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Preface

This volume has grown from the invited lectures given at the summer school
“Ageing and the glass transition” held at the university of Luxemburg in Sep-
tember 2005. After a short introduction to the notion of ageing, this volume
begins with several experimental lectures describing the current state of ex-
perimental investigations into several distinct types of glassy behaviour – spin
glasses, structural glasses and granular systems are studied. Then follow in-
troductions to a broad variety of theoretical methods applicable to ageing
phenomena and glassy systems, including simulational techniques, exactly
solvable models, field-theoretical methods. We thank our lecturers for their
considerable effort to produce clear and understandable lectures and ped-
agogical and readable lecture notes. Participants of the school contributed
with shorter talks and posters, to be found in a freely accessible proceedings
volume.1

In the Grande Région Saarland-Luxembourg-Lorraine, there is a long-
standing tradition of frontier-transgressing inter-university cooperation. Since
a few years, the universities of Saarbrücken, Luxembourg and Nancy have
been offering a fully integrated curriculum in physics (SLLS), leading to a tri-
national final degree recognized in all partner countries as a national degree,
several years before the beginning of the Bologna processes and also today go-
ing much further in integration.2 Our summer school was also for our students
an opportunity to come into direct contact with leading experts in a specific
field. Nothing is more informative than direct experience, be it in learning
foreign languages, coming to know another country or a new academic field.

1 M. Henkel, M. Pleimling and R. Sanctuary (eds.), Statistical mechanics of ageing
phenomena and the glass transition, J. Phys.: Conf. Series, Vol. 40, Institute of
Physics, Bristol (2006). See http://www.iop.org/EJ/toc/1742-6596/40/1.

2 See http://ci.physik.uni-saarland.de for further information. The SLLS is
supported by the Deutsch-französische Hochschule/Université Franco-allemande
and by the European Interreg IIIC/eBird programme.



VI Preface

Organizing a summer school is only possible with the help of many people.
It is therefore a pleasure to thank J. Baller, E. Apel, M. Heinen-Krumreich and
R. Wagener for their contributions. Financially, this summer school was made
possible through grants of the Deutsch-französische Hochschule/Université
Franco-allemande, of the Université de Luxembourg and by the Institute of
Physics, whom we thank sincerely for their support. We are very grateful to
C. Caron and Springer Verlag for the willingness to accept these lectures in
the Springer Lecture Notes and for generous support. MH thanks the Isaac
Newton Institute Cambridge (England) and the INFN and the Dipartimento
di Fisica of the Università di Firenze (Italy) for warm hospitality, where the
last stages of editing this volume were done.

Nancy, Blacksburg and Luxembourg Malte Henkel
September 2006 Michel Pleimling

Roland Sanctuary
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CEA-Saclay
L’Orme des merisiers
F-91191 Gif-sur-Yvette cedex
France
olivier.dauchot@cea.fr

S. Dorosz
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Department of Physics
Centre for Stochastic Processes
in Science and Engineering
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia 24061-0435
USA
tauber@vt.edu

Ch. Vergnat
Universität des Saarlandes
Experimentalphysik
POB 151150
D-66041 Saarbrücken, Germany

Eric Vincent
Service de Physique de l’État
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Understanding cooperative phenomena far from equilibrium poses one of the
most challenging research problems of present-day many-body physics. At
the same time, the practical handling of many of these materials has been
pushed to great sophistication, and a lot of practical knowledge about them
exists since prehistoric times. Glasses are one example of such systems. In
many cases, they are made by rapidly cooling (“quenching”) a molten liquid
to below some characteristic temperature-threshold. If this cooling happens
rapidly enough, normal crystallization no longer takes place and the material
remains in some non-equilibrium state. These non-equilibrium states may at
first and even second sight look very stationary – everyone has probably seen
in archaeological museums intact specimens of Roman glass or even older
tools from the Paleolithic or old-stone-age – after all, obsidian or fire-stone
is a quenched volcanic melt. But since the material is not at equilibrium, at
least in principle it is possible (and it does happen very often in practice) that
over time the properties of the material change – in other words, the material
ages.1 Finally, one may wonder what happens from a thermodynamic point of
view to a glass-forming material quenched to below its characteristic threshold
for glass-formation. Is the hardening of the quenched glass-former merely a
kinetic effect such that a glass-transition can be arbitrarily said to occur when
motion has slowed down over so many orders of magnitude that any ongoing
motion simply escapes the attention or patience of the experimentalist? Or
does the system pass through a true thermodynamic phase-transition and
enters a new physical regime with a qualitatively different behaviour?

Since glasses constitute a sort of paradigmatic example of systems under-
going physical ageing, it is perhaps helpful to spell out a little more what is
meant precisely by this concept. Although ageing was first observed in glassy

1 To avoid misunderstandings: physical ageing as it is understood here is caused
by reversible microscopic processes, whereas chemical or biological ageing comes
from the action of essentially irreversible (bio-)chemical processes.
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systems [1], it has been realized in recent years that very similar phenomena
already occur in non-disordered and non-frustrated systems which hence are
also commonly referred to as ageing. For the purposes of illustration, we con-
sider a simple Ising model, made from spin variables σi = ±1 attached to each
site i of a hypercubic lattice and which are meant to describe magnetic mo-
ments aligned with respect to some axis. The classical hamiltonian describes
the usual nearest-neighbour interactions H = −J

∑
(i,j) σiσj where J > 0 is

the exchange integral and the sum extends over pairs of nearest neighbours.
The motion of the spins is generated by coupling the model to a thermal bath
of temperature T . A possible way of realizing this is through the so-called
heat-bath dynamics which is defined by the stochastic rule

σi(t+∆t) = ±1 , with probability [1 ± tanh(hi(t)/T )] /2 (1.1)

where ∆t is the time increment, the local time-dependent field is hi(t) =∑
y(i) σy(i)(t) and y(i) runs over the nearest neighbours of the site i. It is well-

known that this rule satisfies detailed balance and hence the system evolves to-
wards the equilibrium probability distribution Peq = Z−1 exp(−H/T ), where
Z is the canonical partition function [2, 3]. The system is prepared at some
initial temperature Tini well above the critical temperature Tc > 0. The ini-
tial time t = 0 is defined by coupling the system to the thermal bath at
some low temperature T < Tc and starting the dynamics. During the simula-
tion, the temperature T is kept fixed and one observes the time-dependence
of observables such as correlation functions or susceptibilities.2 Qualitatively,
the behaviour of the system can be illustrated through the equilibrium free
energies at the temperatures Tini and T , see Fig. 1.1. Before the quench, the
system is at equilibrium with respect to the initial temperature Tini > Tc

and sits at the minimum of the free energy, as indicated by the black ball
in Fig. 1.1a. After perturbing the state of the system, rapid relaxation with
a finite relaxation time 0 < τ < ∞ occurs. On the other hand, immediately
after the quench the system did not yet have had the time to evolve but,
with respect to the new equilibrium, its free energy is no longer minimal, see
Fig. 1.1b. Rather, two new local minima of the free energy appeared, which
correspond to the two equivalent ordered states of the system. Because of
the competition between these two equivalent equilibrium states, the system
as a whole cannot relax rapidly to one of them but rather undergoes a slow
dynamics, with formally infinite relaxation times. Locally, each spin will be
subject to the time-dependent field hi(t) coming from its neighbours and this
field will tilt the balance between the two equivalent equilibrium states of
Fig. 1.1b in favour of one or the other. Physically, this means that the system
will rapidly decompose into ordered domains and the slow long-time dynam-
ics of this domain growth will be determined by the motion of the domain
walls between these ordered domains (see Janke’s lecture in this volume for

2 The chosen dynamics is such that the total average magnetization M(t) =
〈σ(t)〉 =

∑
i〈σi(t)〉 remains at its initial value M(0) = 0.
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Fig. 1.1. Free energy of a simple ferromagnet at (a) an initial high temperature
T > Tc before the quench and (b) after the quench to a low temperature T < Tc

illustrative figures). This slow (non-exponential) dynamics is the first defining
property of ageing systems.

Another aspect of this non-equilibrium dynamics (since in a spatially in-
finite system none of the equilibrium states will be reached in a finite time)
becomes apparent if one considers a quantity like the two-time autocorrelation
function of spins at site i at times t and s

C(t, s) = 〈σi(t)σi(s)〉 (1.2)

which by spatial translation-invariance is independent of the chosen site i.
In Fig. 1.2a data for C(t, s) plotted over against the time difference t − s
are displayed for the three-dimensional Ising model. For a fixed value of the
smaller time s, the autocorrelation relaxes rapidly to a plateau Ceq � M2

eq

and only for large values of t − s falls off to zero. Furthermore, for different
values of s the data clearly fall on different curves which means that time-
translation invariance is broken. Together with the slow dynamics mentioned
above, this breaking of time-translation invariance is the second defining prop-
erty of ageing systems. While in principle this could mean that the details of
the dynamics of ageing systems might depend on the entire prehistory of the
sample under study, a great simplification, due to dynamical scaling, is appar-
ent in Fig. 1.2b where the same data for C(t, s), when plotted over against t/s,
neatly collapse onto a single curve, if only the time s is large enough. Since in
domain coarsening one expects that the linear size of the ordered domains is
L = L(t) ∼ t1/z when t is large enough and z is the dynamical exponent [4],
the collapse in Fig. 1.2b means that C(t, s) = f(L(t)/L(s)), or in other words
L(t) is the only relevant length-scale at time t. Dynamic scaling is the third
essential property of ageing systems.
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Fig. 1.2. (a) Ageing and (b) dynamical scaling of the two-time autocorrelation
function C(t, s) in the three-dimensional Glauber-Ising model quenched to T = 3 <
Tc, for several values of the waiting time s

These three basic properties of ageing systems are also found in glassy sys-
tems. An important property of glasses is the presence of frustrations which
prevent the relaxation of all local degrees of freedom. In consequence, the free-
energy landscape of glasses can be very complex, with many local minima. The
classic example for ageing behaviour was observed by Struik [1] in studying
the mechanical properties of polymeric glasses which after a quench from the
molten phase to low temperatures (i) relax very slowly (typical time-scale of
years), (ii) show clear evidence of the breaking of time-translation invariance
and furthermore, (iii) the experimental data for the time-dependent creep
curves of the mechanical response can all be mapped onto a single master
curve. Remarkably, that master curve turned out to be the same for materials
as different as polymers such as PVC or PMMA, sugar or even metals like
lead! Evidently, there are universal scaling functions in ageing which exactly
because of their universality one may hope to be able to understand theo-
retically. The similarities and differences of the dynamical scaling observed
experimentally in real glasses will be one of the topics of the lectures, see
especially E. Vincent’s lecture in this volume.

In order to understand better the profond interrelation between ageing
and the glass transition, the experimental background is crucial – after all
physics is based on experimental information on how Nature behaves. We
have therefore arranged the experimental lectures as being the first ones in
this volume. In Chap. 2, E. Vincent gives an introduction and overview over
the time-dependent behaviour of magnetic spin glasses. After introducing the
concept of a spin glass and having illustrated the basic aspects of glassiness in
these systems, the time- and frequency-dependent scaling behaviour of mag-
netic correlations and susceptibilities of disordered and frustrated magnets
with a glassy behaviour is described. Ageing, rejuvenation and memory effects
are discussed in great detail and the lectures culminate with the description of
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recent efforts to characterize the ageing behaviour in terms of a time-dependent,
growing correlation length. Chapter 3 is devoted to an in-depth discussion on
the nature of the thermal glass-transition in structural glasses. To some extent,
theoretical ideas are informed by the windows through which we have to look
at a certain phenomenon. The lectures by J.K. Krüger describe what can be
seen about structural glasses through a so far less-considered window, namely
by using data on the elasticity properties, especially at high frequencies as
obtained from Brillouin spectroscopy. Do these data provide objective criteria
by which one could distinguish between purely kinetic effects and a genuine
phase-transition? After having recalled the traditional view on the thermal
glass transition (being inferred from the regime of low relaxation frequen-
cies), an introduction to the methods of Brillouin spectroscopy is given. These
methods are then applied to discuss in detail the glass transition, going from
purely thermal to dynamical aspects. The observation of generalized Cauchy
relations of the elastic constants and the study of the opto-acoustic dispersion
function are used to argue that close to the glass transition there is more
than mere kinetic effects. The nature of a thermodynamical glass-transition
is studied through an analysis of the Grüneisen parameters. A theoretical
assessment of these new experimental results does not yet exist. In Chap. 4
O. Dauchot discusses a rather different type of system with glassy behaviour:
granular systems which are usually considered as a-thermal. Having reviewed
the similarities with thermal glassy systems which arise in the context of gen-
tle compaction of grains, the main aspects of phenomenology and current
attempts at a thermodynamical formulation are discussed, notably Edward’s
proposal for the definition of a configurational entropy which may in turn be
used to define the analogue of a temperature. These ideas are systematically
compared with the available experimental evidence. We hope that in future
works parallels between the more conventional glassy systems, as described in
the first two lectures, and granular systems may become fruitful.

One of the main tools of the theorist dealing with complex systems is nowa-
days through numerical simulation. W. Janke gives in Chap. 5 a thorough
introduction to the techniques of Monte Carlo simulation and the analysis
of the resulting data through scaling methods. Temperature-dependent and
finite-size scaling methods are presented and a detailed presentation of the
tricks of the trade of Monte Carlo simulation, the choice of the algorithm
and the related statistical analysis is given, resulting in a manual on modern
Monte Carlo methods. These methods are illustrated through a recent study
on simple spin systems undergoing ageing in the context of phase-ordering ki-
netics and the calculation of two-time correlation and response functions. The
result provides new evidence in support of recent ideas trying to generalize
dynamical scaling to a larger group of local scale-transformations. Although
generally applicable, purely numerical methods always suffer from some sys-
tematic uncertainty. That is only one reason why exactly solvable models
are important. More generally, exactly solvable systems allow for an in-depth
analysis in a well-defined context which is extremely important in developing
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general ideas about the underlying physical processes. In equilibrium criti-
cal phenomena, the Ising model has in this way been raised from an exotic
curiosity to a textbook standard. In Chap. 6 C. Godrèche describes the zero-
range process as an extremely simple-looking, but quite subtle model on which
many static and dynamic properties of glassy systems can be analyzed in fine
detail. It is an attractive feature of this model that the technical complexity
of the tools needed is less formidable than might have been hoped or feared.
The model shows a condensation transition in its non-equilibrium station-
ary state and furthermore its dynamics shares many aspects with the one
of truly glassy systems. At present, this kind of model is very actively stud-
ied and might well become a paradigmatic reference for future investigations
of glassy dynamics. More general than specific exactly solvable models, the
field-theoretic renormalization group is another member of the essential set of
theoretical tools. In Chap. 7 U.C. Täuber shows how the familiar methods of
the field-theoretical renormalization-group of equilibrium systems can be ex-
tended to systems far from equilibrium. After reviewing both equilibrium and
non-equilibrium critical dynamics, the passage from the Langevin equation to
field-theory through the dynamical functional is presented. It is then shown
how, starting from perturbation theory, a renormalization-group calculation
for a non-equilibrium system can be set up. This is illustrated in applica-
tions to reaction-diffusion systems, population dynamics and branching and
segregation phenomena. This chapter serves as a manual to non-equilibrium
field-theoretic renormalization-group methods. One of the strengths of the
renormalization-group is that it tells what quantities are universal, that is in-
dependent of almost all “details” of a specific system (e.g. critical exponents),
and which are not (e.g. location of critical points).
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Abstract. In this paper1, we review the general features of the out-of-equilibrium
dynamics of spin-glasses. We use this example as a guideline for a brief description
of glassy dynamics in other disordered systems like structural and polymer glasses,
colloids, gels etc. Starting with the simplest experiments, we discuss the scaling laws
used to describe the isothermal ageing observed in spin-glasses after a quench down
to the low temperature phase (these scaling laws are the same as established for
polymer glasses). We then discuss the rejuvenation and memory effects observed
when a spin-glass is submitted to temperature variations during ageing, and show
some examples of similar phenomena in other glassy systems. The rejuvenation and
memory effects and their implications are analyzed from the point of view of both
energy landscape pictures and of real space pictures. We highlight the fact that
both approaches point out the necessity of hierarchical processes involved in ageing.
We introduce the concept of a slowly growing and strongly temperature-dependent
dynamical correlation length, which is discussed at the light of a large panel of
experiments.

2.1 What is a Spin-Glass?

A spin-glass is a disordered and frustrated system. From the theorist’s point
of view, the definition of the spin-glass is very simple: it is a set of randomly
interacting magnetic moments on a lattice. The total energy is simply the sum
over interacting neighbours (Si, Sj) of all coupling energies JijSiSj , where the
{Ji,j} are random variables, gaussian or ±J distributed:

H = −
∑

i,j

Ji,jSiSj . (2.1)

1 This paper is written on the basis of a course given at the summer school
“Ageing and the glass transition” in the University of Luxembourg. The
results presented here are the joint work of the Saclay group: F. Bert,
J.-P. Bouchaud, V. Dupuis, J. Hammann, D. Hérisson, F. Ladieu, M. Ocio,
D. Parker, E.V., and others.

E. Vincent: Ageing, Rejuvenation and Memory: The Example of Spin Glasses, Lect. Notes
Phys. 716, 7–60 (2007)
DOI 10.1007/3-540-69684-9 2 c© Springer-Verlag Berlin Heidelberg 2007
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The impressive number of publications devoted to the spin-glass problem these
last decades (see references in e.g. [1–4]) is in sharp contrast to the rather
simple formulation as described by Eq. (2.1).

From the experimentalist’s point of view, the way to obtain a set of ran-
domly interacting magnetic moment is usually to dilute magnetic ions. The
canonical example is that of intermetallic alloys, like for instance Cu:Mn3%, in
which 3% of (magnetic) Mn atoms are thrown by random in a (non-magnetic)
Cu matrix. The Mn magnetic atoms sit at random positions, therefore are
separated by random distances, and the oscillating character of the RKKY
interaction with respect to distance makes their coupling energy take a ran-
dom sign. This class of systems corresponds to the historical discovery of
spin-glasses, which traces back to the studies of strongly diluted magnetic
alloys and the Kondo effect [3].

Later on, spin-glasses have been identified within insulating compounds.
An example that we have studied in details at our laboratory is the the Indium
diluted Chromium thiospinel CdCr2xIn2(1−x)S4, with superexchange magnetic
interactions between the Cr ions [5]. For x = 1, this compound is a ferromag-
net with Tc = 80K. The nearest neighbour interactions are ferromagnetic
and dominant for x = 1, but the next-nearest ones are antiferromagnetic.
Hence, when some (magnetic) Cr ions are substituted by (non-magnetic) In
ions, some ferromagnetic bindings are suppressed, and the effect of other an-
tiferromagnetic interactions is enhanced. The balance that globally favours
ferromagnetism for zero or small In-dilution is disturbed, and the ferromag-
netic phase is replaced by a spin-glass phase for x ≤ 0.85.

The phase diagram of the CrIn thiospinel is shown in Fig. 2.1a, together
with the magnetic behaviour corresponding to various values of x in Fig. 2.1b
[5, 6]. As usual, the “FC” curves correspond to a measurement procedure
in which the sample is cooled in presence of the measuring field, and the
“ZFC” curves are obtained after cooling in zero field, applying the field at
the lowest temperature and measuring the magnetization while increasing
the temperature step by step. In Fig. 2.1b, the x = 1 curve shows a very
abrupt increase of the magnetization when approaching Tc = 80K from above,
that is characteristic of the ferromagnetic transition. At lower temperatures,
magnetic irreversibilities are observed (splitting of the ZFC and FC curves),
which are probably due to defects. In the x = 0.95 and x = 0.90 curves,
the ferromagnetic transition is progressively rounded as the level of dilution
increases, and the splitting of the FC and ZFC curves at low temperature
indicates the reentrance of a spin-glass phase, that has been characterized in
other studies [5, 6]. For x = 0.85, the ferromagnetic phase has disappeared,
and at Tg = 16.7K the system undergoes a transition from a paramagnetic to
a spin-glass phase that presents the same features as observed in intermetallic
spin-glasses.

Figure 2.2 shows in more details the typical results of a ZFC/FC measure-
ment on a spin-glass. It is important to emphasize that a low-temperature
splitting of the ZFC/FC curves is not by itself characteristic of a spin-glass.
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Fig. 2.1. CdCr2xIn2−2xS4 thiospinel compound: a) Phase diagram [5, 6], showing
the paramagnetic (P), ferromagnetic (F) and spin-glass (SG) phases; b) zero-field
cooled (ZFC, open symbols) and field-cooled (FC, filled symbols) magnetizations

This is only the signature of the onset of magnetic irreversibilities, which
are not necessarily related to a collective behaviour, as for instance happens
with superparamagnetic nanoparticles whose magnetization fluctuations are
blocked by the effect of individual anisotropy barriers [7]. However, the (ap-
proximate) flatness of the FC curve that is observed here below Tg shows that,
when going from the paramagnetic region to low temperatures, the suscep-
tibility increase is rather sharply stopped. This is suggestive of a collective
behaviour, and is indeed observed in concentrated systems of nanoparticles,
where the dipole-dipole interactions are at the origin of a (super-)spin-glass-
like transition [8–10].

While the FC curve can be measured upon decreasing or as well increasing
the temperature in presence of the field, because the magnetization value can
be considered at equilibrium (in a first approximation, usually within 1%), the
ZFC one is fully out of equilibrium. After cooling in zero field and applying
the field at some T < Tg, the magnetization ZFC(t) relaxes upwards as a
function of time. In a symmetric way, starting from a FC state at T , if the
field is turned to zero, the “thermo-remanent” magnetization (TRM) relaxes
downwards. It has been observed in the early studies of slow dynamics in
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Fig. 2.2. Zero-field cooled (ZFC) and field-cooled (FC) magnetization curves of the
CdCr1.7In0.3S4 thiospinel spin-glass

spin-glasses that, for sufficiently low-fields, these two “mirror experiments”
do yield mirror results: ZFC(t) + TRM(t) = FC (this relation even holds if a
slight relaxation of the FC magnetization occurs, FC ≡ FC(t)) [11].

Another well-studied example of insulating spin-glass is the Sr-diluted Eu
sulfur EuxSr1−x (e.g. x = 0.3) [3], in which the alteration from the EuS
ferromagnet to a spin-glass phase occurs in the same way as in the thiospinel.

These various examples of spin-glasses are helpful for understanding how
the situation of randomly interacting moments is realized in “real” spin-glass
samples. However, what we want to stress out is that there is a generic spin-
glass behaviour which is common to all these systems and independent of the
details of the sample chemistry, which the reader will be allowed to forget at
least in a first approximation. Metallic as well as insulating spin-glasses show
in 3d a well defined phase transition at Tg (attested by the critical behaviour
of some quantities), and slow dynamics is observed in the spin-glass phase
with the occurrence of such interesting phenomena as ageing, rejuvenation
and memory effects. Regarding these different aspects, no difference can be
traced out between metallic and insulating spin glasses, although the latter
are magnetically more concentrated and have shorter range interactions. Cer-
tain systematic differences as a function of spin anisotropy have indeed been
observed and are explained later in this paper, but, to the best of our present
understanding, they are not directly related to their metal/insulator character
or to any obvious chemical feature.

Finally, let us note that there is indeed a basic difference between the
theoretical spin-glass, in which there is a spin at each lattice node, and the
experimental spin-glass, which is site-diluted. It is not yet clear how far this
type of difference may be relevant (for a recent review on the question of
universality, see for instance [12]). As will be occasionally evoked along this
paper (which is devoted to “experimental” spin-glasses), the comparison of
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“real” (experimental) with “theoretical” spin-glasses is not yet totally un-
derstood, but significant progresses have been made these last years, as well
analytically as numerically [1, 13–16].

2.2 Slow Dynamics and Ageing

A crucial feature of the spin-glass behaviour (and of glassy dynamics in gen-
eral) is the existence of relaxation processes at all time scales, from the mi-
croscopic times (∼10−12 s in spin-glasses) to, at least, as long as the experi-
mentalist can wait. The slow relaxation processes are particularly spectacular:
in a spin-glass, any field change causes a very long-lasting relaxation of the
magnetization, and the response to an ac field is noticeably delayed. The
basic experiments in which glassy dynamics is commonly investigated can
be presented in 3 general classes: dc response, ac response, and spontaneous
fluctuations (noise).

2.2.1 DC Experiments

The study of the relaxation of the magnetization after a small field change
has brought a lot of informations about the glassy features of the spin-glass
dynamics. For now we only consider the case of “small fields”, that are excita-
tion fields which remain in the limit of linear response, or in other words fields
that act as a non-perturbative probe. Usually, this field range (depending on
the sample) is limited up to 1 or 10 Oe, a few percents of the field needed
to surmount the interactions and recover a paramagnetic state (usually 100–
1000 Oe).

Let us first consider the case of the relaxation of the thermo-remanent
magnetization (TRM). Magnetization relaxations reveal a “waiting time” de-
pendence of the dynamics that is singled out as “ageing” [17–19]. In the exper-
imental procedures, the ageing time becomes another degree of freedom. As
sketched in Fig. 2.3, the sample is rapidly cooled in a small field H from above
Tg to T < Tg, and the sample is kept under field at temperature T during a
waiting time tw, after which the field is cut (at t = 0). Then the relaxation is
measured as a function of the observation time t. Figure 2.4 shows the results,
which demonstrate the 2 basic features of spin-glass dynamics:

(i) the magnetization relaxation is slow, roughly logarithmic in time (glassy
state)

(ii) it strongly depends on the waiting time: the longer tw, the slower the
relaxation (ageing).

Hence, time-translation invariance is lost in the slow dynamics of the spin
glass: the relaxation depends on both tw and t, not only on t (non-stationary
dynamics). For increasing tw, the response to cutting off the magnetic field
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Fig. 2.3. Sketch of the TRM measurement procedure

becomes slower and slower on two respects: the initial fall-off of the mag-
netization becomes smaller, and the position of the inflection point of the
curves shifts towards longer times. This inflection point approximately occurs
at times t of the order of tw itself. When plotted as a function of t/tw (inset
of Fig. 2.4), the curves are gathered together (but they do not superimpose
exactly onto each other, with a systematic tw-dependent departure). In a first
approximation, we may consider that the curves obey a t/tw scaling.

The same phenomenon of “ageing” has been known for a long time for
the mechanical properties of a wide class of materials called “glassy poly-
mers” [20]. When a piece of e.g. PVC is submitted to a mechanical stress, its
response (elongation, . . . ) is logarithmically slow. And the response depends
on the time elapsed since the polymer has been quenched below its freezing
temperature. Like in spin-glasses, for increasing ageing time the response be-
comes slower and slower, which was called “physical ageing” (as opposed to
“chemical ageing”). The tw-dependence of the dynamics of glassy polymers
has been expressed as a scaling law that can be precisely applied to the case
of spin-glasses, as is explained below (see also [21]).

Figure 2.5 presents the mirror experiment, in which the sample is cooled
in zero field, the field being applied after waiting tw (ZFC relaxation). The
same tw-dependence is observed as in TRM relaxations.

Following the suggestion of L. Lundgren et al. [22], we also plot (bottom
part of Fig. 2.6) the logarithmic derivative dM/d log t of the magnetization M.
The curves are bell shaped, with a broad maximum in the region t ∼ tw. These
curves have an interesting physical interpretation which has been proposed by
L. Lundgren and the Uppsala group [22]. The magnetization relaxations are
slower than exponential, they can be modelled by a sum of exponential decays
exp(−t/τ), the decay times τ being distributed as a certain function g(τ)
which is defined in this way as an effective density of relaxation times. Taking
the derivative dM/d log t introduces a t/τ exp(−t/τ) term in the integrand,

g
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Fig. 2.4. Example of TRM relaxations measured for various values of the waiting
time tw (thiospinel spin-glass). The inset shows the same curves, plotted as a function
of t/tw

which is sharply peaked around t = τ . Approximating this peaked function
by a δ-function allows bringing out g(τ) from the integral over τ and yields

dMtw/d log t ∝ gtw(τ = t) . (2.2)

We have now labelled Mtw and gtw by tw to emphasize that each relax-
ation curve, taken for a given tw, gives access through its logarithmic time
derivative to the density of relaxation times that represents the dynamics of
the spin-glass at a time of the order of tw after the quench. Thus, each deriv-
ative dMtw/d log t gives an estimate of the density gtw(τ = t), and as tw
increases gtw(τ) shifts towards longer times. This gives a physical picture of
the 2 important features listed above:

(i) the effective relaxation times are widely distributed (glassy state)
(ii) this distribution peaks around τ = tw, which implies that for increasing

tw’s the relaxation times become longer (ageing, the spin-glass becomes
“stiffer”).

We mentioned above that the departures from a perfect t/tw scaling are
systematic as a function of tw. In addition to the thiospinel example in the
inset of Fig. 2.4, we show in Fig. 2.6 the example of a Ag:Mn2.7% spin-glass.
The same trend is observed as in Fig. 2.4: as a function of t/tw, the large tw
relaxations decrease faster than the short tw relaxations. That is, the TRM
dependence on tw is slightly slower than the variation of tw itself. We call
this situation “sub-ageing”, as opposed to the case of “full ageing” that would
correspond to full t/tw scaling.
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Fig. 2.5. ZFC magnetization relaxations of the Fe0.5Mn0.5TiO3 Ising spin-glass [68],
for 3 values of tw. Top part: magnetization relaxations. Bottom part: logarithmic
derivatives dM/d log t of the curves from the top part, displaying within a good
approximation [22] the distribution of effective response times corresponding to the
dynamics of the spin-glass after a time of order tw

On a log-scale, the various tw-relaxations are spaced by less than log tw,
say by a quantity µ log tw (with µ < 1). For increasing tw, the shift of gtw(τ)
towards longer times can therefore be expressed as a shift of the relaxation
times that is not exactly τ ∼ tw but rather τ ∼ tµw. But t/tµw itself does not
give a full quality scaling of the tw-relaxations. At this point, we have to go
one step further than the approximation which consists in defining a density
of relaxation times gtw(τ) at fixed tw from a given tw-relaxation. Since gtw(τ)
is found to vary with tw, it varies as well during the relaxation itself as a
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Fig. 2.6. TRM relaxation curves of the Ag:Mn2.7% spin-glass, plotted as a function
of t/tw (data from [19]). A systematic departure from a t/tw scaling (“subageing”)
is observed as a function of tw

function of time t, and the shift of the relaxation times τ ∼ tµw should rather
be re-written τ ∼ (tw + t)µ. This allows the definition of an effective time
λ [18–20], obeying for each individual relaxation process dm/m (of relaxation
time τ) to:

dm/m = dt/τ = dt/(tw + t)µ = dλ/tµw . (2.3)

λ defines an artificial time frame in which the spin-glass would keep a constant
age tw, whereas its age tw + t constantly increases in the laboratory time
frame. Integrating Eq. (2.3) (setting λ = 0 for t = 0), λ reads

λ/tµw = {1/(1 − µ)}{(tw + t)1−µ − t1−µ
w } (2.4)

which reduces to λ ∼ t for t 	 tw.
Then, plotting the relaxation curves of different tw’s as a function of λ/tµw

allows a very precise rescaling onto one unique master curve. This procedure
has indeed been first suggested to account for ageing in the mechanical prop-
erties of polymers. For spin-glasses, in more details, the λ/tµw scaling should
be applied to the only ageing part of the relaxation, which must be separated
from a stationary contribution χeq(χeq ∼ t−α, α being a very small expo-
nent, of the order of 0.03− 0.1), best evidenced in ac experiments (see below)
but also present here: χ = χeq + f(λ/tµw) [19]. An example of such a precise
rescaling is presented in Fig. 2.7.

This rescaling procedure works very well for all known examples of spin
glasses. Like in polymers, the exponent µ is always found lower than one
(µ ∼ 0.8−0.9, subageing), even if it may sometimes get surprisingly close
to 1 (see the example of AgMn in [19], in which µ ∼ 0.97 is found, µ = 1
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Fig. 2.7. Scaling of a set of TRM relaxation curves (thiospinel sample). The ageing
part of the 5 magnetization curves (obtained by subtracting the stationary part
A(t/τ0)

−α to the total magnetization) shows a fairly good scaling as a function of
the reduced variable λ/tµ

w

remaining excluded by the data with a large range of tw’s explored, from 300
to 30000 s). The (simpler) t/tw scaling with µ = 1 can be expected on some
rather general grounds [1,23], and the question of the origin of subageing is yet
unsolved [24]. It has been proposed that µ < 1 arises as an effect of an initial
age acquired during the necessarily finite cooling time [25–27]. If it is clear
that a slower cooling yields a smaller µ, there is no sign in most results (except
in the experiment of [25], and for zero cooling time in the numerics of [26])
that µ could go to 1 for very short cooling times, which always remain long in
experiments when compared with microscopic paramagnetic times (∼10−12 s).

The dependence of µ on the amplitude of the magnetic field H has also been
carefully checked [28,29]. As shown in Fig. 2.8, µ(H) decreases for increasing
field, but for vanishing field it seems very unlikely that µ goes to 1. This region
could be precisely explored in experiments by Ocio and Hérisson who took
data for fields as low as 0.001 Oe [29]. µ is found at a plateau value of ∼ 0.85 in
the range 10–0.001 Oe (five decades). On the other hand, for increasing fields,
µ eventually goes to zero [28], which means that the field change is enough to
erase the effect of previous ageing (H > 300Oe in Fig. 2.8). Let us note that
above this value there may still be some slow relaxations (although with no
tw-dependence), and that the instantaneous, paramagnetic-like, response to
the field is only obtained for still higher fields (600 Oe in the case of Fig. 2.8).

Finally, it might well be that µ < 1 be related to some finite size ef-
fects, as proposed in [30, 31], as the result of a saturation of ageing in some
small parts of the sample (grains?), while larger parts would obey µ = 1 for
astronomical times. This possible explanation could however not be confirmed
experimentally.
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Fig. 2.8. Field dependence of the subageing exponent µ(H) in the thiospinel sample
(circles). The triangles show the µ(H) values obtained when the stationary part of
the magnetization is not subtracted

An amusing example of subageing has been studied in the rheology of a
microgel paste [32], which is of the type used as toothpaste. Here the notion of
a freezing temperature is not relevant, but instead the initial state of ageing is
obtained by applying a strong shear stress, which turns the paste into a fluid,
whose viscosity then progressively increases with time (so toothpaste does
flow out of the tube when it is pressed, but does not flow from the toothbrush
to the ground).

At low stresses, the response to a shear excitation is a long-time creep
curve, which is slower when the experiment is performed after a longer waiting
time. The resulting curves (Fig. 2.9) have been scaled together as a function
of t/tµw (not far from λ/tµw), and µ is found to decrease as a function of
increasing stress, like in glassy polymers, and like in spin-glasses as a function
of the amplitude of the magnetic field (Fig. 2.8). Similar results have been
obtained these last years in various examples of colloidal gels [33–35].

2.2.2 AC Susceptibility

Slow dynamics and ageing in the spin-glass phase can also be observed by
ac susceptibility measurements, in which a small ac field (∼1Oe) is applied
all along the measurement. Again, the starting point of ageing experiments
consists in cooling the spin-glass from above Tg, down to some T < Tg at
which the ac response is measured as a function of the time elapsing, which
is the “age” of the system (equivalent to tw + t in the dc procedures). We find
here the same 2 characteristics as observed in dc experiments:



18 E. Vincent

Fig. 2.9. From [32], creep curves of a soft deformable microgel (similar to tooth-
paste), measured at different waiting times ranging from tw = 15 s to 10000 s, for a
probe stress σm = 10 Pa greater than the yield stress σc, above which the suspension
begins to flow. The inset shows the evolution of the subageing exponent µ as the
probe stress increases up to σy, above which ageing disappears (µ = 0)

(i) the ac response is delayed, i.e. the susceptibility has 2 components: an
in-phase one χ′, and an out-of-phase one χ′′. χ′′ is zero above Tg (para-
magnetic phase), and rises up as the sample is cooled into the spin-glass
phase.

(ii) the susceptibility relaxes down, signing up the occurrence of ageing. This
relaxation is visible on both χ′ and χ′′, but is more important in relative
value ∆χ/χ in the out-of-phase component χ′′.

Figure 2.10 shows the χ′′-relaxation as a function of time for different
frequencies ω. A very clear frequency dependence is seen in Fig. 2.10: the
amplitude (in the fixed experimental time window) of the observed relaxation
increases as the frequency ω decreases. On the other hand, the infinite time
limit of χ′′ seems very convincingly to be non-zero, pointing out to a finite χ′′

eq

stationary limit. Once shifted vertically by an arbitrary amount (that should
correspond to χ′′

eq) and plotted as a function of the reduced variable ω.t, the
curves can be superposed. Actually, in this ac experiment, 1/ω is the typical
observation time and plays the same role as t in the dc relaxation procedures.
The total age of the system is here the time t along which the ac relaxation is
measured after cooling, equivalent to tw + t in the dc experiment. Hence, the
present ω.t scaling is equivalent to the t/tw scaling of the dc experiments [19].
Strangely enough, there is no sign of subageing (tµw in place of tw) in the
scaling behaviour of the ac data. Indeed, the superposition of the ac curves is
not as constraining as that of a series of TRM relaxations over a large range
of t′ws. But any attempts of an ω.tµ scaling of the ac data have favoured
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Fig. 2.10. Time decay of the out-of-phase susceptibility χ′′ of the thiospinel sam-
ple after a quench (ageing), for different frequencies. The curves have been shifted
vertically by an arbitrary amount χ′′

0 for the sake of clarity

µ∼ 1. One difference with dc experiments which may be pointed out is that
ac measurements are necessarily performed in the ω.t ≥ 1 regime (sometimes
called “quasi-stationary” regime), that corresponds to the limited region of
t/tw < 1 in dc experiments. The possibility of a link between the observation
of a subageing behaviour and the time regime explored in the experiments
remains open [19].

Similar ac procedures are used in the study of structural and polymer
glasses. For instance, in [36], the dielectric constant ε of glycerol has been
measured following the same procedures as above. The out-of-phase suscep-
tibility ε′′ shows a strong relaxation as a function of the time following the
quench (Fig. 2.11).

The relaxation has at least the same qualitative frequency dependence as
observed in spin-glasses: the lower the frequency ω, the larger the relaxation in
a given time window. The authors state that no ωt-like scaling is obeyed [36];
however, in the case of this structural glass, one cannot exclude that the
influence of the cooling time, probably stronger than in spin-glasses, may
bring corrections to the effective value teff of t which could finally yield an
ωteff scaling.

2.2.3 Noise Measurements

The measurement of noise in spin-glasses has been a high-level challenge for
the experimentalists, because the spontaneous magnetic fluctuations are tiny
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Fig. 2.11. From [36], relaxation of the dielectric constant of glycerol at 178K, as
a function of the time following the quench from above Tg = 190K (ageing), for
various frequencies. The main part of the figure shows the out-of-phase component
ε′′, the inset shows the in-phase component ε′. The amplitude of the relaxation is
larger at lower frequencies (same qualitative trend as in spin-glasses)

when compared with the magnetization obtained in response to an external
field (in the recent experiment described below, they are equivalent to the
response to a field of ∼10−7 Oe). We only recall here the general lines of these
remarkable experiments, developed by M. Ocio. The interested reader will
refer to his corresponding papers [29,37].

The response to a magnetic field, whose investigation was detailed above,
is related to the spontaneous magnetic fluctuations via the Fluctuation-
Dissipation relation (FDR), established for ergodic systems at equilibrium.
In its integrated form, it relates the relaxation function σ(t′, t)(σ = m/h,
response at t after cutting off a field h at t′, same as the TRM) to the auto-
correlation C of the fluctuations of the magnetization m, namely C(t′, t) =
〈m(t′).m(t)〉:

σ = C/kBT . (2.5)

A lot of work has been devoted to extensions of FDR to non-equilibrium
situations, for which the ageing regime of the spin-glass is archetypal [38,39].
A prominent result by Cugliandolo and Kurchan [38] is a modified FD relation
which reads

σ = C.F (C)/kBT (2.6)

where T/F (C) takes the meaning of an effective temperature. In this ap-
proach, for large t′, the obtained correction factor F (C) is a function of the
autocorrelation C only, i.e. it does not explicitly depend on t and t′ but has
a time dependence through the value of C(t′, t) only.

This result was one of the strong motivations of the recent noise exper-
iments performed by M. Ocio and D. Hérisson [29]. A decade before, the
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very first noise measurements were performed by M. Ocio and Ph. Refregier
in collaboration with H. Bouchiat and Ph. Monod [37]. In these pioneering
experiments, the Fourier transform of the noise could be measured, and com-
pared with the ac susceptibility, that was measured in another setup. This
early work suffered two limitations: firstly, the comparison between noise and
response could only be made up to an unknown calibration factor, and sec-
ondly the time regime was limited to the quasi-stationary region ωt > 1 (as
opposed to the “strongly ageing” regime explored in TRM experiments). The
results was that the FDR was obeyed as far as could be checked [37].

In the new set of experiments [29], a special setup which allows both types
of measurements in the same geometry has been built. For noise measure-
ments, the pickup coil (3rd order gradiometer geometry) which contains the
sample is “simply” connected to a dc SQUID, and the full signal is recorded
as a function of time (not only its Fourier transform). The response function
is investigated in the strongly ageing regime by means of TRM-relaxation
recordings. One bright idea was to use the pickup coil itself as an excita-
tion coil, through which the field is applied by induction of a current in the
pickup loop. Thus, the magnetic geometry (rather complex in a gradiometer)
is exactly the same for the detection of the magnetization fluctuations as for
applying the excitation field, allowing a direct comparison between fluctua-
tions and response.

In order to cancel the self-inductive response to the field variation which
triggers the TRM relaxation, a bridge configuration is used for response mea-
surements, in which the main branch involving the sample is balanced by an
equivalent one without sample, excited oppositely. The whole experiment is
placed in a magnetic shield which lowers the residual magnetic field below
10−3 Oe. Important care was also taken for eliminating all electromagnetic
parasite sources, as well as external low-frequency disturbances such as those
accompanying the day-night cycle of the laboratory.

Finally, the measurements were made possible. An absolute calibration was
realized with the help of an ultra-pure copper sample, in which the magnetic
response and the fluctuations of eddy currents are related through classical
(ergodic) FDR. With an ergodic sample like copper, this setup constitutes
an absolute thermometer after calibration by only 1 fixed point (one of the
unrealized projects of M. Ocio was to develop the use of this method for
absolute thermometry).

An example of noise recordings is presented in Fig. 2.12.
Each trace shows the SQUID output (proportional to the sample magne-

tization, with an arbitrary offset) during one experiment, starting from above
Tg and cooling. Due to the slight residual field, the trace shows the magne-
tization peak observed when crossing Tg. After cooling, the temperature is
stabilized at say T = 0.7Tg, and the magnetization fluctuations are recorded
as a function of time during ∼104 s. After that the sample is re-heated above
Tg. The experiment is repeated ∼300 times. On each of the recorded traces,
for any choice of times (tw, t) the correlation m(tw) ·m(tw + t) can be com-
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Fig. 2.12. SQUID signal (proportional to the magnetization, with an arbitrary offset
voltage) in a series of successive noise recording experiments (data from [29]). Each
experiment starts from above Tg; due to the slight residual field, the magnetization
shows a peak when crossing Tg

puted. This value is of course strongly fluctuating from one experiment to the
other, but the average over ∼300 measurements is taken and after properly
subtracting offsets the autocorrelation C(tw, t) = 〈m(tw) ·m(tw + t)〉 is ob-
tained. It is represented in the top part of Fig. 2.13 in the same way as usual
TRM results, that is as a function of t for various fixed values of tw.

The bottom part of Fig. 2.13 shows in the same representation the results
obtained from the TRM experiments performed in the same setup, with an
excitation field of ∼10−3 Oe. The two insets show that both noise and response
functions obey the same scaling law as a function of the reduced variable
ζ = λ/tµw (the same fitting parameters can be used). The comparison between
both sets of results is best illustrated in the plot of Fig. 2.14, in which the
response function σ(tw, t) (or the susceptibility χ = 1 − σ) is plotted as a
function of C(tw, t) for 3 different temperatures T = 0.6, 0.8 and 0.9Tg. See
[29] for the details of normalization of C(tw, t).

For each of the 3 temperatures, the point cloud is the set of “raw” results
obtained for various values of (tw, t). The straight lines with 1/T slope show
the expected result when the classical FDR is obeyed with no correction.
There is a clear 1/T regime for the higher values of C, and the results show a
crossover towards a weaker slope 1/Teff with Teff > Tg as C decreases. These
deviations show the first experimental observation in a spin-glass of deviations
from the normal FDR in the ageing regime.

In order to make a more quantitative comparison with the theoretical
predictions [38], it is necessary to extrapolate the results in the very long
time region. An estimate of this very long time behaviour can tentatively be
obtained by extrapolating the existing data to the region where the stationary
part of the relaxation t−α has relaxed to zero, i.e. by subtracting to σ the
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Fig. 2.13. From [29], TRM-relaxation (top) and autocorrelation (bottom) functions,
recorded at 13.3 K with the thiospinel sample. The different curves correspond, from
bottom to top, to tw = 100, 200, 500, 1000, 2000, 5000 and 10000 s. The insets shows
the respective ageing parts, deduced by the scaling analysis (see text), and plotted
as a function of the reduced time variable ζ = λ/tµ

w

stationary part which has been obtained on the basis of a precise rescaling
of the curves (as shown in the inset of Fig. 2.13). This is shown in Fig. 2.14
in solid curves, which are indeed the superposition of the different curves
obtained for various t′ws. The different curves are indistinguishable within the
present accuracy, which strongly suggests (in the framework of this crude
extrapolation) that the correction factor F (C) to the FDR is only a function
of C, as predicted in [38].

It may be risky to push much further the comparison at this stage, since
the extrapolation to long times is problematic, and also there remain some
difficulties with the normalization of C(tw, t) by C(t, t) [39]. One point which
is out of doubt is that the data in the ageing region do not tend to favour a
horizontal slope, as expected in domain growth type models (infinite Teff). The
observed mean slopes correspond to Teff(0.6Tg) ∼ 1.5Tg, Teff(0.8Tg) ∼ 3Tg,
and Teff(0.9Tg) ∼ 4Tg. However, the extrapolated data show some curvature,
and do not look like straight lines as would be expected from 1-step RSB
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Fig. 2.14. Response function versus autocorrelation, for 3 different temperatures
T (data from [29]). The straight lines show the 1/T equilibrium regime. The points
are the raw results. The curves are obtained by subtracting the stationary part
(equivalent to a long time extrapolation of the data). The dashed line is a χ =
(1 − C)0.47 fit, in reference to the continuous RSB model [40]

Fig. 2.15. From [34], time evolution of the dynamic structure factor of a gel, mea-
sured by multispeckle dynamic light scattering at q = 6756 cm−1. The curves are
labelled by the gel age tw

type models of spin-glasses [1]. In continuous RSB models like the mean-field
spin-glass [2], a χ = (1 − C)1/2 behaviour is predicted [40]. The dashed line
in Fig. 2.14 shows a χ = (1 − C)0.47 fit which gives at least a rough account
of the results. The next step in this discussion of the first directly comparable
noise and response data may arise if a direct experimental determination of
C(t, t) is obtained, for example from neutrons scattering data [41].

The autocorrelation function may be more easily accessible in colloidal sys-
tems. In the case of colloidal gels, the technique of multispeckle dynamic light
scattering allows the direct determination of the dynamical structure factor
f(q, τ), which is the autocorrelation function of the density fluctuations over a
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Fig. 2.16. From [42], volume relaxation (in fraction of the long time value) of an
epoxy glass sample after a quench. At some times, a stress of amplitude γ is applied.
For a low stress value (solid line), there is no visible effect. For a higher stress value
(circles), rejuvenation can be seen as spikes

time τ and at a length scale 2π/q. In [34], this autocorrelation has been found
to present interesting similarities with the magnetization autocorrelation (and
response function) of spin-glasses (Fig. 2.15).

At fixed q (in the above spin-glass case q = 0) the time decay of f(q, τ)
has the unusual form f(q, τ) ∼ exp{−(τ/τf )1.5}, but like in spin-glasses the
autocorrelation depends on the waiting time tw during the gel restructuration
through τ ∼ t0.9

w (subageing).

2.2.4 Rejuvenation by a Stress

Before turning to the rejuvenation effects which are observed in spin glasses
in response to temperature changes, let us mention that a certain kind of
rejuvenation effects has been known for a long time in the rheology of glassy
materials in response to a mechanical stress [20], and that the equivalent of
these phenomena in spin glasses can be traced out in the effect of a (sufficiently
strong) variation of the magnetic field [28].

Figure 2.16 shows a typical ageing experiment in which the volume relax-
ation following the quench of an epoxy glass sample is measured [42].

