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Many quantum condensed matter systems are strongly correlated and strongly
interacting fermionic systems, which cannot be treated perturbatively. How-
ever, physics which emerges in the low-energy corner does not depend on the
complicated details of the system and is relatively simple. It is determined by
the nodes in the fermionic spectrum, which are protected by topology in mo-
mentum space (in some cases, in combination with the vacuum symmetry).
Close to the nodes the behavior of the system becomes universal; and the
universality classes are determined by the toplogical invariants in momentum
space. When one changes the parameters of the system, the transitions are ex-
pected to occur between the vacua with the same symmetry but which belong
to different universality classes. Different types of quantum phase transitions
governed by topology in momentum space are discussed in this chapter. They
involve Fermi surfaces, Fermi points, Fermi lines, and also the topological
transitions between the fully gapped states. The consideration based on the
momentum space topology of the Green’s function is general and is applicable
to the vacua of relativistic quantum fields. This is illustrated by the possible
quantum phase transition governed by topology of nodes in the spectrum of
elementary particles of Standard Model.

1 Introduction

There are two schemes for the classification of states in condensed matter
physics and relativistic quantum fields: classification by symmetry (GUT
scheme) and by momentum space topology (anti-GUT scheme).

For the first classification method, a given state of the system is charac-
terized by a symmetry group H which is a subgroup of the symmetry group
G of the relevant physical laws. The thermodynamic phase transition between
equilibrium states is usually marked by a change of the symmetry group H.
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This classification reflects the phenomenon of spontaneously broken symme-
try. In relativistic quantum fields the chain of successive phase transitions,
in which the large symmetry group existing at high energy is reduced at low
energy, is in the basis of the Grand Unification models (GUT) [1, 2]. In con-
densed matter the spontaneous symmetry breaking is a typical phenomenon,
and the thermodynamic states are also classified in terms of the subgroup H
of the relevant group G (see e.g, the classification of superfluid and supercon-
ducting states in Refs. [3, 4]). The groups G and H are also responsible for
topological defects, which are determined by the nontrivial elements of the
homotopy groups πn(G/H); cf. [5].

The second classification method reflects the opposite tendency – the anti
Grand Unification (anti-GUT) – when instead of the symmetry breaking the
symmetry gradually emerges at low energy. This method deals with the ground
states of the system at zero temperature (T = 0), i.e., it is the classification of
quantum vacua. The universality classes of quantum vacua are determined by
momentum-space topology, which is also responsible for the type of the effec-
tive theory, emergent physical laws and symmetries at low energy. Contrary
to the GUT scheme, where the symmetry of the vacuum state is primary giv-
ing rise to topology, in the anti-GUT scheme the topology in the momentum
space is primary while the vacuum symmetry is the emergent phenomenon in
the low energy corner.

At the moment, we live in the ultra-cold Universe. All the characteristic
temperatures in our Universe are extremely small compared to the Planck en-
ergy scale EP. That is why all the massive fermions, whose natural mass must
be of order EP, are frozen out due to extremely small factor exp(−EP/T ).
There is no matter in our Universe unless there are massless fermions, whose
masslessness is protected with extremely high accuracy. It is the topology in
the momentum space, which provides such protection.

For systems living in 3D space, there are four basic universality classes of
fermionic vacua provided by topology in momentum space [6, 7]:

(i) Vacua with fully-gapped fermionic excitations, such as semiconductors
and conventional superconductors.

(ii) Vacua with fermionic excitations characterized by Fermi points– points
in 3D momentum space at which the energy of fermionic quasiparticle
vanishes. Examples are provided by superfluid 3He-A and also by the
quantum vacuum of Standard Model above the electroweak transition,
where all elementary particles are Weyl fermions with Fermi points in the
spectrum. This universality class manifests the phenomenon of emergent
relativistic quantum fields at low energy: close to the Fermi points the
fermionic quasiparticles behave as massless Weyl fermions, while the
collective modes of the vacuum interact with these fermions as gauge
and gravitational fields.

(iii) Vacua with fermionic excitations characterized by lines in 3D momentum
space or points in 2D momentum space. We call them Fermi lines, though
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in general it is better to characterize zeroes by co-dimension, which is
the dimension of p-space minus the dimension of the manifold of zeros.
Lines in 3D momentum space and points in 2D momentum space have
co-dimension 2: since 3−1 = 2−0 = 2; compare this with zeroes of class
(ii) which have co-dimension 3−0 = 3. The Fermi lines are topologically
stable only if some special symmetry is obeyed. Example is provided by
the vacuum of the high Tc superconductors where the Cooper pairing
into a d-wave state occurs. The nodal lines (or actually the point nodes
in these effectively 2D systems) are stabilized by the combined effect of
momentum-space topology and time reversal symmetry.

(iv) Vacua with fermionic excitations characterized by Fermi surfaces. The
representatives of this universality class are normal metals and normal
liquid 3He. This universality class also manifests the phenomenon of
emergent physics, though non-relativistic: at low temperature all the
metals behave in a similar way, and this behavior is determined by the
Landau theory of Fermi liquid – the effective theory based on the exis-
tence of Fermi surface. Fermi surface has co-dimension 1: in 3D system it
is the surface (co-dimension = 3−2 = 1), in 2D system it is the line (co-
dimension = 2− 1 = 1), and in 1D system it is the point (co-dimension
= 1− 0 = 1; in one dimensional system the Landau Fermi-liquid theory
does not work, but the Fermi surface survives).

The possibility of the Fermi band class (v), where the energy vanishes in
the finite region of the 3D momentum space and thus zeroes have co-dimension
0, has been also discussed [8–11]. It is believed that this the so-called Fermi
condensate may occur in strongly interacting electron systems PuCoGA5 and
CeCoIn5 [12]. Topologically stable flat band may exist in the spectrum of
fermion zero modes, i.e. for fermions localized in the core of the topological
objects [13].

The phase transitions which follow from this classification scheme are
quantum phase transitions which occur at T = 0 [14]. It may happen that
by changing some parameter q of the system we transfer the vacuum state
from one universality class to another, or to the vacuum of the same univer-
sality class but different topological quantum number, without changing its
symmetry group H. The point qc, where this zero-temperature transition oc-
curs, marks the quantum phase transition. For T �= 0, the second order phase
transition is absent, as the two states belong to the same symmetry class H,
but the first order phase transition is not excluded. Hence, there is an isolated
singular point (qc, 0) in the (q, T ) plane (Fig. 1(a)), or the end point of the
first order transition (Fig. 1(b)).

The quantum phase transitions which occur in classes (iv) and (i) or be-
tween these classes are well known. In the class (iv) the corresponding quan-
tum phase transition is known as Lifshitz transition [15], at which the Fermi
surface changes its topology or emerges from the fully gapped state of class
(i), see Sect. 2.2. The transition between the fully gapped states characterized
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Fig. 1. Quantum phase transition between two ground states with the same sym-
metry but of different universality class – gapless at q < qc and fully gapped at
q > qc – as isolated point (a) as the termination point of first order transition (b)

by different topological charges occurs in 2D systems exhibiting the quan-
tum Hall and spin-Hall effect: this is the plateau-plateau transition between
the states with different values of the Hall (or spin-Hall) conductance (see
Sect. 5). The less known transitions involve nodes of co-dimension 3 [16–20]
(Sect. 3 on Fermi points) and nodes of co-dimension 2 [21–24] (Sect. 4 on
nodal lines). The quantum phase transitions involving the flat bands of class
(v) are discussed in Ref. [13].

2 Fermi Surface and Lifshitz Transition

2.1 Fermi Surface as a Vortex in p-space

In ideal Fermi gases, the Fermi surface at p = pF =
√

2µm is the boundary in
p-space between the occupied states (np = 1) at p2/2m < µ and empty states
(np = 0) at p2/2m > µ. At this boundary (the surface in 3D momentum space)
the energy is zero. What happens when the interaction between particles is
introduced? Due to interaction the distribution function np of particles in the
ground state is no longer exactly 1 or 0. However, it appears that the Fermi
surface survives as the singularity in np. Such stability of the Fermi surface
comes from a topological property of the one-particle Green’s function at
imaginary frequency:

G−1 = iω − p2

2m
+ µ . (1)

Let us for simplicity skip one spatial dimension pz so that the Fermi surface
becomes the line in 2D momentum space (px, py); this does not change the co-
dimension of zeroes which remains 1 = 3−2 = 2−1. The Green’s function has
singularities lying on a closed line ω = 0, p2

x + p2
y = p2

F in the 3D momentum-
frequency space (ω, px, py) (Fig. 2(a)). This is the line of the quantized vortex
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Fig. 2. (a) Fermi surface is a topological object in momentum space – a vortex
loop. (b) When the chemical potential µ decreases the loop shrinks and disappears
at µ < 0. The point µ = T = 0 marks the Lifshitz transition between the gapless
ground state at µ > 0 to the fully gapped vacuum at µ < 0

in the momemtum space, since the phase Φ of the Green’s function G = |G|eiΦ

changes by 2πN1 around the path embracing any element of this vortex line.
In the considered case the phase winding number is N1 = 1. If we add the
third momentum dimension pz the vortex line becomes the surface in the 4D
momentum-frequency space (ω, px, py, pz) – the Fermi surface – but again the
phase changes by 2π along any closed loop empracing the element of the 2D
surface in the 4D momentum-frequency space.

The winding number cannot change by continuous deformation of the
Green’s function: the momentum-space vortex is robust toward any pertur-
bation. Thus the singularity of the Green’s function on the Fermi surface is
preserved, even when interaction between fermions is introduced. The invari-
ant is the same for any space dimension, since the co-dimension remains 1.

The Green function is generally a matrix with spin indices. In addition, it
may have the band indices (in the case of electrons in the periodic potential of
crystals). In such a case the phase of the Green’s function becomes meaning-
less; however, the topological property of the Green’s function remains robust.
The general analysis [7] demonstrates that topologically stable Fermi surfaces
are described by the group Z of integers. The winding number N1 is expressed
analytically in terms of the Green’s function [6]:

N1 = tr
∮

C

dl

2πi
G(µ,p)∂lG

−1(µ,p) . (2)
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Here the integral is taken over an arbitrary contour C around the momentum-
space vortex, and tr is the trace over the spin, band and/or other indices.

2.2 Lifshitz Transitions

There are two scenarios of how to destroy the vortex loop in momentum
space: perturbative and non-perturbative. The non-perturbative mechanism
of destruction of the Fermi surface occurs for example at the superconducting
transition, at which the spectrum changes drastically and the gap appears.
We shall consider this later in Sect. 2.3, and now let us concentrate on the
perturbative processes.

