well as in the usage of formal methods for

achieving consistency when a problem is discovered.

12.1 Introduction

Change management is the timely adaptation of a system to the changes in busi-

ness requirements, users’ needs, etc. as well as the consistent propagation of these

changes to dependent artefacts [13]. A modification in one part of the system may

generate many inconsistencies in other parts of the same system [14]. This variety of

causes and consequences of changes makes the change management a very complex

operation that should be considered as both an organisational and a technical process.

Existing approaches for change management in eGovernment focus mainly on man-

ual management of a particular, isolated service and on supporting only message-

based1 communication between public administrators. These approaches require a

growing number of highly skilled personnel, making the maintenance costly. More-

over, the changes that affect the system are resolved and propagated in an ad hoc

manner.

However, the ad hoc management of changes might work only for particular

cases. It can scale neither in space nor in time. Therefore, in order to avoid unneces-

sary complexity and failures in the long run, change management must be treated in a

more systematic way. It is especially important for eGovernment applications that are

distributed over different systems, like eGovernment portals that enable integration

1 This means that public administrators can exchange raw data, but not semantically more

complex structures, like decisions, since e.g. they are missing common agreed description

of problems

340 Ljiljana Stojanović

of various, physically distributed services differing in the level of formality and in the

structure. For example, there are four availability levels of online public services [3]

such as (i) showing only information needed to start the procedures to obtain public

service (ii) enabling downloadable forms to start services (iii) supporting two-way

interaction through online forms and (iv) full electronic case handling by offering the

possibility to completely treat the public service via the Web site, including decision

and delivery. Moreover, the description of an eGovernment service (e.g. issuing of

a driving license) is quite similar for the various service providers (e.g. for different

municipalities) due to binding rules and regulations that every public administra-

tion has to obey. However, there are no two services that are identical, since public

administrations have the liberty of how to act on it.

The changes to be managed lie within and are controlled by the public admin-

istration. The most frequent changes are changes of existing processes based on the

adaptation of business goals, propagating changes in the organisational structure, or

due to possibility to organise processes in a better way. For example, public adminis-

trations at the government level or at the federal level work on supporting unification

of eGovernment services, on standards for data exchange as well as on providing

examples of the process models of public services that are implemented by munici-

palities.

The internal changes might have been triggered by events originating outside

the public administration, i.e. by “the environment”. Hence, the change management

must take into account the response to changes over which the public administration

exercises little or no control (e.g. legislation, social and political upheaval, the actions

of competitors, shifting economic tides and currents, etc.). On the other hand, in a

dynamically changing political and economical environment, the regulations them-

selves have to be continually improved, in order to enable the efficient function of

a modern society. Taking into account an enormous number of public services and

dependencies between them, as well as the complexity of interpreting and imple-

menting changes in government regulations, the process of reconfiguring the existing

public services according to changes in the regulations seems to be quite complex.

Hence, it is necessary to provide support for propagating changes to all dependent

artefacts2 by ensuring the consistency of the whole system. Otherwise, the reliability,

accuracy and effectiveness of the eGovernment system decrease significantly.

Although the importance of change management is demonstrated in practice [6],

as known to the authors, the corresponding methods and tools are still missing. How-

ever, since the demands for change-aware eGovernment are much higher [18], in this

chapter we propose an approach that enables agile response to frequent and huge

changes in the environment or in the system itself.

2 For example, the eGovernment service for birthday certificate can be treated as a separate

service or as a composite service in the context of other services such as passport issuance.

The addition of a new input in the birthday certificate service may make necessary follow-

up changes in the data-flow of many other services that include it (e.g. the passport issuance

service) in order to achieve one-step eGovernment

12 Ontology-Based Change Management 341

In our previous work [19], we have introduced a change management process

that enables consistent propagation of changes within a service and between the ser-

vices in order to ensure the quality of the decision-making process. Here we focus

on the change preservation phase that prevents inconsistencies by computing addi-

tional changes which guarantee the transition of the service description into another

consistent state. We propose proof-driven verification of the service description.3

The verification is driven by a set of desirable properties including the standard set

of properties (e.g. reachability, liveness, etc.) as well as domain-specific constraints

(e.g. all activities are grounded on some law or regulation). Even though it is very

desirable to identify errors and problems in an early state of the service modelling,

there are no tools that provide means to verify the models.

The novelty of the approach lies not only in the formal verification of service

descriptions, but also in the usage of formal methods for achieving consistency when

a problem is discovered. While performing the checks, the system generates specific

suggestions on how to fix errors based on the type of errors and the situation at

hand. Due to our tasks in an ongoing project,4 we have realised our approach in the

eGovernment domain. However, the approach is general enough to be applied in an

arbitrary application domain that uses ontology-based description of web services.

12.2 Motivating Example

In order to make the description of the approach more understandable, we define

here the basic structure of an eGovernment system and give a motivating example

that will be used throughout the chapter. There are four basic roles played by actors

in an eGovernment system: (i) politicians who define a law; (ii) public administrators

who define processes for realising a law; (iii) programmers who implement these

processes and (iv) end-users (applicants) who use eGovernment services.

Public administrators have the key role. They possess a very good knowledge

about the eGovernment domain. This knowledge is needed for the design of a pub-

lic service. It includes the legislation that a service is based on, the respective law,

related decrees, directives, prerequisites, etc. Based on the interpretation of a law, a

public administrator describes a service as a sequence of activities that have to be

done, which represents a business process. For example, the generic schema for the

public service for issuing (renewal) a driving licence is realised through the following

five activities: (i) application, (ii) verification/qualification, (iii) credential issuance,

(iv) record management and (v) revenue collection. This model is shown Fig. 12.1.

In the application activity, all the necessary application data/documents are pro-

vided by an applicant. In the next activity, the provided information/documents are

verified (e.g. validity and liquidity of a credit card) and are qualified by testing

whether the applicant meets the qualification requirements. In the issuance activ-

ity, either a permanent or a temporary credential document (i.e. driving licence) is

3 The approach assumes that ontology-based descriptions of eGovernment services are given

(see Sect. 12.3)
4 OntoGov – http://www.ontogov.org

342 Ljiljana Stojanović

Fig. 12.1. A generic process model of the eGovernment service for issuing a driving licence

issued. The record management activity ensures the ongoing integrity of the driving

licensing and control record. Finally, the required fee is charged from the applicant’s

bank account. Each activity requires some inputs, produces some outputs. It can be

executed only when its pre-conditions are fulfilled and it has post-conditions that

define the next activity in a conditional manner. In the case of the application activity

of the driving licence service, inputs include a birthday certificate, the output is an

application form, the pre-condition is that the applicant is older than 16 and the post-

condition is that all fields in the application form are filled. Further, each activity can

also be decomposed into several sub-activities or can be specialised.

The crucial activity is the verification/qualification, since it reflects the con-

straints contained in the law. For example, it implements a rule that a person younger

than 16 cannot apply for issuing the driving licence, whereas for motor cars (category

B) the minimal age is 18. From the business process management point of view, the

law can be treated as the business rule required to achieve goals of an organisation

(defined by its business policy).

Due to the changes in the political goals of a government, changes in the envi-

ronment, changes in the needs of the people etc., the politicians might (i) make the

revision of a law by accepting an amendment, (ii) enact a new law or (iii) even repeal

a law. In the case of a new amendment the public administrator must understand the

changes in the law caused by the amendment, locate activities/services in which this

law has to be implemented and translate changes into the corresponding reconfigu-

ration of the business process.

Let us continue the example with the driving licence. Recently, the German law

that regulates issuing driving licences has been changed, so that foreigners from non-

EU countries must have the German driving licence, although they have a domestic

licence. Let us analyse which changes in the existing business process for issuing

the driving licence will be caused by this change in the law. For each change, we

discuss the role that an efficient change management system should play. First of

all, the public administrator should locate a business process and the corresponding

activities that should be modified due to this change in a law. Taking into account

an enormous number of public services as well as the complexity of interpreting and

implementing changes in the law, this is a time-consuming action if it is performed in

a non-systematic way. Therefore, an efficient change management approach should

inform the public administrator on these activities automatically. This means that

each business activity must contain a reference to a chapter/paragraph/article/amend-

ment of a law that it implements. For example, the activity verification/qualification

of the driving licence service is based on the Chap. 2, Paragraph “Mindestalter” in

the Law “Bundesgesetz ueber den Fuehrerschein”.

12 Ontology-Based Change Management 343

After finding the service that has to be modified, the public administrator has to

decide how to do that. She can specialise this service in a new one or she can adapt

it to include new requirements. Let us assume that the public administrator made

a decision to generate a specific driving-licence service for foreigners. This service

should not be generated from scratch. Rather, it should be a specialisation of an

already existing driving-licence service. The public administrator has to change the

pre-conditions of this new service, since it is only for foreigners from non-EU coun-

tries. This automatically causes a change in the pre-conditions of the original service,

since the pre-conditions of two different services that provide the same functionality

must be disjoint. Only in this way, the run-time system will know which service to

execute. It is clear that when the pre-conditions are semantically defined, the judge-

ment about the inclusion relation among them can be done automatically.

Further, the verification/qualification activity of the new service requires check-

ing whether a foreigner already has a domestic licence. Therefore, a new input for

that activity is necessary. Since each input has to be supplied, this change is prop-

agated to the previous activity, i.e. the application activity which is responsible for

the interaction with an applicant. This means that that activity has to deliver (as its

output) the information about the domestic licence, the validity of which should be

tested in the verification activity. Consequently, the application activity of the new

service needs an additional input compared to the original service.

Obviously, different changes in a law have different consequences in the exist-

ing services. We briefly discuss one more example. Recently, the German law that

regulates issuing driving licences has been changed, so that teenagers older than 17

can obtain a (temporary) licence for motor cars if they pass the exams and if they

drive with a person that is older than 25, has the driving licence for more than five

years and has scored less than 20 negative points in the last five years. In that case,

the older person must have a licence for co-driving. This change in the law requires

changes in the post-conditions of the verification/qualification activity: instead of

approval and non-approval of the licence, it can be temporarily approved. Further,

the credential issuance activity has to generate an additional output, since the new

co-driving licence should be printable, as well.

An efficient change management system should enable the public administrator

to perform all these changes efficiently (e.g. to make a minimal set of additional

changes) and to ensure the overall consistency of the reconfigured service automat-

ically (e.g. to prohibit that an activity has two contradictory pre-conditions). In the

rest of the chapter, we present a change management system that fulfils the above-

mentioned requirements.

12.3 Modelling eGovernment Services

Before starting with the description of our approach for change management, we

briefly describe the set of ontologies used for modelling eGovernment services. This

set is introduced in [17] and represents the OntoGov model. Dependencies between

344 Ljiljana Stojanović

Legal
Ontology

Organisational
Ontology

Lifecycle
Ontology

Domain
Ontology

OntoGov Process
Ontology

OntoGovProfile
Ontology

Life-Event
Ontology

OntoGov

Meta Ontologies

inclusionIncluded
ontology

Including
ontology

Fig. 12.2. The set of OntoGov ontologies used for modelling eGovernment services

OntoGov ontologies are shown in Fig. 12.2. They are called meta ontologies, since

they define the schema, i.e. the language for modelling the eGovernment services.

The OntoGov model consists of two major parts – the OntoGov Profile ontology
and the OntoGov Process ontology which are developed on the basis of OWL-S.5

However, both of them are extended and adapted in order to take into account unique

characteristics of the eGovernment services, as well as some aspects needed for the

better management of changes. For example, the OntoGov Profile ontology includes

the Life-Event ontology which is used for the classification of eGovernment services.

It includes concepts such as residential affairs, residential permissions, identification

certifications, naturalisation citizenship, moving, education, etc. It has been devel-

oped based on the existing standards6 for modelling life events. It is important to

note that it is common for all the users even though they are often geographically

distributed and may experience significant problems in the common communication

language (e.g. English) and in the style of the communication. More information

about this ontology can be found in [2]. Additionally, a typical profile of an eGovern-

ment service contains the usual meta data such as name, short description, version,

status, date of creation, creator, etc.

The OntoGov Process ontology models (i) process flow using activities (which

can be either atomic or composite) and control constructs (e.g. sequence, split, join,

switch, etc.), as well as (ii) data flow through inputs, outputs7 and equivalence

5 http://www.daml.org/services/owl-s/1.0/
6 For example, the Swiss Standard eCH-001 (Best Practice Structure Process Inventory –

http://www.ech.ch) aims to give an overview over all relevant eGovernment services

in Switzerland and therefore to provide a consistent and standardised classification of the

services. The inventory comprises 1,200 eGovernment services – all services initialised by

a citizen or by internal administration processes
7 Input and output of an activity are represented using entities defined in the Domain Onto-

logy. The Domain Ontology encodes concepts of the public administration domain such as

12 Ontology-Based Change Management 345

relationships between them. Moreover, for each activity a set of meta data may

be defined that includes name, description, pre-conditions and post-conditions. This

standard set of meta data is extended with the legal, organisational and life-cycle

aspects defined in the corresponding ontologies. All these ontologies are used for the

annotation of the eGovernment services in order to enable better and easier manage-

ment of them.

For example, while in private organisations the decisions for process definitions

are mainly based on time, cost and quality criteria, government processes must be in

accordance with the existing law and regulations from different levels (state, region

and municipality). Therefore, we have developed the OntoGov Legal ontology8 that

models the structure of the legal documents, which includes paragraphs, sections,

amendments, etc. It is very important to document the laws and regulations the pro-

cess is based upon – not only for the whole process but also for specific activities,

since the legislation regulates the accomplishments of the administrative services.

By associating legislation to these services, it is possible to trace and propagate the

effects that a change in the legislation (or administrative regulations) produces on the

models of the administrative services.

The Organisational ontology describes the roles and areas of responsibility and

capabilities within an organisation with respect to the activities of a process model.

Moreover, it models the structure of an organisation, its resources, know-how, etc.

For example, we distinguish two types of resources: (1) human resources who per-

form an activity and (2) equipment (i.e. hardware, software etc.) that is occupied

by the activity. Note that equipment is needed to perform an activity. However, it is

released after finishing this activity.

Finally, the OntoGov Process ontology includes the Lifecycle ontology that

describes the decision-making process in the public administration. It bridges the gap

between decision-making and realisation by providing means for describing these

decisions and formally stating reasons that motivate the design decisions. Indeed,

it is intended to support the transition from knowledge acquisition to implemen-

tation. It provides answers on the following questions: (i) How have the process

design (e.g. regarding atomic activities) and flow (e.g. regarding control constructs)

been realised? and (ii) Why has a design decision been taken? Since it includes enti-

ties for documenting design decisions and the underlying rationale, it gives concrete

clues on how the corresponding eGovernment service has to be modified. During

ongoing development, it not only helps the public administrators to avoid pursu-

ing unpromising design alternatives repeatedly, but also facilitates maintenance by

the “terminology” used in the eGovernment domain. For example, the Domain Ontology

defines the type and structure of documents such as a passport
8 To develop the Legal ontology we have analysed the structure of legal documents in

Switzerland, Greece and Spain, since the goal of the OntoGov project is to pilot the system

at our partners coming from these countries. We concluded that the legal documents have a

very similar structure independent of the country they are defined for. Even though differ-

ent countries use different terminology to organise their legal documents, all of them use

three levels of abstractions. Therefore, it was possible to extract the general structure of a

law and to represent it in a form of the Legal Ontology

346 Ljiljana Stojanović

improving the understandability of the service design. A description of the design

process also supports traceability, since it links parts of the service design to the

portions of the specification they were derived from and to the requirements that

influenced design decisions. In this way we build automated tools that support not

only the specification and design of eGovernment processes, but more important it

provides an automated, transparent and user centred support to the entire process

life cycle, from analysis to execution, by suggesting solutions that can be adopted,

refused or refined by public administrators.

An example of the process part of the eGovernment service Announcement of
moving modelled by using the OntoGov model is shown in Fig. 12.3. This service

is classified as of high potential for European eGovernment improvement, as is typi-

cally involving various public and private institutions. Today, the service provided is

split into few separated tasks. In case a citizen invokes this service from a web portal,

he/she is asked to provide all information needed to perform the complete service

(cf. EnterApplicationForm in Fig. 12.3). After submitting the requested informa-

tion, the eligibility is checked (cf. CheckEligibility). Based on the result, the service

can be either broken (cf. RejectApplication) or continued. The next step depends

on whether he/she is already registered (cf. Deregistration) or not (cf. Registration).

Deregistration has to be performed in one municipality. In addition, the person has to

register himself/herself in the new municipality. In the meantime several private or

semi-private entities, like telecommunication companies or the electricity company,

have to be notified about the change of address (cf. GetThirdPatiesAddress and Noti-
fyThirdParties). Finally, the citizen has to be informed about the result of the service.

By describing the eGovernment service Announcement of moving in this way, the

quality of the service is improved, since it is performed by the citizen as one task

regardless of what and how much (technical) processes run behind.

Moreover, not only knowledge on how to execute the service is stored, but also

why it was designed as it is. Therefore, for every entity in the process model of a

service (i.e. either an activity or a control construct), information on the underly-

ing design decisions is recorded. An example of the design decision defined for the

activity CheckEligibility is shown in Fig. 3. This decision is legally grounded: the

information public administrators need to know related to this activity is defined by

law (cf. SR 101 and SR 201 Art. 22A-26A).

Additionally, a decision may stem from technical reasons or organisational rea-

sons. In the case that a reason changed, this information is used to propagate the

change to the affected service(s). Let us consider an example. The change in the

organisational ontology could be the split of the organisational unit into two sub-

units. This “organisational reason” might cause the design decision “Executing an

activity in two steps”, i.e. two (atomic) activities. For example, the decision to split

the activity CheckEligibility shown in Fig. 12.3 into two activities can be caused by

the fact that two different public authorities are responsible for this action: the resi-

dents’ registration verifies personal information, and the immigration office verifies

the validity of the visa, in case the citizen is a foreigner. More information about this

ontology can be found in [2].