This volume relaxation accompanies the stiffening of the mechanical prop-
erties during ageing of all structural and polymer glasses. In the experiment
of Fig. 2.16, at some times a stress of amplitude γ is applied. The solid line
corresponds to a low γ value, for which the stress has no visible effect. But,
for a higher γ value (open circles), a phenomenon called “rejuvenation” is ob-
served: suddenly the volume increases, and the relaxation is renewed, starting
from a value corresponding to a “younger age”.
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A similar phenomenon can be seen in spin-glasses. Figure 2.17 shows an
ac experiment [28] in which, after 300 min, a dc field H = 30Oe is applied
(in comparison, the ac field, which does not influence ageing here, is Hac =
0.3Oe).

Fig. 2.17. AC out-of-phase susceptibility of the thiospinel spin-glass after a quench.
An additional dc field is applied in the middle part of the experiment, inducing
rejuvenation (data from [28])

The slow relaxation of χ′′, which is characteristic of ageing, shows a sudden
drop when the dc field is applied, and restarts from a “younger state”. When
the dc field is turned back to zero, a weaker but similar drop is observed.
The Zeeman coupling of the spins to the dc field in this experiment is strong
enough to overcome the more subtle spin rearrangements which progressively
occurred during ageing as a result of the local minimization of interaction
energies. Hence, part of the effect of ageing is erased by applying the dc field,
and ageing (partly) restarts from new (rejuvenation effect). The same effect
is also visible in the dc (TRM) experiments presented above; as shown in
Fig. 2.8, the µ exponent of the tw-scaling decreases with the amplitude of
the field used for the TRM-relaxation, or in other words, the influence of tw
becomes weaker and weaker as a stronger field perturbation is applied (in the
limit µ = 0 there is no tw effect). In the toothpaste experiment (Fig. 2.9 [32]),
as the shear stress amplitude increases, µ also decreases.

It is likely that this effect of the magnetic field on a spin-glass is the
equivalent of the effect of a mechanical stress on a glass, in which the slow
rearrangements of atoms (or polymers, or micro-spheres or discs in a colloid)
during ageing are partly destroyed by applying a shear or elongation stress.
The rejuvenation effects as a function of temperature that we present in the
next chapter pertain to a different class of phenomena, with the possibility
of obtaining almost independent ageing evolutions at different temperatures,
and memory effects despite rejuvenation.
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2.3 Ageing, Rejuvenation and Memory

2.3.1 Cooling Rate Effects

The state of a glass is strongly influenced by the way it has been cooled. What
one usually has in mind is the kind of picture that is shown in Fig. 2.18 [43],
displaying the evolution of a thermodynamic quantity like the enthalpy or the
specific volume as a function of temperature during the cooling process.

Above the freezing temperature Tf , the glass follows the equilibrium line
in the graph of Fig. 2.18, but when crossing Tf it falls out of equilibrium,
reaching a state in which the enthalpy relaxes down slowly (ageing). Tf is
of course only dynamically defined: for a faster cooling, Tf is higher, and a
slower cooling allows the glass to follow the equilibrium line down to lower
temperatures. Following the scheme of Fig. 2.18, a state B that would be
attained after rapidly cooling to A and ageing for a long time could more
easily be obtained by a slower cooling.

This view of glasses was the starting point of experiments in spin-glasses
in which we explored how the ageing behaviour could be influenced by the
temperature history, having in mind that well-suited cooling procedures might
bring the spin-glass into a strongly aged state which otherwise would require
astronomical waiting times to be established [44]. These experiments have
brought important surprises. The one presented in Fig. 2.19 is representative
of the unexpected features which were found in the spin-glass behaviour [45].

In this experiment, we compare the relaxation of the ac susceptibility at
0.7Tg after two cooling procedures in which the region of Tg was crossed at

Fig. 2.18. Sketch of the typical enthalpy or volume variation with temperature
in a glass (freely inspired from e.g. [43]). During cooling, the liquid falls out of
equilibrium at a freezing temperature Tf which depends on the cooling rate (“fast”,
or “slow”), and becomes a glass. After a fast cooling to point A, ageing over very
long times will eventually bring the glass to point B, which can be attained much
more quickly by a slow cooling
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Fig. 2.19. Effect of the cooling rate on the relaxation of the ac susceptibility in the
thiospinel sample (from [45]). Top part: sketch of the procedure, in which a fast and
a slow cooling rate are used around Tg = 16.7 K, before measuring at 12K. Bottom
part: relaxation of the out-of-phase (main figure) and in-phase (inset) components
of the ac susceptibility, from the time t = 0 at which the temperature of 12K has
been reached. Full circles: fast cooling. Crosses: slow cooling

cooling rates differing by a factor 10. Both ageing relaxations, measured from
the time at which the final temperature was reached, are exactly superimposed
onto each other, as well for χ′′ as for χ′: a slower cooling through Tg does
not help bringing the spin-glass closer to equilibrium, at least as far as can
be seen in this measurement. Note that, in the slow cooling procedure, we
used a fast cooling rate in the last Kelvin’s; a slower final approach of the
landing temperature does indeed influence further ageing at this temperature,
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as shown in the original publication. Our point here is that a slower cooling
in the Tg region does not help ageing at a lower temperature.

We have studied this apparent “insensitivity” of the spin-glass to cool-
ing rate effects in more systematic experiments in which the temperature is
changed by steps. Figure 2.20 presents the result of a “negative temperature
cycle” experiment [46].

Fig. 2.20. Relaxation of the out-of-phase susceptibility χ′′ during a negative tem-
perature cycle of amplitude ∆T = 2K (frequency 0.01 Hz), showing ageing at 12 K,
rejuvenation at 10 K, and memory at 12 K (from [19,46]). The inset shows that, de-
spite the rejuvenation at 10K, both parts at 12 K are in continuation of each other
(memory)

After a normal cooling (typically of ∼100 s from 1.3Tg to 0.7Tg), the spin-
glass is kept at constant temperature T = 12K = 0.7Tg for t1 = 300min.,
during which ageing is visible in the strong relaxation of χ′′. Then, the tem-
perature is lowered one step further from T = 12 to T −∆T = 10 K. What is
observed is not a slowing down of the relaxation, but on the contrary a jump
of χ′′ and a restart, which we state as a rejuvenation effect upon decreasing
the temperature, as if ageing was starting anew at T − ∆T . The apparent
absence of influence of former ageing at T is in agreement with the previous
experiment (Fig. 2.19) in which “slower cooling does not help”.

One may wonder whether this renewed relaxation corresponds to a full
rejuvenation of the sample: the answer is no. A first point is that the new
relaxation can be identical to the one obtained after a direct quench one,
but only – of course – if ∆T is sufficiently large, here ∆T ≥ 2–3 K. And one
should not forget that this identity can only be checked in the very limited time
window of the experiments, thus not proving very much concerning the overall
state of the spin-glass. More importantly, the 3rd part of the experiment
brings a definitive negative answer. When the temperature is turned back
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from T −∆T = 10K to T = 12K, the χ′′ relaxation restarts exactly from the
point that was attained at the end of the stay at T , and goes on in precise
continuity with the former one, as if nothing of relevance at T had happened
at T −∆T . As shown in the inset of Fig. 2.20, this can be checked by shifting
the 3rd relaxation to the end of the 1st one: they are in continuity, and can
be superposed on the reference curve which is obtained in a simple ageing
at T . Hence, during ageing at T −∆T and despite the strong associated χ′′-
relaxation, the spin-glass has kept a “memory” of previous ageing at T , and
this memory is retrieved when heating to T .

This negative temperature cycle experiment pictures in a spectacular man-
ner the phenomenon of rejuvenation and memory in a spin-glass. When exam-
ined in more details, however, the situation is not always so simple. Figure 2.21
shows the results of negative temperature cycle experiments performed with
various values of ∆T .

For ∆T = 1K, the beginning of the 3rd part relaxation shows a transient
spike, which lasts for ∼5000 s before the curve merges with those, obtained
for higher ∆T ′s, that are in continuity with the relaxation at T . Thus, for
a smaller ∆T than that corresponding to full memory, there is indeed some
contribution at T from ageing at T−∆T , and this contribution is “incoherent”,
extending over rather long but finite times (3–5000 s). Note that the data of
Fig. 2.21 is taken at frequency 0.1 Hz, whereas in Fig. 2.20 it is taken at
0.01 Hz. In Fig. 2.21, the points can therefore be taken more rapidly, and a
small upturn is visible for ∆T = 2K: full memory is only obtained for ∆T = 3
and 4K.

For smaller and smaller values of the temperature interval (∆T < 1K), the
observed “transient spike” decreases, changes sign (the curve merges with the
reference from below), and finally vanishes [46, 47]. In this small ∆T regime,
apart from the transient part, ageing at T − ∆T contributes “coherently”

Fig. 2.21. Relaxation of the out-of-phase susceptibility χ′′ during negative tem-
perature cycles of different amplitudes (from [48], but see also [46, 47] for other
examples), ranging from ∆T = 1K (upper curve, with the prominent spike) to
∆T = 4K (lower curve, no spike and full memory). The frequency is 0.1 Hz
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to ageing at T as an additional ageing time teff , in such a way that the 3rd
relaxation must be shifted by (t2 − teff) to be in continuity with the 1st part.
Details on the results in this regime, together with their discussion in terms
of a Random Energy Model, can be found in [47].

2.3.2 Memory Dip Experiments

The ability of the spin-glass to keep a memory despite (partial) rejuvenation
can be further explored in experiments with multiple temperature steps. The
first (double) “memory dip experiments”, suggested by P. Nordblad, have
been developed in collaboration between the Uppsala and Saclay groups [45].
An example of a “multiple dip experiment” is shown in Fig. 2.22 [24,48,49].

This is an ac experiment in which the sample is cooled by 2 K steps of
duration ∼1/2 hour down to 4 K, and then reheated continuously (inset of
Fig. 2.22). Figure 2.22 shows χ′′ as a function of temperature during this
procedure, starting from T > Tg where χ′′ = 0 (paramagnetic phase). χ′′ rises
up when crossing Tg = 16.7K, and when the cooling is stopped, the relaxation
of χ′′ due to ageing is observed during 1/2 hour (successive points at the same
temperature in the figure). Upon further cooling by another 2 K step, the χ′′

jump of rejuvenation is seen, and the relaxation due to ageing takes place. At
each new cooling step, rejuvenation and ageing can be seen, and this happens
∼6 times in the experiment of Fig. 2.22. In the second part of the experiment,
the sample is re-heated continuously, at a slow rate (∼0.001K/s, equal to the
average cooling rate) which allows the measurement of χ′′. Amazingly, apart

Fig. 2.22. An example of multiple rejuvenation and memory steps [24, 48, 52, 53].
The sample was cooled by 2 K steps, with an ageing of time of 2000 sec at each step
(open diamonds). Continuous reheating at 0.001 K/s (full circles) shows memory
dips at each temperature of ageing
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Fig. 2.23. Schematic picture of the hierarchical structure of the metastable states
as a function of temperature [4, 19,44]

from the rather noisy low-T region, the memory of each of the ageing stages
performed during cooling is revealed in shape of “memory dips” in χ′′(T ),
tracing back the lower value of χ′′ which was attained at each of the ageing
temperatures. Thus, the spin-glass is able to keep the simultaneous memory of
several (5 or 6!) successive ageings performed at lower and lower temperatures.
Increasing the temperature afterwards reveals the memories, and meanwhile
erases them.

This very asymmetric scheme of rejuvenation upon cooling, topped up by
memory effects upon heating, has led the Saclay group to propose a description
of these phenomena in terms of a hierarchical organization of the metastable
states as a function of temperature, as pictured in Fig. 2.23 [19,44].

This very simple picture sketches the effect of temperature variations in
terms of a modification of the free-energy landscape of the metastable states
(and not only of a change in the transition rates between them). At fixed
temperature T , ageing corresponds to the slow exploration by the spin glass
of the numerous metastable states. When the temperature is decreased from
T to T −∆T , the free-energy valleys are considered to subdivide into smaller
ones, separated by new barriers. Rejuvenation arises from the transitions that
are now needed to equilibrate the population rates of the new sub-valleys: this
is a new ageing stage. For large enough ∆T (and on the limited experimental
time scale), the transitions can only take place between the sub-valleys, in such
a way that the population rates of the main valleys are untouched, keeping
the memory of previous ageing at T . Hence the memory can be retrieved when
re-heating and going back to the T -landscape. This tree picture, somewhat
näıve, is however able to reproduce many features of the experiments when
discussed in more details [47]. It has been made quantitative in developments



2 Ageing, Rejuvenation and Memory: The Example of Spin-Glasses 33

of the Trap Model and the Random Energy Model [47, 50]. In the mean-
field model of the spin-glass with full replica symmetry breaking [2], it has
been shown that rejuvenation and memory effects can be expected in the
dynamics [51].

Beyond this description of ageing and rejuvenation and memory effects in
terms of metastable states, it is of course very intriguing to imagine what kind
of spin arrangements allow such complex phenomena when the temperature is
varied [52–55]. It is very natural, as proposed in the “droplet model” [56,57],
to consider that the spin-glass, initially in a random configuration after the
quench, slowly builds up from neighbour to neighbour a spin-glass local order
over larger and larger length scales. Frustration makes the process of minimiz-
ing the interaction energy of each spin with its neighbours very slow, making
the jump from microscopic times (which are at play in the domain growth of
pure ferromagnets, in which l ∼ t1/2) to macroscopic times corresponding to
thermally activated crossing of free-energy barriers. In the droplet model, the
spin-glass is a kind of “disguised ferromagnet”, having simply two (spin rever-
sal symmetric) ground states, which compete in the slow growth of spin-glass
ordered domains during ageing. Can we see such domains in experiments?
No obvious macroscopic symmetry is expected in spin-glass order, therefore
no imaging of such domains could be realized until now, in contrast with
the case of ferromagnetic domain growth. The only pictures that we have of
the growth of a potential spin-glass order are obtained from recent numerical
simulations. Figure 2.24 shows a nice example given by Berthier and Young
in [15], but the reader should not be misled by the apparent simplicity of this
ferromagnetic-like picture.

In Fig. 2.24 the grey scale codes the relative orientations of the spins in two
copies (replicas) of the system which, starting from different random states,
evolve independently by a Monte-Carlo algorithm. The snapshots taken after
different waiting times tw show the growth of uniformly coloured regions.
A region with a uniform grey-level colour is a region in which the individual
spins have a constant angle from one replica to the other: over this region, seen
in independent Monte-Carlo evolutions, the neighbour spins build the same
relative angles. This is indeed an image of regions in which the spin evolution
is correlated, which are in this sense equivalent to spin glass ordered domains.

If we now come back to the multiple memory experiment in Fig. 2.22,
thinking of a spin-glass order being established on longer and longer length
scales during each stage of ageing, the observed rejuvenation and memory
effects have some implications concerning these dynamic length scales. The
restart of dissipative processes when going from T to T−∆T indicates that the
spin-spin correlations growing at T −∆T are different from those established
at T . For thermally activated processes, if correlations extend up to a given
length scale L∗

T during ageing at T , the correlation length L∗
T−∆T which is

attained at T −∆T during the same time should be smaller, L∗
T−∆T < L∗

T .
The memory effect imposes here an important constraint: ageing up to L∗

T−∆T
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Fig. 2.24. From the numerical simulations in [15]: relative orientation θi of the
spins Si in two copies (a, b) of a numerical Heisenberg spin-glass. The gray scale
stands for cos θi(tw) = Sa

i (tw) · Sb
i (tw). From top to bottom, three different waiting

times tw = 52, 27, and 57 797 s are represented, showing the slow growth of a local
random ordering of the spins

should occur without changing significantly the correlations established at
the scale L∗

T , that is, L∗
T−∆T < L∗

T . In practice, the independence of ageing
at length scales L∗

T−∆T and L∗
T is realized by a strong separation of the

related time scales τ : τ(L, T − ∆T ) � τ(L, T ). This necessary separation
of the ageing length scales with temperature has been coined “temperature-
microscope” effect by J.-P. Bouchaud [53]: in an experiment like shown in
Fig. 2.22, at each stage ageing should take place at well-separated length scales
L∗

n < . . . < L∗
2 < L∗

1, as if the magnification of the microscope was varied by
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orders of magnitude at each temperature step. This hierarchy of embedded
length scales as a function of temperature is the “real space” equivalent of the
hierarchy of metastable states in the “phase space” (Fig. 2.23).

Do we have examples of systems which present such a hierarchy of recon-
formation length scales? This has been proposed for the very generic case of
an elastic line in presence of pinning disorder [58,59]. Here, frustration arises
from the competition between elastic energy, which tends to make the line
straight, and pinning energy, which tends to twist the line to go through all
pinning sites. As sketched in Fig. 2.25 [59], starting from a random configu-
ration after a quench, the line will progressively “age” by equilibrating slowly
(thermally activated dynamics) over larger and larger distances.

At a given temperature T and after some ageing, the line can be pic-
tured as a fuzzy ribbon (top of right part in Fig. 2.25) which is equilibrated
over a length scale L∗

T . At smaller length scales, the line continues to fluc-
tuate between configurations which are roughly equivalent at temperature
T (thus seen as a fuzzy ribbon). However, when going from T to T − ∆T ,
the difference between the equilibrium populations of some of these config-
urations may become significant, and a new equilibration at shorter length
scales L∗

T−∆T < L∗
T must take place. These dissipative processes will cause

a rejuvenation signal. Meanwhile, processes at length scale L∗
T are frozen at

T −∆T , and the memory of previous ageing remains intact despite the reju-
venation processes, which occur at smaller (and well-separated) length scales.

Fig. 2.25. From [59], sketch of ageing, rejuvenation and memory phenomena in
terms of the dynamics of an elastic line in pinning disorder. Left part : at fixed
temperature T , as time goes on, the line matches the pinning sites over larger and
larger distances LT . Right part : as the temperature is lowered from T to T − ∆T ,
rejuvenation processes occur at a smaller length scale LT−∆T , while the memory of
reconformations at the larger length scale LT is preserved
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This scheme is a good candidate for the mechanism of ageing, rejuvenation
and memory in spin glasses [53,59,60]. The theory of an elastic line in pinning
disorder yields a hierarchy of embedded states and length scales [58]. In the
spin-glass, it is not yet clear what objects could play the role of pinned elastic
lines. Experiments on disordered ferromagnets show that spin-glass dynamics
can indeed be observed, which is most probably due to the dynamics of the
walls [6,60]. Thus, we propose that the observed slow dynamics in spin-glasses
is explained in terms of wall-like dynamics, but in the present state of the art
we cannot identify what are these walls, and what is the nature of the domains
which are separated by these walls (see however the “sponge-like” excitations
which have been characterized in numerical simulations [14]).

2.3.3 Rejuvenation and Memory Versus Cumulative Ageing

In the previous section we described a “rejuvenation and memory like” dynam-
ics, implying a hierarchical organization of the metastable states and of the
corresponding length scales. This type of dynamics is found in systems which
have so many “embedded” degrees of freedom that some of them are avail-
able to excitation at any temperature, even independently from each other at
sufficiently different temperatures.

In “domain growth like” dynamics, of the type occurring in a ferromag-
net, the approach of equilibrium is a one way only evolution through domain
growth and wall elimination, in which the size of the domains should always
increase. In an ideal ferromagnet, in which no energy barriers impede the
domain wall motion, the temperature does not play any role. If we think of
activated processes like the pinning of walls on defects, then temperature is
relevant, but domain growth should just be accelerated or slowed down by
temperature changes. Ageing by domain growth processes is “temperature
cumulative”, in the sense that ageing continues additively (“cumulatively”)
from one temperature to the other. In this type of dynamics, it is not clear how
rejuvenation and memory effects may arise. In the droplet theory [56] they are
related to “temperature chaos” effects, a scenario introduced in [56,61] which
we do not discuss here. Detailed discussions of its possible relevance can be
found in [53–55].

However, this language should not be misleading, and there is indeed some
part of “domain growth” in “rejuvenation and memory” dynamics [21], but in
our present understanding what is growing here is an object of the nature of a
pinned wall rather than a (compact) domain. For a sufficiently small temper-
ature variation ∆T , no rejuvenation effects are seen in the spin-glass: ageing
continues from T to T −∆T (see ac experiments in Subsect. 2.3.1 and [46], or
dc experiments with negative temperature cycles in [19]). In the hierarchical
picture, for small ∆T ′s the free-energy landscape is almost identical at T and
T −∆T . In more general words, for small ∆T ′s the length scale of the ageing
processes are almost the same at T and T − ∆T , and ageing is cumulative
between both temperatures. As soon as ∆T is large enough, the free-energy
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Fig. 2.26. Effect of various cooling procedures on the ZFC magnetization of the
thiospinel (insulating) spin-glass [48]. Comparison of fast and slow coolings, with
and without stops

landscapes become different, the ageing length scales are separated (as is clear
in the example of the pinned elastic line), and rejuvenation occurs due to the
existence of independent degrees of freedom.

In some spin-glass experiments like the one presented in Fig. 2.26 [48], this
dual aspect of ageing dynamics shows up very clearly.

In this experiment, the sample is zero-field cooled with various thermal
histories, and after applying the field at low temperature the magnetization is
measured while increasing the temperature continuously at fixed speed (small
steps of 0.1 K/min). On one hand, we can observe the effect of a slow cooling
in comparison with that of a fast cooling: the slow-cooled curve lies below the
fast one in the whole temperature range. There is indeed a cooling rate effect
in spin-glasses, provided that one chooses an appropriate procedure to evi-
dence it. On the other hand, we can evidence memory effects by stopping the
cooling at two distinct temperatures and waiting during ageing of the spin-
glass. The magnetization measured during re-heating after this step-cooling
procedure shows clear dips at both temperatures at which the sample has
been ageing (this experimental procedure, very similar to that of the ac ex-
periment in Fig. 2.22, has been proposed by the Uppsala group [62]). In a
third experiment, we can mix both effects, by slowly cooling the sample and
interrupting the slow cooling by long waiting times at constant temperature.
The resulting magnetization curve is lower than those obtained after faster
cooling (temperature cumulative ageing), and shows memory dips on top of
this lower curve.

In a similar experiment, performed with another spin-glass (Au:Fe8% from
[63], in Fig. 2.27, metallic sample instead of the insulator of Fig. 2.26), we
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Fig. 2.27. Effect of various cooling procedures on the ZFC magnetization of the
Au:Fe8% spin-glass (top part). Comparison of fast and slow coolings, with and with-
out stops. Bottom part : difference with the magnetization obtained after fast cooling.
From [48]

have also plotted (bottom part of Fig. 2.27) the difference between the curves
obtained after a specific cooling history and the reference one obtained after a
fast cooling. Fast oscillations (memory dips) show up on top of a wide bump
(cumulative ageing).

Thus, the spin-glass should not be considered as exempt of cooling rate
effects, but rather as being able to show rejuvenation and memory effects
in addition to cooling rate effects. How can we now compare the spin-glass
with “normal” glasses, which are considered to be dominated by cooling rate
effects? [21] New experiments have been designed to search for rejuvenation
and memory effects in such systems. And these effects have been found, as is
shown in the experiment of Fig. 2.28 by the ENS Lyon group [64].

This experiment uses the same procedure (and the same representation
of the results) as in Fig. 2.27, but the cooling is only interrupted by one
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Fig. 2.28. Memory effect in the ageing of the PMMA polymer glass, from [64].
The plots show the difference in the dielectric constant between an experiment with
a normal cooling and another one with a stop of 10 hours at Tstop, for 3 values
of Tstop. Left part : cooling. Right part : re-heating, showing a dip at a temperature
corresponding to Tstop

stop at one given temperature. Upon re-heating, the dielectric constant of the
PMMA polymer indeed shows a dip, centred at a temperature slightly higher
than that of the stop, and the comparison of 3 experiments with stops at 3 dif-
ferent temperatures shows very clearly that the position of the dip follows the
temperature of the stop (Fig. 2.28). The range of temperatures in which the
ageing effects are important in PMMA is much narrower than in spin glasses,
and the width of the dip may appear to be larger because it spreads over the
whole explored temperature range. However, the temperature-dependence of
the dip position is very clearly evidenced, signing up the occurrence of ageing
processes which are strongly temperature specific, as is the case in spin-glasses.

An even more dramatic example of rejuvenation and memory effects in a
structural glass (Fig. 2.29) has been obtained in a study of the mechanical
response of gelatine by a group of the food company Firmenich SA (Switzer-
land) [65].

Gelatine is a complex protein made of folded helices, and it has indeed
many degrees of freedom related to helix unfolding in the vicinity of room
temperature. This experiment is an ac measurement of the elastic modulus
G′, and is again comparable with the ac experiment of Fig. 2.22. During ageing
at fixed temperature, G′ relaxes upwards (ageing, the gelatine stiffens), and
upon further cooling some rejuvenation can be seen. When re-heating, G′

shows a dip at the ageing temperature, and the authors could even realize a
double memory experiment in which two memory dips can be distinguished
(Fig. 2.29).

Thus, it appears that ageing effects in glasses in general can be con-
sidered as showing both “T-cumulative” and “rejuvenation and memory”
contributions. The specificity of spin-glasses might then be their ability to
show sharp memory effects. However, the next section shows that the sharp-
ness of these memory effects may be different in different spin glasses, and the
further investigation of memory effects in structural glasses may bring other
surprises.
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Fig. 2.29. Memory effect in the ageing of a gelatine gel (measurement of the elastic
modulus G′, from [65]). Two stops of 2 hours were made at 25 and 15◦C during
cooling. The upper part shows G′ (solid line: with stops, dashed line: without stops)
as a function of temperature. During the stops, G′ increases slowly (ageing, the
gelatine gel stiffens). Upon re-heating, a wide-spread excess of G′ is seen when
compared with the curve obtained without stops. But, in the lower part of the
figure which shows the difference plot, the memory of both stops is clearly revealed
on re-heating
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2.4 Characteristic Length Scales for Ageing

As ageing goes on, the dynamical response of the spin-glass becomes slower.
We have seen (Fig. 2.5) that the time derivative of the magnetization relaxation
after a field change gives access to an effective distribution of relaxation times,
which shows a wide peak centred in the log t = log tw region [22]. For longer
t′ws, this distribution shifts towards the longer time region. We have no di-
rect access to the spin configurations which correspond to these longer and
longer response times, but it is reasonable to assume that longer response
times are associated with flipping a larger number of correlated spins. This
is the point of view that we have adopted above in this paper, discussing the
multiple memory experiments (Fig. 2.22) in terms of a hierarchy of embedded
dynamical length scales selected by temperature (Fig. 2.25) [53]. No simple
symmetry allows an easy observation of these dynamical correlation lengths,
but, considering that such characteristic dynamical lengths are underlying the
ageing phenomena, we have designed experiments which bring rather strong
constraints on their properties. These experiments can be grouped in two
classes: field variation and temperature variation experiments.

2.4.1 Length Scales from Field Variation Experiments

The idea of these experiments, based on [28], has been developed by R. Orbach
and his group (UCLA and Riverside) [66]. It starts from the observation that
the magnetization relaxation following a field change (as well in TRM as in
ZFC procedure) becomes faster when a higher field amplitude is used, going
beyond the linear response regime. An example is shown in Fig. 2.30.

Fig. 2.30. ZFC relaxations of the Fe0.5Mn0.5TiO3 Ising sample, for tw = 10000 s
and 2 different values of the field H (data from [67]). The lower curve, taken with
a low-field H = 5Oe, shows an inflection point in the tw region. In the upper curve,
taken with a much higher field H = 900 Oe, the inflection point is found at a shorter
time teffw ∼ 1000 s
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The lower curve in Fig. 2.30 shows the ZFC relaxation obtained after
applying a (small) 5 Oe field after tw = 10000 s. Its inflection point is located
as usual around t ∼ tw. The upper curve is obtained with a much higher field
of 900 Oe, applied after the same tw. This relaxation is faster than the first
one in two respects: the initial rise up of the magnetization is higher, and the
inflection point is found at shorter times, indicating that the distribution of
the relaxation times now peaks at teffw ∼ 1000 s, one order of magnitude smaller
than tw = 10000 s. We propose to characterize the relaxation curves by their
inflection point ti (time at which the relaxation rate is maximum), defining
a typical free-energy barrier U which can be overcome by thermal activation
at temperature T after a time ti with an attempt time τ0(τ0 ∼ 10−12 s is a
paramagnetic fluctuation time):

U = kBT ln(ti/τ0) . (2.7)

In the case of the low-field experiment with low-field H0, ti ∼= tw, which
defines a barrier ∆ as

∆(H0) = kBT ln(tw/τ0) . (2.8)

In the experiment with a higher field H, the barrier ∆(H) = kBT ln(teffw /τ0)
is smaller since teffw < tw. Assuming that, in a relaxation experiment performed
after a given tw, the spin correlations extend up to a typical number of spins
Ns(tw), we propose to ascribe the free-energy reduction ∆(H0) − ∆(H) =
EZ(H) to the Zeeman energy of coupling of the magnetic field to the typical
number of correlated spins Ns(tw) that must be flipped in the relaxation
process [28, 66]. In a low-field experiment this Zeeman energy is negligible,
and we have ti ∼= tw, but for a higher field H EZ(H) becomes significant, and
we obtain it as the result of the measurement:

EZ(H) = kBT ln(tw/teffw ) . (2.9)

The Zeeman energy is EZ = M.H,M being the magnetization of the Ns

spins. At this stage, we need to write explicitly the dependence of M on Ns,
which is not completely obvious for a disordered system. For a small number
of spins Ns in a random configuration, the magnetization is proportional to
the typical fluctuation N

1/2
s , and is independent of the field: EZ = N

1/2
s µH,

where µ stands for the magnetic moment of 1 spin in the compound. On
the other hand, at the macroscopic scale, the magnetization is an extensive
quantity, proportional to the number of spins, and (to first order) proportional
to the field via the susceptibility χ of 1 spin: EZ = NsχH2.

It is likely that the general dependence of EZ on Ns is a crossover shape
from H to H2 dependence, but this would mean too many free parameters
to interpret the results. In principle, the experiment should tell us which one
is the dominant regime in the conditions of the measurement, since we can
measure Ez(H) ∝ ln teffw (H) for various values of H, and conclude whether
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Fig. 2.31. Number of correlated spins extracted from field change experiments,
as a function of the reduced variable T/Tg ln(tw/τ0). The points with error bars
correspond to Heisenberg-like spin-glasses [66], they are well fitted by the straight
line NS ∼ (tw/τ0)

0.45T/Tg. The full circles lying below the others are from the
Fe0.5Mn0.5TiO3 Ising sample [67]

Ez(H) has an H or H2 dependence. However, as in all fitting procedures, the
result may depend on the range of fields explored, and the response is not
completely unambiguous. Let us present now the experimental results that
we obtained from various spin-glass samples.

In an early series of experiments [66], we explored several spin-glasses of
different chemical nature: the insulating thiospinel CdCr1.7In0.3S4, and the
metallic alloys Cu:Mn6% and Ag:Mn2.6%. With respect to spin anisotropy,
these compounds are all Heisenberg-like [63]. For each sample, we measured
ZFC relaxation curves for various amplitudes of the field H, at different tem-
peratures T and for various waiting times tw. For fixed tw and T , the de-
pendence of ln teffw (H) versus H2 was found to be significantly more linear
than as a function of H, and we determined Ns from the observed slope of
EZ = NsχH2 versus H2 [66]. The results are shown in Fig. 2.31.

In this plot, which is presented as a function of the reduced variable
T/Tg ln(tw/τ0), the results from the 3 Heisenberg-like samples at 2 differ-
ent temperatures do all fall on the same line. The number of correlated spins
is, as expected, an increasing function of tw, and the numbers reached in the
experimental times are ∼104 − 106, which means a range of 10–100 lattice
units for the correlation length (assuming L ∼ N1/3). The 3 samples have
a common (universal for Heisenberg-like?) behaviour, which is well fitted by
a unique straight line. The solid line shown in the graph corresponds to the
power law dependence NS = (tw/τ0)0.45T/Tg. This was a rather big surprise
because, soon after these experiments, numerical simulations of the Ising spin-
glass (Edwards-Anderson model) were performed in the ageing regime by
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several groups, who could compute the four point correlation function and
“directly obtain” an estimate of the correlation length L(T, tw) [13]. The nu-
merical result, common to the different groups, is L ∼= (tw/τ0)0.15T/Tg (re-
covering dynamic scaling L ∼ tz of the equilibrium correlation length at
Tg, z = 1/0.15 ∼= 6 being the usual dynamic exponent). This is the same
result as in the experiments (if N ∝ L3). At this stage, the difference be-
tween Heisenberg-like (in experiments) and Ising (simulations) spins was not
really discussed, and what was emphasized was the striking similarity be-
tween the simulations of the Edwards-Anderson model [13], performed up to
tw/τ0 ∼ 105, and the experiments [66], which are performed 10 orders further
in time in the tw/τ0 ∼ 1012−17 regime.

This comparison motivated a second series of experiments [67], in which the
properties of the strongly anisotropic system Fe0.5Mn0.5TiO3 [68], considered
a representative example of an Ising spin-glass, were investigated using the
same technique. We show in Fig. 2.32 the measured Ln teffw as a function of
H2 and also H.

Fig. 2.32. Effective waiting times (log scale) obtained from the field change ex-
periments on the Fe0.5Mn0.5TiO3 Ising spin-glass, as a function of H2 (left) and H
(right) [67]. Four values of the waiting time tw have been explored

In this Ising case, this is the linear behaviour of Ln teffw as a function of
H rather than H2 which is favoured. Therefore we decided to analyse the
Ising results in terms of EZ = N

1/2
s µH. Checking afterwards the results of

an analysis using EZ = NsχH2 (only possible in the small field range), we
found that it does not yield very different conclusions anyway. The results
from the Ising sample are plotted in the same graph as those from the other
samples in Fig. 2.31 [67]. They lie – by almost a factor of 10 – lower than the
others: in the Ising sample, after a given tw, the number of correlated spins
is smaller than in the Heisenberg-like samples. But, at fixed temperature, the
tw dependence of Ns is faster in the Ising case. The overall conclusion of this
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comparison is that the same simple power law, of the type N ∼ t
aT/Tg
w , is not

able to reproduce both sets of results from Heisenberg and Ising samples.
The progress in computer simulations has finally allowed the numerical

study of the Heisenberg spin-glass, which is still more greedy in computer
time. In [15], the comparison of the numerical results is presented using the
same variables as in Fig. 2.31. The correlation length L(T, tw) is found smaller
in the Ising case, as in experiments. The extrapolation of the numerical data
to the time regime of the experiments is rather hazardous, but it is possible
that the long time slope of L(T, tw) versus tw at low T becomes weaker for
Heisenberg than for Ising (however, this is not the case in the numerical time
range).

2.4.2 Length Scales from Temperature Variation Experiments

The temperature variation experiments bring a lot of information on the time-
temperature relation in ageing phenomena. In a negative temperature-cycle
experiment [19, 44], the spin glass is aged during t1 at T , then during t2 at
T −∆T and finally during t3 at T . A specific state of ageing is established by
this temperature history. If after this a field change is applied (like in the TRM
procedure), the relaxation curve that is obtained reflects the properties of the
state that has been prepared. For small ∆T values, it is possible to obtain
the same relaxation curve after ageing at constant temperature T during a
total waiting time t1 + teff2 + t3, in such a way that the effect of waiting t2
at T − ∆T is the same as waiting teff2 at T . The identity of the relaxation
curves tells us that the same state of ageing has been established in both
histories, at least for the ageing processes whose time scales are probed in a
dc relaxation experiment (∼100 to 105 s) [19]. Now, the idea of is to consider
that this same ageing state corresponds to the same dynamical length L up
to which correlations are established. Hence, from a couple of experiments as
described, we constrain the time and temperature dependence of L(t, T ):

L(t2, T −∆T ) = L(teff2 , T ) . (2.10)

We have performed TRM experiments with negative temperature cyclings
on a series of representative spin-glass samples, in order to better understand
the differences between Ising and Heisenberg systems [67]. For this purpose,
we have used a series of spin glasses which have also been studied in Orsay
by torque measurements [63]. The torque measurements allowed sorting these
spin glasses by their measured spin anisotropy (random anisotropy arising
from Dzyaloshinsky-Moriya interactions). D. Petit and I. Campbell found [63]
that the critical exponents at the spin-glass transition present a systematic
dependence on the spin anisotropy, ranging from Edwards-Anderson type ex-
ponents for the Ising example to chiral ordering exponents [69] in the most
isotropic case. These samples are, Kr being the relative anisotropy constant
Kr = (K/Tg)/(K/Tg)AgMn, normalized to the AgMn value [63]:
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(1) Fe0.5Mn0.5TiO3, Tg = 20.7K, strongly anisotropic single crystal [68] (no
Kr estimate, but large)

(2) (Fe0.1Ni0.9)P16B6Al3, amorphous alloy with Tg = 13.4K and Kr = 16.5
(3) Au:Fe8%, diluted magnetic alloy with Tg = 23.9K and Kr = 8.25
(4) CdCr1.7In0.3S4, insulating thiospinel with Tg = 16.7K and Kr = 5.0
(5) Ag:Mn2.7%, diluted magnetic alloy with Tg = 10.4K and, by construction,

Kr = 1 (in the particular case of Ag:Mn2.7%, we use former data from [70]).

The experimental procedure is sketched in Fig. 2.33a, and a set of results
with the thiospinel sample (#4, Heisenberg-like) is presented in Fig. 2.33b.

In Fig. 2.33b, relaxation curves obtained after temperature cycling of am-
plitude ∆T are compared with those obtained after isothermal ageing at
T = 12K = 0.7Tg during tw = t1 + t3 = 1000 s (bottom solid curve) and
tw = t1 + t2 + t3 = 10000 s (top solid curve). If we look for instance at the
curve obtained after temperature cycling ∆T = 0.5K (full circles), we see
that it almost lies on the isothermal tw = t1 + t3 = 1000 s reference, far be-
low the tw = t1 + t2 + t3 = 10000 s reference. That is, in this case we have
teff2 ∼ 0, which means that ageing during t2 = 9000 s at T − ∆T is almost
of no influence on ageing at T , even though ∆T is only of 0.5 K: this is the
“temperature microscope effect” that was invoked above to explain the possi-
bility of multiple memories (Fig. 2.22, with the same thiospinel sample). The
comparison with the Ising sample is rather interesting (Fig. 2.33c).

For the Ising spin-glass, Tg is slightly different, but the temperatures are
the same in units of Tg. The relaxations are performed at T = 15K = 0.7Tg,
and we can look at the curve resulting from a temperature cycle with ∆T =
0.6K = 0.03Tg with solid squares (same fraction of Tg as for the solid circles
for the Heisenberg case in Fig. 2.33b). This curve lies in the middle region
between the tw = t1 + t3 = 1000 s and tw = t1 + t2 + t3 = 10000 s references,
which means that there is a significant effect of ageing at T −∆T on ageing
at T : in the Ising case, the T -microscope effect with temperature is not so
strong as it is in a Heisenberg spin-glass.

This visual appreciation of the curves can be expressed in quantitative
terms. Using the scaling procedure described in Sect. 2.2, we can ascribe an
effective waiting time t1 + teff2 + t3 to each of the temperature cycled curves,
adjusting precisely the value of teff2 which allows the superposition of each
of the T -cycled curves with a set of isothermally aged references. The result
of each temperature cycling experiment is a value of teff for a given ∆T . In
Fig. 2.34, we present in the same graph the results obtained from the 5 samples
for T = 0.85Tg (similar results have been obtained for T = 0.7Tg) [67].

Of course teff is a decreasing function of ∆T : for larger values of ∆T ,
the contribution of ageing at T − ∆T to ageing at T becomes weaker. Re-
markably, we find that the slope of teff2 (∆T ) varies systematically with the
spin anisotropy of the sample. The slope is weaker for the Ising sample than
for the thiospinel (Heisenberg-like) sample #4, as expected from the trend
observed in Fig. 2.33bc, but the effect is systematic over the 5 samples stud-
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Fig. 2.33. TRM experiments with a negative temperature cycle from T to T -dT
during the waiting time [67]. The extreme solid lines are reference curves, obtained
after isothermal ageing during tw = 1000 and 10000 s. The thick full circles are
obtained after a negative temperature cycling with dT = 0.03 Tg. Results from
other dT values are also presented. Top part : CdCr1.7In0.3 thiospinel (Heisenberg-
like) spin-glass. Bottom part : Fe0.5Mn0.5TiO3 Ising spin-glass
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Fig. 2.34. Effective waiting times deduced from the temperature cycle experiments
performed around T = 0.85 Tg, for the 5 samples investigated (ranked by decreasing
anisotropy from #1 to #5) [67]. The straight line stands for usual thermal slowing
down (constant energy barriers) with τ0 = 10−12 s

ied. Going from Ising to Heisenberg situation, the weaker the spin anisotropy,
the steeper the decrease of teff2 (∆T ), which means a stronger and stronger
T -microscope effect.

We can compare the steepness of this decrease with usual thermal slowing
down. A free-energy barrier U(T −∆T ) can be defined corresponding to the
ageing process during t2 at T −∆T , and for usual thermal slowing down this
barrier is the same as U(T ) corresponding to ageing during teff2 at T , which
reads

U(T −∆T ) = kB(T −∆T ) ln(t2/τ0),
U(T ) = kBT ln(teff2 /τ0), (2.11)
U(T ) = U(T −∆T ) .

From Eq. (2.11), we obtain

ln(teff2 /t2) = −∆T/T ln(t2/τ0) , (2.12)

which is a straight line of slope − ln(t2/τ0) in the log-log plot of teff2 /t2 versus
∆T/T in Fig. 2.34 (for τ0 = 10−12 s, solid line in the figure). For samples
#2 − 3 − 4 − 5, the slowing down is stronger than for usual thermal ac-
tivation, a behaviour that was already observed in early experiments [70],
and has been interpreted as the signature of a “super-activated” behav-
iour: the free-energy barriers U increase as the temperature decreases, i.e.
U(T − ∆T ) > U(T ). These results cannot be ascribed to a decrease of τ0,
which would then take unphysical small values (for the thisopinel sample #4,
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one would have τ0 = 3.10−27 s at 0.7Tg, and even τ0 = 6.10−48 s at 0.85Tg).
On the other hand, an increase of U(T ) for decreasing T is indeed what is
expected from the hierarchical picture [44] sketched in Fig. 2.23; as the tem-
perature is lowered, free-energy barriers grow up, subdividing the valleys into
new sub-valleys. Early temperature-cycling experiments on Heisenberg-like
spin-glasses [70] were already analyzed in terms of a barrier growth towards
low temperatures, but the conclusions were somewhat different, since the rapid
barrier growth was interpreted as an indication of divergences at all temper-
atures below Tg.

The behaviour of the Ising sample is rather surprising; the thermal slow-
ing down is less steep than expected from usual thermal activation, and cor-
responds to an inverse temperature dependence of effective barriers, of the
type U(T − ∆T ) < U(T ), which seems quite unlikely. A way to understand
this result is to consider that the hypothesis of a paramagnetic attempt time
τ0 = 10−12 s is not valid in this case. The weak slope of the Ising results
in Fig. 2.34 means a smaller value of ln (t2/τ0), implying a longer value for
τ0, τ0 ∼ 2.10−7 s. This renormalization of the microscopic attempt time can
be due to critical fluctuations of the type encountered in the vicinity of Tg,
which would have a stronger influence in the Ising case. Following this idea, we
propose a common quantitative analysis of the 5 samples in the next section.

At this stage, an important remark should still be done. If ageing corre-
sponds to establishing correlations up to a typical length L(tw, T ), our results
in Fig. 2.34 have clear-cut consequences on the possible time and temperature
dependence of L, since in these experiments the same stage of ageing (and
hence the same L) can be obtained in 2 different temperature histories. If the
L dependence is of a simple power law type L ∼ (tw/τ0)aT/Tg, as suggested
earlier from the first (Heisenberg-like) experiments [66] and from the Ising
simulations [13], then we should have

(teff2 /τ0)aT/Tg = (teff2 /τ0)a(T−∆T )/Tg , (2.13)

which is identical to U(T ) = U(T − ∆T ) in Eq. (2.11). In other words, a
power law behaviour of L would entail that, in a graph like Fig. 2.34, all
results from all samples lie on straight lines of slopes determined by the value
of τ0. For the Ising sample this is not excluded, but for the Heisenberg-like
spin-glasses τ0 would then reach unphysical small values, smaller and smaller
when approaching Tg. The conclusion from our temperature cycle experiments
is that L(tw, T ) ∼ (tw/τ0)aT/Tg cannot account for all results, and that one
has to go beyond a power law behaviour for L, as already concluded from the
field variation experiments described above (Fig. 2.31).

Recent numerical simulations of Ising and XY spin-glasses [71], using a new
method for determining L, obtain results which are compatible with a power
law behaviour of L for both classes. However, in another set of simulations
[16] following [15], Berthier and Young compare Heisenberg Ising spin-glasses
using the same procedure as in our temperature cycle experiments, that is,
comparing the teff(∆T ) behaviours in both cases. The comparison with the
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experiments is rather puzzling. In [16], the teff(∆T ) line for the Ising case
lies slightly above the line corresponding to simple thermal activation with
constant barriers, as is the case in the experiments. But, at variance with the
experiments, the numerical results for the Heisenberg case lie above the Ising
ones. The authors [16] emphasize that this may be related to the difference
in time scales. Therefore, they have explored the influence of increasing the
time t2 spent at T − ∆T , and they do find that teff(∆T ) becomes steeper
for increasing t2, an effect which is much stronger in the Heisenberg than
in the Ising case. The time scales explored experimentally and numerically
remain very far from each other, but it is not completely excluded that, in the
distant limit of experimental times, the numerical teff(∆T ) line for Heisenberg
becomes lower than for the Ising case, in the same way as in the experiments.

2.4.3 The Dynamical Correlation Length from Both Temperature
and Field Variation Experiments

In temperature variation experiments, a super-activated behaviour is observed
for Heisenberg-like spin-glasses, and the Ising results point towards a renor-
malization of the microscopic attempt time τ0 to a longer time scale τ ′0. We
propose to express τ ′0 as a fluctuation time related to the correlation length
with a usual dynamic scaling relation

τ ′0 = τ0L
z , (2.14)

z being the dynamic critical exponent which is measured above Tg, assuming
that dynamic critical scaling may hold below Tg in the same way as above Tg.
To express the dependence on L of the barrier ∆ which must be crossed for
flipping an ensemble of spins of size L, we follow the idea developed in the
context of the droplet model for spin-glasses [56] and write

∆(L, T ) = Υ (T )Lψ (2.15)

(L being dimensionless, in units of lattice spacing), where the “stiffness” en-
ergy Υ (T ) of the barrier

Υ (T ) = Υ0(1 − T/Tg)ψν (2.16)

vanishes at Tg with the same critical exponent ν which governs the divergence
of the equilibrium correlation length ξ ∼ (T/Tg − 1)−ν above Tg. In other
words, we assume that (like in pinned ferromagnets) ξ behaves in the same
way below and above Tg, and that the barrier related to objects of size L is

∆(L, T ) = Υ0[L/ξ(T )]ψ . (2.17)

Thermal activation over the barrier time ∆(L, T ) yields the time t needed
for a rearrangement of spins at scale L as t = τ ′0 exp[∆(L, T )], which reads
explicitly [53]
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t = τ0L
z exp{Υ0(1 − T/Tg)ψνLψ} . (2.18)

This is a crossover expression between a purely critical regime t = τ0L
z,

obtained in the limit L 	 ξ(T ), and a superactivated regime in which the
barriers grow as (1−T/Tg)ψν when the temperature is decreased. It is clearly
different from the power law L ∼ (t/τ0)aT/Tg that was considered earlier,
however Eq. (2.18) can also be written t ∼ Lzeff(T ) by defining

zeff(T ) = d log t/d logL = z + (ψΥ (T )Lψ)/kBT , (2.19)

where zeff(T ) is now an effective temperature (and length) dependent expo-
nent, which is equal to the dynamic exponent z at Tg [53].

We have fitted the t(L, T ) expression (Eq. (2.18)) to both our field and tem-
perature variation experiments, using the data of the 3 samples for which both
kinds of measurements have been performed: Ising sample (#1), thiospinel
(#3) and Ag:Mn2.7% (#5) [67]. We have fixed zν from published dynamic
critical scaling data. We also fixed, to improve the global fit of all data, a geo-
metrical factor α = 2 in the relation N = αL3 between the length L and the
number of spins N . Apart from α, which is the same for all samples, there are
only 2 free parameters per sample in the adjustment of the whole set of data:
Υ0 and ψ. A unique set of parameters is able to account for all the properties
of each of the 3 samples (see Table 2.1). The fits are presented in Figs. 2.35
and 2.36 for both sets of results.

Figure 2.35 shows the fit to the Ns(tw, T ) results obtained from the re-
laxation experiments with various field amplitudes (Subsect. 2.4.1). In this
representation, the simple power law behaviour of L(∼ N1/3) was represented
by a straight line, but for the more complex crossover behaviour of Eq. (2.18),
the time/temperature reduced variable (T/Tg) ln(tw/τ0) in the abscissa is no
more relevant. Therefore, we have presented the results of the fit as curve
segments, each segment representing, for one sample, the variation of Ns as a
function of tw at fixed temperature.