Contraction and Expansion of Vortex Loop in p-Space

The Fermi surface cannot be destroyed by small perturbations, since it is
protected by topology and thus is robust to perturbations. But the Fermi sur-
face can be removed by large perturbations in the processes which reproduces
the processes occurring for the real-space counterpart of the Fermi surface –
the loop of quantized vortex in superfluids and superconductors. The vortex
ring can continuously shrink to a point and then disappear, or continuously
expand and leave the momentum space. The first scenario occurs when one
continuously changes the chemical potential from the positive to the negative
value: at µ < 0 there is no vortex loop in momentum space and the ground
state (vacuum) is fully gapped. The point µ = 0 marks the quantum phase
transition – the Lifshitz transition– at which the topology of the energy spec-
trum changes (Fig. 2(b)). At this transition the symmetry of the ground state
does not changes. The second scenario of the quantum phase transition to the
fully gapped states occurs when the inverse mass 1/m in Eq. (1) crosses zero.

Similar Lifshitz transitions from the fully gapped state to the state with the
Fermi surface may occur in superfluids and superconductors. This happens,
for example, when the superfluid velocity crosses the Landau critical veloc-
ity [Fig. 3]. The symmetry of the order parameter does not change across
such a quantum phase transition. On the other examples of the Fermi surface
in superfluid/superconducting states in condensed matter and quark matter
see [25]. In the non-superconduting states, the transition from the gapless
to gapped state is the metal-insulator transition. The Mott transition also
belongs to this class.

Reconnection of Vortex Lines in p-Space

The Lifshitz transitions involving the vortex lines in p-space may occur be-
tween the gapless states. They are accompanied by the change of the topology
of the Fermi surface itself. The simplest example of such a phase transition
discussed in terms of the vortex lines is provided by the reconnection of the
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Fig. 3. Illustration of Lifshitz transition in superfluid/superconductor at Landau
critical velocity. (a) In the presence of the superfluid motion with velocity vs, the
spectrum of quasiparticles is Doppler shifted. In the fully gapped superconductor
in Eq. (5) the spectrum becomes E(p) = ±

√
(p2/2m − µ)2 + |∆|2 + p · vs. When

the flow velocity exceeds the Landau critical velocity, vL ≈ ∆/pF if ∆ � µ, the
positive branch crosses zero energy level. Typically this leads to instability, but in
some cases, for example, in superfluid 3He-B, the superfluidity is not destroyed. In
this case the Landau critical velocity marks the quantum phase transition at which
two Fermi surfaces with E(p) = 0 emerge in the superfluid state (b). Liquid remains
superfluid, but the density of the fermionic states is nonzero due to Fermi surfaces.
Due to that the normal component of the liquid becomes nonzero even at T = 0, as
a result the density of the superfluid component ρs (the prefactor in the superfluid
current js = ρsvs) is reduced compared with its value ρ below the threshold. See
also Sect. 26.1 in Ref. [6]

vortex lines. In Fig. 4 the two-dimensional system is considered with the sad-
dle point spectrum E(p) = p2

x− p2
y−µ. The reconnection quantum transition

occurs at µ = 0. The three-dimensional systems, in which the Fermi surface
is a 2D vortex sheet in the 4D space (ω, px, py, pz), may experience the more
complicated topological transitions.

2.3 Metal-superconductor Transition

The transition to superconducting state, even if it occurs at T = 0, does not
belong to the class of the quantum phase transitions which we discuss in this
review, because it is the consequence of the spontaneously broken symmetry
and does not occur perturbatively. Let us discuss this transition from the
point of view of the momentum-space topology.
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Fig. 4. Lifshitz transition with change of the Fermi surface topology as reconnection
of vortex lines in momentum space. The direction of the “circulation” around the
vortex lines (grey arrows) and “vorticity” along the vortex lines (black arrows) are
shown

Topology of Gor’kov Function Across
the Superconducting Transition

Let us first note that the breaking of U(1) symmetry is not the sufficient
condition for superfluidity or superconductivity. For example, the U(1) sym-
metry of the atoms A which is the result of conservation of the number NA

of A atoms, may be violated simply due to possibility of decay of atom A to
atom B. But this does not lead to superfluidity, and the Fermi surface does
not disappear. For these two species of atoms the Hamiltonian is 2×2 matrix,
such as

H =
(
p2/2mA − µ ∆

∆∗ p2/2mB − µ

)
, (3)

where ∆ is the matrix element which mixes the atoms A and B. This mixing
violates the separate U(1) symmetry for each of the two gases, but the gap
does not appear. Zeroes of the energy spectrum found from the nullification
of the determinant of the matrix, (p2/2mA−µ)(p2/2mB−µ)−|∆|2 = 0, form
two Fermi surfaces if ∆ = 0, and these Fermi surfaces survive if ∆ �= 0 but is
sufficiently small. This is the consequence of topological stability of p-space
vortices. Each Fermi surface has topological charge N1 = 1, and their sum
N1 = 2 is robust to small perturbations.

The non-perturbative phenomenon of superfluidity in the fermionic gas
occurs due to Cooper pairing of atoms (electrons), i.e. due to mixing between
the particle and hole states. Such mixing requires introduction of the extended
matrix Green’s function even for a single fermions species. This is the Gor’kov
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Green’s function which is the matrix in the particle-hole space of the same
fermions, i.e. we have effective doubling of the relevant fermionic degrees of
freedom for the description of superconductivity. In case of s-wave pairing the
Gor’kov Green’s function has the following form:

G−1 =
(
iω − p2/2m+ µ ∆

∆∗ iω + p2/2m− µ

)
, (4)

Now the energy spectrum

E2 = (p2/2m− µ)2 + |∆|2 (5)

has a gap, i.e. the Fermi surface disappears. How does this happen? At ∆ = 0
the matrix Green’s function describes two species of fermions: particles and
holes. The topological charges of the corresponding Fermi surfaces are N1 = 1
for particles and N1 = −1 for holes, with total topological charge N1 = 0.
The trivial total topological charge of the Fermi surfaces allows for their an-
nihilation, which just occurs when the mixing matrix element ∆ �= 0 and
the energy spectrum becomes fully gapped. Thus the topology of the ma-
trix Gor’kov Green’s function G does not change across the superconducting
transition.

Topology of Diagonal Green’s Function Across
the Superconducting Transition

Let us consider what happens with the conventional Green’s function across
the transition. This is the G11 element of the matrix (4):

G11 = − iω + p2/2m− µ

ω2 + (p2/2m− µ)2 + |∆|2 . (6)

One can see that it has the same topology in momentum space as the Green’s
function of normal metal in Eq. (1):

G11(∆ = 0) =
1

iω − p2/2m+ µ
= − iω + p2/2m− µ

ω2 + (p2/2m− µ)2
. (7)

Though instead of the pole in Eq. (7) for superconducting state one has zero
in Eq. (6) for normal state, their topological charges in Eq. (2) are the same:
both have the same vortex singularity with N1 = 1. Thus the topology of the
conventional Green’s function G11 also does not change across the supercon-
ducting transition.

So the topology of each of the functions G and G11 does not change across
the transition. This illustrates again the robustness of the topological charge.
But what occurs at the transition? The Green’s function G11 gives the proper
description of the normal state, but it does not provide the complete de-
scription of the superconducting state. That is why its zeroes, though have
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non-trivial topological charge, bear no information on the spectrum of excita-
tions. On the other hand the matrix Green’s function G provides the complete
description of the superconducting states, but is meaningless on the normal
state side of the transition. Thus the spectrum on two sides of the transition
is determined by two different functions with different topological properties.
This illustrates the non-perturbative nature of the superconducting transi-
tion, which crucially changes the p-space topology leading to the destruction
of the Fermi surface without conservation of the topological charge across the
transition.

Momentum Space Topology in Pseudo-Gap State

Pseudo-gap is the effect of the suppression of the density of states (DOS) at
low energy [26]. Let us consider a simple model in which the pseudo-gap be-
havior of the normal Fermi liquid results from the superfluid/superconducting
fluctuations, i.e. in this model the pseudo-gap state is the normal (non-
superconducting) state with the virtual superconducting order parameter ∆
fluctuating about its equilibrium zero value (see review [27] and Ref. [28]).
For simplicity we discuss the extreme case of such state where ∆ fluctuates
being homogeneous in space. The average value of the off-diagonal element
of the Gor’kov functions is zero in this state, 〈G12〉 = 0, and thus the U(1)
symmetry remains unbroken. The Green’s function of this pseudo-gap state is
obtained by averaging of the function G11 over the distribution of the uniform
complex order parameter ∆:

G = 〈G11〉 =
∫
d∆d∆∗P (|∆|) −iω − ε

ω2 + ε2 + |∆|2 . (8)

Here ε(p) = p2/2m − µ and P (|∆|) is the probability of the gap |∆|. If
P (0) �= 0, then in the low-energy limit ω2 + ε2 
 ∆2

0, where ∆0 is the
amplitude of fluctuations, one obtains

G =
Z

iω − ε
, Z ∝ ω2 + ε2

∆2
0

ln
∆2

0

ω2 + ε2
. (9)

The Green’s function has the same topological property as conventional
Green’s function of metal with Fermi surface at ε(p) = 0, but the suppression
of residue Z is so strong, that the pole in the Green’s function is transformed
to the zero of the Green’s function. Because of the topological stability, the
singularity of the Green’s function at the Fermi surface is not destroyed: the
zero is also the singularity and it has the same topological invariant in Eq. (2)
as pole. So this model of the Fermi liquid represents a kind of Luttinger or
marginal Fermi liquid with a very strong renormalization of the singularity at
the Fermi surface.

This demonstrates that the topology of the Fermi surface is the robust
property, which does not resolve between different fine structures of the Fermi
liquids with different DOS.
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Using the continuation of Eq. (9) to the real frequency axis ω, one obtains
the density of states in this extreme model of the pseudo-gap:

ν(ω) = N0

∫
dε ImG = πN0

∫ ω

0

dε
ω + ε

∆2
0

=
3π
2
N0

ω2

∆2
0

, (10)

where N0 is the DOS of the conventional Fermi liquid, i.e. without the pseudo-
gap effect. Though this state is non-superfluid and is characterized by the
Fermi surface, the DOS at ω 
 ∆0 is highly suppressed compared to N0,
i.e. the pseudo-gap effect is highly pronounced. This DOS has the same de-
pendence on ω as that in such superconductors or superfluids in which the
gap has point nodes discussed in the next Sect. 3. When the spatial and time
variation of the gap fluctuations are taken into account, the pseudo-gap effect
would not be so strong.