12 Ontology-Based Change Management 347

Fig. 12.3. The announcement of moving eGovernment service modelled using the OntoGov

model

12.4 Consistency Preservation

Changes are forces that drive the evolution. They can be applied to a consistent

description of an eGovernment service, and after all the changes are performed, the

description must pass into another consistent state. However, when updating a ser-

vice description, it is not enough just to consider the entities figuring in the request

for a change. The other entities in the same description may also be affected by the

updates. For example, let us consider the case where a public administrator wants to

delete the activity CheckEligibility from the service Announcement of move shown

in Fig. 12.3. This change will generate an inconsistency related to the activity Enter-
ApplicationForm because it does not have a next activity anymore and it is not the

last activity in the process model. Since it is not sufficient to change only a part of

the description that is related to the request for a change while keeping all the other

entities intact, we introduce the consistency preservation phase in the change man-

agement process [19]. Its task is to enable the resolution of changes in a systematic

manner by ensuring the consistency of the whole description of an eGovernment

service.

348 Ljiljana Stojanović

In the rest of this section, we present a novel approach to consistency preser-

vation that supports the public administrators in managing and optimising the ser-

vice descriptions according to their needs. The underlying system is able to find

the “weak places” in the description of the eGovernment services (e.g. unreachable

entities, non-expected data, etc.) by considering the semantics on underlying Onto-

Gov model (see Sect. 12.3). It is focused on discovering inconsistencies in a service

description. We assume that the update would be only a partially automated process

rather than a fully automated process. For example, we do not want to update service

description automatically, but rather to notify the public administrators about prob-

lems and about all the possibilities to resolve the problems. It is up to them to decide

how to resolve those problems.

The proposed approach incorporates mechanisms for verifying the service

description with respect to different consistency criteria as well as mechanisms

enabling us to take actions to optimise it. It has been realised through two sub-tasks:

1. Inconsistency detection: It is responsible for checking the consistency of a ser-

vice description. Its goal is to find “parts” in the description that do not meet

consistency conditions.

2. Change generation: It is responsible for ensuring the consistency of the service

description by generating additional changes that resolve detected inconsisten-

cies.

In the rest of this section, we describe our approach for inconsistency detection.

Thereafter, we present our approach for “moving” the inconsistent ontology back

into a consistent state, i.e. change generation.

12.4.1 Formal Method for Inconsistency Detection

In this section, we explore the verification of the OntoGov model introduced in

Sect. 12.3. Verification in general concerns correctness. Verification of an eGovern-

ment service is checking of the correctness of the service description with respect to

the service consistency definition. Moreover, it provides enough information to anal-

yse the sources of conflicts. Its role will be to inform a public administrator about the

necessity for updating the description of an eGovernment service, and to allow the

application of the service changes, enabling an easy spotting of potential problems.

The description of the eGovernment services (or, more generally, the description of

the semantic web services) can be arbitrarily complex, containing multiple concur-

rent threads that may interact in an unexpected way [1]. We propose an approach that

is able to verify numerous properties. The set of properties is not pre-defined, which

means that it does not include only the standard properties such as safety, liveness,

etc. [12], but, more importantly, it can be easily extended by application-specific

properties.

Verification of the description of eGovernment services is realised using formal

methods. These methods seek to establish a logical proof that a system works cor-

rectly. A formal approach provides the following:

12 Ontology-Based Change Management 349

1. A modelling language to describe the system.

2. A specification language to describe the correctness requirements.

3. An analysis technique to verify that the system meets its specification.

The model describes the possible behaviours of the system, and the specification

describes the desired behaviours of the system. The statement that the model P satis-

fies the specification is now a logical statement, to be proved or disproved using the

analysis technique.

Since the goal of the inconsistency detection is to check whether a service

description satisfies the required specification, it can be treated as a formal verifica-

tion problem in which a modelling language to describe a system is defined through

the OntoGov model, a specification language corresponds to the consistency con-

straints that must be preserved, and an analysis technique can be treated as inference

process. The model of the eGovernment services is described in Sect. 12.3. In the

rest of this section we focus on the points 2 and 3.

Consistency Definition

To formally prove the correctness of a model, the first decision is about what claims

to prove. Typically, two kinds of properties are proven about a given protocol:

1. Safety properties, which guarantee that specified undesired states, such as dead-

locking states, are never reached.

2. Liveness properties, which specify that desired states are eventually reached [1].

However, to achieve the completeness, the solution is not to specify in advance the

possible checks, but to enable the extension of the claims by allowing the users to

specify their needs.

Indeed, for a more complex service model, the number of possible problems

increases dramatically. Since the needs of a user cannot be anticipated, it is also

impossible to determine exactly which kinds of checking should be built into a sys-

tem. Thus, for a verification system to be useful, effective and efficient, it has to

address the issue of how a user can specify his/her request for a checking. This prob-

lem requires a method for expressing a user’s need in an exacter, easier and more

declarative manner. It is in contrast to all existing approaches, where a user can only

select a claim from a pre-defined set, which does not necessarily cover all the users’

needs. In the rest of this section, we propose the declarative specification of the con-

sistency constraints of the model.

According to [7], consistency is the degree of uniformity, standardisation, and

freedom from contradiction among the parts of a system or component. From the

point of view of logic, consistency is an attribute of a (logical) system that is so

constituted that none of the facts deducible from the model contradict each other.

Therefore, the consistency of an ontology-based description can be considered as an

agreement among ontology entities with respect to the semantics of the underlying

language used for modelling.

We define the consistency of an eGovernment service description in the following

ways.

350 Ljiljana Stojanović

Definition 1 (eGovernment service consistency). An ontology-based eGovernment

service description is consistent

• if it is ontology-consistent and

• if it satisfies a set of consistency constraints defined for the OntoGov model.

Since we use the OWL ontology language (see Chap. 3) for representing the Onto-

Gov ontologies introduced in Sect. 12.3, the set of constraints can be defined on the

basis of OWL plus rules as shown in [5]. The second aspect of eGovernment ser-

vice consistency takes into account specificities of the OntoGov ontologies, since

they represent the language for describing services. This set of consistency con-

straints belongs to the user-defined consistency constraints,9 since they represent

users’ requirements that need to be expressed “outside” of the ontology language

itself.

Definition 2 (OntoGov consistency constraints). A set of consistency constraints

defined for the OntoGov model includes

• generic conditions that are applicable across domains and represent, e.g., best

design practice or modelling-quality criteria (e.g. redundancy);

• domain-dependent conditions that take into account the semantics of a particular

formalism of the domain.

Whereas the generic conditions are elaborated in [18], the domain-dependent condi-

tions10 are enumerated in [15]. In order to make the definition of consistency more

clearly, we show in Fig. 12.4 a service that satisfies neither generic nor domain-

dependent conditions. The generic conditions are not fulfilled since a profile of the

eGovernment service is annotated with a class and its subclass, which is considered

as redundant. Regarding the domain-dependent conditions, the process model of the

service contains an unreachable activity.

Previously mentioned consistency constraints are formally represented as DL-

safe rules [13], since inference by KAON211 engine is used to perform the model

verification. This is described in the next sub-section. The rules for finding unreach-

able entities in a process model are shown in Fig. 12.5. By assuming that the activity

A is set as a first entity in the process flow, and that C and D are last activities, the

system will find that the atomic activity B is unreachable.

We do not only test the reachability of an activity, but also verify the reach-

ability with respect to the policies that the service must satisfy. For example, the

9 An ontology is user-defined consistent if it meets the constraints explicitly defined by the

users which cannot be captured by the underlying ontology language itself, but rather given

by some application or usage context
10 The set of domain-dependent consistency constraints covers constraints related to the pro-

file and to the process model of a service description. Regarding the process model we

consider (i) the control flow, i.e. the order of execution and dependencies among the var-

ious activities and (ii) the data flow, i.e. how the business entities are manipulated by the

various activities and the dependencies between entities belonging to different activities
11 http://kaon2.semanticweb.org/

12 Ontology-Based Change Management 351

Fig. 12.4. An example of an inconsistent eGovernment service

PerformDeregistration activity cannot be executed before the PerformRegistration
activity (according to the consistency constraint C1312). Let us assume that there is

a data-flow link between the output of the PerformDeregistration activity and the

RejectApplication activity in the eGovernment model shown in Fig. 12.3. The under-

lying ontology is OWL consistent. Moreover, the process model satisfies all consis-

tency constraints related to the process flow. However, there is a problem with the

data flow. This is because in the run-time either the PerformDeregistration activity

or the RejectApplication activity will be executed. In the case that the RejectAppli-
cation activity is executed, its input is not instantiated, since the PerformDeregistra-
tion activity cannot be executed. All consistency checking rules are organised in the

Fig. 12.5. Verification based on the domain-specific constraints. A part of consistency rules is

depicted in the left part. The right part shows the process model that does not satisfy the rules

(see activity B)

12 C13: Any specialisation of the activity A1 must always be a predecessor of any specialisa-

tion of the activity A2, where A1 and A2 are two activities defined in the OntoGov model

and their order is given in advance (i.e. A1 precedes A2)

352 Ljiljana Stojanović

so-called Error hierarchy that is also defined using the rules. This allows checking

consistency at different levels of abstractions.

Here we note that the additional consistency constraints defined for the OntoGov

model allow us to model not only the business process model13 of eGovernment ser-

vices, but more important the business requirement model.14 The business require-

ment model provides a higher-level description of the different actors in the business

domain with their goals and their mutual dependencies and expectations, and pro-

vides the motivations behind business processes [4]. It drives the design of business

processes and the verification that they achieve desired goals.

The OntoGov system allows public administrators to capture knowledge about

the concrete eGovernment domain in a way that is both intuitive and formal. Indeed,

the OntoGov consistency constraints concern the truthfulness of a service description

with respect to its problem domain – does the service description represent a piece of

reality and the users’ requirements correctly? They help finding the “weak places” in

the service description regarding the users’ needs, ensures that generated recommen-

dations reflect the users’ needs and promotes accountability of a public administrator

who does not need to be an experienced modeller. In this way, the change manage-

ment system provides an easy-to-use management system for public administrators,

since they are able to use it productively, with minimal training.

However, current approaches do not address the issues of how to model the

requirements that semantic web services (e.g. OWL-S processes) are supposed to

satisfy and how to manage the evolution of service descriptions and requirements.

This work presents the first steps towards this vision, since it provides the ability to

capture the specific aspects of eGovernment services.

An Approach for Inconsistency Detection

Creating a proposed description of an eGovernment service is instructive in itself,

revealing anomalies, inefficiencies and opportunities for improvement. One of the

main advantages of the proposed model, in which everything is defined rigorously

and precisely, is the possibility to verify the service descriptions formally. The veri-

fication of the compliance with eGovernment consistency constraints is the focus of

this section. The procedure for achieving the consistency when a problem is discov-

ered will be discussed in Sect. 12.4.2.

Verification can be done by using formal methods. Formal methods are those

that provide a rigourous mathematical guarantee that a large system conforms to a

specification. Formal methods can be roughly classified as follows:

• Proof-theoretic: A suitable deductive system is used, and correctness proofs are

built using a theorem prover.

13 This is the traditional model which OWL-S or other languages are using to describe both

the flow of activities internal to an organisation and its interactions with external processes

and services
14 The business requirement model describes both the internal requirements, i.e. the business

needs of an organisation, and the external requirements, i.e. the expectations over the exter-

nal services the organisation has to use to realise its own business

12 Ontology-Based Change Management 353

• Model-theoretic: A model of the run-time behaviour of the system is built, and

this model is checked for the required properties.

In this section, we explore the verification of the OntoGov model using proof-

theoretic method. Once we have a service description (see Sect. 12.3) plus the for-

mally defined consistency constraints that correspond to the users’ requirements, we

can automatically check whether these constrains are satisfied in the service descrip-

tion with the help of the reasoning. The KAON2 inference engine is used, since it

implements the proof-theory for DL and DL-safe rules. By performing an efficient

exploration of the possible inconsistencies that can be built in the service description,

the system is able to verify all the consistency constraints15 defined for the OntoGov

model.

The set of the consistency constraints as well as a description of the concrete ser-

vice are inputs to the KAON2 inference engine that is used to automatically verify

whether the service description satisfies the consistency. Practically, a query is sent,

since possible problems are hierarchically organised. A trace of the answer to a query

is considered as a model that reflects how different pieces of a service description are

put together to generate the answer. If the KAON2 verifies that the consistency con-

strains are fulfilled (i.e. there is no answer), then the service description is consistent.

Otherwise, the KAON2 provides explanation about causes of problems, since it can

identify the conditions under which the problem occurs.

The realised verification procedure is depicted in Fig. 12.6. The set of the consis-

tency constraints selected/defined16 by the public administrator are transformed into

a set of DL-safe rules and these rules are included in the temporary version of the

OntoGov Profile and OntoGov Process ontology, respectively. Since the description

of a concrete service includes both of these ontologies, it will include the rules to

be checked. The service description is given to the KAON2 reasoner and the query

“about all possible errors” is initiated. The result produced by KAON2 reasoner is

then presented to the public administrator in the form that he/she can understand.

Even though logic provides an unambiguous formal specification, it is hard to imag-

ine that a public administrator will comprehend it. Therefore, “wrapping” into a more

friendly formalisms, i.e. natural language explanation,17 has been proposed. It means

that in the case of any violations of consistency constraints, the reasoner will output a

counterexample, which demonstrates the courses of wrong behaviour. An analysis of

this counterexample provides information that helps to correct and refine the service

description.

For example, a pre-condition of an activity is not achieved because there are some

previous activities that undo the pre-condition. Let us consider the driving licence

service for foreigners in Germany. The pre-conditions of the Application activity

15 Since in this work we use the KAON2 inference engine, the consistency constraints must

be specified as DL-safe rules
16 A user can select consistency criteria from the list of available consistency constraints

and/or can define a new consistency criterion
17 We do not use logical notations since public administrators do not have logic background

knowledge. For each possible problem, an explanation in natural language is generated

354 Ljiljana Stojanović

Fig. 12.6. Formal verification: based on the possible behaviours (i.e. a ontology-based service

description) and on the desirable behaviours (i.e. formally defined consistency constraints),

the system constructs a proof that either proves or disproves the correctness claim

includes that foreigners come from non-EU countries. Since a special verification

is required for the countries emerged from the break-up of Yugoslavia, there is an

activity in the process model that has a pre-condition that the foreigners must be from

Slovenia. However, the Application activity undoes this pre-condition, since Slovenia

is a member of EU. It is very difficult for a user to notice that some of the paths in the

model are not possible due to at least two reasons: (i) this service description is very

complicated with many disjunctive branches, and (ii) the background knowledge (i.e.

the fact that Slovenia is in EU) is needed. Our system is able to detect this problem

by applying reasoning methods (based on the consistency constraint C818) and to

help the user fix problem. It can find activities in the process model that should be

executed before the failed activity that have effects that undid the unachieved pre-

conditions. Moreover, it suggests modifying the activity whose pre-condition can

never be achieved. For the above-mentioned type of failure, our system suggests

(i) changing or adding constraints for the Application activity and (ii) deleting or

modifying the Verification activity.

Moreover, the system is also able to propose changing ordering constraints

among the activities. For example, the user may either forget to specify connections

between the activities or may specify wrong connections. These problems may be

detected by checking the consistency constraint C13 [15], since it defines the certain

ordering constraints already specified for the type of these activities. During the veri-

fication, the system checks (among others) the dependencies between activities using

the ordering consistency constraint. In the case that some activity does not satisfy the

ordering constraint, the system produces the error message containing the fixes such

as adding or modifying dependency between activities.

We note that the same problem can be a consequence of different inconsisten-

cies in the model, since one abnormality can lead to another. For example, miss-

ing the first activity in a process model causes unreachable activities. To help avoid

18 C8: If an activity precedes another activity, then its pre-conditions have to subsume the

pre-conditions of the next one

12 Ontology-Based Change Management 355

confusion, our system can selectively present suggestions for improvement by focus-

ing the user on the actual cause of a problem. For the previous example, the system

suggests staring with the resolution of the first activity problem. However, the user

can check other problems as well, if he/she wants to do that. For the description of

eGovernment services, the proposed solution seems to be an ideal technique, since

only consistency constraints defined by the public administrators need to be con-

sidered. The probability of running into the undecidable solution is quite low, since

the restriction to the DL-subset of SWRL rules has been chosen to make reason-

ing decidable. Moreover, reasoning in KAON2 is implemented by novel algorithms

that allow applying well-known deductive database techniques, such as magic sets

or join-order optimisations, to DL reasoning. According to the performance evalua-

tion [10], such algorithms make answering queries in KAON2 one or more orders of

magnitude faster than in existing systems.

12.4.2 Change Generation

Changes are applied to a consistent service description, and after all the changes are

performed the description must remain consistent. This is done by finding inconsis-

tencies in the description and completing required changes with additional changes,

which guarantee the transfer of the initial consistent description into another consis-

tent state. Indeed, the updated service description is not defined directly by applying

a requested change. Instead, it is indirectly characterised as a service description that

satisfies the user’s requirement for a change and it is at the same time a consistent

eGovernment service description.

Therefore, there are two major issues involved in the change generation. The first

issue is the understanding how an ontology-based service description can be changed

since the change management is realised by means of applying changes. To resolve

the first issue a possible set of changes is defined in [17]. The second issue involves

deciding when and how to modify a service description to keep its consistency, which

is elaborated in the rest of this section.