Figure 2.36 shows the fits to the teff(∆T ) results from temperature cycle
experiments (performed around T = 0.7 and 0.85Tg).

In each Figs. 2.35 and 2.36 taken separately the quality of the fits is not
excellent for all points, but it is important to remember that the results in
both figures are fitted to Eq. (2.18) with a unique set of 2 parameters, and
that the number of data points per sample is ∼15 (see Table 2.1).

Actually, the parameters are not defined with a great quantitative accu-
racy, since their effects on the fit are strongly correlated. However, a consis-
tent qualitative picture emerges. The main tendency is an increasing value
of the barrier stiffness parameter Υ0 and a decreasing barrier exponent ψ for
increasing values of the anisotropy. This behaviour of the exponent is simi-
lar to that found in the analysis of previous ac temperature cycling experi-
ments [72]. It contrasts with that derived from the time/frequency scaling of
χ′′ relaxations proposed in [73], which however is based on a less constrained
analysis.
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Table 2.1. Free parameters used in Eq. (2.18) to fit the temperature cycle and field
variation experiments [67]. The “data points” column indicates the total number of
data points that are fitted for each sample

Υ0 ψ Data Points

Fe0.5Mn0.5TiO3 (#1) 14.5 0.03 16
CdCr1.7In0.3S4 (#4) 1.2 1.1 17
Ag:Mn2.7% (#5) 0.7 1.55 13

The extracted coherence length is noticeably smaller in the Ising sample
(large Υ0) but grows faster with time (small ψ). At present, it is not clear
how the strong single spin anisotropy in the Ising sample gives rise to both a
high value of energy barriers and a very small value of the barrier exponent.
Within a droplet description, ψ ∼= 0 would imply that the droplet energy ex-
ponent θ is also zero, in agreement with recent numerical works on excitations
in Ising spin glasses [74]. The case ψ = 0 also corresponds to barriers grow-
ing as the logarithm of the domain size. This behaviour has been argued by
Rieger to hold in many disordered systems [75], including spin-glasses. In this
case, the “effective exponent” zeff defined above becomes a true, temperature
dependent, dynamical exponent.

Fig. 2.35. Number of correlated spins from field change experiments (same data as
in Fig. 2.31), with the results of the common fit to both field change and temperature
variation experiments [67]. Each curve segment is obtained at fixed temperature as
a function of tw. The inset shows the number of correlated spins N as a function of
temperature after tw = 1000 s for samples #1 and #4, emphasizing their different
behaviours
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Fig. 2.36. Effective waiting times deduced from the temperature cycle experiments
(like in Fig. 2.34), for 3 samples and 2 temperatures, together with the results (lines)
of the common fit to both field change and temperature variation experiments [67]

Beyond the detailed values of the fitting parameters, the overall differ-
ence between an Heisenberg-like (thiospinel, #4) and the Ising samples is
emphasized in the inset of Fig. 2.35, which displays, at fixed tw = 1000 s, the
temperature dependence of N for samples #1 and 4.

N is larger for the Heisenberg-like sample, which leaves more space for
building independent embedded active length scales at different tempera-
tures, and also the temperature variation of N is faster in the Heisenberg
case, which signs up a faster separation of the active length scales with tem-
perature (stronger temperature microscope effect). This should correspond
to an increased sharpness of the memory dips in an experiment like that of
Fig. 2.22. This is indeed what has been observed in the very first experiments
of comparison between an Ising and an Heisenberg spin-glass [72]. Figure 2.37
shows the results of this ac memory dip experiment on the Fe0.5Mn0.5TiO3

Ising spin-glass, in which it was already visible (in comparison with Fig. 2.22)
that the memory effects are more spread out in temperature, in a way that
we now understand in terms of a weaker T -microscope effect in the Ising case.

2.4.4 Separation of Time and Length Scales with Temperature:
How Much?

In a spin-glass, as the temperature is decreased, some ageing processes become
frozen (memory), while new ones are activated (rejuvenation). By “frozen”, we
mean that the time scale of a given relaxation process has become extremely
large with respect to the experimental time window. In this sense, it is clear
that there is a “separation of time scales” as a function of temperature in
the spin-glass, but it is interesting to see more precisely how far this time
separation maps onto a “separation of length scales”, as discussed by Berthier
and Young in [16], of which we extract a characteristic figure as our last
Fig. 2.38.
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Fig. 2.37. Multiple rejuvenation and memory experiment with the Fe0.5Mn0.5TiO3

Ising sample, from [72] (same as Fig. 2.22, which is for the thiospinel Heisenberg-
like sample). The solid lines show a reference behaviour for continuous cooling and
reheating at 0.001 K/s (the reheating curve is slightly lower than the cooling curve).
Diamonds: cooling with stops at 19, 15, and 10 K, during the stops χ′′ relaxes due to
ageing, and when cooling resumes χ′′ merges with the reference curve (rejuvenation).
Circles: when reheating after cooling with stops for ageing, the memory of ageing
is retrieved. The memory dips are not so sharply peaked in temperature as in the
thiospinel (Heisenberg-like) sample (Fig. 2.22)

In Fig. 2.38, the authors have plotted the time variation of L(T, t) using
our parameterization (Eq. (2.18)) for an Heisenberg-like spin-glass. This figure
gives a precise idea of the length scales which are play in typical (Heisenberg)
experiments and numerical simulations. In an experiment with ageing during
10000 s at T1 = 0.825Tg, the active length scale grows up to ∼25 lattice units.
The time separation with temperature is brutal, since 3.1021 years would be
needed to obtain L = 25 at T2 = 0.7Tg. However, the active length that is
reached after 10000 s at T2 (starting from zero) is not that different, of the
order of 15: the “separation of length scales” from T1 to T2 takes place between
25 and 15, which is not spectacular, but enough to produce rejuvenation and
memory effects, thanks to the fast separation of time scales.

Of course it is also very interesting to compare with the length scales that
are reached at the time scale of the simulations, ∼105 Monte Carlo steps.
They are L(T1) ∼ 6 and L(T2) ∼ 4.5. This is not a powerful microscope in
this case. Yet, due to the fast separation of the corresponding time scales
rejuvenation and memory effects exist at the time scale of the simulations,
and are now seen in the Heisenberg spin-glass at d = 3. They have not been
found in the simulations of the Ising spin-glass, probably because of a still
weaker temperature microscope effect.
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Fig. 2.38. From [16], growth of the dynamical correlation length as a function of
time (in units of the elementary time τ0, τ0 ∼ 10−12 s for the experiments and τ0 = 1
for the simulations), as obtained from the parameterization of our experimental
results [67] in a Heisenberg-like case. See text (Subsect. 2.4.4) and [16] for details

2.5 Conclusions

In this rather general paper extracted from a summer school course, we have
tried to review the most important features of the slow, out-of-equilibrium,
dynamics of spin-glasses. Perhaps the reader will have been convinced that,
as stated in [53]:

“Although spin-glasses are totally useless pieces of material, they constitute
an exceptionally convenient laboratory frame for theoretical and experimental
investigations. . . .There are at least two reasons for this: (a) the theoretical
models are conceptually simpler (although still highly nontrivial), and (b) the
use of very sensitive magnetic detectors allows one to probe in detail the ac
and dc spin dynamics of these systems down to very small external fields.
The corresponding mechanical measurements in other glassy systems are much
more difficult to control, although some recent progress has been made”.

The waiting time dependence of the dynamical response (ageing effect)
is indeed a widely spread phenomenon observed in very different physical
systems like polymer and structural glasses [20, 36, 42, 43, 64], disordered di-
electrics [76, 77], colloids and gels [32–35, 65], foams, friction contacts [78],
etc. . . Scaling laws of ageing have been established in the rheology of glassy
polymers [20], which precisely apply to the case of spin-glasses [19]. In common



56 E. Vincent

with many different physical situations is also the subageing phenomenon,
slight but systematic departure from pure t/tw scaling, of which we do not still
know whether it is intrinsic or related to experimental artefacts (finite size ef-
fects [30,31], too slow cooling rates compared with microscopic times. . . [24]).

The response measurements can now be completed by direct measure-
ments of the spontaneous fluctuations. The experiments of Ocio and Hérisson
[29] could, for the first time, reveal the crossover to a modified fluctuation-
dissipation relation when entering the strongly ageing time regime of a spin-
glass. Further such experiments in spin-glasses are needed, and an experimen-
tal way of normalizing the autocorrelation function has still to be found. In
polymers and colloids, very interesting fluctuation dissipation studies could
be performed these last years, which raise many new questions, among which
the nature of the relationship between mechanical and dielectric properties of
disordered systems [79].

The rejuvenation and memory experiments in spin-glasses show that the
effect on ageing of the temperature history is highly non-trivial. The hierarchi-
cal structure of the numerous metastable states, proposed in the past [19,44],
remains an efficient guideline to account for all details of the experiments, as
discussed in various developments of Random Energy Models [47, 50]. This
“phase space” hierarchy can now be transcribed into a “real space” hierarchy
of embedded length scales [53]. The basic ingredient is a strong separation
of the time scales that govern the dynamics of the system on different length
scales. Changing the temperature changes the length scale at which the system
is observed, thereby allowing the coexistence of rejuvenation (that concerns
short length scales) and memory (stored in long length scales). The relevance
of “temperature-chaos” [56, 61] for the occurrence of rejuvenation is still un-
der debate [55]. In principle, rejuvenation may simply stem from the thermal
variation of the equilibrium population rates of the metastable states, in the
absence of any chaos effect [53], and in numerical simulations rejuvenation
can indeed be observed without chaos [26]. However, it may well be that the
experiments be influenced by chaos effects occurring at much larger length
scales than can be directly explored [55].

A scenario of embedded active length scales is certainly at play in dis-
ordered ferromagnets, in which slow dynamics corresponds to hierarchical
reconformations of elastic walls in a random pinning disorder [6,60]. The pos-
sible extension of this wall reconformation scenario to spin-glasses raises some
puzzling questions such as the nature of domains and walls in a spin-glass.

The ageing length scales can be captured in experiments which determine
the dynamical correlation length that is growing during ageing [67]. Several
different sets of experiments can now be understood in terms of a unique form
for the time and temperature dependence of the correlation length, which
is a crossover between a critical regime and a super-activated regime, with
energy barriers vanishing at Tg [53]. From the study of five representative
spin-glass examples, we have found a clear trend to a stronger separation
of active length scales with temperature when going from the Ising to the
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Heisenberg case (corresponding to sharper memory effects) [67]. The origin
of this systematic dependence on spin anisotropy remains mysterious. Having
again in mind the comparison with ferromagnets, a clue may be that less
anisotropy should make broader walls, hence providing the spin-glass with
larger dynamical regions [80]. The comparison of Ising and Heisenberg spin-
glasses is intensively investigated in numerical simulations, which are now able
to attack the time-consuming computation of Heisenberg spin dynamics. But
the gap between numerical and experimental time scales remains immense
[15,16,71].

The concept of a slowly growing and strongly temperature dependent dy-
namical correlation length allows understanding on the same basis the reju-
venation and memory effects and the cooling rate effects. It is now likely that
this scenario of ageing as a combination of “temperature specific” (rejuvena-
tion and memory) and “temperature cumulative” processes [21], characterized
in spin-glasses, is also relevant for polymer and structural glasses, which were
previously thought as dominated by cooling rate effects. Memory effects have
now been observed in some polymers and gels [64,65]. It will be very interest-
ing to see how far future experiments on various types of glasses may confirm
the validity of a unique scenario for disordered systems which are made of
such different building blocks.
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1 Laboratoire Européen de Recherche, Universitaire Sarre-Lorraine-(Luxembourg)
jan.krueger@uni.lu
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Abstract. The nature of the glassy state and of the glass transition of structural
glasses is still a matter of debate. This debate stems predominantly from the kinetic
features of the thermal glass transition. However the glass transition has at least
two faces: the kinetic one which becomes apparent in the regime of low relaxation
frequencies and a static one observed in static or frequency-clamped linear and
non-linear susceptibilities. New results concerning the so-called α-relaxation process
show that the historical view of an unavoidable cross-over of this relaxation time
with the experimental time scale is probably wrong and support instead the existence
of an intrinsic glass transition. In order to prove this, three different experimental
strategies have been applied: studying the glass transition at extremely long time
scales, the investigation of properties which are not sensitive to the kinetics of the
glass transition and studying glass transitions which do not depend at all on a forced
external time scale.

3.1 Introduction

Synthetic glassy materials are known for more than 8000 years. Neverthe-
less, the question about the nature of the glassy state and of the thermal
glass transition (TGT) of structural (or canonical) glasses is still open [1–26].
Usually, synthetic glasses belong to the class of structural (canonical) glasses
which behave mechanically as solids, but which have an amorphous, that
means a liquid-like, structure. In other words, glasses are hybrids which have
similarities as well with solids as with liquids. This hybrid nature also be-
comes obvious in the course of the transformation from the liquid to the
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Approach, Lect. Notes Phys. 716, 61–159 (2007)
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Fig. 3.1. Schematic drawing of the effect of slow and fast cooling on the mass
density ρ of (a) a crystallisable and (b) a non-crystallisable liquid. ρl: mass density
of the equilibrium liquid, ρc: mass density of the crystalline state, ρsc: mass density
of the under-cooled liquid, ρg: mass density of the glassy state

glassy state. On cooling the glass-forming liquid, the transition from the liq-
uid to the glassy state is accompanied by experimental features which may be
attributed to phase transitions as well as to under-cooling effects (Figs. 3.1a,b,
3.2).

Under-cooling means that the temperature of the liquid sample can be de-
creased faster than certain of its physical properties do respond. For instance,
crystallization of a liquid may be prevented by fast cooling if the viscosity
of the liquid increases much faster than nucleation takes place. As a result a
super-cooled liquid is obtained. Figure 3.1a shows schematically this situation
for the mass density ρ for slow and fast cooling. Below the melting tempera-
ture Tm the liquid becomes super-cooled and is therefore out of equilibrium.
The degree of metastability of the super-cooled state depends amongst other
parameters on the glass-forming liquid itself and on the temperature devi-
ation ∆T = (Tm − T ). As a matter of fact the mass density curve of the
super-cooled state is a direct continuation of the equilibrium liquid state. At
still lower temperatures around the so-called thermal glass transition temper-
ature Tg the mass density curve ρ(T ) shows a kink-like anomaly (Fig. 3.1a).
Depending on the sharpness of this kink the volume expansion coefficient αV

shows a step-like anomaly at Tg. Figure 3.1b schematically shows for com-
parison the temperature behaviour of the mass density of a non-crystallisable
liquid (e.g. atactic polymers). The only temperature induced anomaly which
remains is the kink-like anomaly of ρ(T ) at the glass transition temperature
Tg. The question marks in Fig. 3.1a,b stress the open question about the
origin of this kink: is it purely due to a super-cooling effect (Fig. 3.1b) or
to a further super-cooling effect (Fig. 3.1a) or does there exist an intrinsic
event which causes this kink-like anomaly of the mass density? Assuming
that the density-kink is purely kinetically conditioned (“kinetic hypothesis”)
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Fig. 3.2. Schematic drawing of the evolution of a structural glass transition. Mass
density ρ = ρ(T ): the graphics (a) to (f) show the temporal evolution of the mass
density ρ at fixed temperature T

the temperature position of this kink should shift to lower temperatures if
the cooling rate is slowed down. Time-domain investigations, as schematically
drawn in Fig. 3.2a–d, help to elucidate the validity of the “kinetic hypothesis”.

For the thought (time-domain) experiment of Fig. 3.2 we assume that the
mass density ρ is measured in a static way by determining at every temper-
ature T the mass and the volume of the sample. At high temperatures, far
above the freezing temperature Tg, mass-density and volume-changes equili-
brate as fast as the temperature of the sample does. After a temperature step
−∆T the mass density responds almost instantaneously (Fig. 3.2a). As a mat-
ter of fact, on approaching the glass transition temperature Tg from above by
temperature steps −∆T , the recovery of the mass density ρ takes more and
more time t, i.e. ρ(t) is less and less able to follow a temperature step −∆T
(Fig. 3.2b,c). This is due to the fact that glass-forming liquids exhibit inter-
nal degrees of freedom with relaxation times τα, which become very large on
approaching Tg from above and which even show a certain tendency to di-
verge in a temperature interval below Tg (Fig. 3.2e–f). The experimental time
needed to equilibrate the new temperature after a temperature jump −∆T is
assumed to be τm. If at sufficiently high temperatures τm � τα then the mass
density ρ is in internal equilibrium. If the recovery time of the mass density τα

becomes larger than the experimental time constant of the temperature ad-
justment τm, the mass density ρ(t) shows relaxation behaviour (Fig. 3.2a–d).
This relaxation behaviour has been interpreted as the result of cooperative



64 J.K. Krüger et al.

interaction of the molecules close the glass transition (e.g. [2]) and is called
the α-relaxation process.

In order to bring the mass density ρ(T ) still to equilibrium the experi-
mental time constant τm has to be increased sufficiently in order to realize
τm � τα or at least τm > τα. For the understanding of the thermal glass
transition the exciting question arises how the process develops in an equi-
librium experiment when decreasing the temperature as slowly as possible
(Fig. 3.2a–f). If on cooling, at a certain temperature Tg the α-relaxation time
τα increases so strongly that τα becomes comparable to τm and even exceeds
τm in that case the “bending temperature” Tg is indicative for the fact that
the mass density ρ(T ) falls out of “equilibrium” (Fig. 3.2a–3.2d–f). In the
following this will be denoted as time trap [15]. If on the other hand, the mass
density curve shows a kink at Tg although the time trap could be avoided, in
that case Tg represents an intrinsic transition temperature (Fig. 3.2a–3.2c,e,f).
The α-relaxation phenomenon is typical for the glass transition in liquids and
will be discussed in Sect. 3.4 of this article as the dynamical aspect of the
thermal glass transition.

Thus, as a consequence of the strongly increasing α-relaxation times in the
vicinity of Tg, there exists an inherent risk for every experiment performed to
measure non-equilibrium properties close to Tg. If the time for temperature
equilibration and/or for the equilibration of the measured quantity exceeds
the “patience of the experimentalist”, non-equilibrium properties are mea-
sured. If, as argued in literature ( see any text book on glasses, e.g. [2]),
the relaxation time τα of the α-relaxation process diverges at a temperature
T0

∼= (Tg − 40) K then the cross-over between τα and the experimental time
scale is unavoidable. If the experiment of interest was driven too fast and as a
consequence captivated in the “time-trap” a so-called ageing process is possi-
ble on a long time scale. This process brings eventually the physical quantity
of interest to its equilibrium value. This specific “kinetic” face of the glass
transition and the question under which conditions quenched physical prop-
erties will age towards their equilibrium values will be discussed in Sect. 3.3.
Whether τα (T ) really diverges at a temperature T0 is rather questionable.

Section 3.5 deals with the problem whether static or quasi-static proper-
ties can be measured in principal around Tg, and what they can tell us about
the mechanisms behind the TGT. Experimental tools are presented which are
at the same time sensitive to large and very small relaxation times and which
are therefore sensitive to test the “time-trap” argument. Another experimen-
tal approach which has the potential to give some insight into the nature of
the thermal glass transition deals with the transition from the dynamically
frozen to the solid state. The fact, that this transition is experimentally ob-
servable gives a strong hint for the existence of an intrinsic glass or ideal glass
transition possibly hidden behind dynamic and kinetic features. Non-linear
elastic properties measured at Tg yield a hint to the development of unex-
pected structural changes at the thermal glass transition. An intrinsic glass
transition would be iso-structural and solid in nature and is for fixed external
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Fig. 3.3. Scheme of the most important glass-forming materials as classified by
structure and thermodynamics. SiO2 silicon dioxide, PMMA polymethylmethacry-
late, PVAc polyvinylacetate, DGEBA diglycidilether of bisphenol A, C2Cl4F2 diflu-
orotetrachloroethane, NaCNxCl1−x sodium cyanide chloride mixed crystal

thermodynamic variables a property of the material. In agreement with daily
observations, the static shear modulus is expected to be larger than zero.

An alternative approach to the understanding of the nature of the glass
transition is to avoid in principle the time trap by choosing a type of glass
transition where no external variables are involved in the transition process.
In Sect. 3.6 the scenario of the “chemical glass transition” is proposed as a
scientific vehicle to get an alternative view on the glass transition.

In recent years, in addition to structural glasses further classes of mate-
rials with inherent freezing features have been discovered. Figure 3.3 gives a
schematic drawing about the most important classes of glass forming materials
currently discussed in physics.

Structural glasses are glasses like polymethylmethacrylate (PMMA) or
silicon dioxide (SiO2) which are completely amorphous but behave mechani-
cally like a solid. Spin glasses are usually crystals where the magnetic spins
are randomly oriented but dynamically frozen. Orientational glasses are crys-
talline materials with frozen orientational disorder. Classifying glasses from
the thermodynamic point of view, we distinguish between quenched and ideal
glass-formers. Quenched glasses are glassy systems where the disorder of the
liquid state is conserved due to fast cooling. The fast cooling prevents the
system from crystallization. On the contrary ideal glasses are systems which
have no crystalline reference state with lower free energy.

As a matter of fact, the mechanisms which result in spin glass and/or
orientational glass transitions are much more evident than those leading to
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the glassy state of structural glass formers [27] as there is only one well-
known internal degree of freedom provoking the glass transition. For some
time it was therefore believed that spin glasses and orientational glasses could
be used as rather simple but elucidating model systems for the thermal glass
transition (TGT) in structural glass formers. However, the results met only
in part the expectations [28, 29], but they lead to a better insight into the
main ingredients provoking the freezing process, which are: (i) disorder, (ii)
frustration and (iii) non-linear molecular interactions [27, 30]. Therefore it
makes sense to elucidate the open problems of the thermal glass transition
in structural glasses on the background of those occurring in much simpler
systems like orientational glass-formers.

Hence prior to the discussion of the nature of glass transitions in struc-
tural glasses, three introductory educational examples of orientational glass
formers together with some shortcomings will be discussed: mixed crystals
of the type Na(CN)xCl1−x, single crystals of sym-C2Cl4F2 (difluorotetra-
chloroethane, DFTCE) and poly-siloxane side-chain liquid crystals.

Cyanide mixed crystals are molecular crystals of the type M(CN)xZ1−x

and MxX1−x(CN) (where M and X stand for alkali metals and Z for halo-
genide ions). They are obtained by mixing different pure alkali cyanides or
pure alkali cyanides with alkali halogenides. The concentration x very strongly
influences the structural phase transition behaviour compared with the pure
alkali cyanides. In the following we deal with Z = Cl and M = Na. With
decreasing temperature pure NaCN undergoes a strong first-order ferroelastic
phase transition at Tc ∼ 285 K from cubic to rhomboedric symmetry. Usu-
ally, the crystal does not mechanically survive this transition and breaks into
pieces. Brillouin spectroscopy (see Sect. 3.2), however, is able to measure in
the temperature regime below Tc by focussing the scattering volume into one
of the intact domains. Figure 3.4 shows a decrease of the shear elastic stiff-
ness on approaching Tc from higher temperatures followed by a huge jump
into the low-temperature phase. Obviously c44 is the order parameter suscep-
tibility related to this transition. By decreasing the CN-concentration x the
transition temperature Tc from the cubic to the rhomboedric phase can be
shifted continuously to lower temperatures.

In the case of M(CN)xZ1−x crystals the average cubic symmetry observed
in the high temperature phase remains unchanged for all temperatures if the
concentration x is lower than a critical value xc [28]. In this concentration
range (x < xc) there is no more structural phase transition observed in the
temperature dependence of different physical parameters, but the system is
believed to undergo an orientational glass transition [27,28,31–36] at a definite
temperature characterized by the existence of a minimum value of the shear
elastic stiffness c44(T ).

Figure 3.5 demonstrates this behaviour for the critical concentration
xc ∼ 0.65. Compared with pure NaCN (Fig. 3.4) the strong softening of
c44 = c44(T ) is maintained but the first-order character of the c44-anomaly
is completely lost. The transition temperature largely shifts from Tc = 287K
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Fig. 3.4. Temperature dependence of the elastic shear stiffness c44 of NaCN around
the phase transition from the cubic (T > Tc) to the rhomboedric phase (T < Tc)

Fig. 3.5. Temperature dependence of c44 and the related acoustic attenuation Γ44

of the mixed molecular crystal NaCNxCl(1−x) with x = xc ∼ 0.65

to Tcg = 153K. The identification of Tcg as the glass transition temperature
originates from the fact that there is a continuous approach of the first-order
phase transition anomaly with increasing Cl-concentration to this minimum
of c44 = c44(T ). In other words this orientational or quadrupolar glass tran-
sition emerges from a first order transition due to an increase of positional
disorder (CN→Cl) and due to orientational frustration. This interpretation is
in clear contradiction to the observations in “quenched structural glasses”. In
the latter glasses the glass transition temperature Tg is always well below the
melting point Tm.
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A striking feature of Fig. 3.5 is the observation that the c44-minimum
is accompanied by a maximum of hypersonic loss. This behaviour recalls a
dynamic glass transition of structural glass formers rather than that of a
static glass transition. That objection against the current interpretation [32]
is supported by the fact that the temperature where this minimum takes place
is frequency dependent, that also indicates its dynamical character.

The nature of this glass transition seems to be spin glass-like [27,30,37,38].
It is well known that pure NaCl does not show any glass-like behaviour. In
so far it is interesting to know to which extent the glassy behaviour imposed
by the disorder of the CN-dipoles is still active. According to Fig. 3.6 the
minimum within the c44 = c44(T ) curve is still present at the rather low CN-
concentration of x = 0.2 which indicates that some relaxation processes are
still present at hypersonic frequencies below T = 150K [37].

This result raises the question, whether the earlier interpretation of the
orientational glass transition in alkali halides was not wrong and whether
eventually a quasi-static glass transition does exist at even lower temperatures.
If this view of this kind of “spin glass transition” was correct in that case,
the similarities to the TGT of structural glass formers would be much more
intimate.

The theoretical description of c44(T, x) has been subject of numerous
papers [e.g.] [27, 31, 39, 40]. A consistent application of theoretical models
to the experimental data has not given a satisfactory description of the
behaviour, as a function of temperature and concentration, in the range
x < xc. The consistency of the theory requires that the concentration- and
temperature-dependent properties of c44 should be described with a unique

Fig. 3.6. Temperature dependence of the elastic shear stiffness c44 of NaCNxCl1−x

as a function of the concentration x of CN-dipoles
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Fig. 3.7. Temperature dependence of the specific volume v and the refractive index
n of DFTCE

set of parameters independent of concentration and temperature in both con-
centration ranges x > xc and x < xc.

An orientational glass transition (spin glass transition) which is much more
similar to the one in structural glass formers was found for symmetric difluo-
rotetrachloroethane (C2Cl4F2 = DFTCE) [41,42]. This material is at ambient
temperature a plastic crystal with cubic symmetry (bcc) [29], which, even in
the polycrystalline state, doesn’t show optically any grain boundaries. More-
over the DFTCE molecules rotate and undergo permanently trans-gauche
transitions according to Boltzmann statistics. Both dynamics interfere but are
compatible with the bcc-symmetry. With decreasing temperature the molecu-
lar rotations slow down and freeze below the actual structural phase transition
(Tc = 130K) [42]. The trans-gauche transitions are still present and lead to
some molecular disorder and frustration. At the glass transition temperature
slightly below 90K (Fig. 3.7) the super-cooled cubic DFTCE transforms from
the dynamically disordered cubic state to the statically disordered cubic state.
Therefore, the frozen disorder is predominantly an intramolecular disorder.

DFTCE single crystals have been grown on ultrathin mono-crystalline
films of polytetrafluoroethylene (PTFE) [43, 44]. Figure 3.8 shows the elastic
indicatrix of a thin DFTCE crystal plate with a thickness of 50 µm as measured
with Brillouin spectroscopy (see next section) at ambient temperature. The
crystal orientation is believed to be such that the large faces of the crystal
plate correspond to cubic faces.

Figure 3.7 shows the temperature dependence of the specific volume and of
the refractive index of this DFTCE sample. Both curves show the typical kink-
like behaviour usually observed at the TGT of structural glass formers. The
specific volume v was measured by x-ray analysis of the cubic lattice. The
refractive index n was calculated using the Lorentz-Lorenz relation [45, 46]
(see Eq. (3.2)) and calibrating the specific refractivity by n-measurements on
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Fig. 3.8. Elastic indicatrix of an arbitrary crystal cut of cubic DFTCE. The filled
squares represent the quasi-longitudinally polarized acoustic phonon branch and the
open circles represent the quasi transversely polarized acoustic phonon branch

DFTCE at ambient temperature using an Abbé refractometer. The specific
refractivity was taken as temperature independent. It should be stressed that
the specific volume measurements based on x-ray analysis are much more
reliable than dilatometer and pyknometer measurements as used for poly-
mers. Of course the refractive index data depend on the chosen model of
Lorenz-Lorentz. The kink-like behaviour of the specific volume curve around
the TGT signifies a step-like behaviour of the thermal expansion coefficient at
Tg whereby the specific volume is lower in the frozen than in the dynamically
disordered state of the sym-C2Cl4F2 molecules. For structural glass formers
usually Tg is interpreted as the temperature at which the free volume becomes
minimal [11,12]. Below Tg the glass forming material behaves solid-like. Since
DFTCE is already a solid above Tg, the latter interpretation of the step-like
change of the thermal expansion coefficient cannot be used. In other words, in
a dense single crystal of cubic symmetry the classical concept of free volume
becomes meaningless. For single crystals the concept of anharmonicity of the
elastic interaction potential rather than the concept of free volume has to be
taken into account. Applying this argument to the thermal glass transition of
DFTCE it has to be concluded that the intermolecular interaction potential
changes discontinuously at its TGT (s. a. below).

Using Brillouin spectroscopy (see Sect. 3.2) we have also studied the tem-
perature dependence of the longitudinal hypersound velocity. It turns out
(Fig. 3.9) that the hypersonic velocity also behaves kink-like at the glass
transition temperature Tg ∼ 87 K. Thus, at hypersonic frequencies the sound
velocity is frequency-clamped near Tg and behaves qualitatively like the
density and the refractive index. In contrast to the orientational glass transi-
tion in alkali halide mixed systems any elastic softening or elastic discontinuity
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Fig. 3.9. Temperature dependence of the longitudinal sound velocity v and of the
specific heat capacity cp of DFTCE

is absent. Moreover, there is no pronounced acoustic attenuation in the vicinity
of the TGT. Therefore the phenomenological properties of DFTCE at its ther-
mal glass transition are much more similar to those of structural glass-formers
than to those of orientational glasses as discussed above for M(CN)xZ1−x.

This point of view becomes strengthened by the temperature dependence
of the specific heat capacity of DFTCE at Tg (Fig. 3.9). The specific heat
capacity grows step-like with T at the TGT as it is characteristic for structural
glass-formers. It has to be stressed that the specific heat capacity anomaly
does not show the typical “Landau-behaviour” [47] usually observed at phase
transitions of second order. Hence we conclude that the phenomenological
properties of cubic DFTCE behave at about 87 K exactly in the same way as
it is observed for structural glass formers at their TGT.

As already mentioned above, the kink-like anomaly observed for the spe-
cific volume and the sound velocity at Tg of DFTCE suggests a sudden change
of the elastic interaction potential. For cubic crystals such changes can be
probed by the so-called mode-Grüneisen parameters γ (s. a. Sect. 3.6) intro-
duced by Mie and Grüneisen [48–51]. These parameters depict the relative
change of the acoustic phonon frequency of a given acoustic phonon mode
with the relative change of the density of the cubic crystal.

γ(p, q) =
ρ

ω(p, q)
∂ω(p, q)

∂ρ
(3.1)

where ω = 2πf is the phonon frequency, p is the polarisation of the phonon,
q is the phonon wave vector and ρ is the mass density. It is worth noting
that Brillouin spectroscopy meets exactly the measuring conditions for mode-
Grüneisen parameters provided the specific volume of the crystal of interest is
known: how do the phonon mode frequencies change if the crystal expands or
shrinks? The origin of the expansion or shrinkage is not defined in Eq. (3.1),
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but one can think of pressure or temperature or any other parameter which can
make a crystal expand or shrink. It is obvious that a kink in the sound velocity
(or sound frequency) curve does not necessarily imply a discontinuity in the
mode-Grüneisen parameters. At least in principle, the kink in the specific
volume curve could compensate the effect in the acoustic phonon frequency
(sound velocity).

For cubic DFTCE a very comfortable situation exists since precise acoustic
phonon frequencies as well as precise specific volume data are available. Con-
sequently, the longitudinal mode-Grüneisen parameter can be determined
unambiguously. Figure 3.10 shows for DFTCE the longitudinal acoustic
phonon frequency fL as measured by Brillouin spectroscopy and the longitu-
dinal mode-Grüneisen parameter γL. The mode-Grüneisen parameter shows
a strong discontinuity at the thermal glass transition. Slightly below Tg the
parameter γL is smaller than just above Tg. γL ∼ 4 is a reasonable value for
a frozen plastic crystal [52]. This discontinuity of γL at Tg signifies an abrupt
change of the elastic interaction potential at the glass transition of cubic
DFTCE (see Sect. 3.6). Such a discontinuous change of the elastic interaction
potential in a crystal strongly suggests the existence of a phase transition.
Taking into account that DFTCE remains cubic in average, this phase tran-
sition should be isostructural in nature. It should be stressed again that the
kink-like behaviour of the longitudinal acoustic phonon frequency and of the
specific volume data has nothing to do with a simple loss of free volume as it
is found for liquids and structural glass formers. It is obvious, that the role
of free volume will play a crucial role in the interpretation of the TGT of
structural glass formers.

Fig. 3.10. Temperature dependence of the longitudinal sound frequency fL and the
longitudinal mode-Grüneisen parameter γL around the thermal glass transition of
DFTCE
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Fig. 3.11. Schematic drawing of a polymer side-chain liquid crystal in its isotropic
and its nematic state

Whereas the main feature of crystals is their translational order, the main
feature of classical liquid crystals like 4-methoxybenzylidene-4’-butylaniline
(MBBA) is their orientational order. Similar to crystals, for liquid crystals
there exists a hierarchy of order which ranges from the nematic state to the
different smectic states [53–56]. Classical liquid crystals are difficult to vitrify.
The situation is different for polymer side-chain liquid crystals (PLC) [56–58].
Figure 3.11 shows schematically the isotropic and the nematic structure of
PLC’s. The polymer backbone is even in the nematic state distributed at
random (random coil) provided the spacer molecules, usually n-alkane chains,
are sufficiently long. In the so-called isotropic state the mesogenic groups also
show random orientational order. In the nematic state an orientational order
of the mesogenic groups forms along the director axis n. The transition from
the isotropic to the nematic state is usually of weak first-order. This holds true
e.g. for the refractive index. The material remains “liquid” in the isotropic as
well as in the nematic state. Because of the continuously broken orientational
symmetry the director can point in any direction of space [59]. Therefore
liquid crystals are usually in a polydomain state. For our measurements we
have homogeneously oriented the PLC on an ultrathin film of monocrystalline
PTFE.

Figure 3.13 shows the sound velocity indicatrix of a poly-siloxane side-
chain liquid crystal (Fig. 3.12) measured at ambient temperature which means
in the nematic state. It is worth noting, that the nematic state has fibre-
symmetry. In contrast to the elastic behaviour of classical nematic liquids,

Fig. 3.12. Structural formula of poly-siloxane
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Fig. 3.13. Sound velocity v indicatrix (longitudinal: solid squares, transverse: open
circles) of a poly-siloxane polymer side-chain liquid crystal measured within the
nematic state. 0 degree indicates the direction of the director n

PLC’s show a pronounced elastic anisotropy. The longitudiual sound velocity
is maximal along the direction of the director n which indicates that in PLC’s
there exists a coupling between the nematic order parameter and the elastic
deformation. This coupling is obviously provided by the randomly oriented
polymer main chain when a solid-like behaviour, indicated by the existence of
an acoustic shear mode, sets in (Fig. 3.13).

Figure 3.14 shows the temperature dependence of the sound velocities
of the main acoustic modes propagating in the (3, 1)-plane. The 3-axis was
chosen to be directed along the director n and the 1-axis is orthogonal to
the 3-axis. As expected, within the high temperature phase, i.e. the isotropic
phase, there is only the longitudinal acoustic mode. At the isotropic → ne-
matic transition temperature Tni the longitudinal phonon splits up into two
modes displaying the change of symmetry. The acoustic shear mode is still
not detectable. The reasons for that behaviour are the liquid nature of the
material and its low viscosity at Tni. So the shear mode is believed to be
overdamped (no acoustic shear mode propagation).

The sound velocity curve v3L shows an inflection point at about 325 K.
At this inflection point a hypersonic loss maximum is absent. Therefore the
inflection point cannot be interpreted in terms of a dynamical glass transi-
tion. In consequence the increase in slope below the inflection point needs
an alternative explanation. Between Tni and the inflection point the splitting
of the longitudinal modes is probably dominated by the temperature evolu-
tion of the nematic order parameter (degree of alignment of the mesogenic
side-groups along the director). Since the order parameter has to level with
decreasing temperature, the ongoing freezing of the molecular ensemble starts
to dominate the acoustic behaviour below the inflection point. The increas-
ing elastic hardening of the polymer matrix emerges in the appearance of the
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Fig. 3.14. Sound velocities v of the principle sound modes of poly-siloxane side-
chain liquid crystals as a function of temperature

intrinsic stiffness of the oriented mesogenic side groups. This interpretation
is based on the idea that the mechanical behaviour of the two component
system (mesogenic groups and polymer matrix) can be approximated by the
Reuss-model [57]. This view is supported by the appearance of the acoustic
shear mode v4L.

Thus Fig. 3.14 clearly shows the influence of anisotropy of the isotropic
polymer main chain matrix on the hypersonic velocities. The dynamical freez-
ing process influences predominantly the longitudinal acoustic mode propagat-
ing along the direction of the order parameter rather than orthogonal to this
direction. That means, that similar to the freezing behaviour of the quadrupo-
lar glass NaCNxCl(1−x) and in contrast to the behaviour of DFTCE there is
an intimate coupling between the order parameter of the nematic state and
the dynamic mechanical properties of the matrix on approaching the thermal
glass transition.

The common kink at Tg = 277 K in all three acoustic modes indicates the
static glass transition. Below Tg = 277 K the poly-siloxane becomes an orien-
tationally ordered solid. The elastic properties have to be described with an
elastic tensor of full fibre symmetry now. Within the glassy state the sound
velocities change only moderately with temperature. As in the case of DFTCE
and in contrast to the transition behaviour of NaCNxCl1−x the glass transi-
tion in PLC’s is well below the structural phase transition. It is worth noting
that the hypersonic velocities behave again kink-like at the static glass transi-
tion. Since the kinetic view of the glass transition does not know an intrinsic
static transition temperature the v3L branch of the liquid phase could be ex-
trapolated to much lower temperatures if infinitely slow cooling is assumed.
Because of the strong slope of v3L this would lead to an unreasonably high
elastic stiffness c33. Therefore the appearance of the TGT is expected in order
to reduce the strong slope of the acoustic mode v3L. This glass transition is
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again accompanied by a step-like behaviour of the mode-Grüneisen parame-
ters. The argument for that statement will become clear in Sect. 3.6, but bases
on the fact that the change in slope for both longitudinal acoustic modes is
different, whereas the one for mass density is the same for both modes.

In the following we shall definitively leave the ordered state and concen-
trate on purely amorphous, i.e. structural, glass formers but we shall use the
concepts introduced above. In order to understand the nature of canonical
glasses and of the TGT we shall concentrate our interest on structural glasses
of the “quenched” and the “ideal type”.

Quenched glasses are formed by freezing supercooled liquids. Thus quenched
glasses usually exhibit a crystalline reference state and suffer the risk of re-
crystallization. In this respect this kind of glasses might be bad candidates for
investigations of the relaxation behaviour in the long time limit at the TGT
as the glassy state is metastable. However, the usefulness of quenched glasses
for the investigation of the TGT depends on the rate of recrystallization.

In order to be sure that only glass transition properties are probed at the
TGT ideal glass formers should be chosen as model substances. Ideal glasses
are characterized by the fact that they do not exhibit a crystalline or any
other reference state which is more stable than the liquid phase. Therefore
these materials transform necessarily from the stable liquid state into the
glassy state, which stability is the matter of debate.

Figure 3.15 shows for atactic polymer chains in a schematic way the frus-
tration mechanism preventing these systems from crystallization. Allowing
the monomers of type A and B to polymerize in an atactic, i.e. statistically
disordered, manner, it is obvious that these macromolecules can hardly form
a crystal with translational symmetry.

With increasing molecular chain length due to the chemical reaction, the
molecular dynamics will slow down and may even result in a glassy state at

Fig. 3.15. Schematic drawing of an ideal glass-former based on the concept of
atactic polymers
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a given temperature (chemical glass transition see Sect. 3.6). The same effect
can be observed for a molecular system of given chain length by decreasing the
temperature of this system. In both cases the molecular translation diffusion,
a basic feature of a liquid, will be hindered. Whereas there exists no debate on
chemical freezing, thermal freezing is usually interpreted as the competition
of the intrinsic time scale (α-relaxation process) with the patience of the ex-
perimentalist [21,60]. This means that the experimentalist does not wait long
enough after a temperature perturbation for the relaxed equilibrium value of
the measured susceptibility to be reached. This cross-over problem, sometimes
called “time trap” [49, 50], is complicated by the fact that the α-relaxation
time does not behave Arrhenius-like but increases stronger than exponential
with decreasing temperature. It even seems that the α-relaxation time di-
verges at a finite temperature T0, called the Vogel-Fulcher-Tammann (VFT)
temperature [61, 62]. Equation (3.2) displays the phenomenological relation
between temperature and the related α-relaxation time τα

τα = ω−1
α = τα0 · exp [∆G/ (R (T − To))] (3.2)

ωα is the relaxation frequency of the α-relaxation process, τ−1
α0 is the so-called

attempt frequency. ∆G is the free activation enthalpy and R is the general
gas constant.

However, this relation has never been verified experimentally close to the
VFT-temperature T0. Keeping in mind that T0 indicates the existence of an
intrinsic glass transition at which all relevant relaxations are frozen, it is clear
that the above-mentioned cross-over of the α-relaxation with any experimental
time scale cannot be avoided. This is a strong argument of the kinetic view
of the TGT. However this view is based on the divergence of the α-relaxation
time which has never been proven experimentally.

The experimentally found thermal glass transition temperature is usually
about 30–40 K above T0. At such a distance from the temperature T0 where
the time constant diverges it should be at least in principle possible to verify
to which extent the operative glass transition temperature can be shifted or
whether there is a definite low-temperature boundary for this transition [15].

Thus the main questions concerning the understanding of the TGT are
whether there exists, at sufficiently slow cooling, an underlying phase tran-
sition [15] to an ideal glassy state, or whether the TGT simply signifies the
cross-over of the α-process with typical time constraints of the experimental
technique (including the patience of the scientist) [15].

If the TGT is a purely kinetic effect, there will be only limited interest
in this event. If on the other hand there is an underlying phase transition, in
that case the question will arise about the nature of the glassy state of matter.
In the latter case it will be necessary to introduce in addition to the three
classical states of matter (gaseous, fluid and crystalline solid state) a forth
state of matter: the structural glassy state. The importance of the problem
makes it necessary not only to present and discuss new results but also to
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reconsider some older data which are often used as witnesses for the kinetic
view of the TGT.

The α-process discussed here should not be confused with the high temper-
ature α-process discussed in mode-coupling theories [3]. Mode-coupling theory
predicts the possibility of an ideal glass transition at temperatures typically
30–40 K above the TGT. This glass transition is believed to be prevented due
to so-called hopping processes which finally die out at the TGT.

3.2 The Method of Brillouin Spectroscopy

For the present work Brillouin spectroscopy (BS) is the central experimental
technique. Although this technique is well-established [63–65], its power is not
sufficiently known. Moreover, in recent years BS has been not only applied in
new fields of physics but it has been developed further in order to give new
physical information in addition to the hypersonic properties. Therefore, this
method deserves an introduction.

BS is an optical technique which is predominantly used to investigate
acoustic properties at hypersonic frequencies. Hence, BS can be applied only
to transparent materials, at best to translucent materials. The acoustic wave-
lengths involved are in the range of 200 nm to several µm. Figure. 3.16 shows
a modern Brillouin set-up being able to measure simultaneously at different
scattering vectors or in other words in different scattering geometries. For the

Fig. 3.16. Schematic presentation of a Brillouin spectrometer which can be used
to measure within three different scattering geometries (even simultaneously):
backscattering (180◦), 90R-scattering and 90A-scattering (see Fig. 3.18). The sample
holder allows for change of temperature (T ), translational movement of the sample
(∆x) and rotation of the sample (ϕ)
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sake of simplicity, the sketched Fabry-Pérot interferometer is of the single-pass
type. In modern BS multi-pass instruments or even Tandem spectrometers are
used [66].

The spectral light intensity distribution measured by the Fabry-Pérot in-
terferometer is converted by a photomultiplier into a suitable electronic pulse
sequence which is then accumulated with a photon-counting system, usually
an amplifier and discriminator combined with a so-called multichannel ana-
lyzer (MCA) (see Fig. 3.16). An example for a typical Brillouin spectrum is
shown on the screen of the MCA.

Generally the scattering intensity I(q, ω) per solid angle and frequency
interval is proportional to the space and time Fourier transform Fr,t{A} of
the autocorrelation function A [67, 68]

Aklmn = 〈δα∗
kl(r, t) · δαkl(r′, t′)〉 (3.3)

of the optical polarisability fluctuations δαkl(r, t) in the scattering volume [67]

Isi (q, ω) ∝ Fr,t {A} (3.4)

The subscripts s and i mean scattered and incident respectively, and refer
to the appropriate polarization directions of the light waves here. Omitting,
for simplicity, the tensor properties of δα we see that the spectral power
density Isi(q, ω) is proportional to the mean square fluctuation component at
frequency ω:

Isi (q, ω) ∝ (δα (q))2ω (3.5)

All kind of excitations like phonons, excitons, spin waves and so on may
contribute to the spectral power density. Also higher-order processes as multi-
phonon interactions may be included formally in this phenomenological treat-
ment by expanding δα(q) into a power series in terms of symmetry coordi-
nates [69].

Assuming a certain excitation mode characterized by an extensive para-
meter Ψ(q, ω) a conjugated force F (q, ω) and susceptibility χ(q, ω), the linear
law reads

ψ (q, ω) = χ∗ (q, ω) · F (q, ω) (3.6)

The spectral power density I(q, ω) can be related to the imaginary part
of χ∗(q, ω) by the fluctuation-dissipation theorem [68]

I (q, ω) ∝ (n (ω) + 1) Im (χ∗ (q, ω)) (3.7)

where
1

n (ω)
= exp

(
�ω

kT

)

− 1 (3.8)

The relation may be extended to include several, say s, coupled modes Ψj . To
obtain the resulting field of generalized forces one has to add the contributions
of the s modes
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Fi =
s∑

j=1

γij · ψj (3.9)

Where the diagonal elements of the matrix γ represent the inverse complex
susceptibilities of the uncoupled modes, the off diagonal elements characterize
the complex mode-mode coupling strength. Inverting Eq. (3.9) one gets the
mode amplitudes

ψ∗
k =

s∑

i=1

χ∗
ki · Fi (3.10)

The susceptibilities χ∗
ki determine the scattered light spectrum

I (q, ω) ∝ (n (ω) + 1) Im




s∑

i,j=1

pipjχ
∗
ij (q, ω)



 (3.11)

The coefficients pi are related to the light scattering cross sections of the
various modes and can be described for example by appropriate components
of the elasto-optic tensor [70].

Considering only two modes and abbreviating the sum in Eq. (3.11) by
χ∗(q, ω) the result is

χ∗ (q, ω) =
γ∗22p

2
1 − 2γ∗12p1p2 + γ∗11p

2
2

γ∗11γ
∗
22 − (γ∗11)

2 (3.12)

or

χ∗ (q, ω) =
p2
1

γ∗11 − (γ∗12)
2
χ0

2
∗ +

p2
2

γ∗22 − (γ∗12)
2
χ0

1
∗ − 2p1p2

γ∗11γ
∗
22 − (γ∗12)

2 (3.13)

Here χ0∗
i = γ∗−1

ii means the susceptibility of the uncoupled mode i and
(γ∗12)

2
χ0∗

i is related to its self energy. It may happen that the mode Ψj does
not produce any change of the polarizability, so pj = 0 and only one term of
Eq. (3.13) will be left. In order to give an example, the elasto-optic coupling
for transversely polarized acoustic phonons is often extremely small.

The specific form of the light scattering spectrum will depend mainly on
the characteristics of the inverse susceptibilities γ∗jj of the uncoupled modes.
Taking for a damped harmonic oscillator with the damping constant Γ and
an oscillator strength γj0

γ∗jj = γj0

(
ω2

j − ω2 + i · ω · Γj

)
(3.14)

and for a relaxator with a relaxation time τ

γ∗jj = γj0 (1 + i · ω · τj) (3.15)

it is easy to predict the form of the scattering spectra. However, experiments
do not give sufficient information for an unambiguous analysis. Already in the
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two-mode case the complex factor γ12 cannot be deduced definitely if coupling
appears.