3 Fermi Points

3.1 Fermi Point as Topological Object

Chiral Fermi Points

The crucial non-perturbative reconstruction of the spectrum occurs at the
superfluid transition to 3He-A, where the point nodes emerge instead of the
Fermi surface. Since we are only interested in effects determined by the topol-
ogy and the symmetry of the fermionic Hamiltonian H(p) or Green’s func-
tion G(p, iω), we do not require a special form of the Green’s function and
can choose the simplest one with the required topology and symmetry. First,
consider the Bogoliubov–Nambu Hamiltonian which qualitatively describes
fermionic quasiparticles in the axial state of p–wave pairing. This Hamiltonian
can be applied to superfluid 3He-A [4] and also to the p-wave BCS state of
ultracold Fermi gas:

H =

(
p2/2m− µ c⊥ p · (ê1 + i ê2)

c⊥ p · (ê1 − i ê2) −p2/2m+ µ

)

= τ3(p2/2m− µ) + c⊥ p · (τ1ê1 − τ2ê2), (11)

where τ1, τ2 and τ3 are 2×2 Pauli matrices in Bogoliubov–Nambu particle-hole
space, and we neglect the spin structure which is irrelevant for consideration.
The orthonormal triad (ê1, ê2, l̂ ≡ ê1 × ê2) characterizes the order parame-
ter in the axial state of triplet superfluid. The unit vector l̂ corresponds to
the direction of the orbital momentum of the Cooper pair (or the diatomic
molecule in case of BEC); and c⊥ is the speed of the quasiparticles if they
propagate in the plane perpendicular to l̂.
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Fig. 5. Angular dependence of the superfluid/superconducting gap (dashed lines)
at the former Fermi surface (solid lines). The gap ∆ is (a) isotropic in the s-wave
state and (b) is ∆(θ) = pF c⊥ sin θ for the p-wave state in Eq. (12), where θ is the
polar angle, and arrow shows the direction of the unit vector l̂. The spectrum of
quasiparticles has two nodes at the former Fermi surface: at θ = 0, i.e. at p1 = pF l̂
(filled circle) and at θ = π, i.e. at p2 = −pF l̂ (open circle). Their winding numbers of
the Fermi points given by Eq. (13) are correspondingly N3 = +1 and N3 = −1. (c)
According to Eq. (14), close to the Fermi points the quasiparticle spectrum becomes
“relativistic”. For the local observer, who measures the spectrum using clocks and
rods made of the low-energy fermions, the Hamiltonian for fermions in the vicinity of
the point with N3 = +1 is equivalent to the Weyl Hamiltonian for the right handed
massless fermions: H = cσ · p; and the spectrum has the conical form E = ±cp

The energy spectrum of these Bogoliubov–Nambu fermions is

E2(p) =
(
p2

2m
− µ

)2

+ c2⊥

(
p× l̂

)2

. (12)

In the BCS regime occuring for positive chemical potential µ > 0, there are
two Fermi points in 3D momentum space with E(p) = 0. For the energy
spectrum (12), the Fermi points are p1 = pF l̂ and p2 = −pF l̂, with Fermi
momentum pF =

√
2mµ [Fig. 5(b)].

For a general system, be it relativistic or nonrelativistic, the topological
stability of the Fermi point (the node of the co-dimension 3) is guaranteed by
the nontrivial homotopy group π2(GL(n,C)) = Z which describes the map-
ping of a sphere S2 embracing the point node to the space of non-degenerate
complex matrices [7]. This is the group of integers. The integer valued topo-
logical invariant (winding number) can be written in terms of the fermionic
propagator G(iω,p) as a surface integral in the 4D frequency-momentum
space pµ = (ω,p): [6]

N3 ≡
1

24π2
εµνρσ tr

∮
Σa

dSσG
∂

∂pµ
G−1 G

∂

∂pν
G−1 G

∂

∂pρ
G−1 . (13)

p1 = (0, 0, pF) 

p2 = (0, 0, −pF) 

N3= +1

N3= −1

(a) (b) (c)
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Here Σa is a three-dimensional surface around the isolated Fermi point pµa =
(0,pa) and “tr”stands for the trace over the relevant spin and/or band indices.
For the case considered in Eq. (11), the Green’s function is G−1(iω,p) =
iω −H(p); the trace is over the Bogoliubov-Nambu spin; and the two Fermi
points p1 and p2 have nonzero topological charges N3 = +1 and N3 = −1
[Fig. 6 (right)].

We call such Fermi points the chiral Fermi points, because in the vicin-
ity of these point the fermions behave as right-handed or left handed parti-
cles (see below). These nodes of co-dimension 3 are the diabolical points –
the exceptional degeneracy points of the complex-valued Hamiltonian which
depends on the external parameters (see Ref. [29–32]). At these points two
different branches of the spectrum touch each other. Topology of these points
has been discussed in Ref. [33]. In our case the relevant parameters of the
Hamiltonian are the components of momentum p, and we discuss the contact
point of branches with positive and negative energies [34]. Topology of the
chiral Fermi points in relation to the spectrum of elementary particles has
been discussed in Ref. [35].

Emergent Relativity and Chiral Fermions

Close to any of the Fermi points the energy spectrum of fermionic quasipar-
ticles acquires the relativistic form (this follows from the so-called Atiyah-
Bott-Shapiro construction [7]). In particular, the Hamiltonian in Eq. (11) and
spectrum in Eq. (12) become [6]:

H → ei
kσ

k(pi − eAi) , E2(p) → gik(pi − eAi)(pk − eAk) . (14)

Here the analogue of the dynamic gauge field is A = pF l̂; the “electric charge”
is either e = +1 or e = −1 depending on the Fermi point; the matrix ek

i is
the analogue of the dreibein with gik = ei

je
k
j = diag(c2⊥, c

2
⊥, c

2
‖ = p2

F /m
2)

playing the role of the effective dynamic metric in which fermions move along
the geodesic lines. Fermions in Eq. (14) are chiral: they are right-handed if
the determinant of the matrix ei

j is positive, which occurs at N3 = +1; the
fermions are left-handed if the determinant of the matrix ei

j is negative, which
occurs at N3 = −1. For the local observer, who measures the spectrum using
clocks and rods made of the low-energy fermions, the Hamiltonian in Eq. (14)
is simplified: H = ±cσ · p [Fig. 5(c). Thus the chirality is the property of
the behavior in the low energy corner and it is determined by the topological
invariant N3.

Majorana Fermi Point

The Hamiltonians which give rise to the chiral Fermi points with non-zero
N3 are essentially complex matrices. That is why one may expect that in
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systems described by real-valued Hamiltonian matrices there are no topolog-
ically stable points of co-dimension 3. However, the general analysis in terms
of K-theory [7] demonstrates that such points exist and are described by the
group Z2. Let us denote this Z2 charge as N3M to distinguish it from the
Z charge N3 of chiral fermions. The summation law for the charge N3M is
1+1 = 0, i.e. two such points annihilate each other. Example of topologically
stable massless real fermions is provided by the Majorana fermions [7]. The
summation law 1 + 1 = 0 also means that 1 = −1, i.e. the particle is its
own antiparticle. This property of the Majorana fermions follows from the
topology in momentum space and does not require the relativistic invariance.

Summation Law for Majorana Fermions
and Marginal Fermi Point

The summation law 1− 1 = 0 for chiral fermions and 1 + 1 = 0 for Majorana
fermions is illustrated using the following 4× 4 Hamiltonian matrix:

H = cτ1px + cτ2σ2py + cτ3pz . (15)

This Hamiltonian describes either two chiral fermions or two Majorana fermi-
ons. The first description is obtained if one chooses the spin quantization axis
along σ2. Then for the direction of spin σ2 = +1 this Hamiltonian describes
the right-handed fermion with spectrum E(p) = cp whose Fermi point at
p = 0 has topological charge N3 = +1. For σ2 = −1 one has the left-handed
chiral fermion whose Fermi point is also at p = 0, but it has the opposite
topological charge N3 = −1. Thus the total topological charge of the Fermi
point at p = 0 is N3 = 1− 1 = 0.

In the other description, one takes into account that the matrix (15) is real
and thus can describe the real (Majorana) fermions. In our case the original
fermions are complex, and thus we have two real fermions with the spectrum
E(p) = cp representing the real and imaginary parts of the complex fermion.
Each of the two Majorana fermions has the Fermi (Majorana) point at p = 0
where the energy of fermions is zero. Since the Hamiltonian (15) is the same
for both real fermions, the two Majorana points have the same topological
charge.

Let us illustrate the difference in the summation law for charges N3 and
N3M by introducing the perturbation Mσ1τ2 to the Hamiltonian (15):

H = cτ1px + cτ2σ2py + cτ3pz +Mσ1τ2 . (16)

Due to this perturbation the spectrum of fermions is fully gapped: E2(p) =
c2p2 + M2. In the description in terms of the chiral fermions, the pertur-
bation mixes left and right fermions. This leads to formation of the Dirac
mass M . The annihilation of Fermi points with opposite charges illustrates
the summation law 1− 1 = 0 for the topological charge N3.
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Let us now consider the same process using the description in terms of
real fermions. The added term Mσ1τ2 is imaginary. It mixes the real and
imaginary components of the complex fermions, and thus it mixes two Ma-
jorana fermions. Since the two Majorana fermions have the same topological
charge, N3M = 1, the formation of the gap means that the like charges of the
Majorana points annihilate each other. This illustrates the summation law
1 + 1 = 0 for the Majorana fermions.

In both descriptions of the Hamiltonian (15), the total topological charge
of the Fermi or Majorana point at p = 0 is zero. We call such topologically
trivial point the marginal Fermi point. The topology does not protect the
marginal Fermi point, and the small perturbation can lead to formation of
the fully gapped vacuum, unless there is a symmetry which prohibits this.

3.2 Quantum Phase Transition in BCS–BEC Crossover Region

Splitting of Marginal Fermi Point

Let us consider some examples of quantum phase transition goverened by
the momentum-space topology of gap nodes, between a fully-gapped vacuum
state and a vacuum state with topologically-protected point nodes. In the
context of condensed-matter physics, such a quantum phase transition may
occur in a system of ultracold fermionic atoms in the region of the BEC–BCS
crossover, provided Cooper pairing occurs in the non-s-wave channel. For
elementary particle physics, such transitions are related to CPT violation,
neutrino oscillations, and other phenomena [18].