Dependency Graph

The role of a change management system is much more than finding inconsistencies

in a service description and alerting a public administrator about them. This is pretty

much the kind of support provided by conventional compilers. However, helping

public administrators notice the inconsistencies only partially addresses the issue.

Ideally, the change management should be able to support public administrators in

resolving the problems at least by making suggestions how to do that. In the rest of

this section, we discuss our formal approach for suggesting fixes that directly point

to the source of the errors.

In order to formally define the way of generating additional changes, the

OntoGov changes are modelled in the following ways.

356 Ljiljana Stojanović

Definition 3 (Change). A change Ch is a 5-tuple

Ch := (name, args, preconditions, postconditions, rules)19

where

• name is the identifier of the change. All possible change identifiers can be derived

from the OntoGov model.

• args is a list of one or more change arguments. For example, to remove the

atomic activity X from a service description, the only argument of the change

RemoveAtomicActivity has to be X. To remove the input I of the activity X, the

change RemoveActivityInput(X, I) has to be applied.

• pre-conditions are a set of assertions that must be true to be able to apply a

change. For example, preconditions for the removal of the atomic activity X is

that the atomic activity X has been defined.

• post-conditions are a set of assertions that must be true after applying a change

and it describes the result of a change. For example, post-conditions for the

removal of the atomic activity X includes assertion that the atomic activity X
does not exist anymore.

• rules are additional changes that have to be generated.

The most critical part of a definition change is rules specify the side effects of a

change on the other related entities. To define the rules for each change, we started

by finding out the cause–effect relationship between the changes. This kind of depen-

dency between the changes forms the so-called change dependency graph.

Definition 4 (Change dependency graph). A change dependency graph is a

directed graph defined as

CDG := (CH, E)

where

• CH = {Chi}, 1 ≤ i ≤ |CH|, is a set of nodes and each node represents a change

Chi;

• E = {Ek}, 1 ≤ k ≤ |E|, is a set of labelled edges and each edge represents the

cause–effect dependency between changes (i.e. nodes). An edge is defined in the

following way:

Ek = (Chi, Conditionj, Chl), Chi, Chl ∈ CH, 1 ≤ i, l ≤ |CH|, i �= l.

Conditionj is a prerequisite for the edge existence. It states when a change Chi may

cause a change Chl. It is represented as a logical formula that contains only ontology

entities.

19 In order to simplify the notation of changes, the following simplified syntax is used:
name(args, preconditions, postconditions, rules). Moreover, to specify the request for a
change the notation name(args) is used since the pre-conditions, the post-conditions and
the rules are general and do not depend on the concrete application of a change

12 Ontology-Based Change Management 357

Therefore, Ek = (Chi, Conditionj, Chl) can be read as

IF Chi THEN Chl

WHEN Conditionj

For example, one has to interpret the edge

(RemoveAtomicActivity(x), (hasPrevious(x, y) ∧ Activity(y)), RemoveSequence(y, x))

as the change RemoveAtomicActivity triggering the change RemoveSequence, i.e. the

rule

IF RemoveAtomicActivity(x) THEN RemoveSequence(y, x)

can be applied if the condition hasPrevious(x, y) ∧ Activity(y) is satisfied.

The applicability of a condition depends on the content of a service descrip-

tion. For example, for the request RemoveAtomicActivity(NotifyThirdParties) for the

model shown in Fig. 12.7, the dependency between the change RemoveAtomicActiv-
ity and the change RemoveSequence would be taken into account, since the activity

NotifyThirdParties has a previous entity that is an activity GetThirdPartiesAddress.

However, the request for the removal of the activity GetThirdPartiesAddress would

not provoke the generation of changes related to sequence since this activity is not

Fig. 12.7. Change generation for the request RemoveAtomicActivity(B): (a) The initial model;

(b) the generated changes

358 Ljiljana Stojanović

related to any sequence, but to the switch control construct. In this way, the change

dependency graph can be considered as a schema for generating additional changes.

The change dependency graph is a directed graph. Moreover, it is worth men-

tioning that the size of the graph is fixed since the number of changes is pre-defined.

Nevertheless, the change dependency graph has a very complex, interwoven struc-

ture.20

The approach is based on a common technique for the maintenance of

knowledge-based systems [9] which states that dependencies between knowledge

have to be represented explicitly. However, while in these systems the dependency

graph consists of knowledge elements (e.g. rules in the expert systems), in our change

management system the nodes of this graph are changes – as defined in [17].

Definition 5 (Change generation). The change generation is defined as

ChangeGeneration : CH → 2CH

where each ChangeGeneration(Chk) = {Chk1, ..., Chki, ..., Chkn} consists of the

THEN part of those rules, defined for a particular change Chk, that can be applied.

We note that the applicability of a rule is determined by the conditions.

Note that each of generated changes can cause new problems in the service

description. Resolving these problems is treated as a request for a new change, which

can induce new problems that cause new changes etc. Therefore, one change can

potentially trigger other changes, etc. If a service description is large, it may be diffi-

cult to fully comprehend the extent and meaning of each induced change. The task of

“change generation” phase is to enable resolution of induced changes in a systematic

manner, ensuring consistency of the service description. To help in better under-

standing of effects of each change, this phase contributes maximum transparency

providing detailed insight into each change being performed.

A sample screen shot of the OntoGov change management system illustrating

triggered actions (i.e. generated changes) for the removal of the atomic activity is

given in Fig. 12.7. In this scenario, the user requested to remove the AtomicActivity B.

According to the change dependency graph, this change may cause the following:

• Remove all input links21 of AtomicActivity B.

• Remove all output links of AtomicActivity B.

• Remove all meta data defined for AtomicActivity B that includes the following:

– the attributes such as name, description, first and last service

– the relations to the associated ontologies (i.e. Legal, Organisational and Life-

cycle ontology)

– the relations to the inputs and outputs defined through the Domain ontology

– the pre- and post-conditions.

20 The richer the set of changes, the more difficult it becomes to give a precise characterisation

of the dependency between changes
21 A link can be a sequence or a relation to the split, join or switch control construct

12 Ontology-Based Change Management 359

Before changes are performed, their impact is reported to the user (the right part

of Fig. 12.7). Presentation of changes follows the progressive disclosure principle:

related changes are grouped together and organised in a tree-like form. The user ini-

tially sees only the general description of changes (cf. “Delete atomic service B” in

Fig. 12.7). By opening a node in the tree, the user can see what changes will actually

be performed (cf. “Delete input parameter CertificateInstanceName” in Fig. 12.7).

Hence, the change information can be viewed at different levels of granularity. If the

user is interested in details, he/she can expand the tree and view complete informa-

tion. The user may cancel the operation before it is actually performed.

Additionally, the role of the change preservation is not only to ensure the preser-

vation of the consistency in the case that a request for a change can be applied. Its role

is also to prevent illegal changes, i.e. changes that would cause inconsistencies [4].

Whereas the change-dependency graph is responsible for keeping consistency, the

prohibition of illegal changes is settled by checking the pre-conditions of a change,

since they are applicability conditions, i.e. to say the conditions under which changes

are semantically correct.

Let us consider an example. Suppose that we start to model a new eGovernment

service. We annotate the profile of this service with the concept Education defined in

the Life-Event ontology as shown in Fig. 12.4. This service description is consistent

with respect to the consistency definition. Suppose we now want to add the axiom

stating that the service is about Professional Training as well. Obviously, this change

would result in a service description that is inconsistent with respect to compactness

generic condition, since there is an alternative path (through the concept Professional
Training) between the service profile and the concept Education (see Fig. 12.4). Our

change management system suggests a change that removes the annotation of the ser-

vice with the most general concept Education before applying the required change.

12.5 Implementation

OMS is the ontology management system that has been developed within the Onto-

Gov project. It is a management system for the ontology-based description of the

eGovernment services. The set of ontologies needed to model eGovernment services

and their life-cycle aspects are described in sect. 12.3. Indeed, OMS is a framework

for creating, modifying, querying and storing ontology-based description of eGov-

ernment services. It provides support for the service life-cycle management, which

includes service modelling, service reconfiguration, service reuse, service discovery

and service analysis.

The simplified conceptual architecture of the OMS system is presented in

Fig. 12.8. Roughly, the OMS components can be divided into three layers:

1. Applications and services layer: It realises UI applications and provides inter-

faces to non-human agents. It includes the following:

360 Ljiljana Stojanović

Service Modeller Service Registry
Applications
& Services

Service API

Middleware

Data& Remote
Services Persistence, Security, Transaction

ConsistencyChange

KAON2 API

Inconsistency
Detection

Inconsistency
Detection

NotificationNotification

RegistrationRegistrationSynchronisationSynchronisation

DiscoveryDiscovery

Model

Change
Generation

Change
Generation

ApplicationApplication

VersioningVersioning

Basics module

Consistency
preservation

module

Change
implementation

module
LoggingLogging

Change
propagation

module

Registry
module

Documentation

Lifecycle
Lifecycle
module

Synchronisation

Fig. 12.8. Conceptual architecture of the OMS

• Service modeller: It is an editor for the semantic description of the eGovern-

ment services.22:

• Service registry: – it is a registry of the eGovernment services.

2. Middleware layer: The Service API as part of the Middleware Layer is the focal

point of the OMS architecture. The bulk of requirements related to the manage-

ment of eGovernment service description is realised in this layer.

3. Data and remote services layer: It provides data storage facilities. It is based on

KAON2 API, which is an API for OWL ontologies.

The middleware layer of the OMS shown in Fig. 12.8 emphasises points of interest

related to the change management. The main modules are (i) basics module, (ii) con-

sistency preservation module, (iii) change implementation module, (iv) change prop-

agation module, (v) lifecycle module and (vi) registry module. The functionality as

well as the implementation of these modules is described in [16]. Our initial evalua-

tion shows that the OMS is able to find all inconsistencies in the service description

22 OIModeller is used as an editor for the “standard” ontologies. It is a graphical tool for

ontology creation and maintenance. Since it is based on the different ontology model, we

have realised a translator of the KAON ontologies (http://kaon.semanticweb.
org/) into the KAON2 ontologies (http://kaon2.semanticweb.org/). We note

that each KAON ontology can be transformed into a KAON2 ontology without loss of

information

12 Ontology-Based Change Management 361

and to suggest useful fixes including the fixes that directly point to the source of the

inconsistencies.

12.6 Related Work

OWL-S process models are typically verified using human inspection, simulation

and testing. In this chapter we proposed the formal verification, which has two main

advantages over traditional techniques such as testing and simulation:

1. Formality: The intuitive correctness claim is made formally.

2. Verification: The goal of the analysis is to prove or disprove the correctness

claim.

It is not sufficient to check a representative sample of possible behaviours as in simu-

lation; rather a guarantee is required that all behaviours satisfy the specification. The

verification of OWL-S process models is described in [11] and [1]. Whereas the first

paper proposes a Petri Net-based operational semantics which models the control-

flow of a process model, the second paper additionally models the data flow and

applies the SPIN model-checker as an automatic verification tool. We extend these

works in several dimensions. First, we not only model the control-flow and data-flow

consistency constraints, but allow to the public administrators to specify arbitrary

domain-dependent consistency constraints. In this way, we are able to cover all per-

spectives of the business models, i.e. control flow, data flow, operational issues (e.g.

interactions between systems) and resources (e.g. humans, machines, etc.). Second,

we do not consider only the process model but also the profile of a service. Finally,

we have realised the verification of the eGovernment service descriptions using a

rule-based inference process.

Many AI researchers have investigated useful ways of verifying and validating

knowledge bases with ontologies and rules. However, it is not easy to directly apply

this work to checking process models. In [8] the authors discussed the KANAL sys-

tem that relates pieces of information in process models among themselves and to

the existing knowledge base, analysing how different pieces of input are put together

to achieve some effect. It builds interdependency models from this analysis and uses

them to find errors and to propose fixes. However, it does not allow the user to spec-

ify their specific conditions, event though the pre-defined set of constraints does not

cover all the users’ needs. Our approach allows the user to define the user-defined

conditions. Moreover, it separates the specification of consistency from the realisa-

tion of the change preservation procedure. Finally, the inconsistency detection and

the change generation procedures are governed by well-defined formal models that

are fully automated. Therefore, the approach is accessible by public administrators

who are not experts in formal methods.

There are many graphical tools (ADONIS, ARIS, iThink, to name just a few)

to lay out a process model and draw connections among steps. Often, these tools

lack formal methods for verifying properties of processes. Indeed, they are mostly

limited to simple checks on process models, since there is no semantics associated to

362 Ljiljana Stojanović

the individual steps. In contrast, we propose an approach that allows to the users to

formally specify consistency constraints. Ontologies and rules are used to represent

this kind of background knowledge or users’ needs. With this context, our system is

much more helpful in checking the process model. Moreover, our system can check

the service profile as well, and it proposes suggestions for resolving the problems.

12.7 Outlook

eGovernment systems are subject to a continual change. The importance of better

change management is nowadays more important due to the evolution of Europe

towards a multi-cultural, more open and international society with changing com-

mon values, increasing levels of education, demographic involvement and adoption

of new technologies. This is especially true for the new EU countries, since the Euro-

pean integration has paved the way for new legislation, regulations and correspond-

ing changes that affect the way public administrations in the enlarged Europe are

organised and operated.

It is clear that ad hoc management of changes in eGovernment might work

only for particular cases. To avoid drawbacks in the long-run, the change manage-

ment must be treated in a more systematic way. In this chapter, we presented an

approach for ontology-based change management. The approach enables (i) detec-

tion of inconsistencies that may arise in the description of the eGovernment services

and (ii) generating specific suggestions to the public administrators about how to fix

the problems found in the models. Our approach goes beyond a standard change

management process; rather it is a continual improvement process. It allows the

public administrators to specify their own continually changing needs through the

application-specific consistency constraints. Moreover, it provides enough informa-

tion to analyse the sources of inconsistencies by pointing out what existing know-

ledge needs to be modified or what additional knowledge needs to be acquired.

The main contribution of this work is the use of formal methods for modelling

and analysis of eGovernment service descriptions. We strongly believe that the use

of formal methods such as the ones discussed here can be of significant benefit to

public administrators (or business analysts in general). The main advantage of the

proposed approach is that it can be used to capture domain knowledge which includes

knowledge about the service descriptions, as well knowledge about requirements that

these descriptions have to satisfy, in an intuitive and unambiguous way. The approach

can also be used to analyse the service description (i.e. to notice the problems and to

fix them) in a formal way, what would be impossible if an informal approach is used.

The work presented here is a starting point, and we see many possibilities to

extend it. Limitations of the tool include a user-friendly editor for consistency con-

straints as well as consistency checking between these constraints (e.g. contradiction,

generalisation, cycles, etc.). The system could be expanded to accommodate the res-

olution strategies, i.e. more than one possibility to resolve the problems. However,

we believe that the existing tool provides a very good base for future expansions

in the field. Finally, the goal of this work has been to build a general framework

12 Ontology-Based Change Management 363

for change management. As the basis of this framework, the OntoGov model (with

its consistency definition and its changes) is used. However, the basic ideas are not

strongly bound to this model. The main principles can be more or less easily adapted

to other models.

References

1. A. Ankolekar, M. Paolucci, and K. Sycara. Towards a Formal Verification of OWL-S

Process Models. In 4th International Semantic Web Conference (ISWC 2005), Galway,

Ireland, 2005. Springer-Verlag.

2. D. Apostolou, L. Stojanovic, T. Pariente Lobo, and B. Thoenssen. Towards a

Semantically-driven Software Engineering Environment for e-Government. In TCGOV
2005, volume 3416 of LNCS, pages 157–168, 2005. Springer-Verlag.

3. Cap Gamini Ernst and Young. Online availability of public services.

http://europa.eu.int/information_society/eeurope/2005/doc/
highlights/wh\%ats_new/capgemini4.pdf.

4. A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, and M. Roveri. Specifying and Analyzing

Early Requirements in Tropos. Requirements Engineering Journal, 9(2):132–150, 2004.

5. P. Haase and L. Stojanovic. Consistent Evolution of OWL Ontologies. In Proceedings of
the 2nd European Semantic Web Conference (ESWC 2005), volume 3298 of LNCS, pages

182–197, Heraklion, Crete, Greece, 2005. Springer-Verlag.

6. C. Hardless, R. Lindgren, U. Nulden, and K. Pessi. The Evolution of Knowledge Man-

agement System Need to be Managed. Journal of Knowledge Management Practice, 3,

2000.

7. Institute of Electrical IEEE 90 and Electronics Engineers. IEEE Standard Computer Dic-

tionary: A compilation of IEEE Standard Computer Glossaries.

8. J. Kim and Y. Gil. Knowledge analysis on process models. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence (IJCAI 2001), pages 935–942,

Seattle, Washington, USA, 2001.

9. T. Menzies and J. Debenham. Expert System Maintenance. In Encyclopaedia of Com-
puter Science and Technology, volume 47, pages 35–54, 2000.

10. B. Motik and U. Sattler. Practical DL Reasoning over Large ABoxes with KAON2.

http://www.fzi.de/KCMS/kcms_file.php?action=link&id=580/.

11. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Composition of

Web Services. In Proceedings of the 11th International Conference on World Wide Web
(WWW 2002), pages 77–88, Honolulu, Hawaii, USA, 2002.

12. G. Naumovich and L. Clarke. Classifying Properties, an Alternative to the Safety-

Liveness Classification. ACM SIGSOFT Software Engineering Notes, 25(6):159–168,

2000.

13. F. Nickols. Change Management 101: A Primer. http://home.att.net/

˜nickols/change.htm.

14. L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, University of

Karlsruhe, 2004.