From (3.14), (3.15) together with (3.11) the spectral power density of one
relaxator and one oscillator being uncoupled can be deduced. The imaginary
part of the inverse of (3.14) is:

Im [χ∗]Osc =
(
γ−1
0

)
Osc

ω · ΓOsc

(ω2
Osc − ω2)2 + ω2 · Γ 2

Osc

(3.16)

For the relaxator the imaginary part of the inverse of (3.15) is:

Im [χ∗]Rel = Im
[
γ∗−1

]
Rel

=
(
γ−1
0

)
Rel

ω · ΓRel

ω2 + Γ 2
Rel

(3.17)

with ΓRel = 1
τRel

.
Combining (3.16) and (3.17) with (3.11) and ignoring the coupling yields:

I (q, ω) ∝ (n (ω) + 1)
[
(
γ−1
0

)
Rel

· p1 · ω · ΓRel

ω2 + Γ 2
Rel

+
(
γ−1
0

)
Osc

· p2 · ω · ΓOsc

(ω2
Osc − ω2)2 + ω2 · Γ 2

Osc

]

. (3.18)

Equation (3.18) gives the shape of a spectrum typical for a liquid of small
viscosity consisting of a central peak due to entropy fluctuations and fre-
quency shifted Stokes- and anti-Stokes lines related to density fluctuations
resulting in a longitudinally polarized bulk phonon. It is worth noting that
Eq. (3.18) gives the physical spectrum of the scattering processes involved, it
does not contain the filter properties of the spectrometer. In order to get the
information of Eq. (3.18) from a measured spectrum the latter one has to be
deconvoluted. Generally, the deconvolution is a difficult task and is done by
numerical techniques.

The Kinematic View of Brillouin Spectroscopy

The kinematic view of BS couples energy and momentum of the interacting
photons and phonons involved in the scattering process. As usual in inelastic
scattering processes energy and momentum conservation holds [63,64]:

�ωs = �ωi ± �Ω (3.19)
�ks = �ki ± �k (3.20)

where ωi, ωs and Ω are the frequencies of the incident light, of the scattered
light and of the phonon, ki, ks and q are the respective wave vectors and Θ
is the scattering angle within the sample (see Fig. 3.17).

Focussing still on a simple liquid and taking into account, that the
energy transfer between photons and phonons is in BS extremely small
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Fig. 3.17. Typical scattering diagram for wave vectors: ki wave vector of the inci-
dent light, ks wave vector of the scattered light, q scattering vector, Θ scattering
angle

(5 · 109/5 · 1014 = 10−5) the vectors ki and ks have almost the same length.
Provided, acoustic attenuation is negligible (ΓOsc 	 Ω) the phase sound ve-
locity can simply be calculated from geometric arguments. Using Eq. (3.19)
and Eq. (3.20), and considering the refractive index n of the sample one can
easily determine the sound velocity v related to a specific mode (longitudinal,
transverse, etc.):

v =
Ω

q
=

Ω

2π
λLaser

2n sin
[

θ
2

] (3.21)

Knowing the mass density ρ of the sample under investigation, the elastic
modulus related to the wave vector q can be calculated:

c (q) = ρ · v2 (q) (3.22)

Scattering Geometries and Pitfalls

As is seen from Eq. (3.21) the acoustic wavelength

Λ =
2π
q

=
λLaser

2n sin
[

θ
2

] (3.23)

depends on the vacuum wavelength λ of the laser, on the scattering angle θ
within the sample and on the refractive index n of the sample. As a conse-
quence of latter influence the acoustic wavelength is e.g. not invariant under
changes of temperature which may be a real problem in interpreting Brillouin
data.

Fortunately, one of the scattering geometries shown in Fig. 3.18 yields an
acoustic wave vector which is independent of the refractive index: the 90A-
scattering geometry.

The relations between sound velocity, sound frequency and sound wave-
length are as follows for the different scattering geometries [66,71]:
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Fig. 3.18. Typical scattering geometries used for Brillouin spectroscopy. (a) 90N-
scattering geometry, (b) 90A-scattering geometry, (c) combination of 90A- and 90R-
scattering geometry, (d) back scattering geometry

v90N (T ) =
Ω90N (T )

2π
λLaser

2n(T ) sin
(

90◦

2

) (3.24)

v90A(T ) =
Ω90A(T )

2π
λLaser

2 sin
(

90◦

2

) (3.25)

v90R(T ) =
Ω90R(T )

2π
λLaser

2n(T ) sin
(

90◦

2

) (3.26)

and

v180(T ) =
Ω180(T )

2π
λLaser

2n(T )
(3.27)

Besides Eq. (3.25) all other equations depend on the refractive index n
of the sample, which means, that the acoustic wavelength depends on the
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refractive index n. In the case of Eq. (3.25) the refractive index enters the re-
fraction process and the phase velocity in a compensating manner and there-
fore the sound wavelength becomes independent of n.

Provided sound dispersion is absent, Eq. (3.25) in combination with
Eqs. (2.22, 2.24) and (3.27) can be used to calculate the refractive index
from Brillouin data

n(T ) =
1√
2
Ω180 (T )
Ω90A(T )

(3.28)

n(T ) =
Ω90N (T )
Ω90A (T )

(3.29)

If the samples have an isotropic symmetry Eqs. (3.28) and (3.29) can be
used to determine the refractive index of the samples.

If for the frequencies of interest acoustic relaxation processes are active,
the right-hand sides of Eqs. (3.28) and (3.29) no more represent the refractive
index but the so-called opto-acoustic dispersion functions (D-function) [66,72].
The difference D(T ) − n(T ) gives a measure for dispersion respectively the
relaxation strength if present. Further information can be found in Sect. 3.5.

In the case of film- or plate-like samples which have reflecting substrates
on one side there exists an alternative scattering geometry, which we call
the RIθA-scattering geometry [72]. It measures the scattered light from the
laser beam at the substrate and combines the advantages of the 90A- and
the backscattering technique. Figure 3.19 shows schematically the specific
properties of this scattering technique.

The RIθA-scattering geometry [72] is not restricted to an outer scattering
angle of 90◦ but can be applied for any outer scattering angle θ. Thus the
RIθA-scattering geometry results in an a priori backscattering situation with

Fig. 3.19. Schematic drawing of the so-called RIθA-scattering geometry. N1, N2
rotation axes, L1–L4 lenses, P prism, ph pinhole, Mi mirror, FP Fabry-Pérot-
Interferometer
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the possibility to measure in addition a θA-phonon with a wave vector qθA,
which, because of the optical reflection law, is oriented in the film plane.
Rotation around the N2-axis changes the magnitude of qθA but maintains
its direction. Rotation of the sample around the N1-axis probes the in-plane
acoustic symmetry.

3.3 The “Kinetic Face” of the Structural
Glass Transition

In this section we will review some generally accepted results from literature
on kinetic features of the glass transition and discuss some new decisive ex-
perimental data. By “kinetic aspects” we mean the influence of the cooling or
heating procedure of the sample on the glass transition. So we will analyse the
loss of thermodynamic equilibrium of the sample due to those temperature
changes which are necessary to bring the sample closer to the glass transition.
As already discussed briefly in the introduction, the main unsolved problem
about the glass transition concerns the possibility of the existence of a phase
transition possibly hidden by kinetic effects.

It is clear, that glasses are solid in the glassy state from an empirical point
of view. From the structural point of view they are amorphous as confirmed
by x-ray diffraction. Thus the symmetry of the glassy state is isotropic, which
is obviously the same as for the liquid state. Consequently, if the TGT was a
structural phase transition this transition would be of the iso-structural type.

In literature on glasses (e.g. [73–83]) the TGT is often discussed in terms
of the temperature dependence of the shear viscosity η44 (we use the Voigt
notation [84]). Figure 3.20a shows schematically the increase of this viscosity
around the thermal glass transition temperature Tg. In literature on glasses
one usually finds the argument that very close to Tg the shear viscosity takes

Fig. 3.20. Schematics of the temperature-dependence of (a) the visocisity and (b)
the static shear modulus at the glass transition
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Fig. 3.21. Logarithmic viscosity versus the renormalized temperature Tg/T for
several typical glass formers

values up to about 1012 Pa s. Sometimes a viscosity of 1012.3 Pa s [73,78,79,85]
is used as a definition for the glass transition.

However, the temperature dependence of η44 is not the same for differ-
ent glass-formers. Strong glass-formers (c.f. Fig. 3.21, data from [85]) show
an Arrhenius-like temperature behaviour of η44 whereas fragile glass-formers
behave VFT-like (c.f. Eq. (3.32)). In order to test the degree of fragility we
have fitted some of the data (straight lines in Fig. 3.21) to the VFT-law using
the Maxwell relation:

η44 = c∞44 · τα (3.30)

In Eq. (3.30) c∞44 is the dynamically clamped shear modulus which is as-
sumed to show only a slight temperature dependence and τα(T ) is the re-
laxation time of the α-relaxation process according to Eq. (3.32). The fitted
curves in Fig. 3.21 show, that different glass formers tend to very different vis-
cosities close to Tg and that a limiting value for the shear viscosity of 1012 Pas
is only a rough estimate. Thus, η44(T ) seems not to be a good quantity in or-
der to describe the TGT. In addition, the viscosity is a transport coefficient,
usually defined for liquids. It seems that a susceptibility, like a mechanical
modulus, defined for the liquid and the solid state, is more appropriate.

At least for fragile glass-formers the static shear stiffness seems to be more
suitable to describe the transition from the liquid to the glassy state. By def-
inition the static shear stiffness cs44 is zero in the liquid state. Glasses, on the
other hand, show a static shear stiffness cs44 > 0 (at least on all accessible time
scales) indicating an elastic stability comparable to that of crystals. The ex-
pected jump-like behaviour of the static shear modulus at Tg is schematically
drawn in Fig. 3.20b.
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Fig. 3.22. Temperature dependence of the specific volume v of PVAc (dots taken
from Kovacs [86]) around the glass transition after different cooling procedures

The kinetic face of the TGT in structural glasses is usually shown by
demonstrating the ageing behaviour of volume data in the glassy state. In
Fig. 3.22 specific volume data of polyvinylacetate (PVAc) given by Kovacs [86]
are reconsidered and compared to recent data gained from refractive index
measurements by means of the Lorenz-Lorentz equation

r · ρ =
n2 − 1
n2 + 2

(3.31)

where ρ is the mass density, r the specific refractivity (assumed to be constant)
and n the refractive index. This equation is well established for polymers [87].

The dots in Fig. 3.22 denote data from Kovacs, the lines denote the
new data. Both data sets agree very well in the high temperature branch
(T > 310 K). The different behaviour below 310 K is due to different ther-
mal treatments of the samples as explained in the following. The triangles
represent equilibrium values (T > Tg), the circles represent specific volume
data obtained on heating after quenching the sample. The values measured
almost immediately after the quenching (open circles) are higher than those
measured after annealing the sample for 100 h at T = 255 K (filled circles).
The dark gray line was measured on cooling with a rate of 3 K/min, the light
gray line on extremely slow cooling (step-wise with ∆T = 1 K and an average
rate of ca. 0.4 mK/min).

The smooth kink in the specific volume curves at the transition from the
glassy to the liquid state is interpreted as the operative glass transition due to
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the cross-over of the intrinsic time scale of the α-relaxation process of PVAc
with a time scale related to the thermal history of the sample. As indicated
in Fig. 3.22 the intersection of the extrapolated high temperature straight
line with those of the two glassy states are used to fix the operative glass
transition temperatures Tg1 and Tg2. This Tg shift, also reflected in the new
data, is typical for the rate dependence of the TGT.

With the Kovacs data the annealing effect leads to a reduction of the
specific volume of about −0.5% for 100 h annealing at T ≈ (Tg − 40 K) with
Tg ≈ 300 K. This ageing has been attributed by Kovacs to the metastability
of the glass with respect to its fluid phase after quenching. Apparently this
annealed state coincides with that of our new data on extremely slow cooling,
although the duration of our measurement exceeds the annealing time by at
least a factor of 10. Accordingly this state seems not to be arbitrary at all,
as different but slow thermal histories lead to the same state. This gives rise
to the question: If the system is clearly out of equilibrium (due to a crossing
of time scales) and if it relaxes even well below Tg towards its equilibrium,
i.e. from the point of view of kinetics towards the extrapolated liquid branch,
why should it stop relaxing at a certain point?

Indeed, the absolute values of the specific volume within the glassy state
depend on the cooling history of the sample but the slope, which corresponds
to the thermal expansion coefficient α, does not. So if the glassy state was
metastable and strongly dependent on the thermal history, why should its
temperature dependence be unique?

Figure 3.23 shows the effect of fast cooling as a source for metastability
for the longitudinal elastic stiffness coefficient c11 (Voigt notation [84]) of
polystyrene (PS) as obtained by Brillouin spectroscopy at sound frequencies
in the GHz range. Both c11-curves have been measured on step-wise heating
with an average heating rate of 0.1 K/min. The curve of open circles was
measured on a sample quenched in ice water from 400 K to 300 K. The black
curve was also measured in the same way but after extremely slow cooling from
above Tg to 300 K. The cooling was performed on step-wise cooling using the
time domain method (see Sect. 3.4). The average cooling rate was extremely
low (ca. 0.5 mK/min).

As shown before for the specific volume data (Fig. 3.22) the absolute values
of the elastic stiffness modulus of the glassy state depend on the thermal
history of the sample whereas the slopes of these curves do not. This result
is not new but surprising from a physical point of view and will therefore be
discussed in Sect. 3.5. The stiffness anomaly of the black curve in Fig. 3.23
around the TGT reflects an overheating effect: Since the sample was extremely
slowly cooled to the glassy state, we may expect that the segment packing
arrangement became so dense, that the random closed packed (rcp) state [78]
was attained. Even on slow heating with +0.1 K/min the time needed for
“liquifying” the glassy state was significantly larger than provided by that
heating rate. The observed overheating temperature ∆T oh is about ∆T oh ≈
10 K.
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Fig. 3.23. Overheating effect at the glass transition temperature of polystyrene
induced by strongly differing cooling and heating rates

The physical origin of the metastability demonstrated in Fig. 3.22 and
Fig. 3.23 can be twofold at least:

1. Internal degrees of freedom which may be described in terms of irre-
versible thermodynamics by spatially homogeneous internal variables [88].
The equilibration of these internal variables is retarded on fast cooling or
heating.

2. Spatial heterogeneities because of quenching.

The second effect is usually neglected in the discussion about the TGT
but it deserves attention for the following reasons.

These spatial heterogeneities result from the low thermal conductivity
which is typical for many glasses. Since usual heating and cooling processes
transfer heat across the outer surface of the sample, specific volume gradients
develop according to the temperature gradient. As an example one may think
of a long polymer cylinder (Fig. 3.24) which is rapidly cooled down from high
temperatures to below Tg. This quenching will freeze at first the outer skin
of the sample (Fig. 3.24). Then this outer skin becomes a sort of rigid con-
tainer which is filled with the same material in the fluid state. With ongoing
quenching, the remaining fluid vitrifies layer by layer but with varying cool-
ing rate and under the mechanical stress exerted by the outer solidified part.
In the final state the sample consists of a layered structure with an inhomo-
geneous distribution of mechanical stresses and a radial distribution of glass
transition temperatures. It is not surprising that such inhomogeneous samples
show apparent ageing effects.

Figure 3.25 shows two specific heat curves measured with adiabatic cal-
orimetry of a polymethylmethacrylate (PMMA) sample, which suffered dif-
ferent thermal histories prior to the two heating runs. The open circles were
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Fig. 3.24. Schematics of a polymer cylinder with shells representing different cooling
rates and hence different glass transition temperatures due to fast freezing

Fig. 3.25. Temperature dependence of the specific heat capacity of PMMA after
different cooling and heating procedures

measured on a virgin (extruded) sample from ambient temperature to 410 K.
Subsequently the sample was slowly cooled down again to ambient tempera-
ture by 8 mK/min and then measured again on heating by 4.5 mK/min (black
dots). The superior experimental reliability and precision of these data mea-
sured with heat-pulse adiabatic calorimetry is illustrated in Fig. 3.26. The
margin of error of these specific heat data is smaller than the diameter of
data dots. The low- and high-temperature asymptotes of the cp(T )-curve are
very well described by straight lines with slightly different slopes being a little
bit lower in the liquid state.

Based on this high data quality, the difference in Tg of about 3 K between
the virgin and the slowly cooled state of the PMMA sample is real in Fig. 3.25.
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Fig. 3.26. Specific heat capacity around the TGT of PMMA, the ordinate is off by
roughly 15% due to a calibration error [89]

Fig. 3.27. Specific heat capacity around the TGT of PMMA for cooling rates
differing by a factor of 60 (both of the order of magnitude: mK/min) [89]

Frühauf et al. [89] attributed this shift to the formation of internal stresses
and a spatial distribution of glass transition temperatures.

In the following we will discuss data measured on two identical PMMA
samples (Fig. 3.27), where very different cooling rates yield the same adiabatic
specific heat capacity, indicating that at least in average the same glassy state
is produced for both cooling scenarios. The samples have suffered cooling rates
differing by a factor of more than 60.
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The black curve in Fig. 3.27 was cooled very slowly with 8 mK/min and the
circle curve was cooled faster with 519 mK/min which is still slow compared
to rates applied in technological processes, however. Both samples were then
measured by the same heating rate of about 4.5 mK/min. In the margin of
error both curves are identical and show no cooling rate dependence at all.
The reason for this complete independence of the TGT on the thermal history
is only understood if the rate dependence of Tg can be neglected for the given
range of cooling rates. This fact seems to be contradicted by the large change
of the cooling rate in combination with the accuracy of the specific heat data.

An alternative interpretation for the observed behaviour could be con-
nected to the observed cut-off of the relaxation frequencies, i.e. the relaxations
stop at certain temperature with a finite relaxation frequency. This aspect will
be discussed in Sect. 3.4.

If the conclusion can be made that the data of Fig. 3.27 are equilibrium or
near equilibrium data, then the step-height of cp at Tg represents the excess
specific heat connected to the “liquefaction” of the glassy state. In physical
terms, the precise location of Tg is not obvious. Many authors use the inflec-
tion point of the specific heat curve as a good measure to identify Tg. Since
the temperature width of the thermal glass transition regime is almost 20 K
an identification of the inflection point of the cp-curves as a reliable glass
transition temperature is questionable. It is more likely, that the onset of the
excess specific heat on the background specific heat of the glassy state defines
the glass transition temperature. This onset coincides quite well with the kink
in the sound velocity and the refractive index.

A completely different view on the kinetic properties of the TGT is ob-
tained having a look at the “Generalized Cauchy Relation” (gCR) of amor-
phous materials [90, 91]. From solid state physics it is well-known that the
number of independent coefficients of the elastic stiffness tensor is deduced
from the symmetry of the crystal [e.g. [92]]. Additional relations, which
further reduce the number of independent elastic stiffness coefficients are
known in solid state physics and are calledCauchy relations(CR) [93, 94].
Such relations hold only true if the crystal of interest obeys additional con-
straints about local symmetry (every lattice particle is a centre of inversion),
molecular interaction forces (only central forces), and lattice anharmonicity
(only harmonic potentials).

For cubic crystals these constraints lead to the relation:

c12 = c44 (3.32)

Equation (3.32) reduces the initially three independent elastic coefficients
to only two, c11 and c44 [94]. Imagine now that we were able to produce a
ceramic sample made of irregularly oriented cubic nano-crystals which obey
a CR according to Eq. (3.32). In that case the ceramic body shows isotropic
symmetry on the macroscopic scale. Hence the isotropy condition [92] holds for
the orientational average (denoted by the brackets) of the elastic coefficients:
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〈c12〉 = 〈c11〉 − 2 · 〈c44〉 (3.33)

Combining Eqs. (3.32) and (3.33) we obtain a Cauchy relation for the isotropic
state [94]:

〈c11〉 = 3 · 〈c44〉 (3.34)

Equation (3.34) reduces the number of independent elastic coefficients of the
isotropic nano-ceramic from two to one.

If the cubic crystal does not fulfil the requirements of the Cauchy relation,
than you can write Eq. (3.32) in a more general way

c12 = c44 +A(T, p, . . .) (3.35)

where A is a term which depends on temperature T , pressure p, etc.
The orientational average leads then to a generalized Cauchy relation of

the isotropic state
〈c11〉 = 3 · 〈c44〉 +A(T, p, . . .) (3.36)

According to Eq. (3.36) the deviation from the Cauchy relation of the cu-
bic state measured by A is found as an additive term in the Cauchy relation of
the isotropic state Eq. (3.35). This result sheds some interesting light on the
possible mechanism leading to the generalized form of the Cauchy relation.
Equation (3.35) together with Eq. (3.36) lead to the result that a ceramic
based on nano-crystals with cubic symmetry can show an ideal Cauchy re-
lation Eq. (3.35) provided that the cubic crystals follow a Cauchy-Relation
(A = 0). As a consequence the additive constant A in the generalized Cauchy
relation is not caused by the difference in local and global symmetry of the
ceramic.

Amorphous glass-formers are not expected to meet the aforementioned
conditions about local symmetry, the absence of defects and the absence of
anharmonicity. Thus Eq. (3.34) should not apply to these materials.

However, theoretical work [90,95] proposed a generalized Cauchy relation
between the high-frequency elastic shear modulus G∞ = c∞44 and the com-
pression modulus K∞ for dynamically frozen liquid argon:

K∞ =
5
3
·G∞ + 2 · (P − n · kBT ) (3.37)

where P is the external pressure, T the temperature and n the particle density.
Using

K∞ = c∞11 −
4
3
c∞44 (3.38)

one finally obtains

c∞11 = 3 · c∞44 + 2(P − n · kBT ) (3.39)

Compared to the CR for the isotropic nano-crystalline case Eq. (3.35),
this “generalized” Cauchy relation (gCR) for the amorphous argon adds a
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term, which depends on pressure and temperature and therefore much more
equals Eq. (3.36). According to Eq. (3.37) the pre-factor 3 is reproduced for
c44, but the relation between c44 and c11 is not linear for changing pressure
or temperature.

To check this point, the TGT of several glass formers (DGEBA, PVAc,
Salol, DBP, etc.) were recently studied during slow cooling (Ṫ < 0.5 K /min)
by Brillouin spectroscopy at hypersonic frequencies [96]. Due to the high mea-
suring frequency, the method provides the clamped stiffness coefficients c∞11(T )
and c∞44(T ) (Fig. 3.29). As the result, a linear relation

c∞11(T ) = A0 +B · c∞44(T ) (3.40)

was obtained, A0, B temperature-independent material constants and T being
the temperature. Again, B = 3 was found within the margin of error for all ma-
terials under investigation [96]. As shown in Fig. 3.30, the TGT is completely
hidden in the elastic data representation described by Eq. (3.40). Accordingly
the influence of the TGT has to be identical on both the longitudinal and the
transverse acoustic mode.

This observation raises the question whether (i) non-equilibrium processes
do not violate the gCR at all or whether (ii) the TGT is not necessarily a
non-equilibrium process? If hypothesis (i) holds true, the validity of relation
(3.40) for the liquid state as well as for the solid state would be less surprising.
If on the other hand (ii) holds true, the validity of the gCR could turn out
to be a versatile tool to discriminate between mechanical equilibrium and
non-equilibrium. With respect to this point of view it is highly interesting to
elucidate the question whether fast cooling of the liquid to the non-equilibrium
glassy states is able to violate the gCR. If it happens, whether these non-
equilibrium states relax towards their equilibrium and if they do so, on which
time scale and to which direction this happens.

All data reported in the following were measured with Brillouin spec-
troscopy using the 90A-scattering geometry (c.f. Fig. 3.18b) detecting simul-
taneously the longitudinal sound frequency f90A

L , and the transverse sound
frequency f90A

T . It should, however, be stressed that amongst all scattering
geometries only the 90A-scattering or more general the ΘA–scattering pro-
vides a phonon wave vector qΘA which is independent of the refractive index
n of the sample (Sect. 3.2).

Having determined the sound velocities of the longitudinal and shear po-
larized phonon modes and assuming that the mass density ρ is known, the
elastic constants c11 = cL and c44 = cT are given by

c90A
ii = c90A

L,T = ρ · (V 90A
L,T )2, i = 1, 4 (3.41)

In order to test whether the gCR Eq. (3.40) can be violated by fast quench-
ing we have used the diglycidilether of bisphenol A (DGEBA, Fig. 3.28) as a
glass forming organic liquid.
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Fig. 3.28. Structural formula of DGEBA

It is well-known [96, 97] that bulk DGEBA is a fragile liquid that may
crystallize, in special circumstances if nucleation is forced e.g. by rough sur-
faces, water droplets, etc. DGEBA shows at extremely slow cooling a static
(intrinsic) TGT at Tgs = 243 K [97].

In Fig. 3.29 the elastic stiffness data c11(T ) and c44(T ) for an extremely
slow cooling run are shown (∼0.01K/min). Both elastic moduli versus tem-
perature curves show a kink at about the static glass transition temperature
Tg of 243 K [97]. According to the small residuals shown in Fig. 3.29 both
frequency curves behave piecewise linearly in the investigated temperature
interval.

According to Eq. (3.40) the related gCR is depicted in Fig. 3.30. The plot
demonstrates that the elastic data measured under these conditions perfectly
obey the gCR with A = 2.6 GPa and B = 2.98 ± 0.2. Hence within the margin
of error B = 3 holds true. The distribution of the residuals confirms the linear

Fig. 3.29. cL and cT of DGEBA as a function of the temperature T . The straight
lines are fitted curves. The residuals in the lower part demonstrate the agreement
of the data with a piece-wise straight line model
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Fig. 3.30. gCR-representation for the Brillouin data of Fig. 3.29. In the lower part
of the figure the corresponding residuals are given. The residuals indicate the good
compatibility of the measured data with the gCR presented by the straight line
according to Eq. (3.40)

behaviour of the data representation, and that the TGT is completely hidden
in this parametrical representation.

If we tentatively accept a purely kinetic interpretation (see e.g. [98]) of
the TGT, we had to assume that Tg could be shifted to higher temperatures,
provided the cooling process was speeded up.

In other words, the gCR would remain a linear function but would become
ambiguous in its physical meaning, i.e. the parameters A and B would have
the same values in the equilibrium as in the non-equilibrium state. Conse-
quently, the gCR would turn out to be rather insensitive to deviations from
equilibrium. If, on the other hand, the slopes of the longitudinal and transverse
frequency curves of the new hypothetical glassy state change their relation in
comparison to that measured on slow cooling, the gCR would become vio-
lated for the new glassy state. Keeping in mind that within this approach the
slower cooled sample is closer to equilibrium, such behaviour seems not to be
very likely. In order to clarify this point we have tested whether the apparent
insensitivity of the gCR with respect to equilibrium is a general feature of the
gCR. For this purpose we have used quenching procedures in order to create
forced non-equilibrium glassy states. During this fast cooling we are not able
to record Brillouin data simultaneously. Therefore we cannot say anything
about the evolution of the elastic behaviour during the fast cooling process.
As will be shown below (Fig. 3.31c) we were able, however, to measure the
sound frequency evolution of samples submitted to intermediate cooling rates
(0.05 K/min).

Figure 3.31 shows the c11 = c11(c44)-relation as obtained from Brillouin
data derived from different quenching procedures. As indicated above, these



3 About the Nature of the Structural Glass Transition 97

quenching procedures are not really under control. Figures 3.31a,b,d show
Brillouin data measured during heating the quenched sample from the glassy
to the liquid state. Figure 3.31c shows the Cauchy-representation of Brillouin
data measured on intermediate fast cooling of the DGEBA sample. The open
circles in Fig. 3.31 give the measured data, the straight lines give the gCR.
From Fig. 3.31 it is evident that non-equilibrium glassy states produced by
quenching lead to a violation of the gCR. The quenched samples of Fig. 3.31
show significant positive deviations from the gCR. As a matter of fact, this
positive deviation is related to a lag of the shear stiffness behind the longitu-
dinal stiffness.

In other words, on quenching the DGEBA sample to low temperatures,
the longitudinal modulus develops closer towards the increasing equilibrium
value than the transverse modulus does. Moreover, these deviations are able
to relax towards the gCR during heating and cooling procedures within the
glassy state (c.f. Fig. 3.33).

Figure 3.31c demonstrates how the violation of the gCR takes place if
the BS-measurements are performed during intermediate fast cooling (about
0.05 K/min). It is evident that even if the sample is moderately cooled into
the glassy state, significant positive deviations from the gCR can be produced.
The linear transformation properties implied by the gCR and deviations from
this linear transformation can be evidenced in a different way. We show in
Fig. 3.32 the temperature dependence of the longitudinal and shear phonon
corresponding to the Cauchy representation of Fig. 3.31b.

As is seen in Fig. 3.32 we have spread the plot axis for both phonon
frequency curves in such a way that the longitudinal and transverse phonon
branches coincide within the liquid phase. In the glassy phase the relative
slope of the transverse mode becomes smaller in comparison to that of the
longitudinal mode, whereas the slope of the longitudinal mode is the same
as for slow cooling. According to the related frequency-temperature plots the
different ageing processes presented by Figs. 3.31a,b,d meet the “equilibrium
glass branches” of the longitudinal and transverse polarized modes defined
by Figs. 3.29, 3.30. The low-temperature branch of Fig. 3.31a merges at T −
Tg = 16 K with the gCR. The slope of this low-temperature branch amounts
to about m = 4 in comparison to B = 3. The low-temperature branch of
Fig. 3.31b even merges at T − Tg = 21 K. The slope of this branch amounts
to m = 4.8. In Fig. 3.31d the onset of the deviation from the gCR occurs only
at the TGT. No excess of the slope (m > B = 3) was ever observed above Tg.

In order to elucidate the observed significant ageing behaviour within the
glassy state of DGEBA we have performed different cooling and heating cycles
within the glassy state of this material. The data are depicted in Fig. 3.33.
After quenching the sample to 120 K (cooling rate ∼ −200 K/min) we per-
formed a first heating experiment (run 1) in Fig. 3.33, which we stopped at
195 K. This is more than 40 K below Tg.

The slope of the low-temperature branch is m = 4.15 in comparison to
B = 3 in the liquid state. Subsequently we have cooled the sample again
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Fig. 3.31. gCR-representations for different quenching and heating cycles. The
residuals indicate the deviations of the measured data from the gCR presented by
the straight lines. Figures a, b, d represent Brillouin data measured on heating after
different quenching procedures. Figure c shows a cooling run on intermediate fast
cooling. See text for further explanations

to 120 K and then heated the sample to Tg − 10 K. The slope of the low
temperature branch has now decreased to m = 3.92. A further cooling to
137 K and a subsequent heating to ambient temperature yields a slope of
m = 3.48 for the glassy state. These results confirm the above anticipated
ageing process within the glassy state. This thermal relaxation process con-
verges in all our experiments versus a unique glassy state, which we have
identified recently on the basis of time domain Brillouin measurements [97] as
the equilibrium glassy state of DGEBA (c.f. Sect. 3.4). Definitely, we found no
relaxations towards the liquid state, which exceed the sound frequency data
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Fig. 3.32. Longitudinal and transverse elastic moduli (cL and cT ) for DGEBA as
a function of the temperature T , measured after quenching to about 77 K

Fig. 3.33. gCR-representations for different consecutive quenching and heating
cycles. All measurements were performed on heating. The full straight line represents
the gCR for the equilibrium state. For further explanations, see text

within the temperature representation of the equilibrium glassy state. This
result is based on at least 15 different quenching cycles. According to Ref. [97]
the structural α-relaxation shows a cut-off at the glass transition temperature
(c.f. Sect. 3.4). It is therefore likely that the dynamical processes involved
in the ageing process have little in common with the structural α-relaxation
process. We do not want to compare time constants found in the gCR repre-
sentation during ageing in the glassy state with time constants reported for
the hypersound velocities in the liquid state [97]. There is no hint for a direct
connection between both processes.
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Being convinced that the ageing process within the super-cooled liquid
state discussed above has nothing to do with the α-relaxation process the
question about the reason for the violation of the gCR has still to be eluci-
dated. As a matter of fact, the violation of the gCR is only observed if the
quenching process starts at temperatures more than a hundred Kelvin above
Tg and is as fast as than −200 K/min. At that cooling speed usual glass struc-
tures cannot be formed. In our opinion, the supercooled liquid (with respect
to the crystalline state) is driven into a further supercooled state sc2 but this
time the super-cooling is related to the glassy state. The state sc2 behaves as
a metastable glass. That the glassy state is the related preferential thermo-
dynamic reference state to which the metastable state sc2 relaxes is evident
from the experimental facts. The usual local molecular arrest at the intrinsic
glass transition is impeded. The experimental data show, that the achieved
metastable state sc2 has smaller shear stiffness than the glassy state, whereas
the longitudinal modulus is, in comparison to that of the glassy state, not al-
tered. In other words the sc2-state behaves “stiff” on compression but rather
“soft” on bending the sample: the state sc2 behaves more liquid-like than
a glass. As a matter of fact, heating up to the glass transition temperature
erases any memory about the super-cooled state sc2.

In favour of this view are the facts that (i) the temporal evolution of the
ageing process is much faster than the hypothetical α-process of DGEBA in
the temperature range Tg > T > Tgs, but very close to Tg and that (ii) we
found ageing well below the VFT temperature To. As a consequence, the liquid
state of DGEBA seems to be a forbidden state below Tgs and the glassy state,
which is approached during the thermal ageing appears as an “equilibrium
glassy state” of DGEBA for T < Tg. Of course we cannot exclude the exis-
tence of another energetically more favourable state, but if it exists, this state
must be separated from our equilibrium glassy state by such high potential
barriers that it is virtually inaccessible. In order to be observable in a Brillouin
experiment, the molecular non-equilibrium excitations have to couple to the
transverse and longitudinal polarized sound modes and their relaxation times
have to be in a time-window accessible to this kind of experiment. It is worth
noting that, if this coupling is weak or if the relaxation times are too fast or
too slow in comparison to our experimental time scale, Brillouin spectroscopy
is ineffective with respect to the test of ageing phenomena.

Studying the experimental results presented in this chapter, we can con-
clude as follows:

(i) Using appropriate thermal treatments, distinct glassy states with dif-
ferent macroscopic properties, like density or mechanical moduli can be
realized.

(ii) In the glassy state there can exist relaxations (due to ageing) which are
distinct from α-, β-, γ-, etc-relaxations (see Sect. 3.4).

(iii) It seems that in structural glass-formers there exists an intrinsic glassy
state.
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(iv) the ideal glass transition temperature marks the stability boundary for
the intrinsic glassy state and the super-cooled glassy states.

3.4 The Dynamic View of the Thermal Glass Transition

In this section we will analyse the glass transition and related phenomena
which are due to the cross-over of the inverse probe frequency with the intrinsic
α-relaxation frequency of the glass-forming liquid.

It is usually believed by the glass community that the slowing down of
molecular dynamics on approaching the thermal glass transition plays a cru-
cial role for the physical changes appearing at the TGT [99–104], as well as at
the glass transition predicted by mode-coupling theory [105,106] etc. The dy-
namics associated with those molecular motions which are intimately related
to the TGT are usually described by the VFT-law introduced in Sect. 3.1.
This primary glass relaxation process is usually called α-relaxation process.
According to the schematic drawing in Fig. 3.34 the activation plot of the
α-relaxation frequency is strongly bent towards zero at the so-called VFT-
temperature T0 [103,104,107]:

ωα = τ−1
α = ωα0 · exp [−∆Gα/ (R (T − To))] (3.42)

This phenomenological law holds true at least for temperatures T > Tg > T0

and implies a divergence of the α-relaxation time τα at T0. In Eq. (3.42) the
parameter ωα0 is the attempt frequency displaying the molecular mobility at
high temperatures and ∆Gα is the activation free energy of the α-relaxation
process.

It is the trust in this divergence which has stimulated many researchers
in the field of glass transition to believe in the kinetic nature of this phenom-

Fig. 3.34. Schematic representation of the VFT-law for the α-relaxation and the
Arrhenius-like behaviour of the β-relaxation
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enon. This belief was supported by manifold observations of ageing processes
in the pre- and post-transition temperature intervals of the operative glass
transition temperature Tg. It should however be stressed, that these observa-
tions in favour of a purely kinetic interpretation of the TGT are no proof for
any divergence of τα but they are at best a proof for sufficiently large relax-
ation times in order to compete with usual experimental time constants τexp.
Thus the real temperature behaviour of the α-relaxation time in the limit of
large experimental time constants is the fundamental problem. The question,
whether τα really diverges or remains finite, decides whether the “cross-over”
problematic is unsolvable or just a quantitative problem of the experimental-
ists patience. This is the reason why it deserves huge interest and is the main
topic of this section. Of course, besides the cooperative α-relaxation process
there may exist other relaxation processes which are thermally activated. In
Fig. 3.34 such an Arrhenius-process is designated as β-process. This kind of
relaxation processes is usually not affected by the glass transition.

The deviation of the VFT-law from the Arrhenius behaviour is an exper-
imentally evident precursor of the thermal glass transition not only observed
well above Tg but which is found for quenched glass formers even clearly above
the melting temperature Tm. That means that this precursor of the later TGT
is already present in the glass forming material at temperatures at which the
material has not decided whether it will densify by crystallization or densify
by freezing. In so far the slowing down of the molecular dynamics described
by a VFT-behaviour puts the question whether it can be interpreted as a
general precursor for a transition into a dense solid state. Independently of
the thermodynamic path the primary goal of a cooled liquid seems to be its
densification and consequently, to find a state which is as densely packed as
possible (close packing). Below the melting point two possibilities exist for this
densification. (i) the crystallization and (ii) the thermal freezing. Since crys-
tallization is usually a strong first order transition, the α-relaxation is clearly
no dynamical precursor for the crystallization process. This argument is sup-
ported by the fact that during the undercooling of a glass forming liquid, the
crystallisation process is suppressed and the potential melting/crystallization
process leaves no mark on the VFT-law. Since in a crystal the average position
of the lattice molecules is fixed, the α-relaxation process of the related liquid
state usually disappears or is quantitatively different from that in the crys-
talline state. An example of the latter behaviour is DFTCE which has been
discussed in the first section. Thus, the first order transition to the crystalline
state can be interpreted as one efficient way to achieve the goal of dense pack-
ing. The remaining alternative, which is necessarily disordered, is the glassy
state with random closed packing (rcp). Then the question occurs, if densifi-
cation by crystallization changes fundamentally the α-relaxation behaviour or
even stops it, why should the α-process be unaffected by the glass transition
and in turn produce the “time-trap” discussed in the first section?

A further comparison between the glass transitions and structural phase
transitions might be elucidating. So-called soft mode theories predict that the
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lattice instability occurring at a structural phase transition is accompanied by
a slowing down of the soft mode frequency to zero [108]. In reality this slowing
down of the soft mode frequency to zero never happens, instead the phase
transition takes place at a soft mode frequency well above zero. Assigning
the experiences with soft modes of structural phase transitions in crystals
to the potential behaviour of the α-relaxation time the divergence of the α-
relaxation time τα = 1/ωα at the glass transition of a glass forming liquid
is little probable. This argument is a further counter-indication against the
“cross-over” argument but not a proof yet.

In order to elucidate the true α-relaxation behaviour and its influence
on phenomenological physical properties at the TGT, the temperature de-
pendence of the latter within the pre-transitional phase close to Tg has to be
revisited. It is usually accepted that every liquid can be quenched to the glassy
state. According to Sect. 3.1 “quenched glass formers” become supercooled be-
low their melting temperatures whereas ideal glass formers can stay in their
thermodynamic equilibrium state until the TGT. Fast cooling (quenching)
of a glass forming liquid is accompanied by a decrease of its specific volume
νl(T ) according to the volume expansion coefficient αlsc (T ) = αl(T ) (sc su-
percooled) of the equilibrium liquid. The specific volume in the supercooled
liquid state νlsc(T ) is in general higher than in the crystalline reference state
νlsc(T ) > νcryst(T ). Thus, supercooling provides at first a deviation of the
specific volume from that of the crystalline reference state but continues that
of the thermodynamic equilibrium liquid into the undercooled liquid state.
The linear temperature dependence of the specific volume found in the pre-
transition temperature interval does not reflect the VFT-behaviour of the
main glass relaxations. Only at lower temperatures, in a limited tempera-
ture interval, called glass transition interval, the thermal expansion coefficient
changes rather abruptly from that of the equilibrium liquid state αl (T ) to that
of the so-called glassy state αg (T < Tg) < αl [109–111] (see Sect. 3.3). Ideal
glass-formers behave in exactly the same way but transform from the equilib-
rium liquid state immediately into the glassy state without passing through a
metastable pre-transition temperature interval. This means, that from a phe-
nomenological point of view quenched- and ideal glass-formers do not differ
from each other although they are in different thermodynamic states.

As a matter of fact, transport properties like the shear viscosity of fragile
liquids behave in the same way. Quenched glass forming fragile liquids and
ideal glass forming fragile liquids are accompanied by an increase of viscosity
stronger than exponential (see Fig. 3.21) and do not reflect the behaviour of
the equilibrium liquid at much higher temperatures [112–114].

It appears that the pre-transitional temperature interval as seen by the
shear viscosity is much broader than that seen by mass density. From the
viewpoint of shear viscosity one has to differentiate between two temperature
regions: the rather large pre-transitional temperature interval in the liquid
phase and the rather small glass transition zone (kink). The question arises
about the reason why the transport of molecules should feel hindered much
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more in the pre-transitional temperature interval than by usual thermal acti-
vation at much higher temperatures? Geszti [115] has introduced a phenom-
enological relation between the shear viscosity and the molecular dynamics

η44 = c∞44 · τα (3.43)

where τα is again the relaxation time related to the TGT (Sects. 3.1, 3.3)
and c∞44 is the frequency clamped shear stiffness of a liquid. Equation (3.43)
couples in some way the imaginary part (∼ η44) of the complex shear stiffness
of a mechanical continuum to a relaxation time τα. In the case of glass form-
ing liquids it couples the solid state like behaviour c∞44 of a liquid observed
under frequency clamped conditions to its acoustic attenuation. Keeping in
mind, that c∞44 depends linearly on temperature in the pre-transitional liquid
phase [116, 117], the more than exponential increase of η44 with decreasing
temperature must be due to molecular dynamics, i.e. the temperature behav-
iour of τα. From a formal point of view the observed saturation (kink) of η44

at the glass transition might be due to either a saturation of the relaxation
time τα and/or to a saturation of c∞44.

Combining Eq. (3.42) with Eq. (3.43) leads to

η44 = c∞44 · τα0 · exp [∆Gα/ (R (T − To))] (3.44)

The strong bending of the activation plots of τα and η44 has been related to an
increasing cooperativity [102] of the molecular motions in the pre-transition
interval on approaching the TGT. That means, that in order to put one mole-
cule or a molecular group in a better packed environment the molecules in
the shell of next neighbours, in the shell of over-next neighbours and so on
have to move cooperatively in order to allow for this improved packing. It is
this cooperative molecular motion which allows even in the very dense packed
state the combined rotational and translational molecular motion necessary
for a further densification. Equation (3.44) implies that in a very dense state
a further improvement of the density is more time consuming than in a less
dense state.

The increases of the bending strength of τα and η44 also signalize an in-
crease of fragility of the glass former. The magnitude of the temperature dif-
ference |Tg − T0| is a measure for the fragility of the glass former and amounts
e.g. to about 40 K for polymers [101,112,113].

At this state of discussion the reader is confronted with the situation that
the shear viscosity of a fragile glass former increases stronger than exponen-
tial on approaching Tg and shows a pronounced kink (saturation) at this
temperature. The mass density and the frequency clamped elastic shear stiff-
ness behave linearly in the pre-transitional temperature interval but show a
kink at Tg. Finally, in contradiction to the temperature dependence of the
shear viscosity η44 the relaxation frequency ωα is predicted to follow a VFT-
law Eq. (3.42) across the operative glass transition temperature Tg remaining
continuous and differentiable at Tg but with a divergence at T0 < Tg. Thus,
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a saturation of τα at Tg is not predicted by the VFT-law and obviously, it
would contradict the “cross-over argument” given in Sect. 3.1. In other words,
the unavoidable “time-trap” introduced in Sect. 3.1 as an argument in favour
of the kinetic nature of the glass transition would become redundant if the
VFT-law breaks down at Tg (see also the discussion below).

Insisting for the moment on the validity of the VFT-law Eq. (3.42), the
only way to force η44 to saturate at Tg is to saturate c∞44. In this kinetic picture
the saturation of c∞44 is synonymous to reaching a non-equilibrium state. But
there is also the possibility of structural changes at Tg.

The bridge to the “structural changes” eventually might be found in a
phenomenological relation between the shear viscosity η44, the free volume Vf

and the occupied volume Vo given by Doolittle [100]

η44 = A · exp
[
b · Vo

Vf

]

(3.45)

where A and b are constants. Following the idea of free volume [118, 119] a
volume element V from the glass-forming liquid is then composed of V =
Vf + Vo. According to Eq. (3.45) the temperature dependence of η44 stems
from the temperature dependencies of Vf and Vo. Defining the related volume
expansion coefficients αf and αo respectively

αf =
1
Vf

dVf

dT
(3.46a)

and
αo =

1
Vo

dVo

dT
(4.46b)

The volume expansion coefficient α and the relative temperature derivative
of η44 can be calculated yielding

α =
1
V

dV

dT
=

1
V

d (Vf + Vo)
dT

=
Vf

V
αf +

Vo

V
αo (3.47)

and

1
η44

· dη44

dT
=

b · Vo

Vf
{αo − αf} =

1
c44

dc44
dT

+
1
τα

dτα

dT
=

1
c44

dc44
dT

−∆G

R

1
(T − To)

2

(3.48)
In Eq. (3.47) the coefficient αo measures the thermal expansion of the mole-
cules due to thermal molecular excitations in an anharmonic potential and
αf measures the decrease of the free volume with decreasing temperature.
Having again a look at the saturation of η44 at Tg either αo or αf or both in
Eq. (3.48) have to change at the TGT.

At least for αo a discontinuous change is only possible, if structural
changes, preferably intramolecular structural changes, occur at the TGT. Ac-
cording to the “free volume theory” [118, 119] the free volume Vf goes to a
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constant minimum value or even zero at T ∗ > 0 K which means, that the
corresponding volume expansion coefficient αf goes to zero (random closed
packing). A spontaneous disappearance of αf at T ∗ suggests a volume ex-
pansion coefficient α which changes discontinuously at T ∗. A discontinuous
change of the volume expansion coefficient is synonymous to the fact that the
molecular interaction potential changes discontinuously at T ∗. In any case T ∗

has to be lower than the usual operative glass transition temperature Tg. In
some theories T ∗ is brought in connection with TVFT but without any proof.

In addition, the right hand part of Eq. (3.48) relates the saturation of the
shear viscosity to the saturation of the frequency-clamped shear stiffness. It
remains the essential question: why does the free volume becomes constant
at an operative glass transition temperature Tg while the cooperative mo-
tions of the molecules still follow the VFT relation (see Eq. 3.48)? To answer
this question a precise reinvestigation of the α-relaxation process and of the
shear stiffness c∞44 in the pre-transitional temperature interval is imperative.
Provided the generalized Cauchy relation (discussed in the previous section)
holds true it suffices to investigate the longitudinal elastic modulus instead of
the shear stiffness as the latter one is often difficult to measure.

For the sake of simplicity, the following discussion is reserved to ideal or
almost ideal glass-formers. The α-process can be observed with different ex-
perimental techniques. Dielectric-, mechanical- and thermal spectroscopy are
amongst the most common techniques, as the complex dielectric susceptibility
ε∗ (ω), the complex elastic stiffness tensor c∗ij (ω) or the compliance ten-
sor s∗ij (ω) with (i, j = 1, 2 . . . , 6) and the complex specific heat capacity
c∗p (ω) couple to the α-process.According to irreversible thermodynamics the
α-relaxation time τα depends on the thermodynamic boundary conditions and
therefore on the measurement technique, at least in principle. In reality these
different α-relaxation times are often very close to each other.

As indicated in Fig. 3.35 the α-relaxation frequency of polymethylmethacry-
late (PMMA) follows in the pre-transitional temperature interval a VFT-
law [120]. However, according to time domain Brillouin spectroscopy (TDBS,
discussed in detail below) close to Tg deviations from the VFT-law occur (open
circles in Fig. 3.35) [121]. Just below Tg a strong jump of ωα versus 1/T is
observed (large open circle in Fig. 3.35). The Brillouin results from Fig. 3.35
yield the first relaxation data in a frequency range not attainable so far. Be-
low the temperature related to this jump no further low frequency relaxations
are observed even though they should be observable with TDBS if the VFT-
law was still applicable. There seems to exist a cut-off of the α-relaxation
process. A β-relaxation process accompanying the α-process behaves, as ex-
pected, Arrhenius-like.