Let us start with the topological quantum phase transition involving topo-
logically stable Fermi points [16, 17]. Let us consider what happens with the
Fermi points in Eq. (12), when one varies the chemical potential µ. For µ > 0,
there are two Fermi points, and the density of fermionic states in the vicinity
of Fermi points is ν(ω) ∝ ω2. For µ < 0, Fermi points are absent and the spec-
trum is fully-gapped [Fig. 6]. In this topologically-stable fully-gapped vacuum,
the density of states is drastically different from that in the topologically-
stable gapless regime: ν(ω) = 0 for ω < |µ|. This demonstrates that the quan-
tum phase transition considered is of purely topological origin. The transition
occurs at µ = 0, when two Fermi points with N3 = +1 and N3 = −1 merge
and form one topologically-trivial Fermi point with N3 = 0, which disappears
at µ < 0.

The intermediate state at µ = 0 is marginal: the momentum-space topol-
ogy is trivial (N3 = 0) and cannot protect the vacuum against decay into one
of the two topologically-stable vacua unless there is a special symmetry which
stabilizes the marginal node. As we shall see in the Sect. 3.3, the latter takes
place in the Standard Model with marginal Fermi point.
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Fig. 6. Quantum phase transition between two p-wave vacua with the same sym-
metry but of different universality class. In the bottom right corner you find the
gap (dashed line) in the p-wave state. It depends on the direction in momentum
space and becomes zero when p is along the l̂-vector (along z-axis). At µ > 0, two
gap nodes give rise to two zeroes in the spectrum – Fermi points: one with winding
number N3 = +1 (filled circle) and another with winding number N3 = −1 (open
circle). The transition occurs when the chemical potential µ in Eq. (11) crosses zero
value. The Fermi points merge at µ = 0 forming the marginal (topologically trivial)
gap node with N3 = 0 (grey circle) and annihilate each other. At µ < 0 the Green’s
function has no singularities and the quantum vacuum is fully gapped

Transition Involving Multiple Nodes

The Standard Model contains 16 chiral fermions in each generation. The
multiple Fermi point may occur in condensed matter too. For systems of
cold atoms, an example is provided by another spin-triplet p-wave state, the
so-called α-phase. The Bogoliubov–Nambu Hamiltonian which qualitatively
describes fermionic quasiparticles in the α–state is given by [3,4]:
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N3 = +1

N3 = −1

Fig. 7. Fermi points in the α-phase of triplet superfluid/superconductor in the BCS
regime

H =
(

p2/2m− µ (Σ · p) c⊥/
√

3
(Σ · p)† c⊥/

√
3 −p2/2m+ µ

)
, (17)

with Σ · p ≡ σxpx + exp(2πi/3)σypy + exp(−2πi/3)σzpz .
On the BEC side (µ < 0), fermions are again fully-gapped, while on the

BCS side (µ > 0), there are 8 topologically protected Fermi points with
charges N3 = ±1, situated at the vertices of a cube in momentum space [3]
[Fig. 7]. The fermionic excitations in the vicinity of these points are left- and
right-handed Weyl fermions. At the transition point at µ = 0 these 8 Fermi
points merge forming the marginal Fermi point at p = 0.

3.3 Quantum Phase Transitions in Standard Model

Marginal Fermi Point in Standard Model

It is assumed that the Standard Model above the electroweak transition con-
tains 16 chiral fermions in each generation: 8 right-handed fermions with
N3 = +1 each and 8 left-handed fermions with N3 = −1 each. If so, then the
vacuum of the Standard Model above the electroweak transition is marginal:
there is a multiply degenerate Fermi point at p = 0 with the total topological
charge N3 = +8 − 8 = 0 [Fig. 8(a)]. This vacuum is therefore the interme-
diate state between two topologically-stable vacua: the fully-gapped vacuum
in Fig. 8(b); and the vacuum with topologically-nontrivial Fermi points in
Fig. 8(c).

The absence of the topological stability means that even the small mixing
between the fermions leads to annihilation of the Fermi point. In the Standard
Model, the proper mixing which leads to the fully gapped vacuum is prohibited
by symmetries, namely the continuous electroweak U(1)×SU(2) symmetry (or
the discrete symmetry discussed in Sect. 12.3.2 of [6]) and the CPT symmetry.
(Marginal gapless fermions emerging in spin systems were discussed in [36].
These massless Dirac fermions protected by symmetry differ from the chiral
fermions of the Standard Model. The latter cannot be represented in terms
of massless Dirac fermions, since there is no symmetry between left and right
fermions in Standard Model.)
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Fig. 8. Two scenarios of annihilation of marginal Fermi point (a) in Standard Model
of strong and electroweak interactions. Higgs mechanism leads to Dirac mass and
thus to the fully gapped vacuum (b), while CPT violation leads to splitting of Fermi
points (c). In the bottom edge you find the quantum phase transition in the model
in Eq. (20) when the CPT violating parameter b ≡ |b| crosses the Dirac mass M
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Explicit violation or spontaneous breaking of electroweak or CPT sym-
metry transforms the marginal vacuum of the Standard Model into one of
the two topologically-stable vacua. If, for example, the electroweak symme-
try is broken, the marginal Fermi point disappears and the fermions become
massive [Fig. 8(b)]. This is assumed to happen below the symmetry breaking
electroweak transition caused by Higgs mechanism where quarks and charged
leptons acquire the Dirac masses. If, on the other hand, the CPT symmetry
is violated, the marginal Fermi point splits into topologically-stable Fermi
points which protect chiral fermions [Fig. 8(c)]. One can speculate that in the
Standard Model the latter happens with the electrically neutral leptons, the
neutrinos [18,37].

Quantum Phase Transition with Splitting of Fermi Points

Let us consider this scenario on a simple example of a marginal Fermi point
describing a single pair of relativistic chiral fermions, that is, one right-handed
fermion and one left-handed fermion. These are Weyl fermions with Hamilto-
nians Hright = σ · p and Hleft = −σ · p, where σ denotes the triplet of spin
Pauli matrices. Each of these Hamiltonians has a topologically-stable Fermi
point at p = 0. The corresponding inverse Green’s functions are given by

G−1
right(iω,p) = iω − σ · p ,

G−1
left(iω,p) = iω + σ · p . (18)

The positions of the Fermi points coincide, p1 = p2 = 0, but their topological
charges (13) are different. For this simple case, the topological charge equals
the chirality of the fermions, N3 = Ca (i.e., N3 = +1 for the right-handed
fermion and N3 = −1 for the left-handed one). The total topological charge
of the Fermi point at p = 0 is therefore zero.

The splitting of this marginal Fermi point can be described by the Hamil-
tonians Hright = σ · (p− p1) and Hleft = −σ · (p− p2), with p1 = −p2 ≡ b
from momentum conservation. The real vector b is assumed to be odd under
CPT, which introduces CPT violation into the physics. The 4 × 4 matrix of
the combined Green’s function has the form

G−1(iω,p) =
(
iω − σ · (p− b) 0

0 iω + σ · (p + b)

)
. (19)

Equation (13) shows that p1 = b is the Fermi point with topological charge
N3 = +1 and p2 = −b the Fermi point with topological charge N3 = −1.

Let us now consider the more general situation with both the electroweak
and CPT symmetries broken. Due to breaking of the electroweak symmetry
the Hamiltonian acquires the off-diagonal term (mass term) which mixes left
and right fermions
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H =
(

σ · (p− b) M
M −σ · (p + b)

)
. (20)

The energy spectrum of Hamiltonian (20) is

E2
±(p) = M2 + |p|2 + b2 ± 2 b

√
M2 +

(
p · b̂

)2

, (21)

with b̂ ≡ b/|b| and b ≡ |b|.
Allowing for a variable parameter b, one finds a quantum phase transition

at b = M between the fully-gapped vacuum for b < M and the vacuum
with two isolated Fermi points for b > M [Fig. 8(d)]. These Fermi points are
situated at

p1 = +b̂
√
b2 −M2 ,

p2 = −b̂
√
b2 −M2 . (22)

Equation (13), now with a trace over the indices of the 4× 4 Dirac matrices,
shows that the Fermi point at p1 has topological charge N3 = +1 and thus the
right-handed chiral fermions live in the vicinity of this point. Near the Fermi
point at p2 with the charge N3 = −1, the left-handed fermions live. The
magnitude of the splitting of the two Fermi points is given by 2

√
b2 −M2 .

At the quantum phase transition b = M , the Fermi points with opposite
charge annihilate each other and form a marginal Fermi point at p = 0.
The momentum-space topology of this marginal Fermi point is trivial (the
topological invariant N3 = +1− 1 = 0).

Fermi Surface with Global Charge N3 and Quantum Phase
Transition with Transfer of N3

Extension of the model (20) by introducing the time like parameter b0

H =
(

σ · (p− b)− b0 M
M −σ · (p + b) + b0

)
, (23)

demonstrates another type of quantum phase transitions [18] shown in Fig. 9.
At b0 �= 0, Fermi points which exist at b0 = 0, b > M transform to the

closed Fermi surfaces. These Fermi surfaces in addition to the local charge
N1 have the global topological invariant N3 inherited from the original Fermi
points. The global charge N3 is defined by the same Eq. (13), but with a
three-dimensional surface Σa around the whole Fermi surface. On the line of
the quantum phase transition, b2− b20 = M2 (dashed line), two Fermi surfaces
contact each other at the point p = 0. At that moment, the topological charge
N3 is transferred between the Fermi surfaces through the point of the contact.
Above the transition line, the global charges of Fermi surfaces are zero. At the
quantum phase transition at b = M (thick vertical line) these Fermi surfaces
shrink to the points; and since the N3 topology of these points is trivial they
disappear at b < M where the state is fully gapped.
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Fig. 9. Topological quantum phase transitions in the model (23). The vacua at
b0 �= 0 and b > M have Fermi surfaces. At b2 > b2

0 + M2, these Fermi surfaces
have nonzero global topological charges N3 = +1 and N3 = −1. At the quantum
phase transition occurring on the line b0 = 0, b > M (thick horizontal line) the
Fermi surfaces shrink to the Fermi points with nonzero N3. At M2 < b2 < b2

0 + M2

the global topology of the Fermi surfaces is trivial, N3 = 0. At the quantum phase
transition occurring on the line b = M (thick vertical line), the Fermi surfaces shrink
to the points; and since their global topology is trivial the zeroes disappear at b < M
where the vacuum is fully gapped. The quantum phase transition between the Fermi
surfaces with and without topological charge N3 occurs at b2 = b2

0 + M2 (dashed
line). At this transition, the Fermi surfaces touch each other, and their topological
charges annihilate each other

Standard Model with Chiral Fermi Point

In the above consideration we assumed that the Fermi point in the Standard
Model above the electroweak energy scale is marginal, i.e. its total topological
charge is N3 = 0. Since the topology does not protect such a point, everything
depends on symmetry, which is a more subtle issue. In principle, one may
expect that the vacuum is always fully gapped. This is supported by the
Monte-Carlo simulations which suggest that in the Standard Model there is
no second-order phase transition at finite temperature, instead one has either
the first-order electroweak transition or crossover depending on the ratio of

N3=0

N3=0
N3=+1

N3=+1

N3=−1

N3=−1

bM0
vacua with

Fermi points

fully-gapped
quantum
vacuum

Fermi surfaces
with global

topological charge N3

at QPT Fermi surfaces
touch each other

and exchange the global

topological charges N3

at QPT
Fermi surfaces

shrink and disappear

at QPT Fermi surfaces
shrink to Fermi points

with topological charges N3

Fermi surfaces
with zero global charge

b
0

p
x

p
x

p
x

p
x

p
z

p
z

p
z

p
z

vacua with
Fermi surfaces



52 G.E. Volovik

masses of the Higgs and gauge bosons [38]. This would actually mean that
the fermions are always massive.