15. L. Stojanovic, A. Abecker, N. Stojanovic, and R. Studer. On Managing Changes in the

Ontology-Based E-Government. In Proceedings of the 3rd International Conference on
Ontologies, Databases and Application of Semantics (ODBASE 2004), number 3291 in

LNCS, pages 1080–1097, Agia Napa, Cyprus, 2004. Springer-Verlag.

364 Ljiljana Stojanović

16. L. Stojanovic and D. Apostolou. Ontology-based Change Management of e-Government

Services. In Proceedings of Web Intelligence (WI2005) Conference - Semantics and
Orchestration of eGovernment Processes Workshop, France, 2005.

17. L. Stojanovic, G. Kavadias, D. Apostolou, F. Probst, and K. Hinkelmann. E-Gov Lifecy-

cle Ontology. In Deliverable D2, EU/IST Project OntoGov, http://www.ontogov.
org, 2004.

18. L. Stojanovic, N. Stojanovic, and D. Apostolou. Change Management in e-Government:

OntoGov Case Study. Electronic Government: International Journal, Special Issue on
Exploiting Knowledge Management for Ubiquitous E-Government in the Semantic Web
Era, 3(1), 2006.

19. N. Stojanovic and L. Stojanovic. A Change-Aware Framework for the Knowledge Man-

agement in eGovernment. In Electronic Government - Workshop and Poster Proceedings
of the Fourth International EGOV Conference 2005, pages 3–10, Copenhagen, Denmark,

2005.

13

An eGovernment Case Study
Integrating Governmental Services Using Semantic
Web Technology

Christian Drumm1 and Liliana Cabral2

1 SAP Research, CEC Karlsruhe, Germany, christian.drumm@sap.com
2 Knowledge Media Institute, The Open University, Milton Keynes, UK

l.s.cabral@open.ac.uk

Summary. In this section we will describe a prototypical application that shows how Seman-

tic Web Services and current state-of-the-art Enterprise Application Integration software can

be used to integrate eGovernment services across different service providers. Starting from

a use case scenario and the general requirements that build the basis for our prototype, we

will describe the generic integration architecture we have developed focusing mainly on the

integration aspects of the Semantic Web Services. Following this we will describe the actual

prototype application as well as some implementation details. Finally, we will close by a

description of the challenges we faced when developing the prototype and by some general

conclusions.

13.1 Introduction

Current eGovernment initiatives across Europe (e.g. eGovernment Interoperabil-

ity Framework (eGIF) [1], European Interoperability Framework for pan-European

eGovernment Services [3]) present governmental organisations with strong require-

ments regarding the integration of data and services across organisation boundaries.

Currently, the ability to aggregate and reuse all the information resources relevant to

a given problem and further to make this available as a basis for transparent interac-

tion with community partner organisations and individual citizens is very restricted.

Furthermore, the goals of citizens using eGovernment services and of government

providers of services are often not conceptually aligned, contributing to misunder-

standing, low take up and poor relations between citizens and their governments.

We have created a prototype application for the use case on eGovernment within the

DIP1 project for illustrating how Semantic Web Services could be applied to this

domain in order to overcome these problems and thereby enable the provision of

better eGovernment services.

In this chapter, we will describe a prototypical application which builds

on Semantic Web Services and current state-of-the-art Enterprise Application

1 http://dip.semanticweb.org

366 Christian Drumm and Liliana Cabral

Integration software in order to integrate eGovernment services offered by differ-

ent service providers. We start with an overview of the use case scenario and general

requirements. Following this, we describe the generic application architecture and

the Semantic Web Service infrastructure used to develop the prototype. Next, we

describe some implementation details including examples of the domain ontologies

and semantic descriptions of the services used by the application. Finally, we present

some of the challenges faced when using Semantic Web Services technology and our

conclusions.

13.2 Use Case Overview

The application scenario we used as a basis for our use case is a real-world scenario

from Essex County Council (ECC) in the UK named Change-of-Circumstances. In

the given scenario, a case worker of the Community Care department of ECC helps a

citizen to report his/her change of circumstance (e.g. address) to all the agencies that

need to know of this change. In that way, the citizen only needs to inform the council

once about his/her change, and the government agency automatically notifies all the

agencies involved.

An example for a more complex change of circumstance might be when a dis-

abled mother moves into her daughter’s home. This changes the circumstances of

both, the mother and the daughter. A case worker would in this situation open the

case of the mother who is eligible to receive different services and benefits – health,

housing, etc. He/she would then set the mother’s new address. This would trigger

an update of the necessary information at multiple service providing agencies. Fur-

thermore, many different agencies and also private service providers might need to

interact in order to provide the required services.

For the first implementation of prototype application for ECC, two governmental

agencies were involved:

1. Community care (social services) in Essex County Council. They typically have

a coordinating role in relation to a range of services from a number of providers

and special responsibility for key services such as support for elderly and dis-

abled people (day centres, transportation). It uses the SWIFT database as its

main records management tool.

2. The Housing Department of Chelmsford District Council. They handle housing

services and use the ELMS database.

However, the current prototype could easily be extended in order to also involve other

agencies.

In order to illustrate the functionality of the prototype and how the different com-

ponents interact, we will use the following example. A citizen with different impair-

ments including a mobility impairment moves from his/her current house to a new

one. This simple change of address requires several actions in the involved systems.

First, the citizen address needs to be changed in the SWIFT and the ELMS systems.

Secondly, all required services need to be delivered to the new instead of the old

address. Finally, the necessary equipment has to be relocated to the new house.

13 An eGovernment Case Study 367

13.3 Prototype Architecture

Developers trying to create applications solving scenarios similar to the one

described in the previous section are facing a large number of challenges. Based

on these challenges we derived a set of requirements a SWS-based integration archi-

tecture needs to fulfill in order to simplify the application development.

Cross-agency scenarios in eGovernment generally present a developer with three

main requirements. First, a developer needs to be able to discover services capable of

fulfilling the requirements of a given step in a business process. Secondly, by he/she

needs to be able to seamlessly invoke services provided by different agencies. With

respect to the application scenario described above, a developer would, e.g., need

to invoke a service ordering “Meals-on-Wheels” published by a private provider.

Thirdly, a developer usually needs to develop transformation between different data

formats in order to actually invoke a given service. Therefore, the main requirements

for our architecture is to simplify the tasks of service discovery, service invocation

and service mediation in an eGovernment setting.

In order to show the applicability of the integration architecture in real eGovern-

ment settings where numerous agencies are involved, the architecture should enable

the easy development of new applications in highly heterogeneous system land-

scapes. Furthermore the integration of systems and services across organisational

boundaries should be transparent to the application developer.

Based on these requirements, we developed a high-level architecture for the pro-

totype. This architecture reflects our methodology for integrating eGovernment ser-

vices through Semantic Web Services, which allows the functionality provided by

existing legacy systems from the involved agencies to be exposed as Web Services.

These Web Services are then semantically annotated and published using the Seman-

tic Web Service infrastructure. Finally, the front-end application (portal) can be built

on the published Semantic Web Services provided by different agencies. As depicted

in Fig. 13.1, the architecture consists of four layers: (i) the legacy system layer, (ii)

the service abstraction layer, (iii) the Semantic Web Service layer and (iv) the pre-

sentation layer.

The legacy system layer contains the legacy applications available from each of

the agencies involved in the integration project. In a general setting, this layer could

contain an arbitrary number of databases and legacy systems from different partner

applications.

The service abstraction layer sits on top of the legacy system layer. This layer is

responsible for providing low-level functionality available from the involved legacy

systems to the SWS layer as well as for abstracting from the given implementation

details of these systems. This is done by implementing standard Web Services, which

execute specific functionalities of the legacy systems. Current Enterprise Application

Integration (EAI) software generally enables the easy creation of the necessary Web

Services. Note that for the integration of standard databases the necessary function-

ality of the Web Services can simply be CRUD2 functions.

2 Create, Read, Update, Delete

368 Christian Drumm and Liliana Cabral

Fig. 13.1. The high-level architecture of the prototype

The Semantic Web Services layer is based on the Web Services provided by the

service abstraction layer. It consists of two main parts: (i) a set of SWSs and (ii) a

set of goal invocation templates. The set of SWSs is created by providing semantic

annotations to the deployed Web Services in the abstraction layer. These annotations

enable the invocation of Semantic Web Services through goal achievement. This is

supported by an infrastructure for describing and invoking Semantic Web Services.

This infrastructure also includes an ontology repository and a reasoner. A detailed

description of the SWS infrastructure will be given in Sect. 13.4.

Table 13.1. Description of the four architecture layers

abstract layer functionality

legacy system layer all IT systems that will be integrated using the presented

architecture. Examples could be citizen databases, systems

for calculating housing benefits, etc.

service abstraction layer all standards Web Services encapsulating legacy system func-

tionality. These services are developed using standard EAI

solutions.

semantic web service layer all SWSs developed on the basis of the services in the service

abstraction layer. Furthermore, this layer contains the neces-

sary ontologies, goals and mediators.

presentation layer depending on the requirements of a concrete implementation,

this layer contains webpages allowing the users to invoke the

available SWSs.

13 An eGovernment Case Study 369

Finally, the Presentation layer consists of the user interface, which is built on top

of the SWS layer as an Web application accessible using a standard web browser. The

goal invocation templates mentioned earlier are filled with the data entered by the

user through the user interface and sent to the Semantic Web Service layer where they

trigger the invocation of applicable SWSs which in turn after several steps trigger

the execution of Web Services in the service abstraction layer. The contents of the

different layers is summarised again in Table 13.1.

In conclusion, this architecture enables integration by allowing applications to be

composed of Semantic Web Services provided by different partner organisations.

13.4 Semantic Web Service Infrastructure

In order to develop the functionality necessary for the Semantic Web Service Layer,

we used the IRS-III platform, which supports application developers and service

providers with the creation of Semantic Web Services.

IRS-III [2] is an implemented infrastructure which allows the description, publi-

cation and execution of Semantic Web Services according to the WSMO conceptual

model. IRS-III provides a powerful execution environment for knowledge models.

A WSMO description can be instantiated into the IRS-III operational framework so

that Web Services are selected and invoked to achieve a goal. IRS-III is based on a

distributed architecture which communicates via SOAP. The server component han-

dles ontology management and the execution of knowledge models for Semantic

Web Services. The server also receives SOAP requests (through the API) from client

applications for creating and editing WSMO descriptions of Goals, Services and

Mediators as well as invocation of goals. The publisher component allows providers

of services to attach WSMO descriptions to their deployed Web Services and pro-

vides handlers (proxies) to invoke them from specific implementation language/plat-

forms (Lisp, Java, WSDL, HTTP Get requests).

The underlying ontology language and reasoner of IRS-III is OCML [5]. That

means the WSMO service ontology is represented internally in IRS-III as a meta-

model in OCML.

In the following we explain the activities supported by IRS-III.

Creation of domain ontologies: The concepts involved in the prototype scenario

which are used in the description of services are provided in domain ontolo-

gies. For example, the concept Address represents part of the data about a citizen

in the SWIFT database, which is retrieved by a service.

Semantic description of deployed services: Once a domain ontology is created, the

concepts available can be used to represent the type of inputs or outputs of ser-

vices according to a service ontology. For example, at the semantic level the ser-

vice Citizen-Address-By-Code receives as input a citizen code and returns one or

more instances of Address as output. By using WSMO as the service ontology,

IRS-III can as well represent and reason over many other aspects of the service

such as orchestration and choreography.

370 Christian Drumm and Liliana Cabral

Resolving conceptual mismatches: Mediator descriptions declare which mediation

service or mapping rules will provide conceptual alignment between goals, Web

Services and domain ontologies.

Publication of semantically described services: Once a semantic description has

been created for a deployed service, it can be registered into IRS-III for goal-

based invocation.

Goal-based invocation: We use WSMO for representing the request of a user for a

service as a goal. A SWS execution environment based on WSMO such as IRS-

III is able to use this goal description for selecting and invoking an applicable

published service.

13.5 Application Implementation

In this section, we describe the implementation of the eGovernment application sce-

nario according to the architecture and Semantic Web Service infrastructure pre-

sented in the previous sections.

The graphical user interface representing the Change-of-Circumstance scenario
is depicted in Fig. 13.2. From this interface a case worker from Essex County

Council has access to some functionalities such as “query client details”, “create

client details”, “create client assessment” and “list available services”. Behind each

Fig. 13.2. The graphical user interface of the Change-of-Circumstance application

13 An eGovernment Case Study 371

functionality there is one or more associated invocation templates used to invoke the

underlying goals such as “update citizen address” or “find equipment”.

A case worker can select a suitable functionality, fill in the required fields and

then submit the request to the Web application, which will build the corresponding

invocation templates. After the execution of a goal the Web application sends the

result back to the case worker and informs him about what data has been changed

and which additional actions (e.g. delivery of new services to the client) has been

trigged.

At the legacy systems level, in order to show the integration capability of our

architecture, we have recreated the content of the existing data sources (SWIFT data-

base of ECC and the ELMS database of the Chelmsford housing department) into

two new test databases (see the set-up environment in the next subsection). Further-

more, we have mimicked the real data available in the systems by including dupli-

cate, inconsistent and conflicting dummy records. The Web Services created for the

prototype access this data.

At the service level, we developed a set of Web Services which perform basic

CRUD operations on top of the two involved databases. These Web services were

deployed into the SAP Exchange Infrastructure (SAP XI)[6], which offers standard

functionality to easily create the necessary services based on the available databases.

These include for instance the following services:

• Create a citizen record : This service accesses the SWIFT database exposing

functionality from Essex County Council (ECC).

• Get equipment : This service accesses the ELMS database exposing functionality

from Chelmsford District Council (CDC).

At the semantic level, we used IRS-III to provide WSMO descriptions to the

deployed Web Services, including mediator descriptions for declaring the mappings

between concepts not aligned. We then made the Web Services available as Seman-

tic Web Services by publishing them in IRS-III. First, there are basic Semantic Web

Services which simply wrap the Web Services mentioned before. Secondly, there

are more complex Semantic Web Services which fulfil more complex goals. These

complex services are implemented by composing one or more basic services or other

complex ones. Examples of complex Semantic Web Services developed include the

following:

• Notify change of address : This service is composed of two basic services. The

first changes the address of the citizen within ECC, and the second service change

the address related to equipment of this citizen within CDC.

• Provide suitable housing equipment for citizen : This service is composed of

basic services which use information from the SWIFT system at ECC (citizen

weight and purpose) for searching for suitable equipment in the ELMS system at

CDC. This service will be explained in more details in the following illustration

for the WSMO descriptions; it will be called Housing-Dept-Assess-Items-WS.

For illustration purposes (Fig. 13.3), we describe the structure of the WSMO descrip-

tions associated with one of the complex SWS (Housing-Dept-Assess-Items-WS)

372 Christian Drumm and Liliana Cabral

Fig. 13.3. Sample structure of WSMO descriptions for the eGovernment prototype

through a goal (E-Gov-Assess-Items-Goal). This goal describes a request for a ser-

vice that can assess housing equipments for a citizen who has registered for bene-

fits within Essex County Council. The selected service must find all suitable equip-

ments according to the citizen’s purpose (mobility-impairment, visual-impairment,

hearing-impairment, baby-care, etc.) and weight, and the budget of the council’s case

worker. Restrictions on the way the service can solve the goal are given by pre-

conditions and post-conditions. The different types of mediators will provide data

alignment between WSMO elements. In particular, a WG-Mediator allows a (target)

Web Service to connect to the (source) Goal it can solve and inherit its (imported)

ontologies.

13.5.1 Prototype Set-Up

After describing the implementation details of the prototype application we will now

describe the technical set-up we chose for developing the prototype.

As depicted in Fig. 13.4, we chose a highly distributed set-up for the prototype

in order to show the feasibility of operating a SWS-based application across several

physically distributed locations. The two databases are running in a database server

at the SAP Research Center in Karlsruhe, Germany. These databases have a simi-

lar design as the real databases of the agencies involved. They are accessed by the

Service Abstraction layer through the JDBC [7] standard.

The Service Abstraction layer runs also at the SAP Research Centre in Karlsruhe.

The Semantic Web Service layer, which is running inside the IRS-III server at the

13 An eGovernment Case Study 373

Fig. 13.4. The distributed set-up of the prototype

Open University in Milton Keynes, UK, connects to the Service Abstraction layer

using SOAP over HTTP. The same protocol is used to connect the User Interface

layer, which again is running in Karlsruhe, to the Semantic Web Service layer.

The user interface is simply a Web application available using a standard web

browser. Technically, the User Interface Layer is based on SAP Web Dynpro [4]

which provides a comprehensive environment for the model-driven design and devel-

opment of web-based user interfaces. The user interface uses the standard Java API

provided by the IRS-III server to communicate with the Semantic Web Service layer

of the prototype.

The rationale behind the presented set-up of the prototype is twofold. First, we

wanted to show the feasibility of running a SWS-based solution across several phys-

ically distributed locations, thereby enabling agencies to benefit from an integrated

solution without the need to change their existing systems. The enabling factor for

this feature are the integration capabilities of current state-of-the-art EAI applica-

tions. We used the SAP XI, SAP’s version of an EAI software, in our prototype. SAP

XI is capable of integrating heterogeneous applications by acting as a middleware

for the message exchange.

Secondly, we wanted to demonstrate the possibility to non-intrusively integrate

SWS frameworks that are currently mainly in the state of research prototypes into

current enterprise application software stacks using well-known industry standards

like, e.g., SOAP. This integration enables access to the flexibility of SWS-based

application inside current solutions without any major changes to the underlying

374 Christian Drumm and Liliana Cabral

software stack or the programming model. As a result, this integration shows a nice

transition path from current technologies to SWS-based solutions.