According to the experimental technique in use (TDBS) all relaxation
frequencies gathered until the cut-off are equilibrium data. Now there are two
possibilities (see Fig. 3.36): (i) No further α-relaxations exist. In that case the
Brillouin data obtained at lower temperatures are equilibrium data (solid line
in Fig. 3.36). (ii) the α-relaxation frequency slows down much steeper than
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Fig. 3.35. Logarithmic α- and β-relaxation frequencies of atactic PMMA as ob-
tained by dielectric spectroscopy and TDBS

Fig. 3.36. Schematics of the evolution of the relaxation time of the α-process τα

with an assumed cutoff at Tcutoff > T0. The time scale of the measurement τmeas is
chosen in such a way that it is always larger than τα

predicted by the VFT-law. In that case measurements performed at lower
temperatures are performed out of equilibrium not appearing in the figure.

Independently whether the α-relaxation time really diverges or just be-
comes a large quantity, the kinetic view of the TGT implies that the operative
thermal glass transition temperature reflects a cross-over between the relax-
ation time τα with the time constant of the measurement τmeas (see also



108 J.K. Krüger et al.

Fig. 3.37. Schematics of the cooling rate dependent behaviour of the TGT. q1 q2

cooling rates (q1 > q2); Tg1, Tg2 related glass transition temperatures; Tm melting
temperature of the crystalline state

Sect. 3.1). The operative glass transition temperature Tg is defined (Fig. 3.36)
implicitly by τmeas ≈ τα (Tg). This cross-over is the “time trap” mentioned
in Sect. 3.1. In that case static or high-frequency clamped phenomenological
properties like the mass density ρ (T ) or the refractive index n (T ) start to
deviate from equilibrium (Fig. 3.37). When the cooling/heating rate q of the
experiment conflicts with the α-relaxation times of the material the operative
glass transition temperatures Tg(q) depend on the cooling rate or more gen-
erally on the thermal history of the sample. In terms of the refractive index
n (Fig. 3.37) the operative glass transition is reached if during cooling with
a rate q1 the glass forming material is no more able to realize the equilib-
rium refractive index. If the cooling process develops too fast in comparison
to the time needed to establish the equilibrium, a refractive index inferior
to the latter is realized. If one even increases the cooling rate from q1 to q2,
the operative Tg shifts according to Fig. 3.37 to higher temperatures. It is
worth noting that these bending features within the n(T )-curve are kinetic in
nature.

It should be stressed again that there exist no experimental proofs for a
divergence of τα. On adjusting τmeas always in such a way that τmeas > τα

it will emerge from the experiment whether an intrinsic glass transition at a
temperature Tgs occurs or not and whether Tg coincides with T0. Only if the
condition τmeas > τα is always fulfilled a kinetically induced glass transition is
avoided and the time trap is under control. In that case, a kinetically induced
slope change of the temperature dependent refractive index is avoided and the
question appears about the inherent temperature dependence of n(T ) below
Tg.

In order to clarify this situation a convenient experimental scenario has to
be chosen to recognize a non-diverging time trap so far it exists. A suitable
technique is the above mentioned method of “time domain Brillouin
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spectroscopy” (TDBS) [121, 122]. This technique probes the evolution of
the hypersonic velocity stimulated by a step-like change of temperature.

Because of the high probe frequency this technique measures frequency-
clamped elastic moduli in the vicinity of the TGT. Using TDBS the only
relaxation process which can impose on the sound frequency response can
originate in a time lag between the establishment of the sample tempera-
ture on one hand and the equilibrium hypersonic velocity on the other. It is
worth noting that high-performance TDBS is sufficiently sensitive to resolve
temperature jumps −∆T as small as 2 K.

Using this technique the two main ingredients necessary to discover an
actual cut-off of the α-process in the glass transition region are: a.) hyper-
sonic probe frequencies which are sufficiently high in order to yield high-
frequency clamped sound velocities in the pre-transitional temperature regime
(frequency domain) and b.) the access to extremely low-frequent acoustic re-
laxations caused by instantaneous temperature changes (time domain). For
clarity Fig. 3.38 shows a schematic diagram displaying the development of the
longitudinal elastic stiffness modulus c11(T ) on cooling the sample stepwise
from the liquid to the glassy state. At high temperatures the elastic properties
are determined by the static longitudinal modulus cs11. At low temperatures
T < Tg the longitudinal modulus of the glassy state cglass11 is measured. Above
T ≥ Tg adjacent to Tg (the pre-transitional temperature regime) frequency
clamped elastic moduli c∞11 are measured.

Fig. 3.38. Schematic representation of the static and dynamic glass transition.
Tg, stat static glass transition temperature, Tg,dyn dynamic glass transition temper-
ature (dependent on the measurement frequency ω), Γ related acoustic attenuation
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The regime of elastic constants between cs11 and c∞11 is a dispersion re-
gion. Within this region the elastic constant c11 (T ) is strongly temperature
dependent and this is accompanied by strong acoustic attenuation (Γ ). The
attenuation maximum at the so-called dynamical glass transition tempera-
ture T dyn

g depends on the probe frequency ω = 2πf(e.g. ultrasonics) or al-
ternatively on the acoustic wave vector q (e.g. Brillouin spectroscopy). This
maximum determines the α-relaxation time τα by the relation

τα = 1/ω
(
T dyn

g

)
(3.49)

At Brillouin frequencies (f ≈ 10 GHz) the hypersonic loss-maximum (T =
T dyn

g ) is often but not always located about 150 K above the TGT and the
lower wing of that maximum ends well above Tg. In some cases the low-
temperature wing of the hypersonic loss peak shows a cut-off directly at Tg

(s.a. Fig. 3.39) which means that hypersonic relaxation processes persist just
until Tg. The fact that these relaxation processes are stopped by the TGT
indicates the close relation with the primary glass transition, since secondary
relaxations would not be affected by the TGT. Therefore it seems that the
TGT is not caused by the α-process but rather that the TGT stops the freezing
dynamics. From Fig. 3.39 we find that in case of DGEBA the temperature
difference between Tg and T dyn

g is only about 100 K. A further discussion of
this feature will be given in the next section.

A central question concerns the temporal behaviour of static or frequency-
clamped susceptibilities in the vicinity of the TGT. In terms of high frequency
elastic stiffness data the question appears whether the kink in the sound
velocity-temperature curves or in the elastic moduli-temperature curves is
maintained at extremely slow cooling or whether it can be shifted succes-

Fig. 3.39. Longitudinal elastic modulus cL and hypersonic attenuation Γ versus
temperature T for the fragile glass former DGEBA
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Fig. 3.40. Schematic drawing of the time domain BS. Left hand side: tempera-
ture step Tk → Tk+1, related sound frequency response fk → fk+1, separated in
an instantaneous and a relaxing part. Right hand side: sound frequency f vs. tem-
perature T , dots representing measured values while the triangles symbolize the
instantaneous and the relaxing sound frequency response after each temperature
step. Below the operative glass transition temperature Tgo only an instantaneous
response is measured

sively to lower temperatures with a temperature limit determined only by the
patience of the experimentalist.

Figure 3.40 shows schematically the approach of TDBS in case of polyviny-
lacetate (PVAc) [124–129]. According to Fig. 3.40 a temperature jump of
∆T = Tk − Tk+1 is imposed on the sample. Simultaneously the sound fre-
quency response is recorded as a function of time t at the fixed temperature
Tk+1. Every record is performed to that end that the sound frequency re-
sponse has reached its asymptotic value fk+1. As indicated in Fig. 3.40 the
complete sound frequency response consists of two parts, an instantaneous
response ∆f i and a relaxing response ∆fr. The instantaneous response is
almost independent of the temperature Tk+1 and corresponds to the entire
sound frequency response within the glassy state. This result indicates, that
the instantaneous response of the liquid state reflects already the tempera-
ture coefficient of the longitudinal elastic stiffness of the glassy state. This
means that the temperature coefficient of the instantaneous hypersonic re-
sponse reflects already on the anharmonicity of the frozen state and supports
the observation that the temperature coefficient of the longitudinal elastic
constant within the glassy state does not depend on the thermal history of
the sample.

The following investigations are based on TDBS and dielectric spec-
troscopy (DES). As usual DES has been performed in the plate condenser
geometry at different temperatures in the range of 173 K– 393 K. The dielec-
tric spectra are obtained for a frequency range between f = 102 Hz and
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105 Hz and were fitted using Havriliak-Negami

ε̂ (ω) = ε′ − i ε′′ = −i σDC

ω ε0

+
γ∑

k=α

[
∆εk

(1 + (i ω τk) νk)µk
+ ε∞k

]

(3.50)

as a model function which in addition to the usual dipole relaxation processes
(α, β, γ ) of glass-forming materials includes a dc conductivity term. The quan-
tities ∆εk designate the relaxation strength and the τk represent the related
relaxation times. The ε∞k are the frequency-clamped dielectric constants re-
lated to the different relaxation processes k.

Coming back to the time domain method of BS we need to describe the
relaxing part of the frequency response in an analytic way. On approaching
the TGT the relaxing part ∆fr needs increasingly time to evolve (Figs. 3.41,
3.42). The temporal evolution of the hypersonic α-relaxation process can be
described by a Kohlrausch-Williams-Watts (KWW) law with a stretched ex-
ponential [102]:

f(T ) = f∞ −
(
f∞ − f inst

)
· e
{
−( t

τα
)β
}

(3.51)

where f inst is the instantaneous frequency response, f∞ is the relaxed value
and β measures the distribution of the α-relaxation time (β = 1 corresponds
to monodisperse processes).

The average relaxation time is derived from

〈τα〉 =
τα

β
· Γ
(

1
β

)

(3.52)

where the Gamma-function yields the time-average of the distribution.
Every fit yields an average relaxation time and a limiting value for the

relaxed sound frequency at the related temperature jump. The relaxed sound
frequency data are shown in Fig. 3.40. Since the exact location of the intrinsic
glass transition temperature, Tgs, was not known prior to the TDBS experi-
ments, it was not possible to perform a temperature jump ending precisely on
Tgs. In reality a temperature jump was performed which started slightly above
Tgs (Tgs + ε) and which ended slightly below Tgs (Tgs − ε). Astonishingly, at
(Tgs − ε), that means already within the glassy state, a final sound frequency
relaxation is observed (Fig. 3.43). At still lower temperatures further relax-
ations are not found. The asymptotic sound frequency value does definitely
no more meet the linear extrapolation of the related sound frequency of the
liquid state. This result was confirmed by estimating the potential relaxation
frequency of the next temperature step within the glassy state. For this pur-
pose the relaxation frequencies have been plotted in an activation diagram
(Fig. 3.44). According to this estimation the relaxation frequency should have
been observable but was not observed.
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Fig. 3.41. Sound frequency response f of PVAc after a temperature step from
307.7 K to 305.7 K. The full line represents a KWW-fit which residuals are shown
below

Fig. 3.42. Sound frequency response f of PVAc after a temperature step from
303.3 K to 300.4 K. The full line represents the KWW-fit



114 J.K. Krüger et al.

Fig. 3.43. Sound frequency response f of PVAc after a temperature step from
297.5 K to 294.6 K. The full line represents the KWW-fit

Fig. 3.44. Activation-plot (α-relaxation frequencies vs. inverse temperature
1000/T ) for PVAc. The frequencies have been determined by BS, dielectric spec-
troscopy (DES) and time domain (TD) BS

According to these TDBS-data even in the limit of extremely slow cool-
ing there appears a kink in the sound frequency – temperature curve at a
temperature Tgs (s.a. Fig. 3.40) which is close but slightly below the Tg mea-
sured under usual conditions realized in Brillouin experiments. Indeed, the
measured Tgs is located well above T0 predicted by the VFT representation.

The activation plot of Fig. 3.44 contains, beside dielectric data, Bril-
louin data measured in the frequency- as well as in the time domain. It
seems that these data roughly follow a VFT law; however, a close statistical
inspection contradicts this interpretation. Especially the low frequency re-
laxation frequencies behave Arrhenius- instead of VFT-like. The relaxation
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Fig. 3.45. Temperature step from 254 K to 251 K (right ordinate) at the reference
time for the new temperature step t = 0 and the related response of sound frequency
of DGEBA. The horizontal grey lines are least squares fits

frequency at the lowest temperature doesn’t fit at all to the VFT-law. The
relaxation frequency of this data point in the glassy state is two orders of
magnitude lower than that of the preceding temperature.

The above discussed investigations on the TGT of atactic PVAc suggest
the existence of an intrinsic glass transition at a well defined temperature
Tgs. This intrinsic glass transition is evidenced by a strong anomaly of the α-
relaxation frequency at Tgs and by a well defined kink in the sound frequency-
temperature diagram.

Recent investigations of glass forming diglycidyl ether of bisphenol A
(DGEBA) confirm for the primary glass relaxations [122, 123, 130] a strong
deviation from the Vogel-Fulcher-Tamman (VFT)-behaviour. In the case of
DGEBA the thermal glass transition point is evidenced by a kink in the sound
frequency of the longitudinal polarized hypersonic mode and a sudden disap-
pearance of the α-relaxation time flattening out as a function of decreasing
temperature.

The experimental procedure of TDBS shown schematically in Fig. 3.40
was also used for DGEBA. As for PVAc the temperature-time scenario was
started well above the freezing process e.g. at T ≥ Tgs +10 K and the phonon
spectra were accumulated for a sufficiently long time t in order to be sure
that the sound velocity (frequency) v (f) has relaxed to its equilibrium value
v∞ (∝ f∞) of the liquid state.

Figure 3.45 demonstrates that a “temperature step” of ∆T = −3 K at
254 K produces no relaxations of the sound velocity response at all. Conse-
quently, the sound velocity response is as fast as the temperature step ex-
perimentally realized. Approaching Tgs and making a temperature step from
249 K to 247 K (Fig. 3.46) the sound velocity response is no more instan-
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Fig. 3.46. Temperature step from 249 K to 247 K (right scale) and related sound
frequency response of DGEBA (left scale). (For further explanations, see text)

taneous but shows a time lag. As for PVAc it was found that close to Tgs,
the sound frequency response can be divided into two parts: an instantaneous
response f inst which responds as fast as the temperature equilibrates and a
relaxing part that can be described by the Kohlrausch-Williams-Watts law
Eq. (3.51) [101].

The temperature step from 243 K to 241 K (Fig. 3.47) yields a decreased
total sound velocity response but no more hint for any relaxation process.
From the relaxation times measured at the foregoing temperature steps a hy-
pothetical relaxation time has been estimated for the step from 243 K to 241 K.
This estimated sound velocity versus time relaxation curve is also shown in

Fig. 3.47. Sound frequency response of DGEBA after a temperature step from 243K
to 241 K. The horizontal dark gray lines is a linear least-squares fit. The light gray
curve gives an extrapolation to fluid conditions. (See text for further explanations)
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Fig. 3.48. Activation-plot of the inverse averaged α-relaxation times of DGEBA as
measured by DES and TDBS

Fig. 3.47. From this estimate, it can be concluded that at least this kind of
relaxation should have been observable if it existed. This result implies that
under the given conditions in DGEBA below 243 K, no α-relaxation process
exists anymore.

The values calculated there for 〈τα〉 are presented for all measured temper-
ature steps in Fig. 3.48. The step from 245 K to 243 K is the last temperature
step still showing a relaxing sound-frequency response as a consequence of
the step-wise temperature excitation. Accordingly, the subsequent tempera-
ture step from 243 K to 241 K shows only an instantaneous sound velocity
response of the glassy state (Fig. 3.36). It is therefore natural to identify
Tgs = 243 K as the intrinsic TGT (see Subsect. 3.5).

Astonishingly, the sets of relaxation times as derived from the DES and
TDBS agree quite well with each other, within the margin of error. Taking
into account different thermodynamic boundary conditions, irreversible ther-
modynamics would in principle have predicted different relaxation times for
different external variables involved in the relaxation process. As expected at
higher temperatures, the α-relaxation behaviour as a function of 1/T is com-
patible with the expected VFT-relation. However, on approaching Tgs the
activation plot flattens out (Fig. 3.48) and shows a cut-off at 243 K indicating
a sudden disappearance of the α-relaxation process. At the same temperature
the f(T )-curve shows a kink which, according to the genesis of the sound-
frequency data is neither due to the cross-over of the experimental time scale
with the α-process nor obscured by it.

The main conclusion of the current chapter is that the main glass relax-
ation process, the α-relaxation process, does not follow the VFT-law through
the glass transition down to a VFT-temperature T0. TDBS investigations on
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three different glass forming liquids show that the α-relaxation process ex-
hibits a cut-off well above the VFT-temperature T0. This means, that the
“cross-over” argument does not hold for these three materials and that the
glass transition temperatures obtained from the TDBS-procedure are intrinsic
freezing temperatures specific for each of the three materials.

3.5 Static Properties at the Thermal Glass Transition

Taking into account that the TGT in canonical glasses affects predominantly
their mechanical properties, one could argue that these properties are suitable
probes in order to elucidate the mechanism of the quasi-static glass transition
and eventually of the ideal glass transition proposed above [131, 132]. In this
context Brillouin spectroscopy (BS) is an experimental method of partic-
ular interest because BS measures mechanical properties of the glass former
in a completely non-destructive manner and without mechanical contact with
the sample [7,8,133–136]. Moreover, even some ten degrees above Tg, BS mea-
sures the instantaneous elastic response in the “slow motion regime” in the
sense that ταω � 1 holds (τα structural relaxation time, ω sound frequency).
The latter property provides the possibility to determine, in addition to the
hypersonic properties, the refractive indices from pure Brillouin spectroscopic
data [137]. Unfortunately, the quasi-static GT is usually only hinted by an
undramatic, more or less sharp, kink in the sound frequency vs. temperature
curve, which yields no hint for a non-ergodic instability. In addition, this kink
depends to a certain extent on the thermal history of the sample, see Sect. 3.1.
A main task for the experimentalist is therefore to find experimental scenar-
ios which give answers to the question whether there may exist an intrinsic
glass transition and a glass transition temperature which is experimentally
accessible and at which some static phenomenological properties change in a
well-defined manner.

Static phenomenological properties should be measured either with a sta-
tic measurement technique in internal thermodynamic equilibrium or with dy-
namical techniques in frequency-clamped equilibrium. In terms of irreversible
thermodynamics, internal equilibrium means that the relevant internal vari-
ables ξk can be completely expressed by the external thermodynamic variables
ξk = ξ(p, T,

⇀

E, . . .). Dynamic measurements of phenomenological properties in
internal equilibrium imply

ω · τk 	 1 ∀ k (3.53)

where the τk are the structural relaxation times connected to the internal
variables ξk and where ω = 2 · π · f is the probe frequency of the dynamic
experiment [139]. In contrast, clamped equilibrium means that for the probe
frequency involved all relevant internal degrees of freedom ξk are frequency-
clamped, i.e. ξk (ω) = const for k = 1, 2, 3 . . . . In relation to the relevant
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relaxation times τk and the probe frequency ω the condition of clamped in-
ternal variables then means that the system is excited in the so-called “slow
motion regime”

ω · τk � 1 ∀ k (3.54)

The measurements of static phenomenological properties like specific volume
(mass density) or the properties of the static specific heat capacity are ex-
perimentally extremely difficult to realize, especially in the vicinity of the
thermal glass transition. Rehage et al. [131], Schwarzl et al. [132] and Kovacs
et al. [140, 141] e.g. have demonstrated the experimental difficulties which
have to be overcome in order to determine the specific volume across the
transition from the liquid to the glassy (“solid”) state. One of the problems
concerns sticking of the sample to the container walls and accompanying in-
ternal stresses. Similar difficulties occur in the course of adiabatic calorimetry
measurements [142]. On the other hand this latter technique is the only one
which gives reliable information about the static specific heat capacity in the
vicinity of the TGT.

Dynamical measurements of clamped phenomenological susceptibilities
like dielectric constants measured at optical frequencies, εopt = n2 (n re-
fractive index), or clamped elastic constants, c∞ii , measured at hypersonic
frequencies in the vicinity of the glass transition yield equilibrium (frequency-
clamped) properties provided the temperature changes necessary in order
to reach the thermal glass transition (TGT) are sufficiently small and are
performed sufficiently slowly (see Sect. 3.4). Figure 3.49 shows the typical
behaviour of the longitudinal and of the shear stiffness of a bisphenol A
(I1) [143, 144]. The experimental fact that the shear stiffness c∞44 is observed
at Brillouin frequencies above Tg proves that both moduli c∞44 and c∞11 are
measured in the “slow motion” regime. They are therefore high frequency-

Fig. 3.49. Sound velocity of the longitudinal (full symbols) and shear (open symbols)
mode of I1
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clamped equilibrium properties with respect to the longitudinal and shear
deformation. Both curves show a kink-like temperature dependence at the
operative glass transition temperature Tg. The question whether the opera-
tive kink temperature Tg can be shifted to lower temperatures for infinitely
slow cooling decides about the existence of an intrinsic glass transition at a
well-defined temperature. The fact that both elastic stiffness curves could be
brought to coincidence using an appropriate scaling of the coordinate axes sig-
nifies that I1 follows the generalized Cauchy-relation in the whole temperature
range, which is an additional proof for the absence of hypersonic relaxations.

The method of time domain Brillouin spectroscopy (TDBS) introduced in
Sect. 3.4 is one of the key experimental methods to study the static aspects of
the thermal glass transition. TDBS enables us to investigate the elastic con-
stants with respect to the mechanical deformation in the slow motion regime.
In the course of Brillouin investigations of the TGT the only remaining exter-
nal variable is then the temperature T . Indeed a sudden temperature change
∆T , necessary in order to approach the TGT at Tg, can initiate a relaxation of
the sound velocity (sound frequency) with a relaxation time τα which increases
on approaching Tg from above. Thus TDBS is able to probe mechanical relax-
ations with respect to temperature changes ∆T necessary to investigate the
TGT. Particularly, TDBS is able to clarify in which temperature regime above
and below Tg thermo-acoustic relaxations are active and especially whether
they do persist below Tg. The first systematic investigations were reported
for polyvinylacetate (PVAc). The investigations on PVAc and other glass-
forming materials were performed persuing the following scheme: At some
ten Kelvin above Tg hypersonic frequency measurements were started in the
slow motion regime ω · τα � 1. In order to approach the glassy state small
temperature steps -∆T (see Fig. 3.50) were performed and the isothermal
sound velocity (-frequency) at fixed wave vector was simultaneously recorded
until saturation of the velocity/frequency response. Only the fully relaxed
sound velocity data were then used for the sound velocity/temperature plot.
Figure 3.50 shows the results for PVAc. The most important result of these
TDBS investigations is that there exists a well-defined temperature Tg where
every α-relaxation disappears, or at least spontaneously increases its value
by several orders of magnitude. It is worth noting that Tg is well above the
hypothetical VFT-temperature T0.

In order to prove that the hypersonic measurements were really performed
in the slow-motion regime ω ·τα � 1 the opto-acoustic dispersion function (D-
function, Eq. (3.55), s.a. Sect. 3.2) was measured with BS and compared with
high performance refractive index measurements. If hypersonic relaxations
are present the D-function shows a convex deviation from the refractive index
curve. The maximal deviation occurs at that temperature where ω · τα = 1.

D(T ) =

√
√
√
√
(

f90R

f90A

)2

+ 1

2
(3.55)
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Fig. 3.50. Sound velocity of the longitudinally polarized sound mode of PVAc mea-
sured with TDBS. ∆T temperature jump, ∆vlic, g

L relaxed sound velocity response
in the liquid (liq) and the glassy (g) state

Fig. 3.51. Temperature dependence of the hypersonic frequencies of PVAc measured
on heating after extremely slow cooling (see Fig. 3.50) using the 90A- and 90R-
scattering geometry

The D-function was derived from simultaneously determined sound frequen-
cies measured in the 90A- and in the 90R-scattering geometry (Sect. 3.2) and
Fig. 3.51.

Since the sound frequencies presented in Fig. 3.51 were measured on heat-
ing after an extremely slow cooling of the sample into the glassy state in
the course of the TDBS experiment mentioned above, both sound frequency
curves show an overshoot (bumper) in the temperature regime of the TGT.
This metastability occurs because the material was cooled much more slowly
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Fig. 3.52. Temperature dependence of the opto-acoustic dispersion function (D-
function) and the refractive index function (n-function) of PVAc

to the glassy state (over months) than heated up during the BS measurement
(5 days) (see Fig. 3.4).

The refractive indices were measured on step-like cooling over two months
using an Abbé refractometer (Fig. 3.52). Within the margin of error the
D-function coincides with the refractive index function n(T ) yielding D(T ) =
n(T ) (Fig. 3.52). Since the D-function is derived from two independently but
simultaneously measured sound frequency curves the larger data scatter of
this curve in comparison to the n(T )-curve is comprehensible. In the margin
of error the glass transition temperatures measured with both techniques are
identical. In consequence in the temperature range of this investigation any
hypersonic relaxations or optical relaxations are either absent or act the same
way on the two phonons measured in the 90A- and 90R-scattering geometry.

It is extremely important to note that the two “bumpers” at Tg shown
in Fig. 3.51 are absent in the D-function (Fig. 3.52). These bumpers are of
course signs for metastability or even for instability and depend on time and
temperature. The reason for the disappearance seems to be a common factor
which guides the evolution of f90A

L (T ) as well as of f90R
L (T ).

Taking into account that the D- and the n-function are in very good agree-
ment (Fig. 3.52), the disappearance of the overshoot within the D-function is
not expected to be an artifact of the data-analysis.

Keeping in mind this result, the effect of q-vector dependent relaxations
on the temperature dependence of the D-function has to be investigated.
Figure 3.53 shows the temperature dependence of the D-function of PVAc up
to 530 K. According to Eq. (3.55), D(T ) coincides with n(T ) outside of relax-
ation regimes and deviates in a convex manner from the n-function. This is
exactly what happens for PVAc above 350 K. The maximum convex deviation
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Fig. 3.53. Opto-acoustic D-function of PVAc measured over a wide temperature
range including the range of the dynamical glass transition at hypersonic frequencies

Fig. 3.54. Relaxed compressional modulus as a function of temperature for
DGEBA. The straight lines are fit curves. The arrow indicates the cooling regime

from the n-function defines the dynamic glass transition temperature at the
Brillouin frequencies involved in measurement.

In order to elucidate the nature of the TGT the temperature behaviour of
the D-function within the glassy state (T < Tg) deserves a final discussion:
(i) As the D(T )- and the n(T )-functions coincide totally within the glassy
state, (D(T ) − n(T )) = 0, there is no evidence for acoustically relevant relax-
ations in the GHz-frequency regime. (ii) The D(T )-representation suppresses
slowly varying effects of metastability present in the constituting functions,
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i.e. the related phonon frequencies. In other words, the D(T )-function acts as
a filter for changes in acoustic properties due to metastability and displays
only equilibrium properties. It is therefore concluded that the D(T )-function
displays equilibrium properties for the glassy state of PVAc and that in par-
ticular the kink at Tg is not due to a cross-over between intrinsic relaxation
times and the experimental time scale. Accordingly, the glass branches of the
sound frequency (velocity) curves are not metastable.

In literature the TGT is often brought in close relation to the so-called α-
relaxation process. The α-relaxation frequency fα seems to slow down, accord-
ing to the VFT-law if the temperature of the glass-forming sample approaches
Tg and seems to go to zero if the temperature approaches the so-called VFT-
temperature To (see Sect. 3.1). Hence it appears that the α-relaxation process
is in some way the leading process for the glass transition. This holds true for
the dynamical glass transition well above the static glass transition when the
probe frequency crosses the relaxation frequency. The situation close to the
TGT is much more complicated.

At first, the true behaviour of fα(T ) in the vicinity of Tg is an open
question and depends evidently on the experimental probe. Moreover, the
predicted VFT-behaviour is somewhat similar to the behaviour of a soft mode
frequency at a structural phase transition. Keeping in mind that soft-mode
frequencies never really go to zero it is thus interesting to know what happens
with the α-relaxation frequency close to Tg.

Secondly, if the α-relaxation follows a VFT-behaviour on one hand and if
the TGT is investigated with a high frequency probe on the other hand, there
should be no probe frequency which could cross the α-relaxation frequency.
Consequently the only possibility would be that the waiting time between
subsequent temperature-changes is too small compared to the thermoelastic
relaxation time. Only the latter event could eventually provide a kinetic in-
fluence on the glass transition. So the question arises again what happens if
this latter kinetic effect is experimentally avoided and what happens in this
case with α-relaxation processes.

Having established for DGEBA simultaneously the kink-like anomaly in
the curve of the frequency clamped sound velocity and the cut-off of the α-
relaxation process (Sect. 3.4) [145] we conclude that PVAc is not an exception
but that also for this material there exists an intrinsic glass transition approx-
imately 20 K above the VFT-temperature To. Taking into account that the
average relaxation time for the temperature jump to Tgs = 243 K amounts to
5.4 hours and that sound frequency changes in the range of some per mille have
to be resolved unambiguously during hours and / or days after a single tem-
perature jump, it is obvious, that the experimental proof of a sample-inherent
glass transition process is experimentally not an easy task.

In order to elucidate in addition to the extremely low frequency relaxation
behaviour the behaviour at hypersonic frequencies we have simultaneously
investigated the sound velocity vL and the related hypersonic attenuation ΓL

of DGEBA over a wide temperature range (Fig. 3.55).
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Fig. 3.55. Temperature dependence of the longitudinal sound velocity vL and the
hypersonic attenuation ΓL of DGEBA

Astonishingly, and in contrast to the attenuation behaviour of many other
glass forming liquids, the hypersonic attenuation maximum comes down di-
rectly at the TGT. In other words, for DGEBA until the TGT there exist
hypersonic relaxations, which slow down only at Tg. For this material it is
therefore not true that all α-relaxation times are extremely large close to the
glass transition. From the TDBS- and the dielectric measurements it is clear
that there exist α-relaxations which slow down to 5.4 h, but at the same time
the hypersonic attenuation behaviour clearly demonstrates the existence of
pronounced hypersonic relaxations which only stop at the TGT. So the ques-
tion arises, why these high frequency relaxations are stopped by the TGT if
the TGT itself is believed to be caused by these relaxations?

Taking into account the importance of this observation for the interpre-
tation of the TGT it is interesting to look for further examples, which show
a similar relaxation behaviour. A very impressive example for the evolution
of the hypersonic dynamics around the TGT was published recently for an
epoxy (EPON) [146,147].

Figure 3.56 shows the hypersonic velocity and the opto-acoustic dispersion
function of EPON, both as a function of temperature. The hypersonic velocity
behaves as expected in showing a rather sharp kink at the TGT. Really aston-
ishing is the temperature dependence of D-function. Within the glassy state
D(T ) behaves as expected like n(T ). Precisely at Tg the D-function changes
the slope, indicating the onset of hypersonic relaxations. Again this result
is in contradiction to the general statement, that close to Tg all relaxations
connected to the glass transition should be of very low frequency. Rather,
the observed hypersonic relaxation process dies out at the TGT. Whether
the existence of this hypersonic relaxation process is without any doubt, its



126 J.K. Krüger et al.

Fig. 3.56. Hypersonic velocity and opto-acoustic dispersion function (D-function)
for EPON, see text for details

origin is not yet clear. From the fact that the D-function emerges from two
phonon-frequencies related to two acoustic wave vectors of different magni-
tudes it follows that the convex deviation from the n-function (Fig. 3.56) is
due to a relaxation process. The distribution of the relaxation process seems
to be either double-valued or alternatively extremely wide.

The complex dendrimer molecule G1 shown in Fig. 3.57 is a model mole-
cule for a glass-forming material, which cannot crystallize [148]. Consequently,
the glass transition of the material G1 cannot be masked by a recrystalliza-
tion process. Whereas the longitudinal sound velocity behaves as expected as
a function of temperature (Fig. 3.58), the temperature dependence of the hy-
personic attenuation behaves in a strange manner. On approaching the TGT
from above the hypersonic attenuation Γ increases permanently until Tg and
remains constant within the glassy state.

The hypersonic attenuation Γ is rather small in the whole temperature
regime but shows a minimum at T ∼ 215 K. The attenuation then increases
with decreasing temperature towards the TGT. Assuming that the Brillouin
measurements are performed in the slow-motion regime this increase can
hardly be explained. Another cause for this attenuation could be acoustic scat-
tering on internal stresses, which are built up if the temperature approaches
the TGT. Once the dendrimer is frozen, the elastic scattering remains con-
stant. But even if this explanation is not true it is clear that the lack of certain
dynamics below the TGT is responsible for the constancy of the sound atten-
uation.

Having elucidated the relation between the static and the dynamic prop-
erties at the TGT a reinvestigation of the relation between kinetic and sta-
tic properties is reasonable. Taking the temperature and time dependence of
the high-frequency longitudinal elastic modulus c∞L as a reference, Fig. 3.59
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Fig. 3.57. Two-dimensional projections of the structure of the Dendrimer G1. The
carbon atoms and the hydrogen atoms have been omitted

Fig. 3.58. Temperature dependence of the sound velocity v and the hypersonic
attenuation Γ for G1

displays schematically the expectation for this temperature-time dependence
from the kinetic point of view on the left side and the experimental obser-
vation on the right side. The equilibrium liquid branch of c∞L (T ≥ Tg) has a
unique tangent

m� =
∂

∂T
c∞L (T ≥ Tg) = const .

At sufficiently high temperatures the glass-forming material is in the liquid
state. As it is well known [149] the packing of the liquid state is almost solid-



128 J.K. Krüger et al.

Fig. 3.59. Left : expected behaviour of the temperature dependence of the elastic
modulus cL around the TGT due to different cooling rates. Right : actually observed
behaviour of this temperature dependence around the TGT

like, the same holds true for the local order. However, there remains some free
volume, which gives space for some random flight of the molecules. Since at
the TGT the specific volume behaves continuously (see Sect. 3.3) the liquid
and the glassy state have the same specific volume at Tg.

Assuming a rather high reference temperature T and a probe frequency
f which is sufficiently high providing that still a high frequency clamped
elastic modulus is measured, the related c∞L (T ≥ Tg)-value is located on the
equilibrium liquid branch. At slow cooling the measured c∞L -data remain on
this liquid branch. At a sufficiently large cooling rate Ṫ1 the c∞L -curve bends
away from the equilibrium liquid curve (Fig. 3.59). It should be stressed that
this bending occurs despite the fact that the molecular dynamics related to
the formation of the glassy state is already frequency-clamped. Consequently,
what is observed is the temperature-rate dependence of a frequency-clamped
quantity c∞L (Ṫ ). The question arises then about the tangent of the c∞L -curve
during fast cooling and its isothermal recovery after quenching. According to
all existing experimental data, the change of the tangent ∂c∞L (T )/∂T behaves
continuously as a function of time and of temperature. In the temperature
interval between the start of the quenching process and the TGT the absolute
value c∞L (T, Ṫ ) and the tangent ∂c∞L (T )/∂T converges versus the related equi-
librium values of the liquid state. The relaxation time of this isothermal re-
covery process increases strongly on approaching the TGT (see Sect. 3.4). The
question arises, following a kinetic view of the glass transition, what happens
below Tg with c∞L (T ≤ Tg, Ṫ ) and ∂c∞L (T ≤ Tg)/∂T? Intuitively, a smaller
cooling rate Ṫ should bring these values closer to the expected equilibrium
data which are located on the extrapolated liquid branch (Fig. 3.59, left).

However, that’s not what is observed! A schematic drawing of what actu-
ally is observed is given on the right side of Fig. 3.59. Away from the immediate
departure from the equilibrium curve, the c∞L (T < Tg, Ṫ )-data are located on
a straight line with a tangent mg = ∂c∞L (T )/∂T = const which is independent
of the cooling rate −Ṫ . It is worth noting that the y-axis intercept depends
on −Ṫ and decreases with the increase of the cooling rate. In the other limit,
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given by Ṫ → −0, the kinetic view demands again that the c∞L (T, Ṫ → −0)-
values are located on the extrapolated liquid branch. The latter argument
demands a discontinuous change from mg to m� for T → Tg as well as for
T → 0. The independence of mg from the temperature rate −Ṫ for T < Tg

demands a special structure of the glassy state: Independently from the cool-
ing rate there is formed a glassy state which is randomly closed packed (rcp)
where the rcp-state is rigid (c44 > 0). This rcp-state includes voids (free vol-
ume) which are surrounded by the rcp’s. The temperature gradient of this
state is determined by the temperature gradient of the rcp-matrix which has
to be mg. Consequently, there exists a spontaneous transition from the liquid
state to a well defined matrix state with a temperature gradient mg and addi-
tional free volume which does not contribute to the thermal expansion of the
glassy material but which depends on the cooling rate. This transition from
the liquid to the glassy matrix state takes place at the TGT. Therefore, with
respect to the free volume the glassy state depends on the cooling rate −Ṫ .
With respect to the matrix the glassy state is unique. For very low cooling
rates the free volume goes to zero and there remains a well defined glassy
state.

The freezing process of glass forming liquids in porous glasses shows a
further aspect of the static and dynamic behaviour of the acoustic properties
at the TGT. Dibutylphtalate (DBP) is known to be a good glass-forming
liquid with a freezing point at about 175 K. Porous glasses with average pore
diameters of 20 nm and 2.5 nm were filled with DBP. The glass transition
behaviour was investigated with temperature modulated differential scanning
calorimetry (TMDSC) and with Brillouin spectroscopy (Fig. 3.60).

First of all there seems to be no Tg-shift between DBP-filled porous glasses
of 2.5 nm and 20 nm. This result is astonishing for DBP in nanopores of 2.5 nm

Fig. 3.60. Temperature dependence of the hypersonic frequency of DBP in porous
glasses with pore diameters of 20 nm and 2.5 nm
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Fig. 3.61. Temperature dependence of the specific heat capacity and of the hy-
personic velocity of DBP in the bulk and in a porous glass of a pore diameter of
2.5 nm

because there seem to exist mainly DPB molecules which are in direct contact
to the wall of the pores. These “DBP-wall molecules” are usually believed to
be immobile. Consequently, from a dynamic point of view they should not
undergo a glass transition, but they obviously do. Brillouin data as well as
specific heat capacity data clearly show a TGT for pore diameters of 2.5 nm.
For pore diameters as large as 20 nm there are of course other than “DBP-
wall molecules”. For this reason a change of the glass transition behaviour is
expected between 2.5 nm- and 20 nm diameter pores.

Figure 3.61 shows a comparison of specific heat capacity data and Bril-
louin data between the bulk DBP and DBP in glass pores of 2.5 nm diam-
eter. For these two extreme situations a clear Tg-shift of 5 K and a change
in the phenomenological behaviour of the c′p – curves are observed, whereas
the sound frequencies show for both cases the usual kink-like behaviour. Since
the amount of DBP per unit-volume in the pore-system is much smaller than
in the bulk material the kink in the pore system is much weaker than in the
bulk system. The anomaly of the c′p – curve for DBP in 2.5 nm pores can be
interpreted as a kink whereas for the bulk DBP a step rather than a kink is
observed.

This step-like behaviour (Fig. 3.61) is usually interpreted as the transition
from the fast motion- to the slow motion regime, i.e. the inflection point of the
c′p - curve appears at 2 ·π ·f ·τ ∼= 1. Consequently, steps within the c′p − curve
should be accompanied by a maximal loss, i.e. a c′′p(T )− maximum. Figure 3.62
shows that the expected c′′p(T ) − maximum is indeed present but does not
scale at all with the height of the jump of the c′p – curve. The jump amounts to
about 1 J/g/K whereas the peak height of the c′′p(T )− maximum amounts to
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Fig. 3.62. Temperature dependence of the imaginary part c′′p for bulk material of
DPB and for DBP in a porous glass with pore diameters of 2.5 nm

0.2 J/g/K. On the other hand the width of the peak is rather small so that a
broad distribution of relaxation times can be excluded. Consequently, it seems
likely that the measured c′p – curve is composed by a static cp-background and
an additional dynamic relaxation anomaly (probe frequency f = 16.7 mHz).

Comparing the c′p – and c′′p(T ) – data measured for the bulk with those
for the nano-pores of 2.5 nm an astonishing result is obtained (Fig. 3.62). The
relaxation maximum in c′′p(T ) for DBP in 2.5 nm pores has completely disap-
peared. This result would be in complete agreement with the idea mentioned
above that in 2.5 nm pores all molecules are pinned wall-molecules. This idea
seems to be in contradiction with the existence of a TGT. If something freezes
below Tg it should be allowed to move to some extent above Tg. Together
these arguments imply that the expected relaxation process lies outside the
temperature interval of investigation. If this latter argument holds true, the
related TGT has nothing to do with a cross-over between the intrinsic relax-
ation time and probing time! Consequently the cp-curve measured for DBP
in 2.5 nm pores represents static specific heat capacity data. Another conse-
quence concerns the general role of the α-relaxation process: the α-process
is not a prerequisite for the thermal glass transition! It is worth noting that
similar behaviours were found for glycerol, I1 and salol in porous glasses of
different pore diameters [150].

3.6 The Role of Non-Linear Elastic Behaviour
at the Thermal and Chemical Glass Transition

In Sect. 3.1 it was shown that orientational glasses, i.e. single crystals with
frozen orientational disorder, show the same anomalies within their phenom-



132 J.K. Krüger et al.

enological properties at their thermal glass transition as structural glass form-
ers do. Above the glass transition of these crystals with orientational disorder
the material is dynamically disordered with respect to the molecular orien-
tation [151–155]. However, the positional order is given, at least on average.
At the glass transition of these dynamically disordered crystals, the disorder
of the molecular orientation freezes but the positional order is maintained.
The specific volume, the refractive index and the high-frequency clamped
elastic constants show a kink-like behaviour at the glass transition tempera-
ture Tg (Figs. 3.6, 3.7). The habitual concept of free volume, which goes to
a minimum at Tg, in connection with a kind of molecular percolation, be-
comes meaningless for these orientational glasses. The concept of a molecular
interaction potential which changes spontaneously at Tg seems to be more
useful [156–162]. Therefore it makes sense to reinvestigate the glass transi-
tion in structural glass formers under the aspect of a spontaneously changing
molecular interaction potential.

In spin glasses the non-linear behaviour of the order parameter plays a
significant role [cf. 163]. Whereas the linear susceptibilities just show a kink,
the nonlinear susceptibilities have been found to diverge in the vicinity of
the freezing temperature Tg. This latter fact yields an additional argument to
study non-linear elastic properties around the TGT of structural glasses.

Usually non-linear elastic properties are not easy to measure. This holds
especially true for the glass transition zone of structural glasses in which the
material transforms from the liquid to the “solid” state. A quantity which
reflects non-linear elastic properties on one hand [cf. 157] and which can be
determined exclusively from Brillouin spectroscopic data [164, 165] on the
other hand are the acoustic mode-Grüneisen parameters (MGP) [157].
To our knowledge there exist no theoretical predictions for the temperature
behaviour of the MGP’s at the glass transition of structural glasses. In an
isotropic solid the MGP relates the sound frequency of a p− polarized sound
mode of a given wave vector q to its mass density ρ [10].

γ(p, q) =
∂Ln(f(p, q))

∂Ln(ρ)
(3.56)

Since for isotropic materials there exist only longitudinally and transversely
polarized modes (p = L, T ) we use in the following the notation L and T . It
is expected that the concept of the MGP can be extended to acoustic waves
propagating in liquids, and that within the solid or glassy state, the MGP [166]
varies only slightly with temperature. γL of a liquid still reflects anharmonic
properties and structural changes of the liquid state [59,156–158,160,166,167].

There exist only a few Brillouin investigations on the temperature depen-
dence of the MGP at the TGT [156,164, 165]. Brody et al. [156] investigated
polystyrene by Brillouin spectroscopy and reported at Tg a small step of the
MGP defined by Eq. (3.56). However, because of their rather large margin of
experimental errors they did not arrive at a definitive statement concerning
the step-like behaviour of γL. In Ref. [164, 165] the observed discontinuities
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of γL(T ) at the glass-transition temperatures Tg of polymethylmethacrylate,
polystyrene and polyvinylacetate were related to a change of the molecular
interaction forces. The discontinuity of γL of polystyrene was found to be
4.3 which is by a factor of 3.6 larger than that reported in Ref. [156]. This
illustrates some of the difficulties to determine reliable data for MGP’s.

In order to determine a MGP, given by Eq. (3.56), one has to study the
relative change of the mode frequency fL,T as a function of a relative change
of mass density ρ. Usually this is realized by changing the pressure p or the
temperature T of the sample yielding

γL,T (x) =
ρ(x)

fL,T (x)
∂fL,T (x)
∂ρ(x)

=
δL,T (x)
α(x)

(3.57)

with

δL,T (x) =
1

fL,T (x)
∂fL,T (x)
∂(x)

(3.58)

and

α(x) =
1

ρ(x)
∂ρ(x)
∂(x)

(3.59)

with x being the pressure p or the temperature T . If x = T , then α is the usual
thermal volume expansion coefficient. α(x) is a generalized volume expansion
coefficient and ∂L,T (x) a generalized frequency coefficient.

It is important to remember that BS probes the acoustic modes at GHz-
frequencies. In consequence, BS measures around the TGT predominantly
frequency clamped acoustic properties, i.e. the glass forming material under
investigation behaves even in the liquid state solid-like with respect to the
probe frequency. Modern BS is able to measure acoustic mode frequencies
with a relative accuracy of better than 0.1%. This accuracy is sufficient for
the determination of MGP’s.

More difficult is the determination of sufficiently accurate mass density
data. In the context of density measurements around the glass transition the
technical problems are significantly increased due to the fact that the sample
passes from the liquid to the solid state or vice versa. Of course measurement
techniques for these two states need to differ from each other. This problem
of accuracy becomes reinforced through the sticking of the sample on the
container wall and the accompanying internal stresses. A serious additional
problem of accuracy occurs if mode frequencies and mass density data are
not measured under precisely the same external conditions. In case that the
mode frequencies and mass densities are measured on different samples at
different choices of temperatures or pressures an interpolation or curve fitting
is needed in order to create values for fL,T and ρ at the same temperatures or
pressures. Since the behaviour of MGP’s is studied in the vicinity of the TGT,
different cooling conditions of the samples in use may destroy the validity of
the calculated result. The same holds true for inhomogeneous samples (inho-
mogeneities may arise from internal stresses). Then the physical information
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Fig. 3.63. Chemical formula of the oligoarylate mixture I2

about the mode frequency and the mass density is obtained from different
sample volumes.

A suitable way to overcome most of the problems mentioned above is to
obtain the information about the phonon frequencies and the mass density
at the same time and temperature or pressure from almost the same sample
volume. This is possible using high-performance Brillouin spectroscopy (BS)
in the 90A- and the 90R- or 180-scattering geometry. The combination of
these scattering techniques provides simultaneously the desired frequencies of
the acoustic modes and refractive index data as a function of temperature
T [18, 19].

The Lorentz-Lorenz relation

n(T )2 − 1
n(T )2 + 2

= r · ρ(T ) (3.60)

yields the necessary relation between the refractive index n and the mass
density ρ. Taking the specific refractivity r as a constant, the generalized
expansion coefficient α(T ) can be calculated from

α(T ) =
6 · n(T )

n(T )2 − 1)(n(T )2 + 2)
· ∂n(T )

∂T
(3.61)

Calculating the frequency coefficient δL,T (T ) directly from the measured
sound frequencies and using the data given by Eq. (3.54) for the volume
expansion coefficient α(T ), the MGP’s γL,T (T ) can be determined according
to Eq. (3.57). Whereas the MGP’s in the glassy state are clearly connected to
anharmonic behaviour, the interpretation in the regime of the clamped fluid is
more difficult because of the possible influence of entropic degrees of freedom.

The following analysis of MGP’s was made for an oligoarylate mixture
which will be called I2 (Fig. 3.63) for convenience. The Brillouin data were
measured on slow cooling and the sound frequencies f90A

L,T and f90R
L were

determined simultaneously. Figures 3.64 to 3.66 show the raw data.
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Fig. 3.64. Temperature dependence of the longitudinal and transverse 90A-mode
of the oligoarylate mixture I2

Fig. 3.65. Temperature dependence of the longitudinal 90A- and 90R-modes of the
oligoarylate mixture I2

The quasi-static TGT is at about 262 K. Up to 320 K the shear phonon
could be detected without major difficulties. The opto-acoustic dispersion
function (D-function) could be derived from the 90A- and the 90R-scattering
geometry (Figs. 3.65, 3.66). According to Fig. 3.66 the D-data have been
interpreted as data for the refractive index. This is reasonable since the re-
fractive index measured with an Abbé refractometer (crossed circle, nD) is in
accordance with the D,n-value obtained from BS.
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Fig. 3.66. Temperature dependence of the refractive index n of I2 as mea-
sured by the D-function. The crossed circle represents a value measured by Abbé-
refractometry

As for other oligomeric glass formers, the square of the acoustic mode
frequencies fulfill a generalized Cauchy relation (Fig. 3.67) with a slope of
almost 3 as usual (see Sect. 3.3).