Such scenario does not contradict to the momentum-space topology, only
if the total topological charge N3 is zero. However, from the point of view of
the momentum-space topology there is another scheme of the description of
the Standard Model. Let us assume that the Standard Model follows from the
GUT with SO(10) group. In this scheme, the 16 Standard Model fermions
form at high energy the 16-plet of the SO(10) group. All the particles of this
multiplet are left-handed fermions. These are: four left-handed SU(2) doublets
(neutrino-electron and 3 doublets of quarks) + eight left SU(2) singlets of
anti-particles (antineutrino, positron and 6 anti-quarks). The total topological
charge of the Fermi point at p = 0 is N3 = −16, and thus such a vacuum
is topologically stable and is protected against the mass of fermions. This
topological protection works even if the SU(2) × U(1) symmetry is violated
perturbatively, say, due to the mixing of different species of the 16-plet. Mixing
of left leptonic doublet with left singlets (antineutrino and positron) violates
SU(2)×U(1) symmetry, but this does not lead to annihilation of Fermi points
and mass formation since the topological charge N3 is conserved.

We discussed the similar situation in the Sect. 2.3 for the case of the
Fermi surface, and found that if the total topological charge of the Fermi
surfaces is non-zero, the gap cannot appear perturbatively. It can only arise
due to the crucial reconstruction of the fermionic spectrum with effective
doubling of fermions. In the same manner, in the SO(10) GUT model the mass
generation can only occur non-perturbatively. The mixing of the left and right
fermions requires the introduction of the right fermions, and thus the effective
doubling of the number of fermions. The corresponding Gor’kov’s Green’s
function in this case will be the (16× 2)× (16× 2) matrix. The nullification
of the topological charge N3 = −16 occurs exactly in the same manner, as
in superconductors. In the extended (Gor’kov) Green’s function formalism
appropriate below the transition, the topological charge of the original Fermi
point is annihilated by the opposite charge N3 = +16 of the Fermi point of
“holes”(right-handed particles).

This demonstrates that the mechanism of generation of mass of fermions
essentially depends on the momentum space topology. If the Standard Model
originates from the SO(10) group, the vacuum belongs to the universality
class with the topologically non-trivial chiral Fermi point (i.e. with N3 �= 0),
and the smooth crossover to the fully-gapped vacuum is impossible. On the
other hand, if the Standard Model originates from the left-right symmetric
Pati–Salam group such as SU(2)L×SU(2)R×SU(4), and its vacuum has the
topologically trivial (marginal) Fermi point withN3 = 0, the smooth crossover
to the fully-gapped vacuum is possible.



Quantum Phase Transitions from Topology in Momentum Space 53

Chiral Anomaly

Since chiral Fermi points in condensed matter and in Standard Model are
described by the same momentum-space topology, one may expect common
properties. An example of such a common property would be the axial or
chiral anomaly. For quantum anomalies in (3+1)–dimensional systems with
Fermi points and their dimensional reduction to (2+1)–dimensional systems,
see, e.g., Ref. [6] and references therein. In superconducting and superfluid
fermionic systems the chiral anomaly is instrumental for the dynamics of
vortices. In particular, one of the forces acting on continuous vortex-skyrmions
in superfluid 3He-A is the result the anomalous production of the fermionic
charge from the vacuum decsribed by the Adler-Bell-Jackiw equation [39].

4 Fermi Lines

In general the zeroes of co-dimension 2 (nodal lines in 3D momentum space
or point nodes in 2D momentum space) do not have the topological stability.
However, if the Hamiltonian is restricted by some symmetry, the topological
stability of these nodes is possible. The nodal lines do not appear in spin-triplet
superconductors, but they may exist in spin-singlet superconductors [3, 40].
The analysis of topological stability of nodal lines in systems with real fermions
was done by Horava [7].

4.1 Nodes in High-Tc Superconductors

An example of point nodes in 2D momentum space is provided by the layered
quasi-2D high-Tc superconductor. In the simplest form the 2D Bogoliubov–
Nambu Hamiltonian is

H = τ3

(
p2

x + p2
y

2m
− µ

)
+ aτ1(p2

x − λp2
y) . (24)

In case of tetragonal crystal symmetry one has either the pure s-wave state
with λ = −1 (p2

x + p2
y) or the pure d-wave state with λ = +1 (p2

x − p2
y). But

in case of orthorhombic crystal these two states are not distinguishible by
symmetry and thus the general order parameter is represented by the s + d
combination, i.e. in the orthorhombic crystal one always has |λ| �= 1. For
example, experiments in high-Tc cuprate YBa2Cu3O7 suggest that λ ∼ 0.7 in
this compound [41].

At µ > 0 and λ > 0, the energy spectrum contains 4 point nodes in 2D
momentum space (or four Fermi-lines in the 3D momentum space):

pa
x = ±pF

√
λ

1 + λ
, pa

y = ±pF

√
1

1 + λ
, p2

F = 2µm . (25)
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The problem is whether these nodes survive or not if we extend Eq. (24)
to the more general Hamiltonian obeying the same symmetry. The important
property of this Hamiltonian is that, as distinct from the Hamiltonian (11), it
obeys the time reversal symmetry which prohibits the imaginary τ2-term. In
the spin singlet states the Hamiltonian obeying the time reversal symmetry
must satisfy the equation H∗(−p) = H(p). The general form of the 2 × 2
Bogoliubov-Nambu spin-singlet Hamiltonian satisfying this equation can be
expressed in terms of the 2D vector m(p) = (mx(p),my(p)):

H = τ3mx(p) + τ1my(p) . (26)

Using this vector one can construct the integer valued topological invariant –
the contour integral around the point node in 2D momentum space or around
the nodal line in 3D momentum space:

N2 =
1
2π

∮
dl ẑ ·

(
m̂× dm̂

dl

)
, (27)

where m̂ ≡ m/|m|. This is the winding number of the plane vector m(p)
around a vortex line in 3D momentum space or around a point vortex in
2D momentum space. The winding number is robust to any change of the
Hamiltonian respecting the time reversal symmetry, and this is the reason
why the node is stable.

All four nodes in the above example of Eq. (24) are topologically stable,
since nodes with equal signs (++ and −−) have winding number N2 = +1,
while the other two nodes have winding number N2 = −1 [Fig. 10].

4.2 Z2-Lines

Now let us consider the stability of these nodes using the general topological
analysis (the so-called K-theory, see [7]). For the general n× n real matrices
the classification of the topologically stable nodal lines in 3D momentum space
(zeroes of co-dimension 2) is given by the homotopy group π1(GL(n,R)) [7].
It determines classes of mapping of a contour S1 around the nodal line (or
around a point in the 2D momentum space) to the space of non-degenerate
real matrices. The topology of nodes depends on n. If n = 2, the homotopy
group for lines of nodes is π1(GL(2,R)) = Z, it is the group of integers in
Eq. (27) obeying the conventional summation 1 + 1 = 2. However, for larger
n ≥ 3 the homotopy group for lines of nodes is π1(GL(n,R)) = Z2, which
means that the summation law for the nodal lines is now 1 + 1 = 0, i.e. two
nodes with like topological charges annihilate each other. These nodes of co-
dimension 2 are similar to the points of degeneracy of the energy spectrum of
the real-valued Hamiltonian which depends on the external parameters (see
Ref. [29,31,32]).

The equation (24) is the 2×2 Hamiltonian for the complex fermionic field.
But each complex field consists of two real fermionic fields. In terms of the real
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Fig. 10. Quantum phase transition by change of anisotropy parameter λ in Eq.
(24) for superconductors in the d + s state. At λ > 0 the 2D spectrum has 4 nodes:
two with topological charge N2 = +1 (filled circles) and two with topological charge
N2 = −1 (open circles). At λ = 0, points with opposite charges merge forming
two marginal nodes with N2 = 0 (grey circles). The marginal (topologically trivial)
nodes disappear at λ < 0 leaving the fully gapped vacuum

fermions, this Hamiltonian is the 4× 4 matrix and thus all the nodes must be
topologically unstable. What keeps them alive is the time reversal symmetry,
which does not allow to mix real and imaginary components of the complex
field. As a result, the two components are independent; they are described by
the same 2 × 2 Hamiltonian (24); they have zeroes at the same points; and
these zeroes are described by the same topological invariants.

If we allow mixing between real and imaginary components of the spinor
by introducing the imaginary perturbation to the Hamiltonian, such as Mτ2,
the summation law 1 + 1 = 0 leads to immediate annihilation of the zeroes
situated at the same points. As a result the spectrum becomes fully gapped:

E2(p) =

(
p2

x + p2
y

2m
− µ

)2

+ a2(p2
x − λp2

y)2 +M2 . (28)

Thus to destroy the nodes of co-dimension 2 occurring for 2×2 real-valued
Hamiltonian (24) describing complex fermions it is enough to violate the time
reversal symmetry.

How to destroy the nodes if the time reversal symmetry is obeyed which
prohibits mixing? One possibility is to deform the order parameter in such a
way that the nodes with opposite N2 merge and then annihilate each other
forming the fully gapped state. In this case, at the border between the state
with nodes and the fully gapped state the quantum phase transition occurs
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(see Sect. 4.5). This type of quantum phase transition which involves zeroes
of co-dimension 2 was also discussed in Ref. [24].

Another possibility is to increase the dimension of the matrix from 2 × 2
to 4× 4. Let us consider this case.