13.6 Service Descriptions

In this section, we present the domain ontologies and Semantic Web Service descrip-

tions used in the application prototype. A domain ontology can represent the view-

point of the user and then be used to define goals. Otherwise, a domain ontology can

represent the viewpoint of a service provider and therefore be used for describing

deployed services; in this case it will reflect the objects used to represent database

records.

13.6.1 Domain Ontologies

Each agency involved in the prototype development has to provide a domain onto-

logy which represents the information concerning the application scenario. For this

prototype, the domain ontology provided by each agency was developed indepen-

dently but were based on a common upper-level ontology describing general con-

cepts from the eGovernment domain. The two developed ontologies are as follows:

1. Citizens ontology : Domain ontology created by Essex County Council describ-

ing information related to a citizen assessment for social benefits and services.

Contains classes defining, for example, address, assessment, health problem,

benefit, case worker and others.

2. Items ontology : Domain ontology created by the Housing Department describ-

ing information related to ordering housing equipments. Contains classes defin-

ing, for example, order, care-item (equipment), supplier, delivery descriptor, etc.

Figure 13.5 shows an excerpt of the items ontology containing two of the main

concepts. The class “care-item” represents an equipment and the attributes are self-

explanatory. The class “order” represents an order for equipment. Notice that the

attribute “ordered-item” is of type “care-item”. Instances of these classes can be cre-

ated with the values of attributes provided through the user interface. Otherwise, they

can be lifted from the results of service invocations.

13.6.2 WSMO Descriptions

In this section we provide the WSMO Goal, Web Service and Mediator for the “e-

gov-assess-item” service as an illustration.

Figure 13.6 shows the definition of goal “e-gov-assess-item-goal”. This instance

of a WSMO goal defines two inputs (“has-input-role” slot) and one output (“has-

output-role” slot). This goal takes the client weight and purpose and return a list of

suitable equipments (items).

Figure 13.7 shows a partial definition of the Web Service “housing-dept-assess-

item-ws”. This instance of a WSMO Web Service declares a capability and an

13 An eGovernment Case Study 375

(def-class care-item (tangible-thing)
((code :type string)
(used-for :type care-descriptor)
(cost :type number)
(currency :type string :default-value GBP)
(max-user-weight :type number)
(max-user-weight-measure :type string :default-value kilogram)
(item-width :type number)
(item-width-measure :type string :default-value meter)
(item-height :type number)
(item-height-measure :type string :default-value meter)
(item-seat-height :type number)
(item-seat-height-measure :type string :default-value meter)
(item-depth :type amount-of-length)
(item-depth-measure :type string :default-value meter)
(item-weight :type number)
(item-weight-measure :type string :default-value kilogram)
(narrative-detail :type string)
(to-be-approved-by :type case-worker-category)
(picture :type string :min-cardinality 0)
(main-supplier :type supplier :cardinality 1)
(other-suppliers :type supplier :min-cardinality 0)
(needs-technician-fit :type boolean))

)

(def-class order (intangible-thing)
((reason-of-order :type care-descriptor)
(ordered-item :type care-item :cardinality 1)
(case-worker-required-for-approval :type case-worker-category)
(due-to-equipment-failure :type Boolean)
(needs-minor-adaptations :type minor-adaptations :cardinality 1)
(level-of-order :type level-of-delivery-descriptor :cardinality 1)
(date-ordered :type calendar-date :cardinality 1)
(time-ordered :type time-point :min-cardinality 0 :max-cardinality 1)
(date-delivery :type calendar-date :cardinality 1)
(date-returned :type calendar-date :min-cardinality 0 :max-cardinality

1))
)

Fig. 13.5. Excerpt of the items ontology

interface which are described in corresponding classes. The interface declares an

orchestration, which is defined in another class. The “problem-solving pattern” slot

of the orchestration defines the workflow (sequence) for the composition of three

sub-goals. The choreography of one of the sub-goals is defined by another class

(“get-items-ws-interface-choreography”)which has a grounding and guarded tran-

sitions. The grounding includes information about the WSDL associated with the

described service, and the guarded transitions are rules defining the communication

with the described service.

Figure 13.8 shows the definition of mediator “weight-to-list-intersection-

mediator”. This is an instance of a WSMO GG-mediator. It declares the source and

target component for which the mediation service is going to be used. The mediation

service is of type goal and its instance is shown as well.

376 Christian Drumm and Liliana Cabral

(DEF-CLASS E-GOV-ASSESS-ITEM-GOAL (GOAL) ?GOAL
((HAS-INPUT-ROLE
:VALUE HAS-CLIENT-WEIGHT
:VALUE HAS-CLIENT-PURPOSE)
(HAS-INPUT-SOAP-BINDING
:VALUE (HAS-CLIENT-WEIGHT "float")
:VALUE (HAS-CLIENT-PURPOSE "sexpr"))
(HAS-OUTPUT-ROLE :VALUE HAS-SUITABLE-ITEMS-LIST)
(HAS-OUTPUT-SOAP-BINDING
:VALUE (HAS-SUITABLE-EQUIPMENT-LIST "sexpr"))
(HAS-CLIENT-WEIGHT :TYPE NUMBER)
(HAS-CLIENT-PURPOSE :TYPE IMPAIRMENT-DESCRIPTOR)
(HAS-SUITABLE-ITEM-LIST :TYPE LIST)
(HAS-NON-FUNCTIONAL-PROPERTIES
:VALUE E-GOV-ASSESS-ITEM-GOAL-NON-FUNCTIONAL-PROPERTIES)))

Fig. 13.6. E-gov-assess-item-goal- Mainly specifies the types of inputs and output for the goal.

Concepts may be defined in the domain ontology

13.7 Conclusions

The conclusions we want to give in this section focus on our experiences when devel-

oping the prototype application for the change-of-circumstance scenario based on

our generic architecture.

From a technical point of view the presented generic architecture proved capable

of developing SWS-based solutions on it. Especially, the layering of the architecture

proved very useful when developing the prototype application. The development of

the ontologies, Semantic Web Services, goal descriptions and necessary mediators

could be decoupled from the implementation of the user interface and the technical

integration. Using a state-of-the-art EAI software for coping with integration prob-

lems on the technical level (e.g. providing Web Service on top of different database

systems) enabled us to focus on development of the semantic descriptions in the SWS

layer. Furthermore, the advanced tools for wrapping legacy systems into Web Service

simplified this development process. In addition to the simplification of the develop-

ment process, the usage of current EAI software also allows to achieve the security

and data privacy constraints necessary in productive environments and eGovernment

in particular. Security is one of the topics not yet solved in the context of SWS but

using SAP XI the access to the involved legacy systems can be controlled on a fine

granularity.

With respect to usability of the prototypical application the usage of invocation

templates in the user interface seems to be a good choice. These templates hide the

complexity of the underlying SWS-based application away and also provide the user

with a familiar interface.

From an implementation point of view, basing cross-organisational eGovernment

applications on SWS technology seem to be a suitable approach. First of all, the

usages of an ontology as a central hub for integrating the data available in the dif-

ferent legacy systems enable developers to focus on the functional aspects of the

13 An eGovernment Case Study 377

DEF-CLASS HOUSING-DEPT-ASSESS-ITEMS-WS (WEB-SERVICE) ?WEB-SERVICE
((HAS-CAPABILITY :VALUE

GET-ITEM-WEB-WEB-SERVICE-CAPABILITY)
(HAS-INTERFACE :VALUE

GET-ITEM-WEB -WEB-SERVICE-INTERFACE)
(HAS-NON-FUNCTIONAL-PROPERTIES :VALUE

GET-ITEM-WEB-WEB-SERVICE-NON-FUNCTIONAL-PROPERTIES)))

(DEF-CLASS HOUSING-DEPT-ASSESS-ITEMS-WS-INTERFACE (INTERFACE)
?INTER-FACE

((HAS-CHOREOGRAPHY :VALUE
HOUSING-DEPT-ASSESS-ITEMS-WS -INTERFACE-CHOREOGRAPHY)
(HAS-ORCHESTRATION
:VALUE
HOUSING-DEPT-ASSESS-ITEMS-WS-INTERFACE-ORCHESTRATION)
(HAS-NON-FUNCTIONAL-PROPERTIES
:VALUE
HOUSING-DEPT-ASSESS-ITEMS-WS-INTERFACE-NON-FUNCTIONAL-

PROPERTIES)))

(DEF-CLASS HOUSING-DEPT-ASSESS-ITEMS-WS-INTERFACE-ORCHESTRATION
(OR-CHESTRATION)

((HAS-PROBLEM-SOLVING-PATTERN
:VALUE
HOUSING-DEPT-ASSESS-ITEMS-WS-INTERFACE-

ORCHESTRATION-PROBLEM-SOLVING-PATTERN
)))

(DEF-CLASS HOUSING-DEPT-ASSESS-ITEMS-WS-INTERFACE-
ORCHESTRATION-PROBLEM-SOLVING-PATTERN

(PROBLEM-SOLVING-PATTERN)
((has-body
:value (lambda (?ontology ?web-service)

(run-orchestration
(sequence ?ontology ?web-service

find-items-by-purpose-and-weight-goal
get-case-worker-budget-goal
select-suitable-items-goal))))))

(DEF-CLASS GET-ITEMS-WS-INTERFACE-CHOREOGRAPHY
(CHOREOGRAPHY)
((HAS-GROUNDING :VALUE
(GROUNDED-TO-WSDL normal
("c:/CatalogueEntryByWeightInterfaceOut.wsdl"
"CatalogueEntryByWeightInterfaceOut"
"CatalogueEntryByWeightInterfaceOut"
"http://sap.com/research/dip/wp9/elmdb"
"SAP"
((has-client-weight "CatalogueEntryByWeightRequest-Type"))
"CatalogueEntryResponseType")))

(has-guarded-transitions :value
((start
(init-choreography)

then
(send-message ’normal))

))

Fig. 13.7. Housing-dept-assess-items-ws – inherits the inputs and output from the goal above.

This service is decomposed in three sub-goals as described by the orchestration. The choreog-

raphy of one of the sub-goals contains the grounding (mapping of operations to be invoked)

and guarded transitions (rules for interaction) of the service

378 Christian Drumm and Liliana Cabral

(DEF-CLASS WEIGHT-TO-LIST-INTERSECTION-MEDIATOR (MEDIATOR) ?MEDIATOR
((HAS-SOURCE-COMPONENT :VALUE

FIND-ITEMS-MATCHING-IMPAIRMENT-GOAL)
(HAS-TARGET-COMPONENT :VALUE LIST-INTERSECTION-GOAL)
(HAS-MEDIATION-SERVICE :VALUE

WEIGHT-TO-LIST-INTERSECTION-MEDIATION-SERVICE)
(HAS-NON-FUNCTIONAL-PROPERTIES :VALUE

WEIGHT-TO-LIST-INTERSECTION-MEDIATOR-NON-FUNCTIONAL-
PROPERTIES)))

(DEF-CLASS WEIGHT-TO-LIST-INTERSECTION-MEDIATION-SERVICE (GOAL)
?GOAL

((HAS-INPUT-ROLE :VALUE HAS-ITEMS-LIST)
(HAS-INPUT-SOAP-BINDING :VALUE (HAS-ITEMS-LIST "sexpr"))
(HAS-OUTPUT-ROLE :VALUE HAS-LIST2)
(HAS-OUTPUT-SOAP-BINDING :VALUE (HAS-LIST2 "sexpr"))
(HAS-ITEMS-LIST :TYPE LIST)
(HAS-LIST2 :TYPE LIST)
(HAS-NON-FUNCTIONAL-PROPERTIES
:VALUE
WEIGHT-TO-LIST-INTERSECTION-MEDIATION-SERVICE-NON-FUNCTIONAL-

PROPERTIES)))

Fig. 13.8. Weight-to-list-intersection-mediator – this mediator connects two sub-goals

described in the orchestration above. The mediation service (goals) declares the inputs to be

passed to the next sub-goal

(semantic) services rather than on data interoperability problems. In addition to that

is, the ontologies simplified the communication between developers and domain

expert as there was an agreed conceptualisation of the domain available.

13.8 Challenges

Besides the positive conclusions we gave in the previous section, there are still a

number of challenges that need to be solved prior to running our prototypical appli-

cation in a productive environment.

Most important, neither of the currently available SWS infrastructures is an

industrial strength infrastructure but all of them are research prototypes that are still

under heavy development. As a result of that, none of the existing SWS infrastruc-

ture is capable of coping with the tough requirements on uptime, performance, etc.

usually necessary for productive applications. Therefore, the development of the cur-

rently available systems into a stable and robust infrastructure is the major challenge

that need to be solved before a SWS-based solution can be deployed into a productive

environment.

If we take a closer look at the application we developed on top of our general

architecture, one important bit of functionality is still missing. In Section 13.3, we

stated the ability to discover suitable services as an important requirement. One of

the reasons for that requirement is that the solution built on our architecture should

13 An eGovernment Case Study 379

enable the flexible integration of new service providers. This kind of flexible inte-

gration requires the capability to enable partners to easily publish new services into

the SWS infrastructure. However, in our current prototype application that kind of

functionality is not present. In order to enable this flexibility, the prototype appli-

cation would, e.g., need some kind of UI-enabling partners to publish new services

without much knowledge of the underlying SWS infrastructure. The template-based

approach already taken in the UI for case workers could be one possible solution to

that requirement.

References

1. Cabinet Office. e-Government Interoperability Framework. http://www.govtalk.
gov.uk/schemasstandards/egif.asp, 2005.

2. J. Domingue, L. Cabral, F. Hakimpour, D. Sell, and E. Motta. IRS-III: A Platform and

Infrastructure for Creating WSMO-based Semantic Web Services. In Workshop on WSMO
Implementations (WIW 2004), Frankfurt, Germany, 2004.

3. European Commision IDABC. European Interoperability Framework for pan-European

e-Government services. http://europa.eu.int/idabc/servlets/Doc?id=
19528, 2004.

4. K. Kessler. Your “Easy Way In” to Web Dynpro Development. https:
//www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/
library/uui\%d/a422d090-0201-0010-6ebf-b323b0a44de0, 2003.

5. E. Motta. Reusable Components for Knowledge Modelling: Case Studies in Parametric
Design Problem Solving. IOS Press, Amsterdam, The Netherlands, The Netherlands, 1999.

6. SAP. SAP Exchange Infrastructure: The Integration Solution for Process-Centric Collabo-

ration. http://www.sap.com/xi, 2005.

7. Sun Microsystems. JDBC Technology. http://java.sun.com/products/jdbc/
overview.html, 1994–2005.

14

An eHealth Case Study
Applying Semantic Web Service Technology in the Healthcare
Environment

Emanuele Della Valle1, Dario Cerizza1, Irene Celino1, Asuman Dogac2,

Gokce B. Laleci2, Yildiray Kabak2, Alper Okcan2, Ozgur Gulderen2,

Tuncay Namli2 and Veli Bicer2

1 CEFRIEL – Politecnico di Milano, Milano, Italy

{dellavalle,cerizza,celino}@cefriel.it
2 SRDC-METU, Turkey; OFFIS, Germany; SEBT, UK ; ALTEC, Greece; Tepe Technology,

Turkey; It Innovation Center, UK {asuman,gokce,yildiray,alper,ozgur,
tuncay,veli}@srdc.metu.edu.tr

Summary. In this chapter we describe two case studies of Semantic Web Services applied

in the eHealth domain. Starting from the interoperability problem, which naturally arises in

distributed environments such as the healthcare systems, we briefly introduce the state of the

art in eHealth standards (e.g. HL7, openEHR, etc.) and the trends towards semantic interoper-

ability. In particular, we claim that eHealth will greatly benefit from the adoption of Semantic

Web Service technology and we show how we proof this concept in two case studies: Glue, a

WSMO discovery engine, used to automate the discovery of second opinion services for Gen-

eral Practitioners, and Artemis which enables eHealthcare institutes to exchange health care

messages in an interoperable manner through semantically enriched Web Services and seman-

tic mediation.

14.1 Introduction

The healthcare organisational structure in all countries is naturally distributed, being

a geographical spread of centres at different levels of complexity: from general hos-

pitals down to individual physicians. The ultimate objective of such a structure is

to build a network of complementary centres (hospitals, laboratories, ambulatories,

coordination centres, etc.) spread over the territory, to meet effectively the social

needs in the area. Moreover, healthcare practice has life-and-death implications, and

thus the adoption of new processes involving any kind of technology must meet the

highest standards of accuracy and effectiveness.

For all these reasons, healthcare practice has used for long ICT-based solutions

for administrative tasks within the organisational boundaries, while the whole health-

care field as a naturally networked system has more slowly adopted ICT technol-

ogy to improve delivery of services. As a result, medical information systems are

382 Emanuele Della Valle et al.

mainly isolated solutions, grown around an administrative application. For instance,

a typical Hospital Information System (HIS) has an economic/financial manage-
ment and administrative core with various clinical information services attached
(cf. Fig. 14.1). The administrative core helps in managing accounts, human

resources, logistics and controlling; it stores all the data necessary for the billing of

the healthcare services. The clinical information services manage the clinical treat-

ment of the patient, offering functionalities for the treatment process documentation,

for enabling the staff to follow the best medical practices and for gathering the most

completed medical history of a patient in an electronic format. These systems should

provide support in the healthcare delivery environment and should be used by both

medical and nursing staff.

Moreover, the decentralised structure of a clinical environment promote the

development of a wide range of specialist information systems such as Picture

Archiving and Communication Systems (PACS) in the radiology department of the

hospitals, Laboratory Information Systems (LIS) both inside and outside hospitals,

and also a huge number of heterogeneous Electronic Health Records (EHR) in most

of the General Practitioners’ (GP) and Specialists’ surgeries.