The calculation of the longitudinal and transverse mode-Grüneisen pa-
rameters poses some numerical problems. Due to the scatter of the mea-
sured sound frequency and the refractive index data numerical differentiation
gave no reliable results for the frequency coefficient δ and the volume expan-
sion coefficient α. In order to obtain reliable results the measured data were
first interpolated and then smoothed (moving average) to a sufficient degree.
Figure 3.68 shows the sound frequency data treated in this way.

The immediate vicinity of the TGT has been removed from the numerical
treatment because of a possible misleading interpretation of the kink feature.
Figure 3.69 displays calculated data for the refractive index and the volume
expansion coefficient using the Lorentz-Lorenz relation Eq. (3.53). The data
of the immediate vicinity of the TGT have been again removed from the data.
The refractive indices obtained from the D-function correspond to an optical
wavelength of 532 nm and not to nD.

Finally, Fig. 3.70 displays the temperature dependence of the longitudinal
and transverse acoustic MGP’s γL(T ) and γT (T ). In the margin of error both
MGP’s are identical and behave jump-like at the TGT. The magnitude of the
jumps ∆γL and ∆γT of the mode Grüneisen parameters are of the order of
20%. The tangent of the MGP’s is larger in the fluid phase which may be due
to the aforementioned entropic influences in the fluid phase.

The question arises about the significance of these results for the nature of
the TGT of structural glass formers. If we interpret the TGT as a purely ki-
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Fig. 3.67. Generalized Cauchy relation of I2

Fig. 3.68. Temperature dependence of the longitudinal 90A and 90R phonon fre-
quencies and the transverse 90A phonon frequency

netic phenomenon in the sense that the freezing of the sample can be avoided
on an infinitely long experimental time scale, the anomalies ∆γL,T in the TGT
zone would have to disappear. This disappearance has to be discontinuous be-
cause on finite experimental time scales ∆γL seems to be a conserved quantity,
as it shows no explicit dependence on the time scale with the exception of very
fast cooling, where ∆γL even increases. Consequently, it is hard to believe that
∆γL disappears on any experimental time scale.

The jump-like change of the MGP’s at the TGT gives a hint on what
happens physically at the TGT. In a first approach, the nonlinear elastic be-



138 J.K. Krüger et al.

Fig. 3.69. Temperature dependence of the thermal expansion coefficient α and of
the refractive index n of I2

Fig. 3.70. Temperature dependence of the longitudinal and transverse MGP’s γL

and γt of I2

haviour of the isotropic state is described by six elastic constants of third
order [17,166]: c111, c112, c123, c144, c155, c456 together with three isotropy con-
ditions:

c112 = c123 + 2 · c144 (3.62a)
c155 = c144 + 2 · c456 (3.62b)
c111 = c123 + 6 · c144 + 8 · c456 (3.62c)

Thus only three independent third order elastic constants remain.
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These third-order elastic constants together with the second-order elastic
constants can be used to calculate the two acoustic MGP’s γL and γT [16,20].
The reversal is not true:

γL =
(

K

2c11

)

− (c111 + 2 · c112)
6 · c11

− 1
3

(3.63a)

γT =
(

K

2 · c44

)

− (c144 + 2 · c155)
6 · c44

− 1
3

(3.63b)

with K being the compressional modulus.
Recalling that the second-order elastic constants (c11, c44 and K behave

continuously at the TGT and assuming the temperature difference ε to be
infinitesimally small, at least one of the three third-order elastic constants
behaves discontinuously

γ
Tg+ε
L − γ

Tg−ε
L =

1
6 · c11(Tg)

[(c111(Tg + ε) − c111(Tg − ε))

+ 2(c112(Tg + ε) − c112(Tg − ε))] (3.64a)

and

γ
Tg+ε
T − γ

Tg−ε
T =

1
6 · c44(Tg)

[(c144(Tg + ε) − c144(Tg − ε))

+ 2(c166(Tg + ε) − c166(Tg − ε))] (3.64b)

It seems likely that the third-order elastic constants show a jump-like be-
haviour at the TGT. This latter interpretation suggests the idea that the TGT
is accompanied by a jump-like change of the molecular interaction potential.

A structural picture of this jump-like change of the molecular interaction
potential has been discussed for the TGT of polyvinylacetate (PVAc) in terms
of a percolation of clusters of minimum free volume [171, 172] in the sense of
Ref. [162, 173]. Within this hypothesis the jump-like behaviour of γ90A

L (T )
at Tg is interpreted as a consequence of the spontaneous structural but not
symmetry-breaking changes at Tg and that it is therefore unavoidable.

In order to elucidate the nature of the glass transition and in particular to
discriminate between the kinetic and the phase transition aspects of the TGT,
one of these two aspects should affect the experimental data very little and
might even be completely removed from it. As it was shown in the foregoing
sections, this can be done by an appropriate choice of experimental condi-
tions. Extremely slow cooling experiments combined with TDBS decreased
or even eliminated the influence of kinetics at the TGT. The inspection of
the generalized Cauchy relation in combination with fast quenching empha-
sized the kinetic aspect of the TGT and its connection to ageing phenomena.
The study of the non-linear elastic behaviour via the study of thermal MGP’s
again provided further evidence in favour of our phase transition view of the
TGT.
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A further approach to the understanding of the glass transition is to leave
the thermal version of this phenomenon in order to become completely rid
of the kinetics due to the cooling or heating procedures of the sample. In-
deed, freezing can proceed in different ways although the thermally induced
solidification discussed above is the most frequently investigated process. As
discussed above the TGT always suffers from the kinetic restrictions imposed
by the strong increase of the structural relaxation time τα above but close to
the TGT.

The “cross-over” between the intrinsic structural relaxation time scale τα

and the kinetic time scale (cooling rate, probe frequency, etc.) does not exist in
an isothermal polymerizing experiment, where the macromolecular structure
vitrifies in the course of the chemical reaction (any textbook of polymer chem-
istry or physics [174–176]). The related chemical glass transition (CGT)
can be performed without any change of external variables while the internal
variables equilibrate due to the chemical reaction.

The structural relaxation time τα increases in the course of the chemical
reaction, as new intermolecular bonds hinder the translational motions. In or-
der to visualize such a CGT, an experimental probe is needed that will neither
significantly disturb this equilibration process nor is influenced by dynamic
effects inside the sample. Provided the probe works in the limit of linear re-
sponse, the experimental time constants τexp (inverse probe frequencies) have
to be chosen in a way, that the relevant internal thermodynamic variables
do either move freely, i.e. τα/τexp 	 1, or behave as clamped quantities,
τα/τexp � 1.

The isothermal, isobaric curing of an epoxy resin can be considered as a
model for the CGT. The curing process starts from a two-component oligomer.
Once started, the polymerization, driven by the related chemical activities,
runs under appropriate conditions to the final brittle (glassy) polymer net-
work [174–176]. As a particular feature, the CGT is not dominated by changes
in molecular conformations and packing but by changes of the molecular struc-
ture due to the chemical conversion. Physical properties like mass density
ρ, chemical turnover u, refractive index n, frequency-clamped elastic con-
stants [15] c∞11 and c∞44, etc. behave completely continuously in the course of
the polymerization process. Different to the TGT, the CGT does not appear
as a distinct anomaly in phenomenological properties (with the exception of
the specific heat capacity cp) measured in linear response.

In the following we will study the curing process of our model substance
epoxy. The starting ingredients of this epoxy are diglycidylether of bisphenol A
(DGEBA, 100 mass parts) and diethylenetriamine (DETA, 14 mass parts).
In the curing experiment, temperature (T ≈ 296 K and pressure (ambient)
are set. The gross epoxy group consumption u serves as the leading internal
variable.

A suitable probe for the intrinsic glass transition which is little sensitive
to kinetic influences is provided by the acoustic MGP discussed before in this
section. Discontinuous changes of the MGP’s which are indicative for spon-
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taneous changes of the molecular interaction potential are only expected at
phase transitions (e.g. [158]). As a matter of fact, the strength of the disconti-
nuity is more or less independent of the cooling or heating rate although these
rates can slightly modify the temperature position of the discontinuity. Hav-
ing in mind this discontinuous behaviour of the longitudinal acoustic MGP
at the TGT the question appears whether or not acoustic MGP’s could pro-
vide a clearer picture of the location of the CGT on the scale of the chemical
turnover and about the nature of this reaction-driven freezing process.

Accordingly, the role of MGP as a sensitive probe for the glass transition
during chemical freezing is the matter of debate.

The basic relation for an acoustic mode-Grüneisen parameter as a function
of chemical turnover appears at a first sight strange:

γp,q (fp,q(u),ρ (u)) =
1

fp,q(u)

1
ρ(u)

dfp,q(u)
du

dρ(u)
du

=
δu

αu
(3.65)

In Eq. (3.65, p (=L, T ) denotes the polarization of the sound mode, q is
the wave vector. αu represents a generalized volume expansion coefficient, and
δu is a generalized gradient of sound velocity.

As the chemical reaction changes continuously the system itself, the usual
concept of MGP as a measure for anharmonicity is not applicable in this case.
Even if the potential was harmonic but dependent on u, the MGP would be
changed due to the reaction. Therefore to differentiate between the classic
MGP and the one defined for a chemical reaction, the latter one is denoted
as CMGP. The physical meaning of the CMGP is somewhat clouded.

As for the TGT the CMGP’s are best measured with Brillouin spec-
troscopy or more precisely with Time Domain Brillouin spectroscopy (TDBS)
(see Sect. 3.4) using the so-called 90A-scattering geometry [163, 165]. This
scattering technique meets exactly the measuring condition for the sound fre-
quency, which is needed to calculate the related CMGP’s [156, 158, 159, 165,
166]: a constant phonon wave vector in the course of a changing phonon fre-
quency f . A laser wavelength λopt = 532 nm yields an acoustic wave vector:

q90A= {(4 · π · sin (π/4)) /532 nm} (3.66)

The hypersonic velocities are then obtained from the usual dispersion re-
lation

v90A
L,T (t) =

2 · π · f90A
L,T (t)

q90A
(3.67)

The determination of CMGP’s at the CGT has to be done at constant tem-
perature. As discussed above, the determination of CMGP’s needs the knowl-
edge of the mass density measured under the same conditions under which
the related phonon frequencies were determined. Again, the mass density can
best be obtained via the optical refractive index with help of Eq. (3.53). At
ambient temperature a very precise way to measure refractive index data
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is Abbé refractometry. With this technique the temporal evolution of the
refractive index of the model epoxy can be determined at the same wave-
length, λopt = 532 nm as used for Brillouin spectroscopy. The refractive index
n =

√
ε∞(λopt) is directly related to the dielectric constant measured at

optical frequencies (fopt ≈ 5 · 1014 Hz).
Figure 3.71 gives an overview over the temporal evolution of the refractive

index n, of the longitudinal sound velocity vL and of the specific heat capacity
cp for a curing process at 296 K. It is obvious from Fig. 3.71 that the apparent
anomalies in the three susceptibilities occur at different times and therefore
at different degrees of chemical turnover. Consequently there is no unique
indication for the location of the CGT.

Whereas for the TGT the natural driving parameter is the temperature
T , the natural parameter for the CGT is the time t. Of course, the time
t is not a property of the material under study. A more physical driving
parameter would be the amount of chemical conversion (turnover) u (s.a.
Fig. 3.72). Attenuated total reflection infrared spectroscopy (IR-ATR) yields
the chemical turnover u as a function of curing time t. With the inten-
sity I(1510 cm−1) of the phenylene band as internal standard, the intensity
I(915 cm−1) of the epoxy band is normalized to: Inorm

EP (t) = I915(t)/I1510(t).
Then, the IR-spectroscopic degree of epoxy group consumption u is calculated
from u(t) = [1 − Inorm

EP (t)
IEP(0) ].

Fig. 3.71. Temporal development of the refractive index n, the specific heat ca-
pacity cp and the longitudinal sound velocity vL during the cross-linking of a
DGEBA/DETA mixture of 100/14 at T = 296 K
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Fig. 3.72. Chemical turnover u and chemical turnover rate du
dt

as a function of
curing time t for the cross-linking of DGEBA/DETA 100/14

Figure 3.72 shows for the model epoxy mentioned above how the chemical
turnover u and its rate ∂t(u) depend on the curing time t.u = u(t) behaves
completely smooth and ∂t(u) shows a peak in the short time regime at about
t = 9000 s. It is evident, that even after differentiation of u = u(t) no discon-
tinuity emerges from the measured data.

As mentioned above, CMGP’s are derived from static or frequency-
clamped acoustic properties. Therefore it has to be checked whether the sound
modes are measured in a relaxation-free time regime.

Figure 3.73 shows the evolution of the structural relaxation time τα as
measured by dielectric spectroscopy (DES) within the time interval between
roughly tcure = 0 s and tcure = 25 · 103 s. The relaxation time increases within
this time interval from about τα = 10−9 s to τα = 10 s. Following usual con-
ventions the DES data can be used to define an operative glass transition
time: topg = 2.5 · 103 s.

According to Fig. 3.73 the CGT is accompanied by a strong increase of
τα. In the time interval Isoft = [0, topg ] the hypersonic frequency f90A

L increases
from about 5.5 GHz to 7.5 GHz (Fig. 3.73). As a result, BS as a probe for
hypersonic frequencies f offers the possibility to measure clamped mechanical
properties in almost the full interval: 2 · π · f · τα � 1. As a result, neglect-
ing curing times up to 5000 s the related elastic constants c∞11 and c∞44 are
frequency-clamped quantities.

Figure 3.74 gives the frequency clamped sound velocities v90A
L (t) and

v90A
t (t) and the refractive index n = n(t) as measured with an Abbé refrac-

tometer. All Brillouin data which eventually do not represent the frequency-
clamped state have been suppressed. The longitudinal and the transverse
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Fig. 3.73. Sound frequency f90A
L and structural α-relaxation time as a function of

curing time t for DGEBA/DETA 100/14

Fig. 3.74. Sound velocity (L-mode: f90A
L ; T-mode: f90A

L and the refractive index,
n296K

D , as a function of curing time t

sound velocities v90A
L (t) and v90A

t (t) behave strongly non-linearly but both
show a very similar increase with the curing time.

We have recently shown that the changes of c11 and c44 in the course
of the thermal glass transition usually follow a generalized Cauchy condition
[177–179]

c11(x) = A+ 3 · c44(x) (3.68)

with
∂xc11 = 3 · ∂xc44 (3.69)
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Fig. 3.75. Linear fit of the squared hypersound velocities (v90A
L )2 vs. (v90A

L )2. The
residuals of the fit show the validity of the generalized Cauchy condition (v90A

L )2 =
Ã + 3 · (v90A

L )2

(x = time, temperature, turnover). The same relation is found for our model
epoxy during the chemical reaction even across the chemical glass transition.

Figure 3.75 shows the result using the sound velocity representation [178,
179]

(
v90A

L

)2
= Ã+B ·

(
v90A

T

)2
(3.70)

with Ã = A/ρ = 2.3 · 106 m2s2 and B = 3. This Cauchy relation holds true
throughout the whole curing process.

Taking into account that any curing process reflects a succession of non-
equilibrium transitions it is really surprising that the generalized Cauchy re-
lation holds true.

This result is even more astonishing if we take into account results on ther-
mally quenched canonical glass formers mentioned in Sect. 3.3: the quench-
ing process has destroyed the Cauchy relation yielding a higher slope of the
c11 = c11(c44)-curve. If even the non-equilibrium curing process does not vi-
olate the Cauchy relation, one can conclude that the totally hidden CGT
represents at least not a strong non-equilibrium process in the sense that the
longitudinal and the shear elastic constant get out of equilibrium with respect
to each other.
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Fig. 3.76. Temporal volume expansion coefficient αt, temporal sound frequency
gradient δt of the L-mode and the chemical turnover rate du

dt
as a function of curing

time t

It remains the question whether the acoustic CMGP’s do respond more
sensitively to the CGT than the Cauchy relation does. The acoustic CMGP’s
γ are related to the sound mode frequencies f and to the mass density ρ, which
in turn are functions of u. Since the external parameters like temperature and
pressure are kept fixed during the measurement, all time scales relevant for the
chemical freezing process are controlled internally by the chemical reaction.
Hence, the cross-over problem as observed at the TGT is avoided, the CGT
cannot be obscured by kinetic effects.

For the evaluation of the CMGP the quantities f , ρ and u are indepen-
dently measured as a function of curing time t at 296 K but in order to
calculate the related

γ90A
L,T = γ90A

L,T =
δ90A
L,T (u)
α(u)

(3.71)

the δ and α-values have to be provided for the same u(t). Again interpola-
tion between measured data and the application of moving averages solve the
numerical problems. Figures 3.75 and 3.76 depict the temporal sound propa-
gation coefficient

(
δ90A
L,T

)t
=

1
f90A

L,T

∂f90A
L,T

∂t
(3.72)

as calculated from f90A
L,T (t).

Since the determination of the MGP’s needs the generalized volume expan-
sion coefficient αu this quantity has to be derived from the time dependence
of the refractive index n(t) and of the chemical turnover u(t). In a first step
αt is calculated
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αt=
1
ρ
· ∂ρ
∂t

=
6n(t)

n4(t) + n
2(t) − 2

· ∂n
∂t

(3.73)

Figure 3.76 shows the temporal evolution of this quantity. The refractive index
n = n296K

D was measured with an Abbé refractometer at a temperature of
296 K (black curve in Fig. 3.74). The n(t)-data were measured on the same
epoxy batch which was splitted for the different experiments after preparation.
With the available ∂tu-data (Fig. 3.72), the generalized expansion coefficient
αt can be transformed into

αu =
1
ρ
· ∂ρ
∂u

=
αt

du/dt
(3.74)

Having calculated all ingredients, we are able to determine the CMGPs from
Eq. (3.70). Figure 3.78 provides the results for γ90A

L and γ90A
T of these calcula-

tions as a function of u. The chemical turnover ug corresponding to the peak
position of γ90A

L (ug) and γ90A
T (ug) is interpreted as the degree of chemical

conversion for which the ideal glass transition takes place as explained in the
following.

Firstly, the peaks of the MGP’s occur by far later than those of δu and
αu (Figs. 3.76, 3.77). Secondly δu

L,T

αu remains constant in the region of the
strongest variations of these two quantities whereas the peaks of γ90A

L,T appear
far in the almost flat wings of δu and αu for u > 0.6 (Fig. 3.79). Consequently,
the appearance of the γL,T -peaks results from the different levelling of δu and
αu at high degrees of curing: on approaching the CGT the volume expansion
coefficient α slows faster down than the frequency expansion coefficient δ
does and finally levels. This means, that the frequency change per change of
density increases on approaching the CGT. If at still higher degrees of chemical

Fig. 3.77. Temporal longitudinal frequency coefficient δt and temporal MGP
(γ90A

L )t of the L-mode as a function of curing time t
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Fig. 3.78. Grüneisen parameters γL and γT as a function of the degree of chemical
conversion u ·ug gives the “critical” degree of chemical conversion at which the ideal
glass transition is assumed to take place

turnover the frequency coefficient also starts to level, the CMGP slows down
again.

For the epoxy samples of 14 mass percent DETA the DETA concentra-
tion is sufficiently high (over-stoichiometric) that, at least in principal, the
chemical reaction could be completed. It is therefore interesting to note that
the chemical turnover u for the sample of 14 mass percent DETA does not
reach the value of 100% but stops at 70% if the curing process takes place

Fig. 3.79. Sound frequency coefficient δ, expansion coefficient α and longi-
tudinal mode-Grüneisen parameter γL spectroscopic chemical conversion u of
DGEBA/DETA 100/14
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at Tcure = 296 K. It seems that the CGT stops or at least significantly slows
down the curing process. This explains the anomaly of the volume- and the
frequency coefficients around the critical concentration ug (Fig. 3.79). It is
therefore expected that the CGT’s of reactive epoxy systems depend on the
concentration of DETA and shift to shorter times with increasing concen-
tration of the latter. At a sufficiently low amount of DETA the formation
of network knots is limited so strongly that no more chemical freezing takes
place during polymerization at ambient temperature. The evolution of the
CMGP as a sensitive indicator for the CGT should therefore depend on the
DETA concentration. Figure 3.80 confirms this interpretation. The sample of
18 mass percent DETA shows its CGT after about 300 min of curing whereas
the CGT of the sample of 14 mass percent DETA freezes only after about
500 min. The sample with only 6 mass percent of DETA does not freeze at
all at ambient temperature. Of course, these results do not give information
about a possible shift of the critical turnover with the concentration of DETA.
Recent measurements on polyurethanes show in principal the same behaviour
at the CGT [180]. In Fig. 3.80 another feature of the CMGP’s at the CGT
becomes evident which concerns the long time behaviour. As a matter of fact,
after a sufficiently long curing time there should be neither a change of the
mass density nor of the phonon frequencies, all quantities should saturate.
Consequently, the CMGP’s should become constant but that information is
by definition inaccessible. An approximative information about the limiting
values for the CMGP’s can be calculated from δ and α-values reliably larger
than zero.

In conclusion, the reactive system DGEBA/DETA (100/14) transforms
during the crosslinking process from a two-component liquid via a percolated

Fig. 3.80. Temporal evolution of the longitudinal mode-Grüneisen parameters for
the model epoxy system DGEBA/DETA 100/18, 100/14 and 100/6
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epoxy network into a chemically induced glass. The most pronounced change
of behaviour is the given by the maximum of the CMGP, so that this maximum
has to be identified with the chemical glass transition. As kinetic influences
are excluded an intrinsic glass transition seems to exist for this model epoxy
at the degree of conversion, ug ∼0.70. In the phase of low chemical conversion,
i.e. in the “liquid phase” with u 	 ug, the Grüneisen parameters γL and γT

exceed those of the glassy state (u > ug) respectively. Although a percolation
transition exists below ug, this transition seems not or only weakly coupled
to the measured and calculated phenomenological parameters. At ug, the lon-
gitudinal as well as the transverse acoustic mode-Grüneisen parameters go
through a rather sharp maximum.

It should be stressed that for u = ug the TGT of the material coincides
with the curing temperature Tg(ug) = Tcure. Therefore it exists an inherent
correlation between the CGT and the TGT. But in as much as the material
can continue to cure in the chemical glassy state the related thermal glass
transition temperature will exceed the curing temperature.

To this end it is interesting to clarify the different significances of the
MGP’s for the thermal and the chemical freezing process. For the TGT it
should be kept in mind, that constant MGP’s indicate, that the related mole-
cular interaction potential is independent of temperature and a discontinuous
change of the MGP’s at a definite temperature Tg indicates a discontinuous
structural change within the material of interest. This point of view implies
that in the liquid and the glassy state of a given canonical glass former re-
spectively two different molecular interaction potentials are responsible for
the temperature dependence of phenomenological properties and that these
properties at a given temperature correspond to a related thermally excited
state within the appropriate potential. In reality the MGP’s are not com-
pletely independent of temperature. This holds especially true for the liquid
state and indicates the appearances of slight but continuous changes of the
local structure with changing temperature and/or the influence of entropic
degrees of freedom.

During chemical freezing the situation is completely different. With in-
creasing curing time the initially two-component liquid transforms continu-
ously to a molecular network. This formation of a molecular network corre-
sponds to a continuous change of structure and therefore should yield time
dependent MGP’s. This means that the changes of the CMGP’s observed in
the course of curing may reflect structural changes rather than pure changes
of anharmonicity. This is understandable since all external variables remain
constant during the curing process. It is interesting to note that in the early
curing regime until the CGT, that is the regime were the formation of network
knots is fast, the two acoustic CMGP’s γ90A

L,T (u) remain almost independent
of u (Fig. 3.78). Obviously, this behaviour corresponds to a roughly linear
dependence of the elastic modulus on mass density, as δ = γ · α. Indeed, over
a wide range of ρ-values the elastic modulus c11 behaves linearly as a function
of ρ. Only in the glass transition region a strong increase of c11 followed by
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Fig. 3.81. Difference in the sum of third-order elastic constants c111 and c112 be-
tween glassy and fluid phase vs. chemical conversion u for DGEBA/DETA 100/14

a levelling of this quantity appears (Fig. 3.81). In other words, the structural
changes accompanying the curing process do not affect the relative change of
the phonon frequencies induced by the changes of mass density created by the
same chemical process. This implies, that all changes in the frequency coeffi-
cients δ90A

L,T (u) and the volume expansion coefficient α(u) can be described by
the same factor c(u) with

δ90A
L,T (u) = δ90A

L,T (u0) · cδ(u) (3.75a)
α(u) = α(u0) · cα(u) (3.75b)

with cα,δ(u0) = 1.
Dividing Eq. (3.77a) by Eq. (3.77b) yields

cδ(u)
cα(u)

= const =
cδ(u0)
cα(u0)

= 1 (3.76)

Of course this identity is only approximately fulfilled. Within the peak region
representing the CGT the order relation cδ(uo) ≥ cα(uo) holds true.

It therefore has to be concluded, that from the mechanical point of view
the chemical freezing process is much more dominant and effective than the
driving polymerization and percolation process. Even in a molecular plastic
crystal the same kind of discontinuity was found (see Sect. 3.1, DFTCE).

In the vicinity of the CGT the α-relaxation process is slow and the contin-
uation of further curing is in concurrence to the freezing process. At the be-
ginning of the CGT, due to the improved molecular packing, first the changes
of the density are slowed down but still some curing can happen in the almost
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fixed molecular skeleton. The additional bonds, included in the spatially fixed
molecular structure, further stabilize the existing skeleton and thus increase
the phonon frequency due to an improved elastic stiffness. This additional sta-
bilization of the given molecular skeleton causes the anomaly of the CMGP.
After the CGT the system behaves like a solid, so that further bonds can in-
fluence the elastic behaviour only slightly. The glassy state hinders the trans-
lational diffusion of oligomers and cross-linked clusters but does not fully stop
it, so that further reactions are still possible. These further reactions deprive
the system of this potentially swelling molecular groups, so that the density
is increased, which leads to a slowing down of the CMGP’s.

It is self explaining that mechanical properties which describe mechanical
stiffnesses are suitable probes for glass transitions. The stiffening at the transi-
tion from the liquid to the glassy state is at least partly caused by an improved
molecular packing. But that is only part of the truth. As has been deduced in
this chapter from the evolutions of the MGP’s around the glass transitions,
there exists an additional contribution to elastic stiffness caused by stiffened
spring constants not related to density changes. The chemical glass transition
demonstrates this effect drastically, because additional chemical bondings can
at least in principal increase the mechanical stiffness without changing the
mass density. The same observation of an excess stiffness as a function of den-
sity holds true at the thermal glass transition, although additional bondings
don’t play any role. This excess stiffness occurring at glass transitions seems
to be one of the central features of glass transitions.

3.7 Conclusion

There is no doubt that kinetic phenomena accompany the thermal as well as
the chemical glass transition. The leading role of the molecular kinetics for
the thermal and the chemical glass transition is not confirmed. Beyond the
influence of molecular kinetics there are sufficient proves for the existence of
an intrinsic glass transition which nature has to be elucidated furthermore.

The most striking evidences for the existence of such an intrinsic feature
are as follows:

The investigation of the generalized Cauchy relation on differently quenched
glass forming liquids has shown that there exist two different glassy states:
one which follows the generalized Cauchy relation and one which violates it.
Significant quenching creates a metastable glass and thus violates the gen-
eralized Cauchy relation. Under the latter conditions aging can be observed.
However, this aging process does not bring the material to the liquid phase
as predicted by the kinetic view but to a stable reference glassy state.

Time Domain Brillouin Spectroscopy shows for different glass forming liq-
uids a definite cut-off for the low-frequency relaxation processes often accom-
panying the thermal glass transition. As a consequence the move away from
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local equilibrium of the reference state due to a cross-over between the ex-
perimental time scale and the the α-relaxation time can be avoided and a
“equilibrium glassy state” is observed.

The inspection of the opto-acoustic dispersion function (D-function) proves
that in several glass forming liquids relaxation processes within the GHz-range
are present which are eliminated only by the quasi-static glass transition. In
contrast to the kinetic point of view, close to the quasi-static glass transi-
tion there are still very mobile relaxation processes which are cut off by the
quasi-static freezing process.

Glass-forming liquids filled-in in nano-porous glasses prove that the quasi-
static glass transition can occur without being accompanied by the α-relaxation
process. As a consequence, the glass transition takes place without any cross-
over of the experimental time with α-relaxation time.

The quasi-static glass transition in polymer liquid crystals has necessarily
to appear in order to avoid unrealistic elastic constants (supplement to the
so-called “Kauzmann Paradoxon”).

Structural glass formers and orientational glass formers sometimes show
identical anomalies at the quasi-static glass transition. The glass transition in
orientational glasses doesn’t need the ingredient of cooperative rearrangement
units.

The analysis of mode-Grüneisen parameters shows that the quasi-static
thermal glass transition is accompanied by a discontinuity of the physical
property. This result implies a jump-like change of the molecular interaction
potential at the glass transition indicating a spontaneous change of structure.
This discontinuity creates jump-like changes of the involved third-order elastic
constants. The latter observation is a clear hint for a phase transition.

Reactive polymers show a chemically induced freezing process called
“chemical glass transition” during the curing process. This type of transi-
tion shows again an anomalous behaviour of the mechanical properties during
freezing, indicating the existence of an intrinsic transition. The curing process
is a completely free running process without any influence of the experimen-
talist on the ongoing freezing process.

It is therefore time to revise the actual view of the glass transition.

References

1. K. L. Ngai, “Universal Patterns of Relaxations in Complex Correlated
Systems”, in “Disorder Effects on Relaxation Processes”, Richert/Blumen,
Springer-Verlag, Berlin, Heidelberg (1994)

2. E. Donth, “Relaxation and Thermodynamics in Polymers, Glass transition”,
Akademie-Verlag, Berlin (1992)
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9. J. K. Krüger, R. Roberts, H.-G. Unruh, K.-P. Frühauf, J. Helwig, H. E. Müser,
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55. J. K. Krüger, C. Grammes, R. Jiménez, J. Schreiber, K.-P. Bohn, J. Baller,

C. Fischer, D. Rogez, C. Schorr, P. Alnot, Phys. Rev. E, 51(3), 2115 (1994)
56. C. Grammes, J. K. Krüger, K.-P. Bohn, J. Baller, C. Fischer, C. Schorr, D. Ro-

gez, P. Alnot: Phys. Rev E, Vol. 51(1), 430 (1995)
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129. J. K. Krüger, K.-P. Bohn, M. Matsukawa; Phase Transitions 65, 279–289
(1998)
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158 J.K. Krüger et al.
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137. J. K. Krüger, in “Optical Techniques to Characterize Polymer Systems”, edited
by H. Bässler, Elsevier (1989)
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148. J. K. Krüger, M. Veith, R. Elsäßer, W. Manglkammer, A. le Coutre, J. Baller,

M. Henkel, Ferroelectrics, 259, 27–36 (2001)
149. Frenkel, “Kinetic Theory of Liquids”, Dover Publications, New York, 1955
150. R. Holtwick, “Niedermolekulare Flüssigkeiten in nano-porigen Träger-

materialien – zur Natur des Glasübergangs”, Dissertation Universität des Saar-
landes, Saarbrücken (1998)

151. K. Knorr, A. Loidl, Phys. Rev. B 31, 5387 (1985)
152. J. Hessinger, K. Knorr, Phys. Rev. Letter, 63, 2749 (1989)
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Abstract. Granular media, commonly referred to as a-thermal systems, obey a
dissipative dynamics a priori very different from an Hamiltonian evolution. However
everyday life and recent experiments suggest that a thermodynamical description of
granular media might be feasible. Especially in the context of gentle compaction of
grains, strong similarities with the behaviour of thermal glassy systems have been
underlined. Given that granular media consist in a large number of grains, there
is a strong motivation for providing a statistical ground to this hypothetic thermo-
dynamical description. It has been argued by Edwards and collaborators that the
dynamics is controlled by the mechanically stable – the so-called blocked – configu-
rations and that all such configurations of a given volume are statistically equivalent.
This immediately leads to the definition of a configurational entropy and the associ-
ated state variable, the “compactivity”, the formal analogy of a temperature. First
attempts to test this flat measure assumption have been conducted. However, clear
evidence in real granular media is still lacking. In this lecture, we shall first discuss
the meaning of thermal vs. a-thermal systems, second review old and new results
revealing the strong similarities between granular media close to the jamming tran-
sition and super-cooled liquids close to the glass transition, and finally present and
discuss Edwards proposal, together with recent experimental results on the volume
statistics inside a granular packing.

4.1 Introduction

Granular media composed of large enough grains (d ≥ 250 µm) are often re-
ferred to as dissipative a-thermal systems. Indeed the energy necessary to
move a grain is much larger than kBT , and the interaction between the
grains, whether it is friction or inelastic collisions, involves dissipation. For
such systems, despite evidences of thermodynamical properties, such as ex-
perimentally reproducible relations between macroscopic quantities, a proper
statistical approach remains to be constructed. Also, there are many similari-
ties between thermal systems close to the glass transition and granular media
close to the so-called jamming transition. These similarities have inspired a lot
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Thermal systems a-thermal systems

Stationary dynamics Gibbs equilibrium a-thermal stationary states

ageing dynamics thermal glasses a-thermal glasses

Fig. 4.1. Equilibrium vs. glassy behaviour of thermal vs. a-thermal systems. Tem-
perature is well defined in the context of equilibrium. Although the present lec-
ture concentrates on the glassy behaviour of granular media (second line of second
column), we try in the first section to clarify the difference between thermal and
a-thermal systems in the simpler context of stationary dynamics (first line)

of recent work towards a statistical description of granular media. However,
it is important to note that there are a priori two different issues, one being
the description of glassy systems (thermal or not) in the ageing regime, the
other one being the identification of a precise prescription for the statistical
description of a-thermal systems in general. Figure 4.1 summarizes the four
corresponding situations which have to be considered.

In the present lecture, we first try to clarify what is meant – at least here
– by a-thermal systems, and present a possible illustration in the context of
stochastic dynamics. Then we review experimental results on dense granular
media. Some results clearly deal with the glassy behaviour of these systems,
others concentrate on the stationary or “super-cooled liquid” regime. In the
following, we introduce the prescription proposed by Edwards as a ground for
a statistical description of granular media. We discuss the various elements
of this proposal, especially focusing on the conditions required to test them
experimentally. Finally we present some experimental results on the statistical
properties of a dense granular sample.

This lecture is the result of a research under progress. Many concepts
remain to be clarified. Despite enormous effort in the recent years, many
experimental results are still lacking and those existing may well find new
interpretations in a close future due to the progresses on the theoretical side.
The reader shall take it as it is: a number of thoughts which we hope will help
and motivate him on his way towards the fascinating world of the so-called
a-thermal systems.

4.2 Thermal vs. A-thermal Systems

4.2.1 Definitions and General Considerations

Let us first clarify what we mean by “dissipative a-thermal system”. By ther-
mal system one means a system which couples to the usual thermal envi-
ronment: the individual components of the system exchange energy with the
individual components of the surrounding. The molecules of a gas in a box
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kinetic energy with the molecules of the gas surrounding the box. Matter in
general is thermal because the microscopic components of matter, the atoms,
are of the same scale.

By a-thermal system one means a system whose individual components
are of such a large scale compared to the components of the surrounding
that the energy received from the thermal environment cannot make them
move. One also calls such individual components non-Brownian particles. The
thermal environment only contributes to thermalize the matter of which these
components are made. Millimetric steel beads won’t rearrange by thermal
motion, but the steel itself is of course at the room temperature.

Now, a last concept to discuss is dissipation. Consider three scales, the
thermodynamic scale, the particles scale and a cutoff scale below which the
internal degrees of freedom of the particles are excluded from the description.
In the case of a gas, one may choose to include in the description the electrons
and their excitation levels, but not the nucleons. As long as the energy of
interaction between the particles is low enough not to excite these sub-cutoff
internal degrees of freedom, the dynamics is conservative. Dissipation occurs
when there is a flux of energy from the scale of the particles to the scale of
the excluded degrees of freedom.

Figure 4.2 illustrates the above concepts. In the case of usual thermal
systems (Fig. 4.2a), the particles inside the system exchange energy with each
other and with the particles outside of the system. The dynamics both inside
and outside the system is conservative and the internal degrees of freedom
are not excited. In the stationary state, the fluxes of energy are described
by the usual equilibrium statistical physics, and lead to the equilibration of
the well defined usual temperature. In the case of a a-thermal dissipative
system surrounded by a usual thermal environment – for instance a granular
system in a lab (Fig. 4.2b) – the fluxes of energy are different. The particles
inside the system not only exchange energy during their interaction but also
excite internal degrees of freedom excluded from the description – such as
the phonons. These degrees of freedom, in turn, exchange energy with the
thermal environment (Fig. 4.2c). However there is no transfer of energy from
the thermal environment to the particles inside the system because of the
scale gap. Such a system has to be forced to be maintained in a stationary
state different from the rest.

With such images in mind, nothing prevents from imagining the situation
where both the system and its surrounding are composed of large scale par-
ticles subject to a dissipative dynamics – for instance a small subsystem of a
large granular system (Fig. 4.2d). In this case, one recovers a situation similar
to that of the usual thermal systems, in the sense that particles inside the
system exchange energy with the particles outside the system. However, the
dynamics are not conservative anymore. Obtaining a stationary state requires
to force both the system and its environment. Whether the fluxes of energy
in such a stationary situation could be described by a generalized statistical
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Fig. 4.2. Flux of energies in thermal conservative systems vs. a-thermal dissipative
systems. The interactions among the various components are symbolized by straight
segments. The dots are particles of gas inside the system in red and outside in dark.
The blue circles are grains. The red grids inside the grains symbolize the internal
degrees of freedom of the grains. (a): a gas embedded in a gas environment: the par-
ticles inside the system exchange energy with each other and with the surrounding
particles. (b): a granular media embedded in a gas environment: grains interact with
each other; the particle of gas also; the grains do not receive energy from the gas.
But, as shown on (c): (zoom of (b)) the grains dissipate – flux of energy towards
the internal degrees of freedom, as symbolized by the arrow loop–, which in turn
exchange energy with the gas. (d): a subsystem of grains inside a larger system of
grains. The gas is ignored in the description. The situation is very similar to that of
(a) except for the dissipation which must be taken into account
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physics, and thereby a generalized temperature, remains presently an open
question of major importance.

4.2.2 Illustration in the Context of Stochastic Dynamics

In the following we shall describe a class of systems which may mimic the
above situations in the context of a stochastic description – using the master
equation formalism.

One crucial goal of a statistical approach for a-thermal dissipative systems
would be to give a precise definition of thermodynamical intensive parame-
ters and to predict their relationship with extensive macroscopic variables
like energy or volume. Indeed many attempts have been made to define out
of equilibrium temperature [1]. In the context of thermal glasses, which we
shall focus on in the next sections, the notion of effective temperature has
been defined recently as the inverse of the slope of the fluctuation-dissipation
relation in the ageing regime [2]. This definition was inspired by the dynami-
cal results obtained within a class of mean-field spin glass models [3]. A lot of
numerical simulations [4–8] and experiments [9–14] have been conducted to
test the validity of this definition. The situation we want to consider in this
section is rather different from that of thermal glasses which are Hamiltonian
systems following a non-stationary dynamics with very large relaxation times
(first column – second line of Fig. 4.1). Here we want to focus on the station-
ary dynamics of a-thermal particles which follow a non-conservative dynamics
(first line – second column of Fig. 4.1).

In order to find a stochastic model that describes in the best possible way
a given complex Hamiltonian system, without knowing a priori the equilib-
rium distribution, one should at least preserve the symmetries of the original
Hamiltonian system, which are the energy conservation and the time-reversal
symmetry t → −t. Energy conservation is easily implemented in the stochas-
tic rules by allowing only transitions between states with the same energy. On
the other side, the time-reversal symmetry in the Hamiltonian system can be
interpreted in a stochastic language as the equality of two opposite transition
rates between the micro-states α and β: W (β|α) = W (α|β), a property called
micro-canonical detailed balance or micro-reversibility. In the context of a dis-
sipative dynamics, the energy is not conserved anymore and one expects the
time-reversal symmetry and thereby micro-reversibility to break down. In the
most general case, there are little chance to go any further in the description.
Following [15, 16] we consider here a subclass of such systems for which we
assume that the dynamics still conserves some other quantity – let us call it
U.

The stochastic evolution is given by the master equation:

dPα(t)
dt

=
∑

β

W (α|β)Pβ(t) −W (β|α)Pα(t) (4.1)
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where Pα(t) is the probability of the microstate α. In the hamiltonian case, the
stationary regime is given by the uniform distribution, Pα = 1/Ω(E), where
Ω(E) =

∑
α δ(Eα − E) is the number of states of energy E. When micro-

reversibility is broken, the microcanonical stationary distribution is a priori
not uniform anymore: Pα = fα/Zµ(U), where fα is the statistical weight of the
configuration α and Zµ(U) =

∑
α fαδ(Uα−U) can be called a microcanonical

partition function. Indeed, the conservation of U was chosen so as to mimic a
microcanonical situation. Yet, one sees that the absence of micro-reversibility
already yields an important difference, the non uniformity of the stationary
distribution.

In order to define a temperature in this context, one can try to follow a
procedure similar to that of the equilibrium statistical physics. For an equi-
librium system in the microcanonical ensemble, temperature is introduced in
the following way. Considering a large system S with fixed energy, one intro-
duces a partition into two subsystems S1 and S2, with energy E� (� = 1, 2).
These two subsystems can mutually exchange energy; the only constraint is
that the total energy ETOT is fixed, and that the energy of interaction is
small so that ETOT = E1 +E2. The key quantity is then the number ΩS1(E�)
of accessible states with energy E� in the subsystem S�. Assuming that the
subsystems do not interact except by exchanging energy, the number of states
of the system S compatible with the partition (E1, E2) of the energy is equal
to ΩS1(E1)ΩS2(E2). Since E1 + E2 is fixed, the most probable value E∗

1 is
found from the maximum, with respect to E1, of ΩS1(E1)ΩS2(ETOT − E1).
Maximizing this product with respect to E1, one finds the usual result:

∂ lnΩS1

∂E1

∣
∣
∣
E∗

1

=
∂ lnΩS2

∂E2

∣
∣
∣
E−E∗

1

(4.2)

Defining the microcanonical temperature T� of subsystem � by the relation

1
T�

=
∂ lnΩN�

∂E�

∣
∣
∣
E∗

�

(4.3)

one sees from Eq. (4.2) that T1 = T2, i.e. that the temperatures are equal in
both subsystems (throughout the lecture, the Boltzmann constant kB is set
to unity). In addition, it can be shown that the common value T does not
depend on the partition chosen; as a result, T is said to characterize the full
system S.

Very interestingly, this microcanonical definition of temperature can be
generalized in a rather straightforward way to the more general case that we
consider. Yet, it should be noticed first that microscopic configurations com-
patible with the given value of the conserved quantity U are not equiprobable,
so that ΩS is no longer relevant to the problem. But starting again from a
partition into two subsystems S� = {α�}(� = 1, 2) as above, one can determine
the most probable value U∗

1 from the maximum of the conditional probability
P (U1|UTOT) that subsystem S1 has U = U1 given that the total conserved
quantity is UTOT. The conditional distribution P (U1|UTOT) is given by:
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P (U1|UTOT) =
∑

α∈S
Pα(UTOT) δ (Uα1 − U1)

=
1

Zµ(UTOT)

∑

α∈S
fα δ (Uα − UTOT) δ (Uα1 − U1)

=
1

Zµ(UTOT)

∑

α∈S
fα δ (Uα2 − U2) δ (Uα1 − U1) (4.4)

Now assuming – this is a major assumption – that the stationary distribution
factorizes (i.e. fα(U1 + U2) = fα1(U1) fα2(U2), one obtains that P (U1|UTOT)
may be written in a compact form as:

P (U1|UTOT) =
Zµ(U1)Zµ(UTOT − U1)

Zµ(UTOT)
(4.5)

This result generalizes in a nice way the equilibrium distribution. Indeed at
equilibrium P (E1|E) = Ω(E1)Ω(E − E1)/Ω(E) and Zµ(U) turns precisely
into Ω(E). Finally the most probable value U∗

1 satisfies

∂ lnP (U1|UTOT)
∂U1

∣
∣
∣
U∗

1

= 0 (4.6)

which yields
∂ lnZµ

∂U1

∣
∣
∣
U∗

1

=
∂ lnZµ

∂U2

∣
∣
∣
UTOT−U∗

1

(4.7)

So in close analogy with the equilibrium approach, one can define an intensive
parameter Y� for subsystem S� through

1
Y�

=
∂ lnZµ

∂U�

∣
∣
∣
U∗

�

(4.8)

Then Eq. (4.7) implies that Y1 = Y2. It can be shown [16] that Y can be
computed from the global quantity Zµ(U) instead of Zµ(U1) or Zµ(U2), and is
thus independent of the partition chosen. This intensive parameter associated
to the conservation of the global quantity U characterizes the statistical state
of the whole system.

Up to now, we have considered only the “microcanonical” (in a general-
ized sense) distribution Pα(U). Yet, it would be interesting to introduce also
the analogous of the canonical distribution. To do so, one must compute the
distribution Pcan(α) associated to a small (but still macroscopic) subsystem
Scan = {α} of a large isolated1 system S = {(α, α′)}. The configurations
corresponding to the reservoir {α′} have to be integrated out and one finds
under the same assumption of factorizability fα,α′′ = fαfα′′ the following
distribution:

1 Isolated here means that U is conserved inside the large system
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Pcan(α) =
∑

α′′

1
Zµ(U)

f(α,α′) δ (Uα + Uα′ − U) (4.9)

=
1

Zµ(U)
fα

∑

α′

fα′ δ (Uα + Uα′ − U) (4.10)

The above summation is nothing but the microcanonical partition function of
the reservoir Z ′

µ(U − Uα), which can be expanded to first order as:

lnZ ′
µ (U − Uα) = lnZ ′

µ(U) − 1
Y
Uα (4.11)

assuming that Uα 	 U , which is true as long as Scan is much smaller than
S. The derivative of lnZ ′

µ(U) has been identified with 1/Y using Eq. (4.8).
Introducing this last result into Eq. (4.9), one finally finds

Pcan(α) =
1

Zcan(Y )
fα exp

(

−Uα

Y

)

(4.12)

where Zcan(Y ) = Z ′
µ(U)/Zµ(U) – note that U is the conserved quantity of

the global system which includes the reservoir and that Y is the associated
intensive parameter imposed to the subsystem Scan.

At this stage, it is worth making a break and to summarize the above
results. Basically, it has been shown that for a stochastic dynamics, which
does not conserve energy but conserves another extensive quantity, and which
does either not satisfy micro-reversibility:

• one looses the property of uniformity for the probability distribution in
the microcanonical ensemble;

• if the microcanonical distribution factorizes, one can still define an inten-
sive parameter associated with the conserved quantity;

• this intensive parameter equilibrates between subsystems;
• one can compute a canonical distribution, which is different from but sim-

ilar to the Gibbs distribution

The last point calls for a special remark. Because of the factorization of
the distribution in the non-uniform measure and the Gibbs weight, the ther-
modynamical algebra remains valid. First, one can show that the dynamical
entropy defined as

SU (t) = −
∑

α

Pα(t) ln
Pα(t)δ(Uα − U)

fα
(4.13)

is a non-decreasing function of time, which is maximal in the stationary state
with the corresponding value S(U) given by:

S(U) = −
∑

α

Pα(U) ln
1

Zµ(U)
= lnZµ(U) (4.14)
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Second, it is straightforward that

〈U〉 = −∂ lnZcan

∂γ
(4.15)

〈Un〉 − 〈U〉n = (−1)n ∂
n lnZcan

∂γn
for n > 1, (4.16)

where γ ≡ Y −1. Finally a generalized free energy F (Y ) is also naturally
introduced through

F (Y ) = −Y lnZcan = 〈U〉 − Y S (4.17)

To conclude this part we shall say that the above formal analogy, which
looks encouraging for further developments, has its drawback: given the very
strong similarity at the thermodynamical level with usual thermal equilibrium,
it will be experimentally difficult to distinguish between the two statistics. We
shall come back to this point in Subsect. 4.4.2.

4.3 Glassy Behaviour of Granular Media

In this part of the lecture we shall review a selection of experimental results,
which underline the similarity between granular media close to the jamming
transition and super-cooled liquids close to the glass transition. It is assumed
that the reader is familiar with the glass transition. He might otherwise refer
to the other chapters of the present textbook.

4.3.1 Experimental Evidence of the Analogy
at the Macroscopic Level

The first set of experimental results concentrates on evidences of the analogy
at the macroscopic level. Generically, one considers a three dimensional sample
of grains under compaction. We have tried to classify these results according
to the following scheme:

• Relaxation towards a stationary state
• Fluctuations and critical slowing-down
• Ageing and Memory effects

Accordingly we shall browse across the results obtained by different groups to
illustrate these behaviours. For simplicity we shall refer to these experiments
by their localization. Yet, let us first present the various experimental set-up
and protocols. Obviously, we can not provide here with all the details of these
experiments, which can be found in the original papers.