4.3 Gap Induced by Interaction Between Layers

High-Tc superconductors typically have several superconducting cuprate lay-
ers per period of the lattice, that is why the consideration of two layers which
are described by 4 × 4 real Hamiltonians is well justified. Let us start again
with 2 × 2 real matrix H, and choose for simplicity the easiest form for the
vector m(p). For m(p) = p = (px, py) the Hamiltonian is

H = τ3px + τ1py . (29)

The node which we are interested in is at px = py = 0 and has the topological
charge (winding number) N2 = 1 in Eq. (27). The Dirac-type Hamiltonian
(29) and the corresponding nodes of co-dimension 2 are relevant for electrons
leaving in the 2D carbon sheet known as graphene [42–45].

Let us now introduce two bands or layers whose Hamiltonians have oppo-
site signs:

H11 = τ3px + τ1py , H22 = −τ3px − τ1py , (30)

Each Hamiltonian has a node at px = py = 0. In spite of the different signs
of the Hamiltonian, the nodes have same winding number N2 = 1: in the
second band one has m2(p) = −m1(p), but N2(m) = N2(−m) according to
Eq. (27).

The Hamiltonians (29) and (30) can be now combined in the 4 × 4 real
Hamiltonian:

H = σ3(τ3px + τ1py) , (31)

where σ matrices operate in the 2-band space. The Hamiltonian (31) has
two nodes: one is for projection σ3 = 1 and another one – for the projection
σ3 = −1. Their positions in momentum space and their topological charges
coincide. Let us now add the term with σ1, which mixes the two bands without
violation of the time reversal symmetry:

H = σ3(τ3px + τ1py) + σ1m . (32)

The spectrum becomes fully gapped, E2 = p2 + m2, i.e. the two nodes an-
nililate each other. Since the nodes have the same winding number N2, this
means that the summation law for these nodes is 1+1 = 0. Thus the zeroes of
co-dimension 2 (nodal points in 2D systems or the nodal lines in the 3D sys-
tems) which appear in the 4× 4 (and higher) real Hamiltonians are described
by the Z2-group. The discussion of the Z2 nodes in high-Tc materials, polar
state in p-wave pairing and mixed singlet-triplet superconducting states can
be found in Ref. [46].
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The above example demonstrated how in the two band systems (or in the
double layer systems) the interaction between the bands (layers) induces the
annihilation of likewise nodes and formation of the fully gapped state. Exper-
iments on the graphite film with two graphene layers demonstrate that the
spectrum of quasiparticles is essentially different from that in a single carbon
sheet [44]. From the detailed calculations [45] it follows that the gap in the
spectrum emerges in the graphite bilayer at the neutrality point, illustrating
the rule 1 + 1 = 0 for the Z2 nodes of co-dimension 2.

Applying this to the high-Tc materials with 2, 3 or 4 cuprate layers per
period, one concludes that the interaction between the layers can in principle
induce a small gap even in a pure d-wave state. However, this does not mean
that such destruction of the Fermi lines necessarily occurs. The interaction
between the bands (layers) can lead to splitting of nodes, which then will
occupy different positions in momentum space and thus cannot annihilate (this
splitting of nodes has been observed in the bilayer cuprate Bi2Sr2CaCu2O8+δ

[47]). Which of the two scenarios occurs – gap formation or splitting of nodes –
depends on the parameters of the system. Changing these parameters one
can produce the topological quantum phase transition from the fully gapped
vacuum state to the vacuum state with pairs of nodes, as we discussed for the
case of nodes with co-dimension 3 in Sect. 3.

4.4 Reentrant Violation of “Special Relativity”
in Bilayer Graphene

There still can be some discrete symmetry which forbids the annihilation
of nodes of co-dimension 2, say, the symmetry between the two layers which
forbids the rule 1+1 = 0. For example, if the Hamiltonian still anti-commutes
with some matrix, say, with τ2-matrix, there is a generalization of the integer
valued invariant in Eq. (27) to the 2n× 2n real Hamiltonian (see also [24]):

N2 = − 1
4πi

tr
∮
dl τ2H

−1∇lH . (33)

Since the summation law for this N2 charge is 1 + 1 = 2, the nodes with
N2 = 1 present at each layer do not annihilate each other if the interaction
term preserves the symmetry. In this case the spectrum of the bilayer system
remains gapless.

Let us now consider the gapless spectrum in such bilayer material. We start
again with the Hamiltonian in Eq. (31), which describes gapless Dirac qua-
siparticles living in two independent layers, and add the interaction between
them which does not violate the τ2-symmetry:

H = σ3(τ3px + τ1py) +m(τ1σ1 − τ3σ2) . (34)

The energy spectrum becomes



58 G.E. Volovik

E+ = ±
(√

m2 + p2 +m
)
, E− = ±

(√
m2 + p2 −m

)
. (35)

Without interaction, i.e. at m = 0, the quasiparticles represent two Dirac
fermions with the topological charges N2 = 1 each. Since the Hamiltonian
(34) anti-commutes with the τ2-matrix, the total topological charge N2 must
be conserved even at m �= 0. Thus the total charge for quasiparticles must be
N2 = 2. However it is now distributed between the branches of quasiparticle
spectrum in the following manner. For m > 0, the quasiparticles with energy
E+ acquire the trivial topological charge N2 = 0, that is why their spectrum
becomes fully gapped: E+(p 
 m) ≈ ±2m. The quasiparticles with energy
E− have the rest nonzero topological charge N2 = 2, and thus they must
be gapless. The energy spectrum of these gapless fermions with N2 = 2 is
exotic: at p
 m the spectrum becomes that of classical particles with positive
and negative masses, E− ≈ ±p2/2m; in the region p � m it is relativistic
E ≈ ±p; and finally the relativistic invariance is violated again at high p of
order of inverse inter-atomic distance. When the parameter m crosses zero,
the quantum phase transition occurs.

It is important that the exotic branch with N2 = 2 contains only single
fermionic species, i.e. it cannot split into two fermions with N2 = 1 each.
That is why the quadratic law for the spectrum of exotic fermions is generic,
provided that the proper symmetry of the Hamiltonian is obeyed. The same
spectrum (35) takes place for quasiparticles in the carbon film consisting of
two graphene sheets: it occurs in some range of parameters of the system
where terms in the Hamiltonian, which violate the τ2-symmetry and induce
the gap in the spectrum, are small and can be neglected [45]. Exotic fermions
with parabolic spectrum lead to the unconventional quantum Hall effect [45],
which has been observed in the bilayer graphene [44].

All this shows that the stability of and the summation law for the nodal
lines depend on the type of discrete symmetry which protects the topological
stability. The integer valued topological invariants protected by discrete or
continuous symmetry were discussed in Chap. 12 of the book [6].

If the symmetry is obeyed we have the following situation. Fermions with
the elementary topological charge, N2 = ±1, are necessarily relativistic in
the low-energy corner, according to the Atiyah-Bott-Shapiro construction.
However, even a very small interaction between two species with N2 = +1
each may produce the exotic fermions, which are classical. In this scenario
the Lorentz invariance is violated both at very high and at very low energies,
therefore the term “reentrant violation of special relativity’.

Similar reentrant violation of Lorentz invariance in the 3D vacua may oc-
cur for the Fermi points of co-dimension 3 described by the topological charge
N3 [6,48]. Let us suppose that the Standard Model is an effective theory, and
that the right-handed neutrinos are absent in this theory. The left-handed neu-
trino, which has N3 = −1, is necessarily massless. Its spectrum is necessarily
relativistic in the low-energy corner, and thus the Lorentz invariance emerges
at low energies. Now let us consider two flavors of the left-handed neutrino
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– electron and muon neutrinos with N3 = −1 each. Since the theory is ef-
fective, mixing between the flavors is not prohibited, though it is very small.
The mixing may lead to the formation of the exotic non-relativistic neutrino
with N3 = −2 and the massive neutrino with N3 = 0. In the particular model
discussed in Refs. [6, 48], the corresponding spectrum of two neutrino flavors
is

E2
± = p2

z +
(√

m2 + p2
x + p2

y ±m
)2

. (36)

At pz = 0, this 3D spectrum transforms to the 2D spectrum in Eq. (35). The
magnitude m of the splitting of the neutrino spectrum has been discussed in
Ref. [49].

4.5 Quantum Phase Transition in High-Tc Superconductor

Let us return to the 2× 2 real Hamiltonian (24) and consider what happens
with gap nodes when one changes the asymmetry parameter λ. When λ crosses
zero there is a quantum phase transition at which nodes in the spectrum
annihilate each other and then the fully gapped spectrum develops [Fig. 10].
Note that there is no symmetry change across the phase transtion.

The similar quantum phase transition from gapless to gapped state without
change of symmetry also occurs when µ crosses zero. This scenario can be
realized in the BEC–BCS crossover region, see [21–23].

The presence of the gap nodes in high-Tc superconductors is indicated
by the measurement of the field dependence of electronic specific heat C at
low temperatures. If the superconducting state is fully gapped, then C ∝ H;
while if there are point nodes in 2D momentum space then the heat capac-
ity is nonlnear, C ∝

√
H [50]. An unusual behavior of C in high-Tc cuprate

Pr2−xCexCuO4−δ has been reported in Ref. [51]. It was found that the field
dependence of electronic specific heat is linear at T = 2 K, and non-linear at
T ≥ 3K. If so, this behavior could be identified with the quantum phase transi-
tion from gapped to gapless state, which is smeared due to finite temperature.
However, the more accurate measurements have not confirmed the change of
the regime: the nonlinear behavior C ∝

√
H continues below T = 2 K [52].

5 Topological Transitions in Fully Gapped Systems

5.1 Skyrmion in 2-Dimensional Momentum Space

The fully gapped ground states (vacua) in 2D systems or in quasi-2D thin
films, though they do not have zeroes in the energy spectrum, can also be
topologically non-trivial. They are characterized by the invariant which is
the dimensional reduction of the topological invariant for the Fermi point in
Eq. (13) [53,54]:
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Ñ3 =
1

24π2
eµνλ tr

∫
d2pdω G∂pµ

G−1G∂pν
G−1G∂pλ

G−1 . (37)

For the fully gapped vacuum, there is no singularity in the Green’s function,
and thus the integral over the entire 3-momentum space pµ = (ω, px, py) is well
determined. If a crystalline system is considered the integration over (px, py)
is bounded by the Brillouin zone.