HIS

Hospital
Management

Human
ResourcesFinance

Quality Improvement
and Research

Materials Management

Kitchen Pharmacy

Blood
Bank

Laboratory Critical
Care

Operating
Theatres

PACS

Tele-conferencing
Tele-medicine
Tele-radiology

Tele- conferencing
Tele- medicine
Tele- radiology

DecisionDecision
Support

NETWORK

External Communication (other hospitals, General Practitioners’ EHRs, Insurers Companies,
Ministry of Health, etc.)

Fig. 14.1. A Hospital Information System (HIS) has an economic/financial management and

administrative core with various clinical information services attached and it is interconnected

to other hospitals, General Practitioners EHRs, etc.

14 An eHealth Case Study 383

In this context, the term eHealth was introduces [23] not only referring to health

services and information delivered or enhanced through the Internet and related tech-

nologies, but also characterising a state-of-mind, a way of thinking, an attitude, and

a commitment for networked, global thinking, to improve healthcare locally, region-

ally and worldwide by using information and communication technology. The main

reasons driving the development of eHealth are as follows:

• Management of continuously growing knowledge: Healthcare workers manage

an increasingly large base of scientific and technological knowledge; however

highly specialised they may be, they do not have enough time to acquire all the

“state of the art” knowledge related to their specialisations. Therefore, it becomes

necessary to make both information on best practices and their evidence easily

available.

• From disease management to wellness management: Diseases are increasingly

becoming more chronic and less acute; therefore, keeping trace of the care-path

of patients becomes necessary for a correct process management, avoiding com-

plications and maintaining a high quality of life. In particular, the identification

of risk factors and the availability of data about the care-path make it possible to

activate prevention processes.

• Risk management: Recent analyses show that medical errors and, more generally,

inappropriate treatment can lead to serious consequences for patients, causing

new or worse disabilities or even resulting in death; the main cause for these

events is the lack of communication between the various healthcare workers that,

although belonging to different organisations, participate in the care process.

One of the most important enabling factors for eHealth is the availability of tools for

collecting, storing, analysing and linking the different types of data daily produced

by so many knowledge-driven organisations. The realisation of an effective solution,

to help the clinicians in their daily activity and to provide them with a complete

array of patient information, is out of scope for the current ICT technologies and

calls for a new generation of ICT solutions. The future ICT solutions should serve

as a complete Clinical Information System, supporting all medical processes across

organisational boundaries. eHealth shall serve as a complete clinical data repository

and shall allow a unique access point to all medical information, so that authorised

healthcare workers can access all data, signals and images in a patient-centred model

with a few mouse clicks.

The next generation of eHealth solutions must be based on a powerful integration

technology that allows for immediate access to the databases of specialist tools (e.g.

LIS, PACS, etc.) and GPs’ EHRs.

14.2 Semantic Interoperability in Healthcare

Comprehensive eHealth solutions (e.g. various HIS interconnected to a large num-

ber of GPs’ EHRs; pharmacies, laboratories and insurers companies information sys-

tems; Ministry of Health services, etc.) are far to appear. The problem underestimated

384 Emanuele Della Valle et al.

today by most Clinical Information Systems under development (e.g. the CRS-SISS

in Lombardy region – Italy3) is how to maintain such distributed systems on the long

term: they are often implemented using proprietary solutions that exchange informa-

tion in a number of proprietary formats including XML-based ones.

The relative easiness in creating formats using XML makes thousand of niche

groups proposing their own XML structures. However, Internet history teaches us

that only by defining an application protocol (e.g. the email) numerous systems

can be combined to make a single distributed one. Furthermore, a standard applica-

tion protocol is much more than the syntax and the transport protocol for messages,

because it is a formal and largely shared agreement on the structure and semantics of

messages, as well as on the sequencing information for concrete interactions. Addi-

tionally, the dynamics of such a protocol must be considered: often the requirements

change fast and depend on the needs of a few systems among those involved. An

application protocol needs to accommodate all these additional requirements; there-

fore maintenance is not an easy task.

The way out Internet taught us is thinking in terms of interoperability instead of

integration. As defined by [14], integration is the combination of diverse application

entities into a relationship which functions as a whole, whereas interoperability is a

state which exists between two application entities when, with regard to a specific

task, one application entity can accept data from the other and perform that task in an

appropriate and satisfactory manner without the need for extra operator intervention.

14.2.1 Current Interoperability Attempts

Defining an application protocol for the healthcare field that addresses the interoper-

ability problem is the current major challenge for eHealth.4 A number of standard-

isation initiative are progressing to address this interoperability problem such as the

following:

• HL7 (Health Level Seven) [25], a non-profit, ANSI accredited Standards Devel-

oping Organisation, founded in 1987, that provides standards for the exchange,

management and integration of data to support patient clinical care and the man-

agement, delivery and evaluation of healthcare services.

• GEHR/openEHR [36], an initiative that foster EHR interoperability started in

1992 as the “Good European Health Record” EU research project that is currently

maintained by the openEHR Foundation.

• CEN/TC 251 [15], the technical committee on Health Informatics of the Euro-

pean Committee for Standardisation, which, since 1998, is standardising CEN

EN 13606/EHRcom [12, 13].

• IHE (Integrating the Healthcare Enterprise) [30], a not-for-profit initiative

founded in 1998 that does not develop standards as such, but selects and rec-

ommends appropriate standards for specific use cases.

3 http://www.crs.lombardia.it/
4 A summary of the relevant EHR standards and their interoperability support is presented in

[34]

14 An eHealth Case Study 385

Most of those initiatives have been active for more than a decade and, after a first

attempt in specifying the format of each of the message that can be exchanged among

any pair of systems (e.g. HL7 v2.x [26]), they realised that they need to derive mes-

sages and interaction patterns from a common shared conceptual model.

In 1999, CEN/TC 251 was the first to introduce, with CEN ENV 13606 /

EHRcom, a list of machine-readable terms to be used for structuring EHR content.

The standard defines an EHR information model and a modelling approach for deriv-

ing concrete interoperable messages to be exchanged between heterogeneous EHRs.

However, the single-level modelling approach, the big number of optionality and the

high level of abstraction limited market uptake.

GEHR/openEHR in 2002 moved a step forward proposing the archetype concept

[5] and the respective two-level methodology. The first level specifies a healthcare

domain reference model [6, 8] that contains concepts such as role, act, entity, partic-
ipation, observation, etc., while the second level specifies healthcare and application

specific concepts such as patient, GP, lab result, modelling them as archetypes. Each

archetype constrains a set of concepts in the reference model (e.g. “Observation”) to

a specialise data structure (e.g. “Blood Pressure”) and defines the vocabulary, such

as SNOMED [37] or LOINC [33], to be used within instances of the archetype. The

formal language for expressing archetypes, introduced by the openEHR initiative, is

the Archetype Definition Language [7]. A complete example of the “Blood Pressure”

Archetype is available in [11].

An alternative approach is offered by HL7 Reference Information Model (RIM)

[28] which is the ultimate source from which all HL7 v3 protocol specification stan-

dards [29] draw their information-related content. The RIM model is an explicit data

semantics model by which the messages can be implemented locally and top-down,

emphasising reuse across multiple contexts. Moreover, RIM offers a formalism for

vocabulary support that permits to get domain concepts from the best terminologies

(SNOMED, LOINC, etc.).

14.2.2 The Semantic Interoperability Problem

All these proposals may differ in the progress achieved in the standardisation process,

but they are similar in concept and capabilities. They all try to address the interop-

erability problem by introducing a shared conceptual model (i.e. an ontology). This

is very similar to the Semantic Web Services approach in which “semantic inter-

operability” is achieved by modelling, at a conceptual level, Web Services and the

domain they are deployed in. In all eHealth standardisation efforts, data structure and

sequencing information are enhanced with semantic information that encodes the

definition of each element of data including its relationship with other elements. Dif-

ferently from Semantic Web Services, all eHealth standardisation efforts are focusing

on developing a horizontal ontology to capture the healthcare information reference

model, which can be linked to the most appropriate vertical domain ontology speci-

fying domain vocabularies. Furthermore, eHealth standardisation efforts lack

• the possibility of dealing with systems that commit to different horizontal (e.g.

one uses HL7’s RIM in CDA, the other uses openEHR archetypes based on EN

386 Emanuele Della Valle et al.

13606 RIM) and vertical ontology (e.g. one uses SNOMED, the other some pro-

prietary coding)

• a comprehensive model for automating service usage such as discovery, chore-

ography and mediation, at both data and process levels.

So, even if a clear trend towards a harmonisation can be perceived and many people

expect a unification of the reference information models, nevertheless, such result

will only be achieved in the long term and many systems, implemented following

different version of all these standard protocols, will be online even longer. For all

these reasons, we believe that eHealth could greatly benefit from the adoption of

Semantic Web Service technology [22].

14.3 Case Studies

In the following two sections, we report two case studies of Semantic Web Ser-

vices applied to eHealth. The first describes Glue [17], a WSMO compliant discovery

engine that was used to automate the discovery of second opinion services for GPs.

The application developed over Glue was deployed within the COCOON project5

[18] as a GP’s EHR application and in the Nomadic Media project6 [35] as a mobile

application. The second describes Artemis [2] that enables eHealthcare institutes

to exchange healthcare messages in an interoperable manner through semantically

enriched Web Services and semantic mediation.

14.3.1 Glue WSMO Discovery Engine

Glue7 [16, 17] is a WSMO compliant discovery engine that aims at developing an

efficient system for the management of semantically described Web Services and

their discovery. We put Glue at work in a usage scenario in which a GP intends to

arrange a teleconsultation meeting with a colleague available for providing medi-

cal advice services or teaching services. The colleagues can work either alone or in

Communities of Practice (CoPs) specifically organised in order to provide telecon-

sultation services.

Application Scenario

Nowadays a GP works in contact with a limited number of colleagues (either other

GPs or specialists); therefore, when a GP is seeking for advice, it may happen that

he/she does not know the right colleague to contact or the suitable one is unavailable.

5 COCOON is the sixth Framework EU integrated project (FP6-507126) aimed at setting

up a set of regional semantics-based healthcare information infrastructure with the goal of

reducing medical errors
6 Nomadic Media is a Eureka/ITEA project (ITEA 02019), in which CEFRIEL addressed

the problem of how to provide mobile access to healthcare services
7 The application of Glue described in this section can be tried at http://glue.
cefriel.it/glueclient

14 An eHealth Case Study 387

In order to cover this need, all over Europe, the healthcare systems are supporting

projects with the aim of building up directories of medical doctors willing to provide

advice, second opinion and teaching services. For instance, Lombardy region in Italy

has been running the SUMMA project [38] since 2003 with the aim of supporting

GPs seeking for advice and second opinion. The GPs taking part in the trial can

call a healthcare service centre,8 they can explain to the call-centre operators their

problems and the operators arrange for them a teleconsultation meeting with the right

CoP.

The call-centre acts as a collection point for all the available CoPs. It continu-

ously updates the list of expertises provided by each of the CoPs and their nominal

availability (e.g. Hypertension Foundation has thirty hypertension experts available

every day from Monday to Friday and Saturday morning). When a GP asks for advice

about a problem, the call-centre operator maps the problem to the needed expertises,

checks the nominal availability and, if they both fit, tries to arrange the teleconsulta-

tion meeting.

On the contrary, in the usage scenario we envision for Glue, we tried to automate

the work of the call- centre by exposing the agenda of each CoP as a Web Service.

The Web Service enables a GP to remotely access the agenda of a CoP and to arrange

a meeting. However, the agenda Web Services are only gateways to the advice ser-

vices: while the agenda of a hypertension CoP does not technically differ from the

agenda of a Parkinson CoP, their actual services (advice on hypertension vs advice

on Parkinson) differ a lot.

Figure 14.2 provides more details about the scenario. On the right side we draw

the medical experts (eventually organised in CoPs). Each expert or CoP has an

agenda that is exposed as a Web Service. Such Web Service is registered into Glue

together with a semantic description of the medical expertises of the CoP and its

nominal available times. On the left side we draw the GP that needs some advice.

Glue is in the middle: the CoPs register their agenda Web Services in Glue and a

GUI interconnected with Glue supports the GPs in discovering the most suitable

agenda to interact with. Therefore, without Glue, the GP should have explored the

CoP agendas one by one until he/she would finally get to the right CoP. With Glue,

on the contrary, the GP starts discovering the most suitable services and he/she has

only to look into the smaller set of matched agendas.

Glue is an infrastructural component with no specific interface, which means

that Glue can be invoked remotely by any application that provides a GUI to the

users. In Fig. 14.3 we show the Mobile interface we developed for Nomadic Media

project. The GP starts the discovery process by describing the problem of the patient9

and his/her preferred date-times to arrange the teleconsultation meeting (cf. Step A).

Then, Glue performs the discovery by matching the problem expressed by the GP

8 In SUMMA, Health Telematic Network (http://www.e-htn.it/english/
homei.htm) is running the call-centre for both GPs and their patients. For further infor-

mation, refer to http://www.e-htn.it/english/teleconsultii.htm
9 In Nomadic Media scenario, we provide a mobile application in which the GP inserts a set

of keywords, whereas in the COCOON project a richer description of the patient can be

directly extracted from the patient EHR the GP is using

388 Emanuele Della Valle et al.

Fig. 14.2. Glue, by automating Web Service Discovery, drastically reduce the effort of a GP

that is willing to book an appointment with an expert for a teleconsultation meeting

������ ������ �����	

Fig. 14.3. The three steps of GP’s interaction: (Step A) the GP inserts the data to arrange

a meeting; (Step B) a ranked list is returned to the GP; (Step C) the GP finds an available

teaching service and can proceed with the arrangement

14 An eHealth Case Study 389

against the descriptions of the Web Services offered by each CoP, and it returns

to the mobile application a list of references to agenda Web Services, ordered by

decreasing relevance (cf. Step B). At this point, the GP interactively selects one of

the agendas exposed as Web Service finding a slot available for the teleconsultation

meeting (cf. Step C).

Application Implementation

In this usage scenario, we describe an interaction between a GP and an application

(latter named GlueClient) that uses Glue WSMO Discovery Engine with the intent

of arranging a teleconsultation meeting with a medical advice and teaching services

offered by a CoP (Fig. 14.4). In particular, Glue WSMO Discovery Engine takes

the responsibility of gathering all the descriptions of the agenda Web Services and

matches them against the GP problem. GlueClient provides a GUI for GPs to express

the problems of their patients. It is responsible to invoke Glue and to show the result

list and, finally, it offers on demand access to the agendas of the CoPs exposed as Web

Services. The actual arrangement of the meeting and the subsequent teleconsultation

are supported by external applications.

We distinguish between advice and teaching services. Advice will predictably

be the more frequent reason for a GP to start an interaction, as it normally could be

���

����	
�� ������

���	�	���������������	�� �������
����

��

���

���

���

���

���

���	����

�

� ����

�

�
�

����

����

�

� �� �� �

�	���	����	��
�

�

���������������������
������������������

��
	 ����
	 ���
	 �
	

���
�
����� ����� ����

����� � �����

%�&���
 ������ ��������

�'��� �������
!�
���
"���#���

���

� !�
���
"���#���

���

�!�
���
"���#���

���

�!�
���
"���#���

���
�
�

���

��� ���
����

�

� �
� �

Fig. 14.4. The figure shows Glue WSMO discovery engine surrounded by a set of CoPs (which
are provider entities) and a GlueClient (which is the requester entity). Each of the CoP exposes

its agenda as a Web Service. The same Web Service is used for arranging the two types of

meeting (advice vs. teaching)

390 Emanuele Della Valle et al.

triggered by facts happening during the practice time (e.g. a problem reported by a

patient). Teaching, on the other hand, will be predictably less frequent and a request

of this kind could take place in the one-hour-a-week that is normally reserved for

contacting peers, and it normally could be triggered by GP’s reflection on his/her

week’s practice.

The general criteria for matching a GP goal against the description of the Web

Service offered by a CoP are based on the correspondence between the GP’s problem

and CoP’s expertises and on the matching between the GPs’ date–time preferences

and the nominal availability of each CoP. We distinguish between clinical capabili-

ties (i.e. those used in the daily practice) and research capabilities (i.e. the topics of

interest of those medical doctors that are active in research). Most times, the clini-
cal capabilities of the CoP may be the ones the GP wishes, but sometimes research
capabilities may be sought too (e.g. for more difficult and rare patient cases).

The process enabled by Glue, in order to support GP in arranging a meeting with

the most suitable CoP, can be broken down in the following tasks.

Set up time:

1. The service provider and requester entities agree on the ontologies to use
for modelling pathologies (e.g. ICD10), drugs (e.g. INN11), advice services,

date–time, etc..

2. If they cannot agree on the use of a specific set of common ontologies, the

use of mediators is required. In this scenario, for instance, the provider and

the requester entities cannot agree on the use of a common date–time onto-

logy. The provider entities prefer to express the nominal availability of each

CoP using a week-based calendar (e.g. the advice service is available on

Thursday afternoon and Friday morning), whereas the requester entity pre-

fer to express users’ preferences using a Gregorian calendar (e.g. Is the

service available on April, 9th from 10.00 to 12.00?).

3. The service provider and a Semantic Web Service expert define the classes
of Web Service descriptions for the Advice and Teaching services provided

by the CoP.

4. The service requester and a Semantic Web Service expert define the classes
of Goals for describing the request of GP that are using GlueClient.

Publishing time:

5. Each provider entity can then register in the Glue WSMO Discovery Engine

its Web Service for arranging a meeting describing the clinical capabilities

the CoP holds and the date–time intervals the CoP is normally available.