Figure 4.3(a) displays the device used in Chicago by Knight et al. [17].
Monodisperse, 2mm diameter glass beads are confined in a 1.88 cm diameter
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Fig. 4.3. Experimental devices. (a): Compaction under vibration in a large aspect
ratio column. Knight et al. [17] (Chicago); (b): Compaction under vibration in a
small aspect ratio cell. Philippe et al. [18,19] (Rennes); (c): Compaction under cyclic
shear. Nicolas et al. [20] (Marseille); (d): Compaction in a fluidized bed. Schröter
et al. [21] (Austin); (e): Vibration. D’Anna et al. [11,22] (lausanne)

1m long Pyrex tube mounted on a vibration exciter. The beads are maintained
under vacuum. They are prepared in a low density initial stage of packing
fraction Φ0 = 0.577. No convection was observed. The vibration is composed
of well separated taps of amplitude a. The acceleration profile of one tap is
shown in the inset. Γ = aω2/g is the control parameter. The column density
was measured with capacitors.



4 Glassy Behaviours in Granular Media 171

Figure 4.3(b) shows a picture of the set-up used in Rennes by Philippe
and Bideau [18, 19]. A glass cylinder of diameter 10 cm, filled with 1mm di-
ameter glass beads up to 10 cm height, is shaken at regular intervals by an
electromagnetic exciter delivering independent vertical taps of amplitude a.
The experiments start from a reproducible loose packing Φ0 = 0.583. Bound-
ary effects are restricted but convection is observed. Γ = aω2/g is again the
control parameter. The average volume fraction in the bulk Φ is estimated by
measuring the absorption of a γ-ray beam through the packing.

Figure 4.3(c) presents a different mode of compaction used in Marseille
by Nicolas et al. [20]. A parallelipipedic box (10.5 cm high, 7.9 cm wide and
10.2 cm deep) full of 3mm diameter glass beads is submitted to a horizontal
shear through the periodic motion of two parallel walls. The granular packing
is confined on the top by a rectangular plate mounted on a vertical rail. The
volume fraction during the compaction process is recorded via the vertical
position of the top plate. The mean initial volume fraction of the packing is
Φ0 = 0.592. The lateral plates are oscillating quasi-statically between angles
±θ, θ being the control parameter. The volume fraction is recorded in the
vertical position.

Figure 4.3(d) illustrates the set-up and protocol used in Austin by Schröter
et al. [21]. In an original way, the compaction is conducted in a fluidized
bed made of a square bore glass tube (24.1mm × 24.1 mm) filled with about
3.6 × 106 glass beads of 250 ± 13 µm diameter. The beads are fluidized with
pulses of temperature-controlled de-ionised water. Flow pulses are generated
by a computer-controlled syringe pump so that during a flow pulse the bed
expands until its height reaches a stable value. After each flow pulse, the bed
settles into a stable time-independent configuration, whose volume fraction is
determined by measuring the bed height h with two CCD cameras at a 90◦

angle.
Finally Fig. 4.3(d) displays the apparatus used in Lausanne by D’Anna

et al. [11,22] for studying the jamming transition in weakly perturbed granu-
lar media. The granular material, glass beads of diameter d = 1.1 ± 0.05mm
is contained in a metallic bucket of 150mm height and 94mm diameter, filled
to a height of 130mm. The system is subjected to taps, the control parameter
being Γ , the peak acceleration of the container, normalized by the accelera-
tion of gravity, g. The granular noise is measured with the help of a torsion
oscillator, the rotating probe of which is immersed in the granular material.

Apart from these experiments, we shall also discuss the results obtained
by Kabla and Debregeas [23] in Paris. In their experiment glass beads of di-
ameter 45 µm, contained in a glass cell (30mm, 10mm, 2 mm), fully saturated
with pure water, are very gently vibrated with a piezoelectric actuator on
which the cell is rigidly mounted. The mean packing fraction is obtained by
measuring the position of the upper surface of the pile with a CCD camera.
One tap consists in a train of square wave vibrations. The microscopic dy-
namics induced by these gentle taps is probed by multi-speckle diffusive wave
spectroscopy (MSDWS).
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Relaxation Towards a Stationary State

The very first evidence of a “glassy” behaviour in dense granular media under
compaction is the very slow relaxation towards a stationary state with a well
defined volume fraction. Figure 4.4 presents the various compaction curves
obtained in the experiments described above. Apart from the experiment in
Austin (Fig. 4.4(c)), which is very specific and to which we shall come back
in more details in Subsect. 4.4.2, the number of taps is always counted on
a logarithmic scale. For both the experiments in Chicago (Fig. 4.4(a)) and
Marseille (Fig. 4.4(b), it is not even clear that a stationary state is reached
within the duration of the experiment. In the case of the experiment in Rennes
(Fig. 4.4(d), a stationary state is obtained, but for large vibration amplitudes
only.

To be more precise, various fits have been proposed to describe these ex-
perimental data. Both Chicago and Marseille experimental data are best fitted
by the heuristic expression:

Φ∞ − Φ(t)
Φ∞ − Φ(0)

=
1

1 +B ln
(
1 + t

τ

) , (4.18)

whereas Rennes compaction curves are better described by a stretched expo-
nential:

Φ∞ − Φ(t)
Φ∞ − Φ(0)

= exp

[

−
(
t

τ

)β
]

, (4.19)

where Φ∞, B, τ and Φ(0) are free parameters depending only on Γ . The latter
behaviour, introduced by Kohlrausch [24], Williams and Watts [25], often
denoted the KWW law, is commonly observed in the relaxation of thermal
glasses, the stretched exponential seemingly indicating the superposition of
several relaxation times. Also, in the case of Rennes experiment, the relaxation
time dependence is reminiscent of an Arrhenius law τ = exp(Γ0/Γ ), for an
activated process (Fig. 4.4f). There has been a lot of discussion about the
validity of one or the other fit. As a matter of fact, both are plausible in
the context of glassy dynamics. The Arrhenius dependence of the relaxation
time is reminiscent of strong glasses, whereas one interprets the logarithm
dependence as the signature of a fragile glass behaviour. Indeed, as emphasized
by Boutreux and de Gennes [26], a Vogel-Fulcher dependence of the relaxation
time τ = exp(DΓ0/(Γ − Γ0)) would lead to a logarithmic relaxation of the
density.

Fluctuations of Density Around the Steady State

In statistical mechanics the study of fluctuations can be used to investigate
the microscopic states that are accessible to a system maintained at a fixed
temperature. In granular media, density fluctuations in the steady state are
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Fig. 4.4. Compaction experiments. (a): Chicago, packing density ρ as a function
of the logarithm of the number of tap for various amplitude of vibration ranging
from Γ = 1.4 to 5.4 (inset is the same plot in linear scale); (b): Marseille, com-
paction curves for θ = 5.4◦ for two different runs. Insert: semi-logarithmic scale; (c):
Austin, the volume fraction of the sedimented bed for different flow rates Q; (d):
Rennes, temporal evolution of the mean volume fraction for different tapping inten-
sities ranging from Γ = 0.96 to 5.0; (e): Rennes, collapse of the compaction curves
obtained with 15 values of Γ between 1.01 and 6.0. χ = (Φss − Φ(t))/(Φss − Φ(0))
is plotted as a function of u = (t/τ)β . The solid line is the exponential function
expected in the case of a stretched exponential law; (f): Rennes, two estimations of
the relaxation time τ as functions of the inverse of the tapping intensity Γ
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related to the different volume configurations accessible to the grains subject
to an external vibration.

We shall come back in Subsect. 4.4.1 to the formal analogy proposed by
Edwards to relate the role played by vibrations in a-thermal systems, such
as granular media, and the role of temperature in thermal systems. For the
moment let us come back to some experimental results obtained by Nowak
et al. [27] in the Chicago experimental set up. We saw in the above section
that for small values of Γ , it is difficult, if not experimentally impossible, to
reach a steady-state by merely applying a sufficiently large number of taps
of identical intensity. Nowak et al. showed that, in this case, it is possible to
reach a steady state by “annealing” the system 4.5(a).

Experimentally, the value of Γ is slowly raised from 0 to a value beyond
Γ ∗ � 3, above which subsequent increases as well as decreases in Γ at a
sufficiently slow rate dΓ/dt lead to reversible, steady-state behaviour. If Γ is
rapidly reduced to 0 then the system falls out of the steady state branch. Along

Fig. 4.5. Density fluctuations around the steady state in Chicago experiment (a):
How to reach a reversible steady state branch; The sample is prepared in a low
density initial configuration and then the acceleration amplitude is first slowly in-
creased – solid symbols – and then decreased – open symbols. – The upper branch
is reversible, see square symbols. (b): Power-spectrum of the density fluctuations;
(c): Relaxation frequency as a function of the vibration amplitude
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the reversible branch, the density is monotonically related to the acceleration.
As Γ is increased both the magnitude of the fluctuations around the steady
state and the amount of high-frequency noise increase. Figure 4.5(b) displays
the power-spectrum of the density fluctuations S(ω), where the frequency ω
is measured in units of inverse taps. Three characteristic regimes emerge: (i)
a white noise regime, S(ω) ∼ ω0 below a low-frequency corner ωL, (ii) an
intermediate-frequency regime with nontrivial power-law behaviour, and (iii)
a simple roll-off S(ω) ∼ ω−2 above a high frequency corner, ωH . As shown on
Fig. 4.5(c), both ωL and ωH increase as Γ is increased. Over the relatively
small available range of Γ , the variation of ωH is consistent with an activated
process behaviour: ωH = ω0 exp(−Γ0/Γ ). Approximating to the first order
in Γ the bi-univoque relation ρ(Γ ) characterizing the steady state branch,
one sees that this mechanically activated law turns into a Vogel-Fulcher de-
pendence in density, compatible with the observed logarithmic relaxation, as
emphasized in the previous section. Note that according to this last remark,
the distinction between strong and fragile glasses is not really relevant in the
case of a transition controlled by density.

Towards the Jammed State

The above results were obtained for large enough external solicitations. We
shall now turn to the behaviour of granular media when the external driving
is reduced. Typically one expects a transition close to Γ = 1 since below this
value, the grains are not allowed to lift off from the bottom of the container.

This is indeed the case as illustrated on Fig. 4.6. In the Chicago experi-
ment (Fig. 4.6a), one sees that the densification after 10000 taps significantly
increases for Γ > 1.5. Note that this is not a well defined threshold, since it
depends on the number of taps, as well as on the details of the experiments.
Figure 4.6(b) shows better evidence of the transition, where one clearly ob-
serves a sharp increase of the relaxation times when decreasing Γ below one.
The slope variation in the log-lin plot, which indicates a jump in the ’energy
barrier” of the mechanically activated process suggested by the Arrhenius
laws, finds a natural interpretation in the difference of energy landscape seen
by a grain, whether it lifts off or not!

Let us now turn to the Lausanne experiment by D’Anna et al. [22], where
a critical slowing-down, qualitatively analogous to super-cooling towards the
glass transition has been observed. The noise in Fig. 4.7(a) exhibits a 1/f2

spectrum, characteristic of a diffusive process, even for Γ 	 1. This is already
a clear indication that a weakly perturbed granular medium can display a
diffusive behaviour well below the fluidization limit.

By the Wiener-Khintchine theorem, for a 1/f2 noise, the value of the noise
at a given frequency is proportional to the diffusion coefficient. Hence, Fig. 4.7
displays the characteristic diffusion coefficient as a function of the vibration
amplitude for very small amplitude. One observes at Γf � 1 the signature of
the vibration-induced fluidization. Second, the diffusion coefficient approaches



176 O. Dauchot

Fig. 4.6. The transition at weak amplitude of vibration (a): “Asymptotic” (after
10000 taps) density as a function of the vibration amplitude in Chicago experiment
(the two curves correspond to two experimental determinations). (b): Arrhenius
dependence of the relaxation time as a function of the vibration amplitude in Rennes
experiment. Inset: variation of the final volume fraction in the cases where a steady
state is actually reached

Fig. 4.7. Towards the jammed state in Lausanne experiment (a): Low-frequency
power-spectrum of the torsion oscillator deflection for various intensities of the taps
Γ ∈ [0.025, 3.6] (b): Critical slowing-down. The power-spectrum level at 1 Hz, ob-
tained from continuous vibration measurements. Some points (circles) are obtained
from tapping spectra. The dotted line is obtained according to a Vogel-Fulcher fit.
Γ0 is the perturbation intensity where the configuration diffusivity, extrapolates to
zero. Γf is the fluidization threshold. Inset, the same data as in the main panel in a
semilogarithmic plot
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zero critically, that is, the inverse noise level diverges. This critical approach
to zero can be described by a modified Vogel-Fulcher form A exp[B(Γ −Γ0)p]
with Γ0 = 0.005 and p = −0.4.

All the above results clearly enforce the analogy between the granular
behaviour and the physics of glass-forming liquids that super-cool.

Ageing and Memory Effects

Now that the analogy between thermal glasses and dense granular media has
experimental grounds, it is tempting to look for specific behaviours of glasses
such as ageing and memory effects in granular media close to the jamming
transition.

Ageing was indeed experimentally observed by Kabla and Debregeas [23]
in Paris using multi-speckle diffusive wave spectroscopy (MSDWS) to probe
the micron-scale dynamics of a water saturated granular pile submitted to
discrete gentle taps. The pile is first prepared in a reproducible way at low
volume fraction, then submitted to high amplitude taps until it reaches a
prescribed packing fraction. Only then the dynamics of contacts is probed by
submitting the cell to very gentle taps. Figure 4.8(a) displays the compaction
curves during the full procedure. One recognizes typical compaction curve
during the first stage. In contrast, the low intensity vibrations do not induce
significant further evolution of the packing fraction except for initially very
loose packs. To quantify the internal dynamics, one measures the intensity
correlation of speckle images – produced by the multiple scattering of photons
through the sample – , taken between taps, as a function of the number of taps
t that separate them. This function generally depends on the total number of
small amplitude taps tw that have been performed. Accordingly one computes

Fig. 4.8. Ageing is a gently vibrated granular media in Paris experiment (a): The
packing fraction for four experimental runs. Each run consists of a first step in which
high amplitude taps allow rapid compaction of the sample, followed by a sequence of
gentle vibrations, during which the internal dynamics is probed. The arrows indicate
the change in tapping intensity. (b): Two-time relaxation curves for different waiting
time
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the two-times correlation function g(tw, t):

g(tw, t) =
〈I(tw + t)I(tw)〉spkl − 〈I(tw)〉2spkl

〈I(tw)2〉spkl − 〈I(tw)〉2spkl

, (4.20)

where I is the speckle intensity, 〈〉spkl denotes the average over several speck-
les.

Figure 4.8(b) shows three correlation functions obtained with the same
sandpile at different values of tw. These functions, well fitted by stretched
exponentials, clearly demonstrate an increase of the relaxation time with tw.
This dynamical arrest is the signature of the ageing behaviour as exhibited in
various glassy systems.

As for memory effects, they were observed both in Chicago by Josserand
et al. [28] and in Marseille by Nicolas et al. [20]. In the case of Chicago, the
granular sample is densified during a set of three experiments up to the same
volume fraction Φ0, but with three different accelerations Γ0, Γ1, and Γ2. After
Φ0 is achieved at time t0, the system is tapped with the same intensity Γ0 for
all three experiments. As seen in Fig. 4.9, the evolution for t > t0 strongly
depends on the history, which is the simplest form of memory effect. In the
case of Marseille, a periodic shear with inclination angle θ1 is first imposed
to a random packing, and at a given time, the shear amplitude is suddenly
changed to another value θ2 and later switched back to θ1. As can be seen,
increasing the shear angle produces a rapid fall of volume fraction, followed by
a slow and continuous increase. When shear angle is decreased back, a rapid
increase of the packing fraction occurs, before recovering the slower one. This
is another evidence of memory effect in the packing in the sense that points

Fig. 4.9. Memory effect in granular media under compaction. (a): Chicago ex-
periment, time evolution of packing fraction for a system which was compacted to
ρ0 = 0.613 at time t0 using three different accelerations: Γ1 = 1.8(•), Γ0 = 4.2(�),
and Γ2 = 6.3(�). After the density ρ0 was achieved, the system was vibrated at
acceleration Γ0. (b): Marseille experiment, example of angle variation during the
compaction process. The insert shows a close-up of the first jump
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A and B in Figure correspond to packings having the same volume fraction,
with different responses to the same shear amplitude.

Altogether, we have seen in this section that the jamming transition of
granular media shares strong similarities – exceedingly slow relaxation, criti-
cal slowing-down, ageing, memory effects – with the glass transition of super-
cooled liquids. These similarities are not trivial given the very distinct micro-
scopic processes underlying the dynamics in both systems: in glassy liquids,
relaxation occurs by thermally activated rearrangements of the structure. In
granular materials, the thermal environment is ineffective and relaxation re-
sults from the local yielding of contacts triggered by externally applied vibra-
tions.

4.3.2 Recent Experimental Results at the Grain Scale

In this section, we shall report recent experimental results, which deal with
the microscopic behaviour of granular materials under cyclic shear. The goal
of these experiments is to find a microscopic ground for the analogy evidenced
in the previous section. The first experiment was conducted in Marseille by
Pouliquen et al. [29] in the device already presented. The second experiment
was conducted in Saclay by Marty et al. [30] and Dauchot et al. [31] in a similar
device, but significantly different in several aspects. We shall first summarize
the results obtained in Marseille before describing in more details those, more
recent and more complete, obtained in Saclay.

Fluctuating Motion During Compaction

In Marseilles experiment, the goal was to provide a link between the macro-
scopic dynamics and the microscopic structure of the packing during com-
paction by analyzing the individual motion of the grain. Accordingly the par-
ticles are tracked during compaction using an index matching method. The
first experiments are performed at a constant shear angle. An example of the
particle motion is presented in Fig. 4.10.1(b), where the plot represents the
successive positions of the particles measured after each shear cycle. At first
sight particles go down as expected for a macroscopic compaction – see the
evolution of the volume fraction in Fig. 4.10.1(b) – . On top of this mean ver-
tical displacement, one observes fluctuating motion characterized by ball-like
regions as shown in the close-up of Fig. 4.10.1(c), revealing a caging process.
The random motion of the particles is trapped for a while before escaping and
being trapped again in another cage.

In order to further investigate the link with compaction, experiments are
performed where the shear amplitude is discontinuously decreased. The cor-
responding volume fraction variation is plotted in Fig. 4.10.2(a). As expected
from the results presented in the previous section, successive increasing steps
in volume fraction are observed. The typical microscopic behaviour of a parti-
cle during this experiment is presented in Fig. 4.10.2(b). The volume explored
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Fig. 4.10. Fluctuating particle motion in Marseille experiment. (1): Compaction for
θ = 5.4◦; (a) Volume fraction as a function of the number of cycles. (b) Examples
of trajectories during 15000 steps. The disks give the beads size and indicate the
initial position of the tracers; (c) Examples of cages (trajectories plotted for time
slots between 2500 and 5000 steps). (2): (a) Volume fraction as a function of cycles
when θ varies stepwise (see text); (b) Corresponding trajectory of one particle.
Changes in colour correspond to changes in θ; (c) Displacement field measured in
the cell when θ changes from 10.4◦ to 1.4◦

by the particle during its random motion successively shrinks when the shear
amplitude decreases because the mean particle displacement decreases. How-
ever, each time the shear angle changes, the other particles below the test
particle experience the same decrease in their exploration volume. The result
is a net downward motion observed when the angle changes. The observed vol-
ume fraction variation thus results from the change in the volume randomly
explored by the particles. This becomes clear in Fig. 4.10.2(c) when looking
at the displacement of all the particles during a sudden change of shear am-
plitude. In conclusion a simple scenario can be proposed for the compaction
process and its memory effect. The slow dynamics of compaction observed in
experiment at a constant amplitude is to be attributed to the changes of cages.
These changes are irreversible and push the system towards more and more
compact configurations. On the contrary, the rapid change of volume frac-
tion observed when changing the amplitude is simply related to the change of
the cage size, without important structural changes. This explains why this
variation of volume is reversible and can be recovered by coming back to the
previous amplitude of excitation. The existence of these two processes which
affect differently the packing volume fraction explains that memory effects
can be observed.
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At this stage, it becomes obvious that a detailed statistical study of
the particles displacements should bring a lot of information. What are the
property of diffusion? The cage changes certainly involve complex coopera-
tive processes. How are the correlations involved in such process? In Marseille
experiment, the dynamics is not stationary and particles experience only a
few cage changes before being trapped in their final location. Also, it was
impossible to follow all particles in their 3D motion.

Cages and Diffusion Properties Without Compaction

Answering the above questions in a steady state situation, following all the
grains, was the goal of the experimental set up built in Saclay. A prototype of
the experimental set-up (Fig. 4.11a), allowed Marty and Dauchot to investi-
gate experimentally the diffusion properties of a bi-dimensional bi disperse dry
granular material under quasi-static cyclic shear. More specifically, they stud-
ied in detail the cage dynamics responsible for the sub-diffusion in the slow
relaxation regime, and obtained the values of the relevant time and length
scales. In a second version of the set-up (Fig. 4.11c), which allows to follow
all the grains in a selected area of interest, measurements of multi-point cor-
relation functions are produced. The intermediate scattering function and its
self-part, displaying slower than exponential relaxation, suggest dynamic het-
erogeneity. Further analysis of four point correlation functions reveal that the
grain relaxations are strongly correlated and spatially heterogeneous, espe-
cially at the time scale of the collective rearrangements. Finally, a dynamical
correlation length is extracted from spatio-temporal pattern of mobility. The
present section is devoted to the first set of results, the dynamical hetero-
geneities being described in the next section

The first experimental setup is as follows: a bi-dimensional, bi-disperse
granular material, composed of about 6000 metallic cylinders of diameter 4
and 5 mm in equal proportions, is sheared quasi-statically in a horizontal
deformable parallelogram of constant volume (volume fraction Φ � 0.86).
The shear is periodic, with a shear amplitude θmax = 10◦. The authors follow

Fig. 4.11. Experimental set-up; (a) Prototype used for the measurement of the
diffusion properties (b) Scheme of the shear cell; (c) Final set-up used for following
all grains and measuring the spatio-temporal correlations
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Fig. 4.12. Evidence of cages. (a) Some tracers trajectories. (b) Gray: a typical
trajectory; black: 2000 consecutive steps of the same trajectory. The circle indicates
the particle size

a sample of 500 of the grains with a CCD camera which takes a picture of the
system each time it comes back to its initial position (θ = 0◦). The unit of
time is then one cycle, a whole experiment lasting 10000 cycles. The unit of
length is chosen to be the mean particle diameter d. The system is prepared by
removing a fraction of the grains, shaking the remaining sample, putting back
all the grains, and shearing the system during 10 to 20 cycles at high shear
amplitude and rate. Figure 4.12 shows typical trajectories with well identified
cages.

The probability distribution P (∆X(τ)) of the displacements of one par-
ticle during a time step τ displayed on Fig. 4.13(a) for τ = 1, 10, 100, 1000,
exhibit fat tails compared to the Gaussian case, and thereby confirms the in-
termittent behaviour of the dynamics. The non-Gaussian parameter defined
by α = (〈∆X4〉/3〈∆X2〉2) − 1 (inset of Figure) is indeed different from zero
and is maximum, with a plateau, for τ � 100. For larger times, the distrib-
ution progressively recovers gaussianity. The root mean square displacement
presents two regimes (Fig. 4.13b): at short times, the dynamics is sub-diffusive
(logarithmic slope 1/4), while it becomes diffusive (logarithmic slope 1/2) at
long times. These results confirm and precise the image of particles trapped
in cages, where the cage size r∗ = 0.3d and the cage lifetime t∗ = 300 are
given by the the crossover between the two regimes.

It is of interest to compare these results with those obtained by Weeks and
Weitz [32] in a colloidal suspension of hard spheres, that is a thermal system.
This system undergoes a glass transition for a packing fraction Φg = 0.58.
Typical trajectories shown on Fig. 4.14(left) and obtained via confocal mi-
croscopy for Φ = 0.52 exhibit caged motion, with sudden cage rearrange-
ments. The typical cage size is here also a fraction of the particle diameter.
As shown on Fig. 4.14(right-a), the motion is diffusive at very short times,
then becomes sub-diffusive at intermediate time scales, and finally recovers a
diffusive behaviour at large time scales. The sole difference with the granular
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Fig. 4.13. Diffusion properties (a) pdf of the displacements ∆X(τ)/σX for τ =
1(•), 10(�), 100(◦), 1000(+); the solid line is the Gaussian distribution [inset: non-
Gaussian parameter α(τ)]; (b) σ(τ) =

√
〈∆r2(τ)〉; dotted lines show the slopes 1/4

and 1/2; dashed lines indicate the position of the crossover (r∗, t∗) [inset: σX(τ) and
σY (τ); no anisotropy is observed]

Fig. 4.14. Evidence of cages. Left: one layer of particles through a three-dimensional
sample of the colloidal suspension, with arrows indicating the direction of motion
for particles with displacements. Lighter colours indicate particles with larger dis-
placements. Inset: 120 min. trajectory of one particle from this sample. Right: (a)
Mean square displacements. (b) Non-Gaussian parameter

system is the diffusive motion at very short times, a signature of the ther-
mal activation induced by the solvent of the colloidal suspension. Finally, the
non-gaussian parameter (Fig. 4.14-right-b) also exhibits a peak which becomes
sharper when Φ approaches Φg. The type of plateau that has been observed in
Saclay typically occurs for Φ = 0.52, that is at a relative distance to transition
of 10%.
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Fig. 4.15. Temporal correlations. Top: conditional probabilities (in colour scale)
P (x12|r01) (right) and P (y12|r01) (left); the white traces are the mean values 〈x12〉
and 〈y12〉. Bottom-left: < x12 > for different values of τ (from bottom to top:
τ = 100; 300; 500). Bottom-right: widths of the distribution of x12(σ//) and y12(σ⊥)
versus r01 for τ = 10 and τ = 500

Let us now report the kind of analysis that can be conducted to better
characterize the dynamics. A very convenient tool introduced by Doliwa and
Heuer [33, 34], is the conditional probability P (x12|r01) (resp. P (y12|r01)) of
the projection x12 (resp. y12) of the displacement during a given time interval
τ along (resp. orthogonally to) the direction of the motion during a previous
time interval of the same duration τ , conditioned by the length r01 of the
motion during the previous time interval.

These quantities are displayed on Fig. 4.15. A first observation is that the
mean value of y12 is zero, while the mean value of x12 is always negative.
More precisely, for a given time interval τ , 〈x12〉 decreases linearly with r01
for r01 < r∗, then saturates at a constant negative value. The decrease is
stronger for small τ and disappears for τ > t∗. On the contrary, the satu-
ration always occurs at r01 = r∗, a strong indication that the dynamics is
controlled by the cage size. Altogether for displacements smaller than r∗, the
larger a step the more anti-correlated is the following step, which reflects a
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systematic back dragging effect experienced by the particle trapped in its
cage. For displacements larger than r∗, a cage rearrangement has occurred,
and so the anti-correlation does not increase any more. Yet, the constancy of
〈x12〉 at this saturation value reveals some memory of the fact that part of
the trajectory was made in a cage. At larger τ these effects become weaker,
an indication that cages relax and adapt to the new positions of the enclosed
particles. One can even go further in the interpretation of these distributions
by extracting their widths σ// and σ⊥. The increase of σ// with r01 reveals
that large steps are more likely for particles which moved farther during the
previous time interval. This is an indication of the existence of a population
of fast particles, a typical feature of glass forming systems, as pointed out,
for example, in [33, 35, 36]. Second, we see that for short time intervals, the
increase of σ// is larger than the one of σ⊥. This reflects some anisotropy in
the motion, as observed in the string-like cooperation observed numerically
by Donati et al. [37]. Both effects concern movements on short time scales,
since they tend to disappear as the time interval τ is increased.

Let us now turn to the investigation of some spatial correlations. We choose
to illustrate an other technique introduced by Hurley and Harrowell [35], based
on relaxation times. For a particle i, the relaxation time Ti(r) is defined as the
time needed by the particle to reach a given distance r for the first time. The
distribution of these relaxation times is shown in the inset of Fig. 4.16(a), for
r = r∗.

Defining Ti,�(r) as the mean relaxation time of the particles contained
in a circle of radius � centered on particle i, then the dependence on � of
the fluctuations of Ti,�(r) should provide some information about the typical
length L over which cooperative effects take place. A well normalized quantity

Fig. 4.16. Spatial heterogeneities (a) Second moment m2(�) of the relaxation time
distribution, for different values of the cutoff distance r[0.1(•), 0.3(�), 0.5(+)]; the
dependence of these curves on r is not monotonic (inset: relaxation time distribution
for r = 0.3) (b) characteristic length L; it has a maximum L∗ for r = r∗
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to compute is m2�(r) =
〈
(Ti,� − Ti,avg)2)

〉
/
〈
(Ti,1 − Ti,avg)2)

〉
, where Ti,avg is

the mean relaxation time averaged over all particles. m2�(r) is plotted versus
� for different r on Fig. 4.16(a). m2�(r) naturally decreases with � but is not
monotonic with r. To quantify this, one can plot L (defined as the integral of
m2 over �) versus r and obtain the curve of Fig. 4.16(b). L reaches a maximum
of 7 particle diameters for r = r∗ which means that cage rearrangements are
phenomena which imply more cooperation than the dynamics at other scales
and that about a hundred particles are involved in such rearrangements. One
then sees that cage rearrangements are highly cooperative phenomena. This,
added to the small value of r∗ shows that the picture of a particle escaping
from a static cage formed by its nearest neighbours is over simplified.

Apart from making precise the dynamics of the specific granular system
presented here, this section also aimed at illustrating what can be done to
characterize temporal and spatial correlations in systems in which one does not
have access to the motion of all particles. In the same spirit, it is also possible
to investigate some spatial correlations and discuss the existence of dynamical
heterogeneities by considering multi-time correlation functions. However the
analysis hardly leads to definitive conclusions and would lead us to discussions
which are out of the realm of the present lecture. The reader who is interested
can refer to the original work by Heuer et al. [38] and its application to the
present system of interest by Marty et al. [30]. To obtain further evidences
of the spatial correlations, and a better characterization of the dynamical
heterogeneities, one can no longer avoid to follow all particles. The next section
will present the kind of analysis conducted in Saclay in the case of granular
media, taking benefit of the bi-dimensional geometry of the set-up.

Spatial Correlations and Dynamical Heterogeneities

The above Subsect. 4.3.2 provided a “microscopic” confirmation of the similar-
ity between glass and jamming transitions. The typical trajectories of grains
display the so-called cage effect and are remarkably similar to the ones ob-
served in experiments on colloidal suspension [36] and in molecular dynamics
simulations of glass-formers [39,40]. As for glass-formers, and contrary to stan-
dard critical slowing-down, this slow glassy dynamics does not seem related
to a growing static local order. For glass-formers it has been shown numeri-
cally [35, 41–44] and experimentally [45] that instead the dynamics becomes
strongly heterogeneous and dynamical correlations build up when approaching
the glass transition. Recent theoretical works [46] and the end of the previous
section suggest that this also happens close to the jamming transition.

The aim of the present section is to present the analysis of the slow dynam-
ics close to jamming measuring multi-point correlation functions as it has been
done for super-cooled liquids [39,40,47,48]. First, we shall focus on two point
functions, in particular the intermediate scattering function and its self-part,
whose slower than exponential relaxation suggests dynamical heterogeneity.
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Then we shall turn to four point correlation functions. They have been in-
troduced for glass-formers to properly measure dynamical correlations [47,48]
and indeed reveal that the dynamics is strongly correlated and heterogeneous.
Finally, we shall focus on spatio-temporal pattern of mobility, out of which
we extract a direct measurement of a dynamical length-scale.

The second Saclay experimental setup 4.11(c) contains a bi-dimensional,
bi-disperse granular material, composed of about 8,000 metallic cylinders of
diameter 5 and 6 mm in equal proportions, which is again sheared quasi-
statically in an horizontal deformable parallelogram. The shear is periodic,
with an amplitude θmax = ±5◦. The volume accessible to the grains is main-
tained constant and the the volume fraction is Φ = 0.84. In this set up, it
is possible to follow 2818 grains (located in the center of the device to avoid
boundary effects) with a High Resolution Digital Camera which takes a pic-
ture each time the system is back to its initial position θ = 0. These conditions
are very similar to those of the prototype and by repeating the same analysis
the cage radius is found to be r∗ = 0.2 and the cage lifetime t∗ = 300.

The intermediate scattering function and its self part are commonly used
in the literature when describing the structure and the dynamics of a liquid
or a glass. We still recall here some useful algebra which will allow us to
introduce a more general quantity – the density overlap – and give us the
opportunity to introduce our notations. The very first quantity of interest is
the instantaneous density field.

ρ̂(r, t) =
∑

i

δ(r − ri(t)) (4.21)

where ri(t) is the position of the ith particle at time t. One has that

〈ρ̂(r, t)〉 = ρ̄ = cst and
∫

dr ρ̂(r, t) = N hence ρ̄ =
N

V
. (4.22)

Here and in the following, the hatted quantities denote the non average ob-
servable. In the experiment the average 〈·〉 means a time average over 300
steps separated by 10 cycles each, taking care that on such time scales the
processes are stationary. One then introduces a generalized density correlation
function by considering

Wa(t) = 〈Ŵa(t)〉 =
1
N

∫

drdr′〈δρ̂(r, t)wa(r − r′)δρ̂(r′, 0)〉 , (4.23)

where δρ̂ = ρ̂ − ρ̄ and wa(r − r′) is some kernel with a space scale a to be
specified later. Replacing ρ̂ by its definition (4.21), one obtains after a small
calculation:

Wa(t) =
1
N

∫

drdr′
∑

i,j

〈δ(r−rj(t))wa(r−r′)δ(r′−ri(0))〉−ρ̄
∫

dr wa(r) (4.24)

=
1
N





〈
∑

i,j

wa(rj(t) − ri(0))

〉

−N〈wa〉V , (4.25)
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where 〈.〉V is the mean value of the kernel function over the sample volume.
The self part of this correlation function is given by considering only one
particle, hence the same formula replacing rj(t) by ri(t) and summing over one
particle only. When considering the self part of such a correlation function, one
obtains information about the single particle relaxation. When dealing with
the non self correlation, one gains information about the structural relaxation.
Using exp(ik.r) for wa(r), where the space scale a is given by 2π/k, Wa(t)
is nothing but the intermediate scattering function F (k, t). When wa(r) is
some overlap function decreasing from one in r = 0 to zero for increasing r,
Wa(t) is called the density overlap correlation function, further noted Q(a, t),
as introduced by Franz and Parisi [48] and largely used by Donati et al. [47].
Practically, in the following computations δ(r) is approximated by a Gaussian
of width 0.3.

The self part of the intermediate scattering function Fs(k, t), where the
subscript s here and in the following is for “self part”, is plotted on the
left of Fig. 4.17(a) as a function of time for different values of k ranging
from 1 to 29. Contrary to glass-formers there is no visible plateau in this
correlation function although from trajectories it was possible to identify a
clear cage effect as seen in the previous section. A possible explanation is that
the difference between the time-scales for the relaxation inside the cage and
the escape from the cage is not large enough to give rise to a clear plateau.
Except for very small k the decrease of Fs(k, t) is slower than exponential in
time. A good fit is provided by a stretched exponential: exp[−(t/τ(k))β(k)].
We plot on the right of Fig. 4.17 τ(k) (top) and β(k) (bottom) as a function
of k. At small k the relaxation time scales as k−2 and the exponent β(k) is
one. As expected, the grains perform a Brownian motion on large length and
time scales and therefore Fs(k, t) � exp(−Dk2t) for small k and large t [D is
the self-diffusion coefficient of the grains]. Increasing k the stretched exponent
decreases and is of the order of 0.7 for k of the order of 2π, corresponding to
the inter-grain distance, and even lower for higher values of k. A very similar
behaviour has been found in numerical simulations of glass-formers [39, 40].
Also the decrease of τ(k) steepens sharply for large k. This might be related
to the sub-diffusive behaviour observed in the previous section: at short time
the displacement distribution is roughly Gaussian with a variance varying as
t1/2 (not t like for standard diffusion). Hence, it would be natural that at large
k the relaxation time went as k−4. An overall very similar behaviour for the
intermediate scattering function F (k, t) (not plotted here) is obtained.

Dynamical heterogeneity is one of the possible explanation of the non-
exponential relaxation of Fs(k, t) (and of F (k, t)): the relaxation becomes
slower than exponential because there is a wide spatial distribution of time-
scales [45]. However this is not the only possible scenario [45,49]. In the follow-
ing we want to go one step further and show direct “smoking gun” evidences of
dynamical correlations. The proper way to unveil these correlations is through
the fluctuations of the correlations [48]. The idea is that the temporal correla-
tion is itself the order parameter of the transition. Accordingly, its fluctuations
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Fig. 4.17. Time correlations (a): Fs(k, t) as a function of time for different val-
ues of the wave-vector k = 1, 3, . . . , 29. The black lines represent fits of the form
exp[−(t/τ(k))β(k)]; on the right: τ(k) (top) and β(k) (bottom) as a function of k.
(b): Q(a, t) as a function of time for a = 0.05, 0.1, . . . , 0.5

should unveil correlations exactly as fluctuations of the magnetization unveil
magnetic correlations close to a ferromagnetic transition. These fluctuations
are characterized by four points correlation functions generically defined as:

χW
4 (t) = N

〈(
Ŵa(t) − 〈Ŵa(t)〉

)2
〉

(4.26)

where Wa can be the intermediate scattering function, the density overlap,
or their self part. It happens that the complex exponential kernel used to
construct the intermediate scattering function -historically justified by the
light scattering experiments- induces artificial fluctuations which prevent from
properly computing the corresponding χ4. From that point of view, the den-
sity overlap is much more convenient. Figure 4.17(b) displays Q(a, t), where
the overlap function wa(r) has been chosen as a non-normalized Gaussian:
wa(r) = exp(−r2/2a2). The evolution of Q(a, t) is a measure of how long it
takes for the systems to de-correlate from its density profile at time t = 0.
One can verify that the behaviour of Q(a, t) is very similar to that of Fs(k, t),
as for glass-formers [43,48].

Figure 4.18(a) displays χFs
4 (t) for k = 1, 3, . . . , 29. It has the form found for

glass-formers [41–44,50]: it is of the order of one at small and large times and
displays a peak at a time somewhat larger than the cage lifetime. The largest
χFs

4 (t) is obtained for k = 9 corresponding to a length of the order of the
cage size. The behaviour at small and large times is in a sense expected since
in these limits χFs

4 (t) can be related to static correlation functions, which,
as discussed previously, do not show any long range order. Alternatively the
peak is a clear signature of dynamic heterogeneity and shows that the dy-
namics is maximally correlated on time-scales of the order of the relaxation
time. A rough estimation of the corresponding dynamical correlation length
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Fig. 4.18. Four-points correlations (a): χFs
4 (t) as a function of time for values of

k = 1, 3, . . . , 29. Inset: Log-Log plot for k = 7, 9, 11, 13. (b): χQ
4 (t) as a function of

time for values of a = 0.05, 0.1, . . . , 0.5. Inset: Log-Log plot for a = 0.1, 0.15, 0.2, 0.25

is obtained by identifying the peak of χFs
4 (t), of the order of 100, to a corre-

lated area πξ2
het, leading to a length ξhet ∝ 6 in agreement with the estimate

of the previous section. Very similar results are found for χQ
4 (t) as shown in

Fig. 4.18 for a = 0.05, 0.1, . . . , 0.5. It is interesting to note that, as found for
glass-formers in [43], the main contribution to χQ

4 (t) comes from the fluctua-
tions of the self-part of Q. Indeed we checked that for small and intermediate
a, χQ

4 (t) � χQs

4 (t) and only for a〉0.25 one starts to see a difference. The growth
of χFs

4 (t) (resp. χQ
4 (t)) before the peak seems to follow a power law with an

exponent which depends on k (resp. a) and varies between 1 and 2/3. As dis-
cussed in [50] the form of χFs

4 and χQ
4 provides interesting information on the

mechanism behind dynamical heterogeneity. Such power-law behaviours with
exponents between 1 and 2/3 suggest that the dynamic correlations cannot
be induced by independent defects or free volume diffusion [50].

It would now be very interesting to have some insight on the spatial origin
of the fluctuations evidenced by the computation of χ4(t). One way to under-
stand how these fluctuations relate to spatial heterogeneities of the dynamics
is to decompose, say, Q(a, t) in local contributions: NQ̂(a, t) = ρ

∫
drq̂a(r, t)

where q̂a(r, t) = 1/ρ̄
∫
dr′δρ(r, t)wa(r − r′)δρ(r′, 0).

Using this last expression one finds that χQ
4 (t) = ρ

∫
drGQ

4 (r, t) where
GQ

4 (r, t) = 〈[q̂a(r, t)−〈q̂a(r, t)〉][q̂a(0, t)−〈q̂a(0, t)〉]〉. This last expression states
that χQ

4 (t) is nothing but the mean value over the sample of the spatial cor-
relations among the local temporal correlation. It clearly shows that a large
value of χQ

4 (t) has to be related to long range spatial correlations of GQ
4 (r, t),

which is the spatio-temporal representation of the local temporal correlations.
Figure 4.19 presents a grey-scale plot of the self-part q̂as(r, t) =

∑
i δ(r −

ri(0))wa(ri(t)− ri(0)) for t = 154, 435, 1113, 2526 and a = 0.15. By definition
q̂as(r, t) measures in a coarse grained way the local mobility: if the particle
that was close to r at t = 0 moved away more than a in the time interval t
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Fig. 4.19. Grey-scale plot of q̂as(r, t), at t = 154, 435, 1113, 2526 from top to bottom
in a grey-scale (a = 0.15). Black regions correspond to lower values of q̂as. The
displacements of the particles during the interval of time t are plotted in yellow.
The yellow dots are particles that have been lost during tracking

then q̂as(r, t) � 0. The yellow lines in Fig. 4.19 are the particle displacements
in the time interval t. The four chosen time intervals correspond from top
to bottom to short-times, relaxation times, moderate long times, long-times.
At short-times (t = 154) only few particles have moved and from Fig. 4.19 it
appears that they do so in a string-like fashion. On larger times (t = 435, 1113)
the relaxed regions are ramified and finally, at very long time (t = 2526) the
overall majority of the particles has moved substantially but there remain
few (rather large) regions not yet relaxed. These findings, similar to the ones
found in simulation of super-cooled liquids [41,43] and experiments on colloidal
suspensions [32] suggest that the mobility is organized in clusters, which are
the direct visual evidence of the dynamical heterogeneities.

To further quantify the heterogeneities, we estimate how large is the mo-
bility difference between fast and slow grains. Figure 4.20(a) displays the self
part of the Van-Hove correlation function, i.e. the probability distribution
of the grains displacements amplitudes for t = 438 (corresponding to the
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(a) (b)

Fig. 4.20. (a): Self part of the Van Hove correlation function after angular inte-
gration at t = 438; the continuous line is the pdf obtained assuming a Gaussian
distribution. (b): ln(G4(r, 438)) as a function of r; the straight line is a linear fit

maximum of χQ
4 (t)). It clearly demonstrates the excess of fast and slow grains

compared to the distribution obtained when assuming a Gaussian process (in
continuous line). The fast grains are roughly five time faster than the slow
ones. Furthermore, we obtain G4(r, 438) by computing the radial autocorre-
lation of q̂as(r, t), and averaging over ten realizations. Figure 4.20(b) shows
that G4(r, 438) decays exponentially over a characteristic dynamical length
ξ = 7, in agreement with the value obtained from the peak of χFs

4 .

4.3.3 Partial Conclusion

In this second part of the lecture, we have seen that the analogy observed
at the macroscopic level between dense granular media close to the jamming
transition and super-cooled liquids close to the glass transition has indeed
microscopic grounds. Despite the difference in the driving mechanisms – a
mechanical instead of a thermal forcing –, the diffusion properties of a single
particle and the collective relaxation of the system share very strong similari-
ties including the existence of a dynamical length increasing at the transition.

At the root of these very strong similarities is the physical nature of the
transition. In the case of thermal systems close to the glass transition, the dy-
namics is dominated by the complex shape of the multidimensional potential
energy landscape. The thermal activation being weaker and weaker, the sys-
tem spend more and more time in meta-stable states. Eventually the system
does not equilibrate on experimental time scales and falls out of equilibrium.
In the case of the dense granular systems under gentle forcing, the grains
rearrange among mechanically stable configurations which are the equivalent
of the meta-stable states. When the external forcing is decreased, or when
the density is increased, the grains rearrangements become more and more
difficult to produce. In both cases, the relaxation evolves towards a global
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structural relaxation involving collective behaviours and characterized by dy-
namical heterogeneities.

As a matter of fact, the analogy is so strong that the glass transition
can be seen as a specific case of jamming transition as suggested by Liu and
Nagel [68]. The interest of such a unifying view is double. First, as we shall
see in the last part of the present lecture, theories developed in the field of
glasses have inspired interesting development in the field of granular media.
Second, as we saw in this part, granular media can be seen reciprocally as a
very convenient experimental system for studying the microscopic features of
the structural relaxation close to the glassy state.

4.4 Looking for a Statistical Description

As just stated, one of the key ingredients of the non-trivial phenomenology
observed in both granular media and thermal glasses is the large number of
microscopic meta-stable states, among which the system hops during its slow
dynamical evolution. In the context of glassy systems, Stillinger et al. [51,
52], introduced the concept of inherent structures, namely the potential local
minima. Following the ideas of Goldstein [53], the phase space trajectory of the
system can be described as successive steps among the potential basins. The
entropy is then claimed to be separable into one vibrational part accounting
for the vibrational modes around the minima and one configurational part
accounting for the numerous inherent structures. In the thermodynamical
analogy proposed by Edwards [54], that we shall discuss in the following, the
mechanically stable states of a granular packing are given a similar role to
that of the inherent states and called “blocked states”.

The natural question that immediately arises is that of the weight of these
configurations in a given experiment and how they encode the specificity of the
dynamics. Various forms of the fluctuation-dissipation relation have been gen-
eralized to out of equilibrium situations of thermal systems by Cugliandolo,
Kurchan and collaborators [2,3]. Such generalizations lead to the definition of
an effective temperature for the long-time behaviour of glassy systems. The
existence of such an effective temperature suggests for these systems some
kind of “ergodicity” in the dynamics among the meta-stable states. Extend-
ing these ideas to the case of granular media as suggested by Kurchan [55,56]
may provide some validity to Edwards” assumption that all blocked configura-
tions in the jammed state are equiprobable leading to the so called “Edwards’
ensemble”.

However the situation is far from being clear. Let us recall some of the
remarks made by Bouchaud [57] in his lecture in Les Houches, to motivate
the last part of the present lecture:

• Despite phenomenological analogies between temperature and gentle tap-
ping, one should keep in mind that tapping is a long-wavelength excitation,



194 O. Dauchot

whereas temperature is thought to give rise to very short wavelength ex-
citation. Accordingly detailed balance and activated process ideas might
need to be reconsidered.

• The choice of the microscopic variables is already not obvious. Also, deal-
ing with continuous variables such as the contact forces for instance, one
has to assume the uniformity of the a priori measure on the forces as
done on the canonical variables (position and momentum) when building
the microcanonical ensemble for particles. However, in the latter case, the
procedure is justified by the Liouville theorem resulting from the Hamil-
tonian dynamics. In the case of granular media no physical prescription
has been proposed yet.

In this part, we shall present Edwards’ proposal, discuss how and whether
they can be tested experimentally and finally produce some recent results on
free volume statistics inside a bi-dimensional granular packing.

4.4.1 Edwards’ Proposal

In the statistical physics of Hamiltonian systems [58,59], the microscopic con-
figurations C are described by the canonical variables prescribed by the Liou-
ville’s theorem, the momenta and positions C(pi, qi) of all particles. In the case
of an isolated system with total energy E, one obtains as a stationary state
of the Liouville’s equation, a uniform equilibrium probability density over the
micro-states of energy E. Accordingly for a system defined by its Hamiltonian
H(pi, qi):

P (C(pi, qi)) =
1

Ω(E)
δ(H(pi, qi)−E) withΩ(E) =

∫ ∏

i

dpidqiδ(H(pi, qi)−E).

(4.27)
The entropy at equilibrium and the temperature are then given following the
construction presented in Subsect. 4.2.2 by:

S(E) = −
∑

C
P (C) ln(P (C)) = lnΩ(E) and β =

1
T

=
∂ lnΩ(E)

∂E
. (4.28)

Behind this very elegant formalism stand a few but essential properties of
Hamiltonian systems. We have already mentioned the prescription for the
appropriate microscopic variables (pi, qi), by the Liouville’s theorem, which
derives itself from the canonical structure of the equations of Hamilton. One
must also consider the symmetries such as the time-reversal and the time-
translational invariances, the latter giving rise to the conservation of energy.
Finally, assuming that the uniform distribution is the true distribution of the
system is given by the ergodic hypothesis.