An example is provided by the 2D version of the Hamiltonian (11) with
l̂ = ẑ, ê1 = x̂, ê2 = ŷ. Since for 2D case one has p2 = p2

x+p2
y, the quasiparticle

energy (12)

E2(p) =

(
p2

x + p2
y

2m
− µ

)2

+ c2(p2
x + p2

y) (38)

is nowhere zero except for µ = 0. The Hamiltonian (11) can be written in
terms of the three-dimensional vector g(px, py):

H = τigi(p) , g3 =
p2

x + p2
y

2m
− µ , g1 = cpx , g2 = −cpy . (39)

For µ > 0 the distribution of the unit vector ĝ(px, py) = g/|g| in the mo-
mentum space has the same structure as the skyrmion in real space (see
Fig. 11). The topological invariant for this momentum-space skyrmion is given
by Eq. (37) which can be rewritten in terms of the unit vector ĝ(px, py):

Ñ3 =
1
4π

∫
dpxdpy ĝ ·

(
∂ĝ
∂px

× ∂ĝ
∂py

)
. (40)

Since at infinity the unit vector field ĝ has the same value, ĝp→∞ → (0, 0, 1),
the 2-momentum space (px, py) becomes isomoprhic to the compact S2 sphere.
The function ĝ(p) realizes the mapping of this S2 sphere to the S2 sphere of
the unit vector ĝ with winding number Ñ3. For µ > 0 one has Ñ3 = −1 and
for µ < 0 one has Ñ3 = 0.

g (px,py)
py

px

Fig. 11. Skyrmion in p-space with momentum space topological charge Ñ3 = −1.
It describes topologically non-trivial vacua in 2+1 systems with a fully non-singular
Green’s function



Quantum Phase Transitions from Topology in Momentum Space 61

5.2 Quantization of Physical Parameters

The topological charge Ñ3 and other similar topological charges in 2 + 1 sys-
tems give rise to quantization parameters. In particular, they are responsible
for quantization of Hall and spin-Hall conductivities, which occurs without
applied magnetic field (the so-called intrinsic or anomalous quantum Hall
and spin quantum Hall effects). There are actually 4 responses of currents to
transverse forces which are quantized under appropriate conditions. These are:
(i) quantized response of the mass current (or electric current in electrically
charged systems) to transverse gradient of chemical potential ∇µ (transverse
electric field E); (ii) quantized response of the mass current (electric current)
to transverse gradient of magnetic field interacting with Pauli spins; (iii) quan-
tized response of the spin current to transverse gradient of magnetic field; and
(iv) quantized response of the spin current to transverse gradient of chemical
potential (transverse electric field) [55].

Chern–Simons Term and p-Space Topology

All these responses can be described using the generalized Chern–Simons term
which mixes different gauge fields (see Eq. (21.20) in [6]):

FCS{A} =
1

16π
NIJeµνλ

∫
d2xdtAI

µF
J
νλ . (41)

Here AI
µ is the set of the real or auxiliary (fictituous) gauge fields. In elec-

trically neutral systems, instead of the gauge field Aµ one introduces the
auxiliary U(1) field, so that the current is given by variation of the action
with respect to Aµ: δS/δAµ = Jµ. The auxiliary SU(2) gauge field Ai

µ is
convenient for the description of the spin-Hall effect, since the variation of
the action with respect to Aa

µ gives the spin current: δS/δAi
µ = Jµ

i . Some
components of the field Aµa are physical, being represented by the real phys-
ical quantities which couple to the fermionic charges. Example is provided by
the external magnetic field in neutral system, which play the role of Ai

0 (see
Sect. 21.2 in Ref. [6]). After the current is calculated the values of the aux-
iliary fields are fixed. The latest discussion of the mixed Chern–Simons term
can be found in Ref. [56]. For the related phenomenon of axial anomaly, the
mixed action in terms of different (real and fictituous) gauge fields has been
introduced in Ref. [57].

The important fact is that the matrix NIJ of the prefactors in the Chern–
Simons action is expressed in terms of the momentum-space topological in-
variants:

NIJ =
1

24π2
eµνλ tr QIQJ

∫
d2pdω G∂pµ

G−1G∂pν
G−1G∂pλ

G−1 , (42)

where QI is the fermionic charge interacting with the gauge field AI
µ (in case

of several fermionic species, QI is a matrix in the space of species).
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Intrinsic Spin Quantum Hall Effect

To obtain, for example, the response of the spin current J i
z to the electric

field Ei, one must consider two fermionic charges: the electric charge Q1 = e
interacting with U(1) gauge field, and the spin along z as another charge,Q2 =
sz = �σz/2, which interacts with the fictituous SU(2) field Az

µ. This gives the
quantized spin current response to the electric field J i

z = eijσspin−HallEj ,
where σspin−Hall = (e�/8π)N and N is integer:

N =
1

24π2
eµνλ tr σz

∫
d2pdω G∂pµ

G−1G∂pν
G−1G∂pλ

G−1 . (43)

Quantization of the spin-Hall conductivity in the commensurate lattice of
vortices can be found in Ref. [58].

The above consideration is applicable, when the momentum (or quasi-
momentum in solids) is the well defined quantity, otherwise (for example, in
the presence of impurities) one cannot construct the invariant in terms of the
Green’s function G(p, ω). However, it is not excluded that in some cases the
perturbative introduction of impurities does not change the prefactor NIJ in
the Chern–Simons term (41) and thus does not influence the quantization:
this occurs if there is no spectral flow under the adiabatic introduction of im-
purities. In this case the quantization is determined by the reference system –
the fully gapped system from which the considered system can be obtained
by the continuous deformation without the spectral flow (analogueous phe-
nomenon for the angular momentum paradox in 3He-A was discussed in [59]).
The most recent review paper on the spin current can be found in [60].

Momentum Space Topology and Hall Effect in 3D Systems

The momentum space topology is also important for the Hall effect in some
3+1 systems. The contribution of Fermi points to the intrinsic Hall effect is
discussed in the Appendix of Ref. [18]. For metals with Fermi surfaces having
the global topological charge N3 (see Sect. 3.3) the anomalous Hall effect
is caused by the Berry curvature on the Fermi surface [61]. The magnitude
of the Hall conductivity is related to the volume of the Fermi surface in a
similar way as the number of particles and the volume of the Fermi surface are
connected by the Luttinger theorem [61]. Another “partner” of the Luttinger
theorem emerges for the Hall effect in superconductors, where topology enters
via the spectral flow of fermion zero modes in the cores of topological defects –
Abrikosov vortices [62].

5.3 Quantum Phase Transitions

Plateau Transitions

The integer topological invariant Ñ3 of the ground state cannot follow the
continuous parameters of the system. That is why when one changes such a
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film thickness

skyrmion
is  fermion

skyrmion
is  fermion

skyrmion
is  boson

quantum phase transitions

N3
~

N3 = 2 
~

N3 = 4 
~

N3 = 6 
~

q

qc1 qc2 qc3

Fig. 12. Quantum phase transitions occurring when one increases the thickness q of
the 3He-A film. The transitions at q = qc2 and q = qc3 are plateau-plateau transitions
between vacua with different values of integer topological invariant Ñ3 in Eq. (37).
At these transitions the quantum statistics of real-space skyrmions living in thin
films changes. The change in the quasiparticle spectrum across the transitions may
be seen from the minimum value of the quasiparticle energy, minpE(p), at given q
(thick lines). The transitions at q = qc2 and q = qc3 between the fully gapped states
occur through the gapless states. At q = qc1 the transition is between gapless and
fully gapped states

parameter, for example, the chemical potential in the model (39), one obtains
the quantum phase transition at µ = 0 at which Ñ3 jumps from 0 to −1. The
film thickness is another relevant parameter. In the film with finite thickness
the matrix of Green’s function acquires indices of the levels of transverse quan-
tization. If one increases the thickness of the film, one finds a set of quantum
phase transitions between vacua with different integer values of the invariant
[Fig. 12], and thus between the plateaus in Hall or spin-Hall conductivity.

The abrupt change of the topological charge cannot occur adiabatically,
that is why at the points of quantum transitions fermionic quasiparticles be-
come gapless.

Topological Zero Modes and Edge States

If two vacua with different Ñ3 coexist in space [Fig. 13(a)], the phase bound-
ary between them must also contain gapless fermions. This is an example of
the so-called fermion zero modes living on different topological objects such
as 3D monopole, 2D soliton wall, and 1D vortex/string (see Ref. [63] and
references therein). The number of the gapless fermion zero modes obeys the
index theorem: in our case the number of the 1 + 1 fermions living at the
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Fig. 13. (a) Domain wall between two 2+1 vacua with different topological charges
Ñ3. (b) Structure of the phase boundary between vacua with charges Ñ3 = ±1
in Eq. (44). The prefactor in front of py changes sign at x = 0, which leads to
the change of sign of the topological charge in Eq. (37). (c) Fermion zero modes –
anomalous branches of fermions living at the interface whose spectrum crosses zero
energy level. The number of anomalous branches is determined by the difference of
the topological charges Ñ3 across the wall

phase boundary is determined by the difference of the topological charges of
the two vacua, Ñ (1)

3 − Ñ
(2)
3 (see Chap. 22 in Ref. [6]).

The boundary of the condensed matter system can be considered as the
phase boundary between the state with nonzero Ñ3 and the state with Ñ3 = 0.
The corresponding fermion zero modes are the edge states well known in
physics of the QHE.

Example of the phase boundary between two vacua with Ñ3 = ±1 is shown
in Fig. 13(b) for the px + ipy superfluids and superconductors. Here the py

component of the order parameter changes sign across the wall. The simplest
structure of such boundary is given by Hamiltonian

H =


 p2

2m − µ c
(
px + ipy tanh x

ξ

)
c
(
px − ipy tanh x

ξ

)
− p2

2m + µ


 . (44)

Let us first consider fermions in semiclassical approach, when the coordinates
x and px are independent. At x = 0 the time reversal symmetry is restored,
and the spectrum becomes gapless. At x = 0 there are two zeroes of co-
dimension 2 at points px = 0 and py = ±pF . They are similar to zeroes
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discussed in Sect. 4.2. These zeroes are marginal, and disappear at x �= 0
where the time reversal symmetry is violated. The topological charge is well
defined only at x �= 0. When x crosses zero, the topological charge in Eq. (37)
changes sign.

In the quantum mechanical description, x and px do not commute. The
quantum-mechanical spectrum E(py) contains fermion zero modes – branches
of spectrum which cross zero. According to the index theorem there are two
anomalous branches in Fig. 13(c).

The index theorem together with the connection between the topological
charge and quantization of physical parameters discussed in Sect. 5.2 implies
that the quantization of Hall and/or spin-Hall conductance is determined
by the number of edge states in accordance with Refs. [64]. The detailed
discussion of the edge modes in px + ipy superfluids and superconductors and
their contribution to the effective action can be found in Ref. [65]. These edge
modes are Majorana fermions.