For instance, a provider entity may register its CoP as “one that delivers

intervention based on alpha and beta blockers with nominal availability on

Monday, Tuesday and Friday in the afternoon for advice and teaching”.

10 International Classification of Diseases, see http://www.who.int/
classifications/icd/en/

11 International Nonproprietary Names for Pharmaceutical Substances, see http://www.
who.int/medicines/services/inn/en/

14 An eHealth Case Study 391

Discovery time:

6. Similarly, a GP can discover the most suitable CoP by using a GUI, pro-

vided by the requester entity, in order to express his/her goal in terms of the

available ontologies. For instance, the GP asks for “a teaching session on

the use of Atenolol preferring the meeting to be arranged on June 8th from

10.00 to 13.00 or on June 9th from 13.00 to 16.00” (see step A in Fig. 14.3);

7. The requester entity submits the GP goal to the Discovery Engine.

8. The Semantic Discovery engine uses the ontologies and the mediators for

matching the GP goal against the descriptions of the advice services offered

by each CoP; then it returns a list of references to Web Services for arranging

a meeting, ordered by decreasing relevance (the exact matchings come first

followed by plug-in and subsumed).

9. The requester entity displays the results list to the GP (see step B in

Fig. 14.3).

10. The GP interactively selects one of the CoPs until he/she finds one suitable

to arrange a meeting with (see step C in Fig. 14.3).

In Fig. 14.5 we report part of the conceptual model employed in configuring Glue

in terms of WSMO elements: ontologies, goals, Web Services and, of course,

mediators.

First of all, a medical ontology is needed. The one we used for our trials is a

demonstrative ontology of hypertension and breast cancer domains derived from

ICD-10 and INN. It contains the definition of a hundred concepts (like disease,

<<ontology>>
Medical

<<ontology>>
Advice&TeachingService

<<ontology>>
WeekCalendar

<<ontology>>
GregorianCalendar

<<goalClass>>
ArrangingMeetings_WC

<<goalClass>>
ArrangingMeetings_GC

<<ooMediator>>
Week2Gregorian

has_source
has_target
imports
uses
extends

<<ggMediator>>
AdaptingCalendar

<<goalClass>>
ArrangingAdvice

Meetings_GC

<<goalClass>>
ArrangingTeaching

Meetings_GC

<<wsClass>>
CoPAgenda

<<wsClass>>
CoPAgenda
ForAdvice

<<wsClass>>
CoPAgenda
ForTeaching

<<wgMediator>>
GP2CoP

<<wgMediator>>
GP2CoP
ForAdvice

<<wgMediator>>
GP2CoP

ForTeaching

LEGENDA

Fig. 14.5. An high-level view of the conceptual model employed in configuring Glue in terms

of WSMO elements: ontologies, goals, Web Services and mediators. Only important relation-

ships among the elements are shown

392 Emanuele Della Valle et al.

hypertension, breast neoplasm, etc., medication, beta-blockers,

etc., part of the body, heart, etc., specialist, cardiologist, etc.)

and the relations among them (like beta blockers control hypertension, cardiolo-

gists deal with heart, hypertension affects heart and arteries, etc.).

Moreover, an advice/teaching service ontology is needed. It describes the con-

cepts of clinical, research and teaching capabilities of a Community of Practice.

• Clinical Capabilities describes the CoP in terms of the following:

– hasClinicalSpecialists: the list of the kind of specialists grouped

by the CoP (e.g. Cardiologist, Urologist, Pneumatologist, Dermatologist,

etc.).

– managesDiseases: the list of diseases managed by the CoP as ICD codes

(e.g. Diabetes – ICD9CM 250.00).

– deliversInterventions: the list of the diagnostic/therapeutic/preven-

tive interventions (including pharmaceuticals) delivered by the CoP .

• Clinical Research Capabilities describes the CoP in terms of the following.

– hasResearchSpecialists: the list of the kind of specialists grouped

by the CoP (e.g. Statistician, Social worker, Psychologist).

– studiesDiseases: the list of diseases which are actively researched by

the CoP (e.g. Gastric ulcer [ICD10–K25] Prevention).

– studiesInterventions: the list of the diagnostic/therapeutic/preven-

tive interventions (including pharmaceuticals) which are actively researched

by the CoP.

• Teaching Capabilities describes the CoP in terms of the following:

– hasTeachingExpertise: the list of teaching roles that the CoP can sat-

isfy (e.g. Teacher, OnlineTeacher, Tutor, OnlineTutor, etc.).

– hasAuthoringExpertise: the availability of online/offline collabora-

tive working tools (i.e. for teaching) within the CoP (e.g. NetMeeting, Skype,

Messenger, etc.).

Finally, two calendar ontologies are necessary in our use case to express the

date–time intervals: one is the week-based calendar used by the CoPs to describe

their nominal availability and the other one is the Gregorian calendar used by GPs in

expressing their goals. Therefore, an ooMediator has been employed in translating

the date–times from the Gregorian calendar to the week-based one. In our implemen-

tation, this ooMediator was realised with a Java program exposed as a Web Service

used at discovery time by Glue.

Having these ontologies, we were able to describe in WSMO the capabilities

of the class of agenda, Web Services of a CoP. We define a class hierarchy of Web

Service descriptions with a generic class on top, which describe the Agenda Web

Service and the possibility to arrange a meeting in a given set of date–time inter-

vals, and two specific classes below (for arranging respectively advice and teaching

meetings). The description of the agenda class of Web Service asserts the following:

14 An eHealth Case Study 393

• The pre-conditions are the input which has to be the information about an advice

request, the GP has to ask for advice on one of the medical issues treated by the

various CoPs; and the booking date has to be after the current date.

• The only assumption is that the GP has the right to use the advice service.

• The post-conditions describe the possible meetings the CoP is available for: it can

offer support that regards its capabilities and it can provide support only during

its nominal available times.

• The effect is that the agendas of both the GP and the specialists in the CoP are

updated with a reference to the scheduled meeting.

In a similar manner, we defined a hierarchy of classes of goals that asserts GP’s need

of finding a CoP that can provide an advice or teaching service about a given medical

issue in the date-times intervals the GP prefers. The classes of goals and the class of

Web Services differ in the date-time ontology they respectively import (week-based

calendar vs Gregorian calendar) and in the way they are described. The class of Web

Services describe the expertises of a CoP, whereas the class of goals describes a

problem of a GP’s patient. The first form of heterogeneity is bypassed with the intro-

duction of a ggMediator12 for adapting the calendars; the second form is bypassed in

the hierarchy of wgMediator responsible for matching goals against Web Services.

Glue adopts a mediator-centric approach in discovering the Web Services [17].

Instead of using a generic approach (e.g. DL matching), we expect a Semantic Web

Service expert to define in Glue a set of wgMediators that encodes the similarity rules

for matching a class of goals against a class of Web Services descriptions. In this

use case, the rule that performs an exact match between what the GP is asking
for and the medical capabilities of a CoP asserts that a goal exactly matches a Web

Service when:

• the GP is asking for a specialist and

– the CoP has that clinical specialist, or

– the CoP manages a disease that affects a body part dealt by the spe-

cialist the GP is asking for, or

– the CoP delivers an intervention that controls one of diseases

treated by the specialist the GP is asking for,

• the GP is asking for a disease and

– the CoP has a clinical specialist that deals with a body part

affected by the disease the GP is asking for, or

– the CoP manages the disease that the GP is asking for, or

– the CoP delivers an intervention that controls the disease the GP

is asking for,

• the GP is asking for an intervention and

– the CoP has a clinical specialist that deals with a body part

affected by a disease controlled by the intervention the GP is asking for, or

12 This ggMediator, when invoked, simply rewrites the goal, formulated by the GP using

Gregorian dates (e.g. June, 8th 2005), into days of the week (e.g. Wednesday) through the

ooMediator previously introduced

394 Emanuele Della Valle et al.

– the CoP manages a disease controlled by the intervention the GP is

asking for, or

– the CoP delivers the intervention that the GP is asking for.

The rules for subsume and plug-in matching mainly differ from the one presented

above in the sense that they broaden the search space to subconcepts and supercon-

cepts respectively, navigating the medical ontology. Besides these rules that match

medical capabilities, there are other different rules that matches date–time intervals

between goal and Web Services description. An excerpt of the concrete F-logic syn-

tax used inside Glue is showed in Fig. 14.6.

Having opted in Glue for a mediator – centric approach, writing wgMediators

becomes the critic task. We foster reuse of wgMediators by modelling the usage

scenario with two parallel hierarchies of classes, linked by a hierarchy of wgMe-

diators. The generic one (labelled GP2CoP in Fig. 14.5) links a generic agenda

Web Service to a generic goal for arranging a meeting, while the other two link

respectively an agenda Web Service for arranging advice meetings to a request for

advice and an agenda Web Service for arranging a teaching meeting with a request

for teaching support. The two specific one (respectively labelled GP2CoPForAdvice

and GP2CoPForTeaching) are defined by extending the generic one, hence reusing

its rules.

In conclusion, by using Glue we deal not only with the matching of temporal

availability, but also with the reasons for arranging a meeting, i.e. the “meaning” of

the GP’s request for a teleconsultation meeting. All these functionalities, however,

are offered to GPs with a straightforward interface that brings the power of Semantic
Web Services in a “simple box”.

14.3.2 Artemis: A Semantic Web Service–based P2P Infrastructure
for the Interoperability of Medical Information Systems

One of the most important problems in healthcare domain is the lack of infrastruc-

tures enabling the share of electronic healthcare records of a patient. There are a

number of obstacles avoiding physicians to capture a complete medical history of a

patient:

• Due to the nature of healthcare domain, a patient’s medical history is usually

spread out over a number of different institutes.

exactMatchMedicationWithCoP(GP,CoP) :-
GP[askForMedications->M], (
(CoP[developsMedications->>M]);
(M[controlsDiseases=>>D], CoP[studiesDiseases->>D]);
(M[controlsDiseases=>>D], D[affectsBodyPart=>>B],
CoP[hasSpecialists->>S], S[dealsWithBodyPart=>>B])

).

Fig. 14.6. An excerpt of the concrete F-logic syntax used in describing a wgMediators.

14 An eHealth Case Study 395

• There are no mechanisms provided to locate the other healthcare institutes to col-

laborate with, e.g. to refer a patient to, or to retrieve specific electronic healthcare

records of a patient from, in a distributed environment in an automated way. It

should be possible to locate the healthcare organisations based on their exper-

tise, or based on the fact that they may have electronic healthcare records of a

specific patient. The second problem introduces additional challenges, because

in many countries there are no unique patient identifiers used by different health-

care institutes, and when there is there may be unique patient identifiers, it may

not be ethical and may not be legal to make a distributed search based on patient

demographics. Once the probable healthcare organisations are discovered, the

second challenge is to locate the specific application of the organisation provid-

ing the requested service or specific piece of electronic healthcare record of a

patient.

• When such an organisation is found, the medical information systems used by the

institutions may not interoperate with each other. The interoperability problem

has two facets: first, the applications may not be “technically interoperable” with

each other, i.e. it may not be possible for them to exchange information; secondly,

they may not be semantically interoperable, i.e. the information exchanged may

not be a meaningful piece of information for the receiving side if the institutes

use different healthcare standards to represent the messages exchanged.

IST-002103 Artemis project [2] provides a P2P interoperability platform addressing

these problems.

Artemis has a peer-to-peer architecture based on JXTA [32] in order to facili-

tate the discovery of healthcare organisations, Web Services and patient records. In

Artemis, healthcare institutes are represented as peers as presented in Fig. 14.7 [21].

Each peer is connected to a super peer, which we call the mediator, and communi-

cate with the rest of the network through these mediators. Artemis peers provide a

number of interfaces to healthcare information systems both as servlets and as Web

Services for the following functionalities:

• Each healthcare organisation first registers itself to Artemis P2P network. We

have defined an “Expertise Ontology” based on HIPAA product taxonomy [3],

and a “Geographic Ontology” based on ISO 3166-2 codes [31]. While organisa-

tions registers themselves to the Artemis P2P network, they indicate their exper-

tise such as “EmergencyMedicalServiceProviders” from the Expertise Ontology

and its location by selecting a node from the Geographic Ontology. The peer

sends these to its mediator, which in turn shares a summary of this information

with other mediators in the network, so that the queries searching for these organ-

isations can be semantically routed back to the mediator.

• In Artemis architecture each healthcare organisation exposes its already existing

applications as Web Services. Web Services provide functional interoperability

through well-accepted standards like SOAP and WSDL. In order to facilitate the

discovery of medical Web Services of the healthcare organisations, there is a need

to semantically annotate their functionality through ontologies. For example, in

the healthcare domain, when a user is looking for a service to admit a patient

396 Emanuele Della Valle et al.

Fig. 14.7. Artemis P2P architecture

to a hospital, he/she should be able to locate such a service through its meaning,

independent of what the service is called and in which language. An essential ele-

ment in defining the semantic of Web Services is the domain knowledge. Medical

informatics is one of the few domains to have considerable domain knowledge

exposed through standards. These standards offer significant value in terms of

expressing the semantic of Web Services in the healthcare domain. In Artemis

project, prominent healthcare standards are used to semantically annotate Web

services whenever possible. For example, HL7 has categorised the events in

healthcare domain by considering service functionality which reflects the busi-

ness logic in this domain. We use this classification as a basis for defining the

service action semantics through a “Service Functionality Ontology” presented

in [4]. Artemis peers provide interfaces to annotate the functionality of Web Ser-

vices with the nodes of functionality ontology as depicted in Fig. 14.8.

• Artemis enables medical institutes to communicate with each other in their own

message schemas. While registering to the network, each organisation provides

its application message schemas as XSDs through the interfaces provided by

the Artemis peer. This means that a medical information system will send and

expect messages conforming to its own schema definition. Similarly, when an

organisation publishes Web Services to the network, the input and output param-

eter’s schemas are provided as XML schemas. These are normalised to OWL

ontologies and sent to the Mediator as the “Local Message Ontologies” of the

organisations. When the messages of the Web services are also annotated through

14 An eHealth Case Study 397

Fig. 14.8. Artemis peer interface: annotating service functionality

“Local message ontologies”, the message semantics specified and the function-

ality semantics provided through the nodes of Functionality ontology are packed

in to the OWL-S definition of the service and sent to the Mediator. In the Medi-

ator, services are published to semantically enriched Web Service Registries to

facilitate their semantic discovery. Artemis Mediators support both semantically

enriched UDDI and ebXML registries. The details of the work presenting how to

enrich UDDI and ebXML registries through service semantics are presented in

[19] and [20] respectively.

• Artemis peer provides interfaces to the medical information systems discover-

ing other healthcare organisations in the P2P network through their expertise,

discovering the medical services provided by healthcare organisations based on

their functionalities as presented in Fig. 14.9.

• One crucial aspect in ARTEMIS is to find and retrieve clinical information

about a particular patient from different healthcare organisations where con-

crete sources are unknown. To complicate matters, in most countries, there are

no unique person identifiers that would be valid for the lifetime of an individ-

ual and used by all parties in healthcare and for all episodes of care. On the

398 Emanuele Della Valle et al.

Fig. 14.9. Artemis discovery and invocation steps

contrary, in many cases, several identifiers exist for a patient even within a single

organisation. Consequently, a protocol is needed that allows for the identification

of patients by means of non-unique patient-related attributes in a P2P network.

Within the scope of Artemis project the “Patient Identification Process Proto-

col (PIP)” is developed as a solution for this problem in the healthcare sector

that is likely to become very important with the increasing mobility of the work-

force in Europe: locating and accessing prior clinical records of a patient through

patient demographics information. Artemis PIP establishes a concept that has not

been available in the healthcare sector before: an undirected search for patient

records that does not violate data protection requirements [1]. The solution com-

bines techniques from different domains: control numbers, blocking variables

and record linkage procedures as used in epidemiological registries, knowledge

distribution and Trusted Third Party services from cryptographic communication

protocols and semantic annotation and ontology-based mediation, core technolo-

gies of the semantic web. Through PIP protocol, Artemis peer provides interfaces

through which healthcare organisations may be located based on the possibility

that they may have electronic healthcare records of a patient.

14 An eHealth Case Study 399

As stated, Artemis mediators have another important role in the P2P network, other

than facilitating semantic discovery mechanisms: semantic mediation of the mes-

sages exchanged between the peers. This is achieved through the “Artemis Mes-

sage Exchange Framework”. The framework involves first providing the mapping of

source ontology into target message ontology with the help of a mapping tool which

produces a mapping definition. This mapping definition is then used to automati-

cally transform the source ontology message instances into target message instances.

Through a prototype implementation, we demonstrate how to mediate between HL7

Version 2 and HL7 Version 3 messages [9]. However, the framework proposed is

generic enough to mediate between any incompatible healthcare standards that are

currently in use.

The semantic mediation is realised in two phases:

1. Message ontology mapping process: In the first phase, the local message ontolo-

gies of two healthcare institutes are mapped one another. Assume that Web Ser-

vice requester peer is HL7 Version 2 compliant and Web Service provider is HL7

Version 3 compliant. The message ontologies of these institutes are mapped one

into other by using an ontology mapping tool. For this purpose, we used an OWL

ontology mapping tool, namely OWLmt [9]. With the help of a GUI, OWLmt

allows defining semantic mappings between structurally different but semanti-

cally overlapping OWL ontologies, and produces a “Mapping Definition”. Since

message ontologies for HL7 messages do not exist yet, we use the HL7 Ver-

sion 2 and Version 3 XML Schemas (XSDs) to generate OWL ontologies. This

process, called “Conceptual Normalisation” produces a “Normalisation map”

describing how a specific message XSD is transformed into the corresponding

OWL schema. We have used the “Normalisation Engine” provided by the Har-

monise project [24] and adopted it for our needs. The “Mapping Definitions”

and the “Normalisation map”, produced in the first phase are used during the

second phase to automatically transform the message instances one into another.