“Higgs” Transition in p-Space

Note that the energy spectrum in Eq. (38) experiences an analogue of the
Higgs phase transition at µ = mc2 [Fig. 14]: if µ < mc2 the quasiparticle
energy has a single minimum at p = 0, while at µ > mc2 the minimum is
at the circumference with radius p0 =

√
2m(µ−mc2). There is no symmetry

breaking at this transition, since the vacuum state has the same rotational

  

E

spectrum at  µ < mc2 
single minimum

spectrum at  µ  > mc2 
Mexican Hat

Fig. 14. “Higgs” transition in momentum space.
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symmetry above and below the transition, while the asymptotic behavior of
the thermodynamic quantities (∝ Tn exp (−Emin/T )) experiences discontinu-
ity across the transition: the power n changes. That is why the point µ = mc2

marks the quantum phase transition, at which the topology of the minima of
the energy spectrum changes.

However, this transition does not belong to the class of transitions which
we discuss in the present review, since the topological invariant of the ground
state Ñ3 does not change across this transition and thus at the transition point
µ = mc2 the spectrum remains fully gapped. Moreover, such a transition does
not depend on dimension of space-time and occurs in 3+1 systems as well.
Example is provided by the s-wave superconductor or s-wave Fermi superfluid,
whose spectrum in Eq. (5) experiences the same Higgs-like transition at µ = 0,
i.e. in the BSC–BEC crossover region.

5.4 Quantum Phase Transition in 1D Quantum Ising Model

The momentum-space topology is applicable not only to fermionic systems,
but to any system which can be expressed in terms of auxiliary fermions.

Fermionization and Topological Invariant

Example is provided by the 1-dimensional quantum Ising model where the
topological quantum phase transition between the fully gapped vacua can be
described in terms of the invariants for the fermionic Green’s function. The
original Hamiltonian of this 1D chain of spins is:

H = −J
N∑

n=1

(
hσx

n + σz
nσ

z
n+1

)
, (45)

where σx and σz are Pauli matrices, and h is the parameter describing the
external magnetic field. After the standard Jordan-Wigner transformation
this system can be represented in terms of the non-interacting fermions with
the following Hamiltonian in the continuous N → ∞ limit (see Ref. [66] and
references therein):

H = 2J (h− cos(pa)) τ3 + 2J sin(pa)τ1 , − π

a
< p <

π

a
. (46)

It is periodic in the one-dimensional momentum space p with period 2π/a
where a is the lattice spacing. The integer valued topological invariant here
is the same as in Eq. (33) but now the integration is along the closed path in
p-space, i.e. from 0 to 2π/a:

Ñ2 = − 1
4πi

tr
∮
dp τ2H

−1∇pH . (47)

This invariant can be represented in terms of the Green’s function
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G−1 = igz − gxτ3 + gyτ1 , (48)

where for the particular case of the model (46), the components of the 3D
vector g(p, ω) are:

gx(p, ω) = 2J (h− cos(pa)) , gy(p, ω) = 2J sin(pa) , gz(p, ω) = ω . (49)

Then the invariant (47) becomes:

Ñ2 =
1
4π

∫ π/a

−π/a

dp

∫ ∞

−∞
dω ĝ ·

(
∂ĝ
∂p
× ∂ĝ
∂ω

)
. (50)

The invariant is well defined for the fully gapped states, when g �= 0 and thus
the unit vector ĝ = g/|g| has no singularity. In the model under discussion,
one has for h �= 1:

Ñ2(h < 1) = 1 , Ñ2(h > 1) = 0 . (51)

Instanton in (p, ω)-Space

The state with Ñ2 = 1 is the “instanton” in the (ω, p)-space, which is similar
to the skyrmion in (px, py)-space in Fig. 11. The real space-time counterpart
of such instanton can be found in Refs. [67]. It describes the periodic phase
slip process occurring in superfluid 3He-A [68]. In the model, the topolog-
ical structure of the instanton at h < 1 can be easily revealed for h = 0.
Introducing “space-time” coordinates t = p and z = ω/2J one obtains that
the unit vector ĝ precesses sweeping the whole unit sphere during one period
∆t = 2π/a [Fig. 15]:

ĝ(z, t) = ẑ cos θ(z) + sin θ(z) (x̂ cos(at) + ŷ sin(at)) , cot θ(z) = z . (52)

This state can be referred to as “ferromagnetic”, since in terms of spins it is
the quantum superposition of two ferromagnetic states with opposite magne-
tization.

At h > 1, i.e. in the “paramagnetic”phase, the momentum-space topology
is trivial, Ñ2(h > 1) = 0. The transition at h = 1 at which the topological
charge Ñ2 of the ground state changes is the quantum phase transition, it
only occurs at T = 0.

Phase Diagram for Anisotropic XY-Chain

The phase diagram for the extension of the Ising model to the case of the
anisotropic XY spin chain in a magnetic field with Hamiltonian (see e.g. [69])

H = −J
N∑

n=1

(
hσx

n +
1 + γ

2
σz

nσ
z
n+1 +

1− γ

2
σy

nσ
y
n+1

)
, (53)

is shown in Fig. 16 in terms of the topological charge Ñ2. The lines h = 1,
h = −1 and (γ = 0, −1 < h < 1), which separate regions with different Ñ2,
are lines of quantum phase transitions.
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Fig. 15. (a) Illustration of the topological invariant Ñ2 = 1 for “instanton”in
momentum space for h = 0. According to Eq. (52) one has the domain wall in
z = ω/2J space across which the direction of the vector g changes from ẑ at z = ∞
to −ẑ at at z = −∞. The structure is periodic in p and thus is precessing in
“time” t = p (black arrows). During one period of precession ∆t = 2π/a the unit
vector ĝ(t, z) sweeps the whole unit sphere giving Ñ2 = 1 in Eq. (50). (b) At the
transition point hc = 1 the gap in the energy spectrum of fermions vanishes, because
the transition between two vacuua with different topological charge cannot occur
adiabatically

N2 = 1 
~

N2 = −1 
~

γ

N2 = 0 
~

N2 = 0 
~

h

0

1 

−1 

Fig. 16. Phase diagram for anisotropic XY-chain in Eq. (53) in the plane (γ, h). The
regions with different topological charge Ñ2 are separated by the lines of topological
quantum phase transitions (thick lines)

ĝ

gapN2 = 1 
~

gap, N2
~

N2 = 0 
~ h

hc = 1 
(a) (b)
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Nullification of Gap at Quantum Transition

Because of the jump in Ñ2 [Fig. 15(b)], the transition cannot occur adi-
abatically. That is why the energy gap must tend to zero at the tran-
sition, in the same way as it occurs at the plateau-plateau transition in
Fig. 12. In the Ising model, the energy spectrum E2(p) = g2

x(p) + g2
y(p) =

4J2
(
(h− cos(pa))2 + sin2(pa)

)
has a gap E(0) = 2J |h − 1| which tends to

zero at h→ 1 [Fig. 15 (b)]. However, the nullification of the gap at the topo-
logical transition between the fully gapped states with different topological
charges is the general property, which does not depend on the details of the
underlying spin system and is robust to interaction between the auxiliary
fermions.

The special case, when the gap does not vanish at the transition because
the momentum space is not compact, is discussed in Sect. 11.4 of [6].

Dynamics of Quantum Phase Transition and Superposition
of Macroscopic States

In the quantum Ising model of Eq. (45) the ground state at h < 1 repre-
sents the quantum superposition of two ferromagnetic states with opposite
magnetization. However, in the limit of infinite number of spins N →∞ this
becomes the Schrödinger’s Cat – the superposition of two macroscopically
different states. According to Ref. [70] such superposition cannot be resolved
by any measurements, because in the limit N →∞ no observable has matrix
elements between the two ferromagnetic states, which are therefore disjoint.
In general, the disjoint states form the equivalence classes emerging in the
limit of infinite volume or infinite number of elements.

Another property of the disjoint macroscopic states is that their superpo-
sition, even if it is the ground state of the Hamiltonian, can never be achieved.
For example, let us try to obtain the superposition of the two ferromagnetic
states at h < 1 starting from the paramagnetic ground state at h > 1 and
slowly crossing the critical point h = 1 of the quantum phase transition. The
dynamics of the time-dependent quantum phase transition in this model has
been discussed in Refs. [66, 71]. It is characterized by the transition time τQ
which shows how fast the transition point is crossed: 1/τQ = ḣ|h=1 . One may
expect that if the transition occurs adiabatically, i.e. in the limit τQ → ∞,
the ground state at h > 1 transforms to the ground state at h < 1. However,
in the limit N → ∞ the adiabatic condition cannot be satisfied. If τQ → ∞
but τQ 
 N2/J , the transition becomes non-adiabatic and the level crossing
occurs with probability 1. Instead of the ground state at h < 1 one obtains
the excited state, which represents two (or several) ferromagnetic domains
separated by the domain wall(s). Thus in the N = ∞ system instead of the
quantum superposition of the two ferromagnetic states the classical coexis-
tence of the two ferromagnetic states is realized.
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In the obtained excited state the translational and time reversal symme-
tries are broken. This example of spontaneous symmetry breaking occurring
at T = 0 demonstrates the general phenomenon that in the limit of the infi-
nite system one can never reach the superposition of macroscopically differ-
ent states. On the connection between the process of spontaneous symmetry
breaking and the measurement process in quantum mechanics see Ref. [72]
and references therein. Both processes are emergent phenomena occurring in
the limit of infinite volume V of the whole system. In finite systems the quan-
tum mechanics is reversible. For general discussion of the symmetry breaking
phase transition in terms of the disjoint limit Gibbs distributions emerging at
V →∞ see the book by Sinai [73].

6 Conclusion

Here we discussed the quantum phase transitions which occur between the
vacuum states with the same symmetry above and below the transition. Such
a transition is essentially different from conventional phase transition which
is accompanied by the symmetry breaking. The discussed zero temperature
phase transition is not the termination point of the line of the conventional
2-nd order phase transition: it is either an isolated point (qc, 0) in the (q, T )
plane, or the termination line of the 1-st order transition. This transition is
purely topological – it is accompanied by the change of the topology of fermi-
onic Green’s function in p-space without change in the vacuum symmetry.
The p-space topology, in turn, depends on the symmetry of the system. The
interplay between symmetry and topology leads to variety of vacuum states
and thus to variety of emergent physical laws at low energy, and to variety
of possible quantum phase transitions. The more interesting situations are
expected for spatially inhomogeneous systems, say for systems with topolog-
ical defects in r-space, where the p-space topology, the r-space topology, and
symmetry are combined (see Refs. [7, 74] and Chap. 23 in [6]).
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