It should be noted that, in addition to direct mappings between two local ontolo-

gies, Artemis also supports semantic mediation through mapping to “Clinical

Concept Ontologies” (CCO). CCOs can be thought as global ontologies sup-

ported by mediators, and can be created based on prominent healthcare standards

such as EN 13606 (EHRcom) [13], openEHR [36] and HL7 CDA [27]. When

two healthcare institutes provide the mapping definitions of their local ontology

to one of the CCOs, Artemis mediator handles the semantic mediation of the

exchanged messages between the institutes through a set of mappings between

the clinical concept ontologies.

2. Message instance mapping: In the second phase, when a service to be invoked as

depicted in Fig. 14.9, first the XML message instances provided by the requester

institute as the inputs of the Web Service are transformed into OWL instances

by using the “Data Normalisation” engine (Step 8). Then by using the “Map-

ping definitions”, OWL source messages instances (provided by the requester

peer) are transformed into the OWL target message instances (expected by the

provider peer). This may include a number of additional mappings between the

400 Emanuele Della Valle et al.

CCOs conformed by the institutes as presented in Fig. 14.9 in steps 9 and 16.

Finally, the OWL messages are converted to XML again by the Mediator and

the Web Service is invoked. The output provided by the Web Service is similarly

transferred to the requester peer.

It should be noted that healthcare information systems operate within a strict regu-

latory framework that is enforced to ensure the protection of personal data against

processing and outlines conditions and rules in which processing is allowed. Hence,

ARTEMIS also provides robust and flexible security and privacy mechanisms as pre-

sented in [10].

14.4 Summary

In this chapter we discussed the use of ontology-based approaches in eHealth sce-

narios; in particular, we highlighted the added- value of these approaches in terms of

more powerful interoperability facilities to interconnect different systems.

Glue and Artemis are successfully using medical domain ontologies to describe

and discover their services in a more effective way than what was provided by com-

mon UDDI or ebXML registries. In fact, semantics can be employed in describing

Web Service capabilities and user goals, in defining rules for matching goals with

Web Service capabilities and, finally, in enabling semantic data mediation to achieve

XML message interoperability.

The main lesson we are learning in applying semantics to the eHealth field is

that the clear separation between the ontologies used by each system simplifies and

speeds up the gathering of consensus, which is always difficult to reach in large

groups. This is mainly due to the adoption of mediators.

References

1. T. Aden, M. Eichelberg, and W. Thoben. A Fault-Tolerant Cryptographic Protocol for

Patient Record Requests. In Proceedings of EuroPACS-MIR 2004 in the Enlarged Europe,

pages 103–106. EuroPACS, 2004.

2. The ARTEMIS Project. http://www.srdc.metu.edu.tr/webpage/
projects/artemis.

3. Artemis Expertise Ontology. http://www.srdc.metu.edu.tr/webpage/
projects/artemis/ExpertiseOnt.owl.

4. Artemis Service Functionality Ontology. http://www.srdc.metu.edu.tr/
webpage/projects/artemis/functionalityOntol\%ogy.owl.

5. T. Beale. Archetypes: Constraint-based Domain Models for Future-proof Information

Systems. In OOPSLA 2002 Workshop on Behavioural Semantics, 2002. http://www.
deepthought.com.au/it/archetypes/archetypes_new.pdf.

6. T. Beale and S. Heard. The openEHR EHR Service Model, Revision 0.2. openEHR

Reference Model, the openEHR foundation, 2003.

7. T. Beale and S. Heard. Archetype Definition Language (ADL), Revision 2.0rc1 (Release

1.0 draft). openEHR Specification, the openEHR foundation, 2005.

14 An eHealth Case Study 401

8. T. Beale, S. Heard, D. Kalra, and D. Lloyd. The openEHR Data Structures Information

Model, Revision 1.6rc1 (Release 1.0 draft). openEHR Reference Model, the openEHR

foundation, 2005.
9. V. Bicer, G. Laleci, A. Dogac, and Y. Kabak. Artemis Message Exchange Framework:

Semantic Interoperability of Exchanged Messages in the Healthcare Domain. ACM Sig-
mod Record, 34(3), September 2005.

10. M. Boniface and P. Wilken. ARTEMIS: Towards a Secure Interoperability Infrastruc-

ture for Healthcare Information Systems. In T. Solomonides, R. McClatchey, V. Breton,

Y. Legré, and S. Nørager, editors, Studies in Health Technology and Informatics – From
Grid to Healthgrid: Proceedings of Healthgrid 2005, volume 112, pages 181–189. IOS

Press, April 2005.
11. Complete Blood Count Archetype ADL Definition. http://www.openehr.org/

repositories/archetype-dev/adl_1.1/adl/archetypes/openehr/
ehr/entry/openehr-ehr-observation.haematology-cbc.draft.
adl.html.

12. CEN ENV 13606. Medical Informatics – Electronic Healthcare Record Communication.

European Prestandard ENV 13606, European Committee for Standardization, Brussels,

2000.
13. CEN prEN 13606-1. Health Informatics – Electronic Health Record Communication –

Part 1: Reference Model. Draft European Standard for CEN Enquiry prEN 13606-1,

European Committee for Standardization, Brussels, Belgium, 2004.
14. CEN/ISSS eHealth Standardization Focus Group. Current and Future Standardization

Issues in the e-Health Domain: Achieving Interoperability. Draft European Standard for

CEN Enquiry Part One: Main text, page 58, European Committee for Standardization,

Brussels, Belgium, 2005.
15. European Committee for Standardization – Technical Committee on Health Informatics.

http://www.centc251.org/.
16. E. Della Valle and D. Cerizza. Cocoon Glue: A Prototype of WSMO Discovery Engine

for the Healthcare Field. In Proceedings of 2nd WSMO Implementation Workshop
WIW’2005, 2005.

17. E. Della Valle and D. Cerizza. The mediators centric approach to automatic

web service discovery of glue. In M. Hepp, A. Polleres, F. van Harmelen, and

M.R. Genesereth, editors, MEDIATE2005, volume 168 of CEUR Workshop Proceed-
ings, pages 35–50. CEUR-WS.org, 2005. online http://CEUR-WS.org/Vol-168/
MEDIATE2005-paper3.pdf.

18. E. Della Valle, D. Cerizza, I. Celino, L. Gadda, and A. Savoldelli. The COCOON project.

In Demos and Posters of the 2nd European Semantic Web Conference (ESWC-2005),
Heraklion, Greece, 29.

19. A. Dogac, I. Cingil, G. B. Laleci, and Y. Kabak. Improving the Functionality of UDDI

Registries through Web Service Semantics. In 3rd VLDB Workshop on Technologies for
E-Services (TES-02), 2002.

20. A. Dogac, Y. Kabak, G. Laleci, C. Mattocks, F. Najmi, and J. Pollock. Enhancing ebXML

Registries to Make them OWL Aware. Distributed and Parallel Database Journal, 18(1),

2005.
21. A. Dogac, G. Laleci, S. Kirbas, Y. Kabak, S. Sinir, A. Yildiz, and Y. Gurcan. Artemis:

Deploying Semantically Enriched Web Services in the Healthcare Domain. Information
Systems Journal, Special Issue on Semantic Web and Web Services, 2005.

22. E. Della Valle, D. Cerizza, V. Bicer, Y. Kabak, G. Laleci, and H. Lausen. The Need for

Semantic Web Service in the ehealth. W3C Workshop on Frameworks for Semantics in
Web Services, 2005.

402 Emanuele Della Valle et al.

23. G. Eysenbach. What is e-health? Journal of Medical Internet Research (JMIR), 3(2):e20,

2001.

24. Harmonise, IST-20002-9329, Tourism Harmonisation Network, Deliverable 3.2: Seman-

tic Mapping and Reconciliation Engine Subsystems.

25. Health Level 7 (HL7). http://www.hl7.org/.

26. HL7, Application Protocol for Electronic Data Exchange in Healthcare Environments,
Version 2.5, ANSI Standard. Ann Arbor MI, USA, 2000.

27. The HL7 Version 3 Standard: Clinical Data Architecture, Release 2.0, ANSI Standard,

2005.

28. HL7 Reference Information Model. http://www.hl7.org/library/
data-model/RIM/modelpage_non.htm.

29. HL7 Version 3 Message Development Framework. http://www.hl7.org/
library/mdf99/mdf99.pdf.

30. Integrating the Healthcare Enterprise. http://www.ihe.net/.

31. ISO 3166-2 Codes for the Representation of Names of Countries and Their Subdivisions,

Part 2. http://www.iso.org/iso/en/prods-services/iso3166ma/
04background-on-iso-\%3166/iso3166-2.html.

32. JXTA Technology. http://www.jxta.org/.

33. Logical Observation Identifiers Names and Codes (LOINC). http://www.loinc.
org/.

34. Eichelberg M., Aden T., Riesmeier J., Dogac A., and Laleci G. A Survey and Analysis

of Electronic Healthcare Record Standards. ACM Computing Surveys, 37(4), December

2005.

35. NOMADIC MEDIA (ITEA 02019). http://www.hitech-projects.com/
euprojects/nomadic-media/.

36. openEHR Community. http://www.openehr.org/.

37. SNOMED (The Systematized Nomenclature of Medicine) Clinical Terms. http://
www.snomed.org/snomedct_txt.html.

38. The SUMMA Project. http://summa.cefriel.it.

Glossary

Composition – Composition of seman-

tically annotated Web Services is the

process of combining and coordinating

several Web Services, based on machine-

interpretable descriptions of their func-

tionality and their choreography. The

result of this process is an orchestration

including several Web Services.

Choreography – Web Services Chore-

ography concerns the description of

how Web Services interact with their

users. Such a description of behaviour

involves message protocols, interfaces

and sequencing of multiple separate

interactions. The choreography of a Web

Service determines how to consume

its functionality in terms of message

exchange patterns.

Discovery – Discovery of semantically

annotated Web Services is the process

of identifying and locating Web Services

that are relevant for a given request,

based on machine-interpretable descrip-

tions of their functionality. The result of

this process is a set of Web Services

which potentially meet the needs of the

requester party in terms of the capabili-

ties they provide.

Mediation – Mediation between seman-

tically annotated Web Services aims at

assuring interoperability of Web Services

that are designed according to different

approaches. Such differences can be in

terms of data structures and messages

they exchange, ontologies their seman-

tic annotation is based on, or interac-

tion patterns they adhere to. Differences

in data formats and in the conceptual

model for message content are addressed

by data mediation and ontology medi-
ation, whereas differences in message

exchange patterns and business process

models are addressed by choreography
mediation and process mediation.

Ontology – Anontologyisaformalexplicit

specification of a domain conceptualisa-

tion shared by the members of a commu-

nity. It provides applications with a con-

ceptual yet executable model of a domain

of interest on which they base their deci-

sions.Ontologiesmakeuseofknowledge-

representation principles and formalisms,

404 Glossary

which allows applications to reason

about domain knowledge.

Orchestration – Web Services Orches-

tration concerns the realisation of com-

posite Web Services by means of other

Web Services. The orchestration of a

Web Service determines the set of oper-

ations and interactions that must be

followed in order to realise its over-

all functionality.

Semantic Annotation – Semantic anno-

tation is meta data that captures the

meaning of resources by means of a

machine-interpretable description. Such

descriptions are expressed in terms of an

ontological vocabulary provided by an

ontology for some domain of interest. In

the context of Semantic Web Services,

semantic annotation describes the func-

tionality offered through a Web Service.

Semantic Web – The vision of the

Semantic Web is to semantically anno-

tate content in the World Wide Web

by machine-interpretable meta data, such

that computer programs are enabled to

reason about the meaning of this con-

tent. Ontologies play a key role in this

vision, in that they provide the domain

vocabulary in terms of which semantic

annotation is formulated. This seman-

tic enhancement supports various areas

of web-based applications such as doc-

ument search, web portals, information

integration or service-oriented systems.

Semantic Web Services – The Semantic

Web Services’ vision is to semantically

annotate Web Services with machine-

interpretable meta data, such that com-

puter programs are enabled to reason

about their functionality. In this way,

various kinds of services, such as book

selling, shipment of goods or provision

of stock market information, can be

advertised and discovered on the Inter-

net in an automated way, and their func-

tionalities can be combined in composite

services at run-time in order to achieve

higher-level goals. Semantic Web Ser-

vices particularly aim at realising smooth

information integration through flexible

architectures within and across organisa-

tion boundaries.

Service – A service is an activity of value

that a provider party offers to a requester
party. In the context of Semantic Web

Services, a service, such as book sell-

ing, is realised through a (set of) Web

Service(s), such as Amazon’s Web Ser-

vice interface, which provide(s) techni-

cal means to access a service via the

Internet.

Service-Oriented Architecture (SOA)
– The term Service-Oriented Architec-

ture expresses a software architectural

concept that defines the use of services

to support the requirements of software

users. In a SOA environment, nodes

on a network make resources available

to other participants in the network as

independent services that the participants

access in a standardised way. One can

implement SOA using any service-based

technology.

Web Service – A Web Service is a

software system designed to support

interoperable machine-to-machine inter-

action over a network. It has an inter-

face described in a machine-processable

format (specifically WSDL). Other sys-

tems interact with the Web Service in

a manner prescribed by its description

using SOAP messages, typically con-

veyed using the HTTP protocol with an

XML serialisation in conjunction with

other web-related standards.

Index

agent, 163, 164, 171

architecture

Semantic Web Service, 162, 171

W3C Web Service, 25

asynchronous communication, 31, 254

axiom, 71, 74, 91, 100, 121–122, 188

axiomatisation, 56–57, 71, 78

BPEL, 166, 257, 262, 264

choreography, 164, 189, 192, 245–248, 254,

267, 304, 327

closed-world assumption, 64, 81, 228

composition, 160, 165–166, 245

Datalog, 82

description, 26, 36, 159, 163, 179
description logic, 61, 79–82, 88, 100, 224,

260

discovery, 27, 159, 168, 211, 386

DLP, 81

DRS, 206

F-Logic, 82, 94, 110, 128, 131

first-order logic, 81, 110

grounding, 165

HTTP, 25, 28, 30

Get, 33

Post, 33

IDL, 36

IRS-III, 312, 327, 369

ISO/OSI Protocol Reference Model, 25

KIF, 206

knowledge representation, 51, 163, 212

lifecycle phase, 168, 213, 315

service definition, 169, 172–173, 213, 333

service delivery, 170, 173, 334

service discovery, 168, 171–172, 175,

213, 332

service modelling, 168, 179, 217, 316

lifting, 294

logic, 52, 56, 59–68

logic programming, 79–82

lowering, 297

matching, 219, 222–224

degree of, 237

inferences for, 229

mediation, 163, 166–167, 193, 287, 399

data, 167, 175, 288, 292

ontology, 167, 288, 299

process, 167, 289

protocol, 167, 173, 175, 288, 304

mediator, 182, 193, 288, 325, 370

message exchange pattern, 28, 33

meta data, 76, 78, 82, 136, 140
Meta Object Facility (MOF), 183–184

METEOR-S, 222, 329

METHONTOLOGY, 116–119

MWSAF, 329

namespace, 32, 34, 36, 83, 185

OASIS, 40, 207

On-To-Knowledge, 116–117

406 Index

OntoClean, 112, 122, 123

ontology, 69

ontology alignment, 300

ontology development, 107

ontology language, 79

open-world assumption, 80, 91, 226

orchestration, 165, 189, 192, 245, 267, 304,

375

OWL, 81, 87, 140, 205, 224, 256, 293–296,

350

OWL-S, 181, 197, 223, 312–315, 318, 344

atomic process, 203

composite process, 203

grounding, 321

process model, 166, 361

service grounding, 204

service model, 202, 321

service profile, 198, 223

simple process, 203

Quality of Service (QoS), 27

RDF(S), 81, 82, 135, 140–141, 293–299

remote procedure call, 28, 32

rules, 55

DL-safe, 82

scenario, 160

(A) banking, 160, 215, 291

(B) procurement, 161, 184, 215, 253, 292

(C) logistics, 161, 216, 237, 253, 292

(D) stock quote, 162, 216, 292

eGovernment, 366

eHealth, 386

security, 27, 376

semantic annotation, 78, 81, 140, 179

semantic network, 52

Semantic Web, 78, 135, 159

service, 159, 162, 182, 211–213

abstract, 163, 168, 188, 213–214, 218,

333

concrete, 163, 173, 188, 214, 218, 315

service endpoint, 38

service provider, 46, 162, 171–174, 176–177

service requester, 46, 162, 171, 174–176

SMTP, 25, 29, 30

SOAP, 26, 31, 288, 312, 369

SWeDE, 320

SWRL, 82, 205, 355

SWSF, 181, 224

UDDI, 22, 27, 40, 159, 221–223, 314, 333

W3C, 20, 28, 31, 37, 45, 81, 82, 87, 135,

180, 207

Web Service, 19, 25–31, 159, 179, 211–213

Web Service technology stack, 25

wire stack, 25

WSDL, 21, 26, 36, 159, 179–181, 188, 205,

207, 312–314, 316, 322, 329

WSDL-S, 181, 222, 330

WSMF, 166, 182

WSML, 82, 98, 184, 196, 326

WSMO, 98, 180, 182, 223, 324, 386, 391

assumption, 190

capability, 189, 374

effect, 191

goal, 192, 374

mediator, 193, 375

non-functional properties, 185

postcondition, 190

precondition, 190

WSMO Studio, 324

WSMT, 327

WSMX, 98, 306, 312, 324, 333–335