Consider now a granular media close to the jammed state. In Edwards’
description [54,60,61], it is first assumed that the volume V is the key macro-
scopic quantity governing the behaviour of the system. Then, it is assumed
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that the statistics is completely dominated by the “blocked configurations”,
which are claimed to all have the same statistical weight. Hence the probabil-
ity of a configuration C in a system of fixed volume V is:

P (C) =
1

Ω(V )
Θ(C)δ(V (C)−V ) with Ω(V ) =

∫

dCΘ(C)δ(V −V ) . (4.29)

where Θ(C) is a constraint to restrict the configurations to the “blocked
states”. An analogous entropy and the corresponding analogue of the tem-
perature, named the “compactivity” are then given by

S(V ) = −
∑

C
P (C) ln(P (C)) = lnΩ(V ) and

1
X

=
∂ lnΩ(V )

∂V
. (4.30)

Given the very strong properties of the Hamiltonian systems which support
the equilibrium statistical description, Edwards’ proposal looks at first sight
a rather crude analogy and at least calls for a few comments.

• Let us discuss first the choice of the volume. It is a natural extensive
macroscopic quantity and it clearly plays a crucial role in the rearrange-
ments of the grains among jammed configurations. However, it should be
shown that it is conserved by the dynamics, a key ingredient for the above
construction as illustrated in the first part of this lecture. The total volume
accessible to the grains can be fixed, such as in the shear experiment con-
ducted in Saclay. Assuming then some tiling of the space accessible to the
grains in a given experiment, the grains’ rearrangements can be described
by a redistribution of the volume among the grains. In this sense, there
is indeed a local conservation of the volume. Even if the total volume is
not fixed, as in most tapping experiments, on can check that the system
is large enough to ensure sufficiently small fluctuations of its volume. In
such a case, provided that the grains rearrangements do not cascade to the
free surface of the packing, the system can serve as a reservoir of volume
for a sub-system, which then has to be described in the canonical formal-
ism. Yet, one sees that one important hypothesis is to have enough local
redistribution of the volume.

• The choice of the microscopic variables, as already mentioned, is extremely
ambiguous. There is no general prescription neither for the minimal list of
relevant physical quantities, nor for the choice of the appropriate variables
to describe them. Ignoring physical quantities will falsify the computation
of the density of states. Having no prescription for the correct choice of
variables induces an irreducible ambiguity since the uniform measure for
continuous variables is not conserved under a change of variables.

• Time-reversal symmetry and the ergodic hypothesis are crucial for assum-
ing a uniform distribution among the accessible configurations. Given the
existence of dissipation and the very slow compaction of granular media
under gentle tapping there is little chance to observe time-reversal sym-
metry in the general case. Furthermore, even for a stationary dynamics,
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checking the existence of micro-reversibility in a real system, is out of reach
of experimental investigations.

Altogether Edwards’ description is a challenging proposal, the implemen-
tation of which is far from being obvious and which calls for experimental
and numerical validations. Despite some clear examples where Edwards’ ap-
proach fails [62], various checks have been made so far in mean field models of
the glass-transition [63], in schematic finite-dimensional models with kinetic
constraints [64, 65], in spin-glass models with a-thermal driving between the
blocked states [66] and finally in a few more realistic models of particle depo-
sition [67] or MD simulations of shear driven granular media [69]. Reviewing
these studies is out of the scope of this lecture. It should be stated, however,
that in most of these works, the accent is put on the validation of the uniform
measure over the blocked states. A given model being chosen, its dynamics is
computed at constant volume. Blocked states are identified and dynamical av-
erages of macroscopic quantities are compared with averages over the blocked
states assuming equal weights. The issue of the proper choice of variables to
describe a granular media is not considered. Finally most of these models use
Monte-Carlo algorithm to generate the dynamics so that implicitly, the dy-
namics is reminiscent of an Hamiltonian kind of dynamics. In the last section,
we shall discuss what can be tested experimentally in Edwards’ proposal and
present recent results obtained in this direction.

4.4.2 Experimental Test of Edwards’ Proposal?

Volume Fluctuations

Formula (4.29) gives the probability of a given configuration of volume V ,
according to Edwards’ proposal. In order to investigate its validity, let us
assume that the probability distribution over the blocked configurations is
not uniform, but given by a density f(C). Formula (4.29) then turns into:

Pµ(C) =
1

Zµ(V )
f(C)Θ(C)δ(V (C) − V ) with

Zµ(V ) =
∫

dCf(C)Θ(C)δ(V (C) − V ) (4.31)

As for usual thermodynamics, it is uneasy to study an isolated system since
the experimentally measurable quantities of interest are then fixed from the
outside. The usual way to proceed is to consider a subsystem, free to exchange
volume with a reservoir, that is a system in the canonical situation. We have
seen in the first part of this lecture, Subsect. 4.2.2, equation (4.12), that
provided that both f(C) and Θ(C) factorize for any partition of the system,
the canonical probability distribution can be written:

Pc(C) =
1

Zc(X)
f(C)Θ(C) exp−(V (C)/X) with

1
X

=
∂ lnZµ(V )

∂V

∣
∣
∣
V ∗

,

(4.32)
where V ∗ is the most probable value of the volume of the reservoir.
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This probability distribution is still out of reach of experimental and even
numerical investigations, since it requires to sample all microscopic configura-
tions. However, as seen in Subsect. 4.2.2, equation (4.15), the usual thermo-
dynamical equalities remain valid, so that the fluctuations of the volume can
be related to the average volume by:

〈V 2〉 − 〈V 〉2 = X2 ∂〈V 〉
∂X

. (4.33)

Inverting this relation, one can in principle extract from the simultaneous
measure of 〈V 〉 and 〈V 2〉 the dependence of the compactivity on the volume
X(V ). This is precisely what has been done by Schröter et al. [21] in the
Austin experimental set-up presented on Fig. (4.3d) and that we shall now
discuss in more details.

In their work Schröter et al. [21] use a periodic train of flow pulses in a
fluidized bed. A column of glass beads in water is expanded by an upward
stream of water until it reaches a homogeneously fluidized state, and then the
flow is switched off. The fluidized bed forms a sediment of volume fraction
Φ, which depends in a reproducible way on the flow rate of the pulse. This
forcing results in a history independent steady state where the volume exhibits
Gaussian fluctuations around its average value. The history independence is
demonstrated by ramping up and down in flow rate; both the averaged volume
fraction Φavg and the standard deviation σΦ depend only on the flow rate of
the last flow pulse, not the earlier history of the bed.

As shown on Fig. 4.21(a) the variation of σΦ with Φavg is well fitted by a
parabola with a minimum for some specific value of the averaged volume frac-
tion. Relating this minimum of the fluctuations to a maximum in the number
of statistically independent spatial regions at the moment of solidification,
the authors suggest the following explanation. For smaller volume fraction,
the sample is more fragile and local rearrangements induce large reorganiza-
tions. For larger volume fraction, the free volume becomes smaller, the system
is more jammed and any local rearrangement requires a large reorganization
of the packing.

Using the relation (4.33), the authors derive the following relation

λρ

m

∫ Φ

ΦRLP

dφ

(
φ

σφ

)2

=
1

X(Φ)
(4.34)

where it has been assumed in the spirit of Edwards’ proposal that X(ΦRLP ) =
∞ and that ΦRLP is obtained in the limit of very large flow rate. Note that
in the present lecture λ, the equivalent of the Boltzmann constant, has been
fixed to one. This relation leads to the dependence of the compactivity X on
the averaged volume fraction Φavg displayed on Fig. 4.21(b).

The above results are the very first experimental measurements of the so-
called compactivity. Unfortunately, in the absence of a theoretical prediction
for the dependence of the compactivity on the volume, they do not check
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Fig. 4.21. Fluctuations and compactivity in Austin experiment (a): Volume fluc-
tuations as a function of the mean volume. (b): Compactivity as a function of the
mean volume

Edwards’ proposal in anyway. As a matter of fact, for any system, in any
situation, it is always possible to first measure the averaged value and the
fluctuations of any given macroscopic observable V , then define X assuming
a thermodynamical relation such as (4.33) and obtain X(V ).

Free Volume Distributions

To go one step further, one might think of investigating the full probabil-
ity distribution of the volume, not only at the scale of the packing but for
subsystems of increasing sizes. From the canonical probability distribution
(Eq. 4.32), one readily computes the probability of observing a volume V in
a subsystem of N grains:

Pc(VN ) =
∫

dCPc(C)δ(V (C) − VN ) =
Zµ(VN )
Zc(X)

exp−VN/X , (4.35)
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Apart from the exponential weight, most of the information about the system
lies in the pre-factor dependence on VN . Hence, one crucial step to go further
is to precise what are the variables which describe the microscopic configu-
rations. Given the role played by the volume, it could be natural to consider
the volumes wi associated to each grain through some tiling of the space, as
suggested by Edwards. However, it is clear that the choice of such a set of
variables is not sufficient since it does not include the forces at the contacts.
As a consequence one will have to include a density of state ρ(w1, w2, . . . , wN )
in the description and the microcanonical partition function will read:

Zµ(VN ) =
∫ ∏

i

dwiρ(wi)f(wi)Θ(wi)δ

(
∑

i

wi − VN

)

. (4.36)

One already sees that without a theoretical prescription for the density
of states ρ, a formidable task to achieve, there is little chance to test the
measure f(wi). Let us take an example to make this last point more pre-
cise. Consider a system for which f(wi) =

∏
i w

η−1
i [15, 16] and for which

ρ(λw1, λw2, . . . , λwN ) = λγNρ(w1, w2, . . . , wN ). Then introducing the adi-
mensionalized volumes ωi defined by wi = ωiVN/N = ωiνN , one obtains:

Zµ(VN ) = (V/N)N−1(V/N)γN (V/N)N(η−1)

∫ ∏

i

dωiρ(ωi)Θ(ωi)δ

(
∑

i

ωi −N

)

, (4.37)

and thereby

Pc(νN ) =
A(N)
Zc(X)

ν
(γ+η)N−1
N exp−NνN/X . (4.38)

This last expression shows clearly that the details of the microcanonical mea-
sure (here the value of η) cannot be distinguished from the specific properties
of the density of state (here the value of γ). In particular the uniform measure
(η = 1) does not emerge as a special case.

However, the microscopic physics of the system remains fully embedded
in the microcanonical partition function and therefore, it is still of interest
to investigate its shape and in particular to evaluate its dependence on the
system size. This task has been conducted by Da-Cruz et al. [70] in the case
of a bi-dimensional packing. The experimental set up (Fig. 4.22a) consists in
a rectangular glass container which contains 5000 nickel plated brass cylin-
drical spacers of two different diameters ds = 4mm and dl = 5mm in equal
number. In the following ds has been chosen as the unit length. The cell is
half filled with a single layer of such hard disks mixed together, resulting in an
homogeneous and disordered bi-dimensional packing. The cell is mounted on
a horizontal axis and rotated around this axis in such a way that the grains
fall from one side to the other every half cycle. The experimental procedure
is the following. The cell starts in a vertical position and is rotated one cycle,
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Fig. 4.22. (a) Experimental set-up and sketch of the modified Voronoi tessellation;
(b) Distribution of the Voronoi cells area. Vertical dashed lines: minimal Voronoi
cell area. Vertical dash-dotted lines: conditional average Voronoi cell area. Inset:
distributions of the free volume conditioned by the grain size; (dark): small grains;
(grey): large grains

at a constant speed of one cycle per minute. During this cycle, the grains
fall from one side to the other and then back to the initial side. The engine
is stopped, the system allowed to reach a mechanically stable state, and a
picture of the bulk is taken. 15000 of such cycles are performed. The pictures
hence taken display on average 300 grains. For each picture the centers of the
spacers are located and their Voronoi diagram is computed (Fig 4.22b), taking
into account the bidispersity of the assembly. One then collects the area of the
cells along with the type, position and index of the associated grains. Out of
these raw data, the statistical distribution of the free volumes occupied first
by one grain, then by clusters of an increasing number of neighbouring grains
are extracted and analyzed.

Figure 4.22(b) displays the distribution of the Voronoi cell areas. The dis-
tribution displays two peaks centered on 〈vs〉 = 1.00 (resp. 〈vl〉 = 1.49), the
averaged area occupied by the small, (resp. the large) grains computed inde-
pendently. Also indicated on the figure are the minimal values that a Voronoi
cell can possibly take – the closest regular hexagon- for each type of grain,
vmin

s =
√

3/2 � 0.866 and vmin
l =

√
3/2(dl/ds)2 � 1.35. Both peaks present

a well defined exponential tail, which is easily isolated when considering the
distributions of the free volume (vf

s,l = v − vmin
s,l ), for each type of grain as

shown on the inset of Fig. 4.22(b). Note that these exponential tails and the
associated characteristic free volumes should not be interpreted as a signature
of the Gibbs weight, and thereby as some kind of validation of Edwards’ hy-
pothesis as sometime suggested in the literature. At least one should consider
larger subsystems.

Accordingly, let us turn to the free volume distributions for clusters of
neighbouring grains. Figure 4.23(a) displays the distribution of the free volume
per grain inside clusters of N neighbouring grains, vf

N = N−1ΣN
i=1v

f
i . The

authors choose to describe the distributions of the free volume per grain inside
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Fig. 4.23. Free volume statistics. (a): distributions of the free volume per grain in-
side clusters of N grains; the larger N, the narrower the distribution. (b): dependence
on N of the first (top) and second (bottom) moments of the free volume distributions
(◦): computed from the data; (∗): extracted from the fit of the distributions by a
Gamma law; (plain line): fit of their dependence on N

a cluster of N neighbouring grains by a Gamma law of parameters ηN and
XN as suggested by the the shape of the distributions, the example discussed
here above and the expected convergence towards the gaussian law:

P (vf
N ) =

1
XηN

N Γ (ηN )
(vf

N )ηN−1e−vf
N /XN . (4.39)

where Γ is the Euler Gamma function. Once chosen the form of the dis-
tributions, one computes their first two moments and obtain ηN and XN ,
through the relations 〈vf

N 〉 = ηNXN and 〈vf
N

2〉 − 〈vf
N 〉2 = ηNXN

2. As ex-
pected, 〈vf

N 〉 rapidly evolves towards a constant (Fig. 4.23(b)-top). On the

contrary 〈vf
N

2〉 − 〈vf
N 〉2 varies like N−α with α = 0.75 ± 0.0025, in contrast

with the 1/N dependence expected for independent variables (Fig. 4.23(b)-
bottom). Altogether, the distribution of the free volume per grain inside clus-
ters of N grains is well described by a Gamma law, the parameters of which
exhibit the following dependences on N : ηN = ηeffN

α and XN = XeffN
−α,

with η = 3.5 and X = 0.041.
Altogether, rewriting the above Gamma law in the limit of large N ,

one obtains that the logarithm of the distribution of the free volume per
grain inside clusters of N grains scales as Nαg(v, ηeff ,Xeff) with g(v) =
η(ln(v/(ηX)) − v/(ηX) + 1), α � 3/4, ηeff � 7/2 and Xeff = 0.041. Finally,
one can also write the distribution of the free volume per grain inside clusters
of N grains as:
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P (v) =
1

Z(N, η,X)
e−Nα( v

X −s(v)), with s(v) = η ln(v) , (4.40)

and thereby 1
X = ∂s

∂v

∣
∣
∣
〈v〉

, an exact result given the Gamma law distribution

and more generally expected from a saddle point calculation in the large N
limit.

This central result deserve a few comments: First, the observed non exten-
sive factor Nα is presumably the evidence of long range correlations between
the free volumes of individual grains. Indeed, in the presence of correlations
decaying with the distance r as 1/rγ , one has in two dimensions, for γ < 2,
that the second moment of the average of N centered random variable scales
like N−γ/2. In the present case, we would thus infer the existence of long range
correlations decaying like 1/r3/2. If the existence of such long range correla-
tions is confirmed, then the thermodynamical description will have to take
them into account in order to define properly the extensive and the associ-
ated intensive parameters. For instance, the use of the relation (4.33) as done
by Schröter et al. leads to the definition of a compactivity, which depends on
the system size! Also, the existence of such long range correlations may inval-
idate the hypothesis of a local conservation of the volume. Second the above
analysis has allowed to define two effective parameters which characterize the
probability distribution of the free volume for one grain. How do they relate
to Edwards’ compactivity? Do they equilibrate between subsystems put into
contact? Is it still possible to define a thermometer in the most general sense?
Many questions remain open.

To conclude this part, testing Edwards hypothesis appears to be extremely
challenging. Whereas much of the focus is usually put on the uniformity as-
sumption for the probability distribution of the blocked states, we have seen
here that in practice it is hard to distinguish it from another factorizable dis-
tribution, until one has a full microscopic description of the systems and its
dynamics. Conversely, a lot can be learned from the investigation of the prob-
ability distributions of various macroscopic variables. It is of major interest
to understand how many intensive parameters are necessary to describe these
distributions and whether they equilibrate between subsystems in contact.
Identifying these parameters would be a major step in the thermodynamical
description of granular systems.

4.5 Conclusion and Perspectives

In this lecture we have tried to discuss both theoretical ideas and experimental
results on the thermodynamics of granular media and its statistical grounds.
After having made precise the concepts of thermal vs. a-thermal systems, we
have reviewed the experimental evidences of the strong similarities between
the granular media close to the jamming transition and super-cooled liquids
close to the glass transition, at both the macroscopic and the microscopic
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scale. Finally, we have discussed in details Edwards’ proposal for a statistical
description of jammed granular media and illustrated the kind of experimental
study, which are conducted in this spirit.

As recalled in the introduction, the understanding of granular media and
a-thermal systems in general is far from being completed. Many of the ideas
exposed here will change; many experimental results will find new interpreta-
tions. Let us still stress one more time, what we believe are the main messages
of this lecture in the present state of knowledge.

In the first part, it was shown that the definition of a temperature or an
equivalent is actually not related to the scale of the particles, but to the ex-
istence of an extensive conserved quantity. In the second part, it has been
observed that the idea of a unified description for the glass and the jamming
transition has indeed strong evidences at the scale of the individual particles.
Finally, we saw that from an experimental point of view, testing the unifor-
mity of the measure over the blocked configurations is a chimera, until a full
microscopic description of the system is provided. However, in the meantime
looking for relevant extensive and intensive thermodynamical parameters is a
key step for achieving a thermodynamical description of non-hamiltonian sys-
tems. In this matter we have stressed that one must be careful with potential
long range correlations and associated non-extensivity.

Finally, let us suggest some further developments in the field. In the first
part, we have seen how to define a thermodynamical equivalent of the tem-
perature for stationary non-hamiltonian dynamics with a conserved quantity.
Kurchan has proposed to extend the definition of the effective temperature
obtained in the glassy regime for thermal glasses, to the case of a-thermal
systems [55]. It would be of great interest to relate both approaches. One way
for instance would be to study glassy regimes in a modified version of the
model introduced by Bertin et al [15]. Given the strength of the similarities
between granular media close to the jamming transition and the super-cooled
liquids close to the glass transition, and given the rather easy access to the
details of the particles dynamics in the case of the granular media, it would
be of great benefit to further investigate the mechanisms underlying the de-
velopment of the dynamical heterogeneities. Finally, given the possibility of
extracting intensive parameters from the free volume distributions inside a
granular packing, it is now a priority to test whether some of these parame-
ters equilibrate between subsystems.
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These lectures give an introduction to Monte Carlo simulations of classical
statistical physics systems and their statistical analysis. After briefly recalling
a few elementary properties of phase transitions, the concept of importance
sampling Monte Carlo methods is discussed and illustrated by a few standard
local update algorithms (Metropolis, heat-bath, Glauber). Then emphasis is
placed on thorough analyses of the generated data paying special attention to
the choice of estimators, autocorrelation times and statistical error analysis.
This leads to the phenomenon of critical slowing down at continuous phase
transitions. For illustration purposes, only the two-dimensional Ising model
will be needed. To overcome the slowing-down problem, non-local cluster al-
gorithms have been developed which will be discussed next. Then the general
tool of reweighting techniques will be explained. This paves the way to in-
troduce simulated and parallel tempering methods which are very useful for
simulations of complex, possibly disordered systems. Finally, also the impor-
tant alternative approach using multicanonical ensembles is briefly outlined.

5.1 Introduction

The statistical mechanics of complex physical systems poses many hard prob-
lems which are very difficult if not impossible to solve by purely analyti-
cal methods. Numerical simulation techniques will therefore be indispensable
tools on our way to a better understanding of systems such as (spin) glasses
and disordered magnets, or of the huge field of biologically motivated problems
such as protein folding, to mention only a few important classical problems.
Quantum statistical problems in condensed matter or the broad field of ele-
mentary particle physics and quantum gravity are other major applications.

The numerical tools commonly employed can be roughly divided into mole-
cular dynamics (MD) and Monte Carlo (MC) simulations. With the still ongo-
ing advances in computer technology – according to Moore’s law, since about
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1950, every 5 years a factor of 10 is gained in computing speed – both ap-
proaches can be expected to gain even more importance in the future than they
have already today. In the past few years the predictive power of especially
the MC approach was in addition considerably enhanced by the discovery
of greatly improved simulation algorithms. Not all of them are already well
enough understood to be applicable to really complex physical systems. But,
as a first step, it is gratifying to note that at least for relatively simple spin
systems, orders of magnitude of computing time can be saved by these refine-
ments. The purpose of these lecture notes is to give a concise introduction
to what is feasible today. For further reading, there are quite a few recent
textbooks [1–4] available which treat some of the material discussed here in
more depth. In particular, in these books one can also find recent applica-
tions to physically relevant systems which are purposely omitted in this short
introduction.

For illustration purposes, we shall rather confine ourselves to the simplest
spin models, the Ising and Potts models. From a theoretical point of view,
also spin systems are still of current interest since they provide the possibility
to compare completely different approaches such as field theory, series ex-
pansions, and simulations. They are also the ideal testing ground for general
concepts such as universality, scaling or finite-size scaling, where even today
some new features can still be discovered. And last but not least, they have
found a revival in slightly disguised form in quantum gravity and conformal
field theory, where they serve as idealized “matter” fields on Feynman graphs
or fluctuating manifolds.

The rest of these lecture notes is organized as follows. In Sect. 5.2, the
definitions of Ising and Potts models are recalled and some standard observ-
ables (specific heat, magnetization, susceptibility, correlation functions,. . . )
are briefly discussed. Next the most characteristic properties of phase tran-
sitions, scaling properties and the definition of critical exponents are sum-
marized. In Sect. 5.3, the basic method underlying all importance sampling
Monte Carlo simulations is described. The following Sect. 5.4 is first devoted
to a short discussion of the initial non-equilibrium period and ageing phenom-
ena, and then in Sect. 5.5 a fairly detailed account of statistical error analysis
in equilibrium is given which also includes temporal correlation effects. The
latter highlight the problems of critical slowing down at a continuous phase
transition and phase coexistence with exponentially large flipping times at a
first-order transition. One very successful solution of the former problem are
non-local cluster algorithms which are described in Sect. 5.6. In Sect. 5.7 we
discuss reweighting techniques which quite naturally lead to the tempering
update algorithms explained in Sect. 5.8. These algorithms may be viewed
as dynamical reweighting methods that can circumvent exponentially large
flipping times and proved to be very successful for the simulation of complex,
disordered systems. The alternative method of multicanonical ensembles is
only very briefly discussed in Sect. 5.9, with emphasis on similarities and
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differences to tempering methods. Finally, Sect. 5.10 contains a few conclud-
ing remarks.

5.2 Models and Phase Transitions

5.2.1 Models and Observables

Most of the simulation techniques introduced below can be illustrated for the
simple Ising spin model whose partition function is defined as [5]

Z =
∑

{σi}
exp(−H/kBT ) , (5.1)

with
H = −J

∑

〈ij〉
σiσj − h

∑

i

σi , σi = ±1 . (5.2)

Here T is the temperature and h is an external magnetic field, kB is Boltz-
mann’s constant, the spins σi are assumed (for simplicity) to live on the sites
i of a D-dimensional cubic lattice of volume V = LD, and the symbol 〈ij〉
indicates that the lattice sum runs over all 2D nearest-neighbor pairs. In all
examples discussed below, periodic boundary conditions will be assumed.

Standard observables are the internal energy per site, e = E/V , with
E = −d lnZ/dβ ≡ 〈H〉, and the specific heat,

C/kB =
de

d(kBT )
= β2

(
〈H2〉 − 〈H〉2

)
/V , (5.3)

where β ≡ 1/kBT . In the following we always use units in which kB ≡ 1
and J ≡ 1. On finite lattices the magnetization and susceptibility are usually
defined as

m = M/V = 〈|µ|〉 , µ =
∑

i

σi/V , (5.4)

χ = βV
(
〈µ2〉 − 〈|µ|〉2

)
. (5.5)

In the high-temperature phase one often employs the fact that the magneti-
zation vanishes in the infinite volume limit and considers

χ′ = βV 〈µ2〉 . (5.6)

Similarly, the spin-spin correlation function,

G(xi − xj) = 〈σi σj〉 − 〈σi〉 〈σj〉 , (5.7)

then simplifies to G(xi −xj) = 〈σi σj〉, where xi measures the position of the
lattice sites i which are numbered, say, in a lexicographical order. At large
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distances, G(x) ∝ exp(−|x|/ξ) decays exponentially. Its decay rate defines
the correlation length

ξ = − lim
|x|→∞

|x|/ lnG(x) , (5.8)

which strictly speaking depends on the (discrete) orientation of x. For def-
initeness we will hence always consider correlations along one of the main
lattice directions.

In vanishing external field the Ising model exhibits a continuous phase
transition in temperature for all dimensions D ≥ 2. The two-dimensional
(2D) model is self-dual, relating its behaviour for high temperatures T = 1/β
to that at T ∗ = 1/β∗ in the low-temperature phase, where

sinh(2β) sinh(2β∗) = 1 . (5.9)

Under the mild assumption of a single phase-transition point, this fixes already
the critical temperature to be

sinh(2βc) = 1 or βc = ln(1+
√

2)/2 = 0.440 686 . . . , Tc = 2.269 185 . . . .
(5.10)

The exact solution by Onsager [6–8] in 1944 yields the free energy, internal
energy, specific heat etc. in zero external field for the general case of anisotropic
couplings Jx, Jy. Also the exact result for the magnetization below Tc in zero
field (again for general Jx, Jy) was first announced by Onsager at a conference
in Florence 1949 [9]. The first published derivation was given three years later
by Yang [10] in 1952, for the special case Jx = Jy = J , and subsequently
generalized to arbitrary Jx, Jy by Chang [11] in the same year. Even the
correlation length in arbitrary directions is known analytically [7, 8]. Along
the coordinate axes of a square lattice, the formula takes a surprisingly simple
form,

ξd(β) =
1

2(β∗ − β)
(β < βc) , (5.11)

ξo(β∗) = ξd(β)/2 (β∗ > βc) , (5.12)

where β and β∗ are the dual couplings defined in (5.9). The susceptibility,
however, is still not exactly known, even though highly accurate approxi-
mations could be derived [7, 8, 12]. In 3D even for the simple Ising model,
no exact solutions are available. Numerical work, high-temperature series ex-
pansions and field-theoretical considerations provide, however, very precise
estimates. From 4D on, the so-called upper critical dimension, mean-field be-
haviour starts to be become qualitatively correct, albeit in 4D only up to
multiplicative logarithmic corrections. The critical temperature is for all fi-
nite dimensions D ≥ 3 only approximately known, approaching Tc = 2D in
the mean-field limit D → ∞.

A simple generalization of the Ising model is the q-state Potts model [13]
whose Hamiltonian in zero external field is given by
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HPotts = −J
∑

〈ij〉
δσiσj

, σi ∈ 1, . . . , q , (5.13)

which is equivalent to the Ising model for q = 2. The 2D Potts model is
exactly known from self-duality, (exp(β) − 1)(exp(β∗) − 1) = q, to exhibit at
βc = ln(1+

√
q) a second-order transition for q ≤ 4 and a first-order transition

for all q ≥ 5 [14,15]. At the transition point (but only there), a couple of exact
results are available for both types of transitions, including the free energy,
internal energy and specific heat [14,15] as well as the correlation length ξd in
the disordered phase and the related interface tension σod between the ordered
and disordered phase [16]. In 3D, numerical work suggests for all q ≥ 3 a first-
order transition which rapidly becomes stronger with increasing q.

5.2.2 Phase Transitions

The most interesting aspect of a system’s phase diagram is the region where
cooperation effects may cause a phase transition, e.g., from a disordered phase
at high temperatures to an ordered phase at low temperatures as in the para-
digmatic Ising model. To predict the properties of this most challenging region
of a phase diagram as accurately as possible is one of the major objectives of
all statistical mechanics approaches, including numerical computer simulation
studies. The theory of phase transitions is a very broad subject described com-
prehensively in many textbooks (see, e.g., Refs. [17–20]). Here we only roughly
classify them into first-order and second-order (or, more generally, continu-
ous) phase transitions, and give a very brief summary of those properties that
are most relevant for numerical simulations.

Some characteristic features of the thermodynamic behaviour at first- and
second-order phase transitions are sketched in Fig. 5.1. Most phase transitions
in Nature are of first order [21–24]. The best known example is the field-driven
transition in magnets at temperatures below the Curie point, while the par-
adigm of a temperature-driven first-order transition experienced every day is
ordinary melting [25,26]. Simple models sharing such a behaviour are the Ising
and Potts models defined in (5.2) and (5.13). In general, first-order phase tran-
sitions are characterized by discontinuities in the order parameter (the jump
∆m of the magnetization m in Fig. 5.1), or the energy (the latent heat ∆e),
or both. This reflects the fact that, at the transition temperature T0, two (or
more) phases can coexist. In the example of a magnet at low temperatures
the coexisting phases are the phases with positive and negative magnetiza-
tion, while at the melting transition they are the solid (ordered) and liquid
(disordered) phases. The correlation length in the coexisting pure phases is
usually finite. Consequently also the specific heat and the susceptibility do not
diverge in the pure phases. Mathematically there are, however, superimposed
delta-function like singularities associated with the jumps of e and m.

In these lecture notes we will mainly consider second-order phase transi-
tions, which are characterized by a divergent correlation length at the transi-
tion point. The growth of correlations as one reaches the critical region from
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Fig. 5.1. The characteristic behaviour of the magnetization, m, specific heat, C,
and susceptibility, χ, at first- and second-order phase transitions

high temperatures is illustrated in Fig. 5.2, where six typical spin configu-
rations of the 2D Ising model on a 100 × 100 lattice are shown. One clearly
observes the emerging larger and larger domains or clusters which eventu-
ally start percolating the system when the critical point is approached. While
this apparently gives an intuitive picture of what happens near criticality,
some care is necessary with the interpretation of such plots since the do-
mains or clusters visible in Fig. 5.2 are so-called geometrical clusters, whose
fractal and percolation properties do not encode the proper thermodynamic
critical behaviour. Rather, they carry information on a closely related tricrit-
ical point [27]. The proper Fortuin-Kasteleyn clusters encoding the critical
properties of the model can be constructed by a stochastic rule implied by
the Fortuin-Kasteleyn representation of Potts models. These clusters, which
are always smaller than the geometrical ones, form also the basis for cluster-
update algorithms discussed later in Sect. 5.6.
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Fig. 5.2. From high temperatures (upper left) to the critical region (lower right),
characterized by large spatial correlations. Shown are actual 2D Ising configurations
for a 100 × 100 lattice at β/βc = 0.50, 0.70, 0.85, 0.90, 0.95, and 0.98
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Temperature Scaling

For an infinite correlation length, thermal fluctuations are equally impor-
tant on all length scales, and one therefore expects power-law singularities in
thermodynamic functions. The leading singularity of the correlation length is
usually parameterized in the high-temperature phase as

ξ = ξ0+ |1 − T/Tc|−ν + . . . (T ≥ Tc) , (5.14)

where the . . . indicate sub-leading corrections (analytical as well as confluent).
This defines the critical exponent ν and the critical amplitude ξ0+ on the high-
temperature side of the transition. In the low-temperature phase one expects
a similar behaviour,

ξ = ξ0−(1 − T/Tc)−ν + . . . (T ≤ Tc) , (5.15)

with the same critical exponent ν but a different critical amplitude ξ0− �= ξ0+ .
An important feature of second-order phase transitions is that due to the

divergence of ξ the short-distance details of the Hamiltonian should not mat-
ter. This is the basis of the universality hypothesis which states that all (short-
ranged) systems with the same symmetries and same dimensionality should
exhibit similar singularities governed by one and the same set of critical ex-
ponents. For the amplitudes this is not true, but certain amplitude ratios are
also universal.

The singularities of the specific heat, magnetization (for T < Tc), and
susceptibility are similarly parameterized by the critical exponents α, β, and
γ, respectively,

C = Creg + C0|1 − T/Tc|−α + . . . , (5.16)

m = m0(1 − T/Tc)β + . . . , (5.17)

χ = χ0|1 − T/Tc|−γ + . . . , (5.18)

where Creg is a regular background term, and the amplitudes are again in
general different on the two sides of the transition, cf. Fig. 5.1. Right at the
critical temperature Tc, two further exponents δ and η are defined through

m ∝ h1/δ , (5.19)

G(r) ∝ r−d+2−η . (5.20)

The critical exponents for the 2D and 3D Ising model and the 2D q-state
Potts model with q = 3 and 4 are collected in Table 5.1.

Finite-Size Scaling

For systems of finite size, as in any numerical simulation, the correlation
length cannot diverge, and also the divergences in all other quantities are
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Table 5.1. Critical exponents of the 2D q-state Potts model with q = 2, 3 and 4,
and the 3D Ising model. All 2D exponents are exactly known [14, 15], while for the
3D Ising model the “world-average” for ν and γ calculated in Ref. [28] is quoted.
The other exponents follow from the hyperscaling relation α = 2 − Dν, and the
scaling relations β = (2 − α − γ)/2, δ = γ/β + 1, and η = 2 − γ/ν

Model ν α β γ δ η

2D Ising 1 0 (log) 1/8 7/4 15 1/4
3D Ising 0.630 05(18) 0.109 85 0.326 48 1.237 17(28) 4.7894 0.036 39
2D q = 3 Potts 5/6 1/3 1/9 13/9 14 4/15
2D q = 4 Potts 2/3 2/3 1/12 7/6 15 1/2

then rounded and shifted [29–32]. This is illustrated in Fig. 5.3, where the
specific heat of the 2D Ising model on various L × L lattices is shown. The
curves are computed from the exact solution of Kaufman [33] for any Lx ×Ly

lattice with periodic boundary conditions (see also Ferdinand and Fisher [34]).
Near Tc the role of ξ in the scaling formulas is then taken over by the

linear size of the system, L. By rewriting

|1 − T/Tc| ∝ ξ−1/ν −→ L−1/ν , (5.21)

we see that at Tc the scaling laws (5.16)–(5.18) are replaced by the finite-size
scaling (FSS) Ansätze,

C = Creg + aLα/ν + . . . , (5.22)

m ∝ L−β/ν + . . . , (5.23)

χ ∝ Lγ/ν + . . . . (5.24)

In general these scaling laws are valid in the vicinity of Tc as long as the scaling
variable x = (1−T/Tc)L1/ν is kept fixed [29–32]. In particular this is true for
the locations Tmax of the (finite) maxima of thermodynamic quantities such as
the specific heat or susceptibility, which are expected to scale with the system
size as

Tmax = Tc(1 − xmaxL
−1/ν + . . . ) . (5.25)

In this more general formulation the scaling law for, e.g., the susceptibility
reads

χ(T,L) = Lγ/νf(x) . (5.26)

By plotting χ(T,L)/Lγ/ν vs the scaling variable x, one thus expects that the
data for different T and L fall onto a kind of master curve. This is a nice way
to demonstrate the scaling properties visually.

Similar considerations for first-order phase transitions show that also
the delta function like singularities, originating from phase coexistence, are
smeared out for finite systems [35–39]. They are replaced by narrow peaks
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Fig. 5.3. Finite-size scaling behaviour of the specific heat of the 2D Ising model on
L × L lattices. The critical point is indicated by the arrow on the top axis

whose height (width) grows proportional to the volume (1/volume) with a
displacement of the peak location from the infinite-volume limit proportional
to 1/volume [16,40–44].

5.3 The Monte Carlo Method

Let us now discuss how the expectation values in (5.3)–(5.7) can be computed
numerically. A direct summation of the partition function is impossible, since
already for the Ising model with only two possible states per site the number of
terms would be enormous: 22500 ≈ 10750 for a modestly large 50× 50 lattice!1

Also a naive random sampling of the spin configurations does not work. Here
the problem is that the relevant region in the high-dimensional phase space is
relatively narrow and hence too rarely hit by random sampling. The solution
to this problem is known since long: One has to use the importance sampling
technique [45].

5.3.1 Importance Sampling

The basic idea of importance sampling is that one does not pick configurations
at random, but draws them directly according to their Boltzmann weight,

P eq({σi}) ∝ exp (−βH({σi})) . (5.27)

1 For comparison, the estimated number of protons in the Universe is 1080.
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In more mathematical terms one sets up a Markov chain,

· · · W−→ {σi} W−→ {σ′
i}

W−→ {σ′′
i }

W−→ . . . ,

with a transition probability W satisfying the conditions

(a) W ({σi} −→ {σ′
i}) ≥ 0 for all {σi}, {σ′

i} , (5.28)

(b)
∑

{σ′
i}
W ({σi} −→ {σ′

i}) = 1 for all {σi} , (5.29)

(c)
∑

{σi}
W ({σi} −→ {σ′

i})P eq({σi}) = P eq({σ′
i}) for all {σ′

i} . (5.30)

From (5.30) we see that the desired Boltzmann distribution P eq is a fixed
point of W . A somewhat simpler sufficient condition is detailed balance,

P eq({σi})W ({σi} −→ {σ′
i}) = P eq({σ′

i})W ({σ′
i} −→ {σi}) . (5.31)

By summing over {σi} and using (5.29), the more general condition (5.30)
follows. After an initial equilibration period (cf. Sect. 5.4), expectation values
can then be estimated as an arithmetic mean over the Markov chain, e.g.,

E = 〈H〉 =
∑

{σi}
H({σi})P eq({σi}) ≈

1
N

N∑

j=1

H({σi}j) , (5.32)

where {σi}j denotes the spin configuration at “time” j. A more detailed ex-
position of the mathematical concepts underlying any Markov chain Monte
Carlo algorithm can be found in many textbooks and reviews [1–4,29,46,47].

5.3.2 Local Update Algorithms

The required Markov chain properties can be satisfied with many different
concrete update rules. These can be roughly divided into local and non-
local algorithms. While non-local algorithms such as multigrid schemes or
the cluster-update methods to be discussed later in Sect. 5.6 may consider-
ably improve the performance of the simulations, they are more specialized
and hence usually not automatically applicable to a given arbitrary physical
system. This is why the conceptually much simpler local algorithms continue
to be very important.

Metropolis Algorithm

The most flexible update prescription is the standard Metropolis algorithm
[48] where the Markov chain is realized by locally updating the degrees of free-
dom step by step. This works for discrete and continuously varying degrees



218 W. Janke

of freedom, and for lattice and off-lattice formulations. Examples for lattice
formulations range from our simple, paradigmatic Ising model, over freely ro-
tating Heisenberg spins to field theories such as the Ginzburg-Landau model.
Also all kinds of lattice gauge theories and even non-perturbative formulations
of quantum gravity can be simulated with this method. Off-lattice formula-
tions cover a huge range of physical phenomena. Prominent examples are
simulations of fluids, polymers and proteins, to name only a few important
applications. Depending on the problem at hand, the degrees of freedom may
be spins, field values or gauge potentials, or particle positions in space. There
is also no principle restriction on the form of the interactions which may be
short- or long-ranged or even of mean-field type.

If E and E′ denote the energy before and after the proposed local update,
respectively, then the probability to accept this proposal is given by [48]

W ({σi} −→ {σ′
i}) =

{
1 E′ < E
exp [−β(E′ − E)] E′ ≥ E ,

(5.33)

where the proposed new spin configuration {σ′
i} differs from {σi} only by a

single flipped spin. More compactly, this may also be written as

W ({σi} −→ {σ′
i}) = min{1, exp [−β(E′ − E)]} . (5.34)

If the energy is lowered by the proposed update, it is thus always accepted.
On the other hand, when the energy would be increased for the new configu-
ration, the update has still to be accepted with a certain probability in order
to ensure the proper treatment of entropic contributions – in thermal equi-
librium, the free energy is minimized and not the energy. Only in the limit
of zero temperature, β −→ ∞, this probability tends to zero and the MC
algorithm degenerates to a minimization algorithm for the energy functional.
With some additional refinements, this is the basis of the simulated annealing
technique [49], which is often applied to hard optimization and minimization
problems.

To show that the detailed balance condition (5.31) is indeed satisfied, we
first consider the case that the proposed spin update lowers the energy, E′ <
E. In this case, the l.h.s. of (5.31) becomes exp(−βE)×1 = exp(−βE). On the
r.h.s. we have to take into account that the reverse move would increase the
energy, E > E′, with E now playing the role of the “new” energy. Hence now
the second line of (5.33) with E and E′ interchanged is relevant, such that the
r.h.s. of (5.31) becomes exp(−βE′)× exp(−β(E −E′)) = exp(−βE), proving
the equality of the two sides of the detailed balance condition. In the case that
the proposed spin update increases the energy, E′ < E, a similar reasoning
leads to exp(−βE) × exp(−β(E′ − E)) = exp(−βE′) = exp(−βE′) × 1.

Even though this “proof” looks rather like a tautology, it is indeed non-
trivial, as one can easily convince oneself by replacing the r.h.s. of the Metropo-
lis rule (5.33) by some general function f(E′ − E). The detailed balance
condition then reads exp(−βE)f(E′ − E) = exp(−βE′)f(E − E′). With
∆E ≡ E′ − E this can be recast into the form
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g(∆E) ≡ exp(β∆E/2)f(∆E) = exp(−β∆E/2)f(−∆E) = g(−∆E) , (5.35)

showing that g(∆E) ≡ exp(β∆E/2)f(∆E) can be quite a general function
which, however, must be even in ∆E, g(∆E) = g(−∆E). The simplest choice
g(∆E) = const., leads to f(∆E) = const. exp(−β∆E/2). While this would
satisfy detailed balance, it is still not a permissible choice because the r.h.s. of
(5.33) should admit the interpretation as a probability. For a given model, this
can often be repaired by considering the allowed range of ∆E and introducing
a suitable normalization factor [1]. Requiring thus that 0 ≤ f(∆E) ≤ 1, we see
that 0 ≤ g(∆E) ≤ exp(β∆E/2). Choosing just the upper bound, g(∆E) =
exp(β∆E/2) for ∆E < 0 and applying a (non-differentiable) symmetrization
to define g(∆E) for ∆E ≥ 0, we end up with

g(∆E) = exp(β∆E/2)min{1, exp(−β∆E)} =
{

exp(β∆E/2) ∆E < 0
exp(−β∆E/2) ∆E ≥ 0 ,

(5.36)
implying f(∆E) = min{1, exp(−β∆E)} – which is nothing but the Metropolis
rule (5.34).

How is the Metropolis update rule (5.33) implemented in practice? Since
the possible values of the transition probability W are restricted to values
between 0 and 1, one first draws a uniformly distributed random number
r ∈ [0, 1). Then, if W ≤ r, the proposed update is accepted, and otherwise it
is rejected and one continues with the next spin. In words this is easy to state.
In practice, however, “drawing a random number” in a computer program
is a pretty involved mathematical problem [50]. Since in most applications
a huge number of random numbers is required (for, say, 1 million sweeps
through a 2D Ising lattice of size 1000 × 1000 = 106 already 1012) and each
random number usually occupies 8 Bytes, it is neither practical nor feasible
to store physically generated, “truly” random (whatever that really means
. . . ) events on a hard disk. Also, reading them from the hard disk into the
computer memory would be far too slow. Therefore, one uses in MC computer
simulations so-called “pseudo-random number generators”, or short RNGs,
which use deterministic rules to produce (more or less) uniformly distributed
numbers, whose values are “very hard” to predict. In other words, given a
finite sequence of subsequent pseudo-random numbers, it should be almost
impossible to predict the next one or to even guess the deterministic rule
underlying their generation. The “goodness” of a RNG is thus measured by
the difficulty to derive its underlying deterministic rule. Related requirements
are the absence of trends (correlations) and a very long period. Furthermore,
a RNG should be portable among different computer platforms, and it should
yield reproducible results for testing purposes.

There are many different ways how the degrees of freedom to be updated
can be chosen. They may be picked at random or according to a random
permutation, which can be updated every now and then. But also a simple
fixed lexicographical (sequential) order is permissible. In lattice models one
may also update first all odd and then all even sites, which is the usual choice
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in vectorized codes. A so-called sweep is completed when on the average2 for
all degrees of freedom an update was proposed. The qualitative behaviour
of the update algorithm is not sensitive to these details, but its quantitative
performance does depend on the choice of update scheme.

The big merit of this simple algorithm is its flexibility which allows the
application to a great variety of physical systems. The main drawback of this
and most other local update algorithms (one exception is the overrelaxation
method [51–54]) is that it is plagued by large autocorrelation times which
severely limit the statistical accuracy achievable with a given computer budget
as will be explained in detail in Sect. 5.5.

Heat-Bath Algorithm

This algorithm is only applicable to lattice models and at least in its most
straightforward form only to discrete degrees of freedom with a few allowed
states. The new value of the selected variable at site i0 is determined by
testing all its possible states in the “heat-bath” of its (fixed) neighbors (i.e.,
4 on a square lattice and 6 on a simple-cubic lattice with nearest-neighbor
interactions):

W ({σi} −→ {σ′
i}) =

e−βH({σ′
i}

∑
σ′

i0
e−βH({σ′

i}
, (5.37)

which obviously satisfies the detailed balance condition (5.31) since

e−βH({σi} e−βH({σ′
i}

∑
σ′

i0
e−βH({σ′

i}
= e−βH({σ′

i} e−βH({σi}
∑

σi0
e−βH({σi}

. (5.38)

Due to the summation over all local states, special tricks are necessary
when each degree of freedom can take many different states, and only in
special cases the heat-bath method can be efficiently generalized to continuous
degrees of freedom. In the special case of the Ising model with only two states
per spin, (5.37) may be written more explicitly as

W ({σi} −→ {σ′
i}) =

e−βσ′
i0

Ei0

eβEi0 + e−βEi0
, (5.39)

where σi0Ei0 is the energy of the spin at site i0 in the state σi0 , that is
Ei0 = −J

∑
j σj − h, where j runs over all sites interacting with site i0 and h

is the external magnetic field. The energy difference ∆E = Enew − Eold can
be expressed as ∆E = (σ′

i0
−σi0)Ei0 , since by definition no other interactions

are affected by the spin value at site i0.
Let us now assume that before the update σi0 = +1. The probability that

the spin is flipped to σ′
i0

= −1 is then

2 This is only relevant when the random update order is chosen.
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W (σi0 −→ −σi0) =
eβEi0

eβEi0 + e−βEi0
. (5.40)

Since in this case ∆E = −2Ei0 , the flip probability can be equivalently written
as

W (σi0 −→ −σi0) =
e−β∆E/2

eβ∆E/2 + e−β∆E/2
. (5.41)

This is also true in the other case where initially σi0 = −1. The heat-bath
probability of a flip to σ′

i0
= +1 is then e−βEi0 /

(
eβEi0 + e−βEi0

)
, but since

the energy difference now reads ∆E = +2Ei0 , we again arrive at the flip
probability (5.41).

The order of updating the individual variables can be done as for the
Metropolis algorithm (random, sequential, . . . ).

Glauber Algorithm

This update procedure [55], named after the 2005 Nobel Laureate Roy J.
Glauber of Harvard University3, is conceptually similar to the Metropolis
algorithm in that one also here proposes locally a change for a single degree
of freedom and then accepts this update proposal with a certain probability.
For the Ising model with spins σi = ±1 this update rule is often written as

W (σi −→ −σi) =
1
2

[1 + σi tanh (βEi)] , (5.42)

where as before σiEi is the energy of the ith spin in the current “old” state,
that is Ei = −J

∑
j σj − h.

Since σi = ±1 and using the point symmetry of the tanh-function, one
may rewrite σi tanh (βEi) as tanh (σiβEi). In a local spin flip σi −→ −σi,
only the energy contributions collected in Ei are affected, and we obtain again
∆E = Enew −Eold = −2σiEi for the total energy change due to the proposed
flip. Hence we can rewrite (5.42) as

W (σi −→ −σi) =
1
2

[1 − tanh (β∆E/2)] . (5.43)

In this representation, the acceptance probability is explicitly seen to depend
only on the total energy change – similar to the Metropolis case. In this form
it is thus possible to generalize the Glauber update rule from the Ising model

3 Half of the Nobel Prize in Physics 2005 was awarded to Roy J. Glauber for his
outstanding theoretical contributions to what is called today “Quantum Optics”,
with his seminal papers dating back to the year 1963 [Phys. Rev. Lett. 10, 84
(1963); Phys. Rev. 130, 2529 (1963); ibid. 131, 2766 (1963)], when also his paper
[55] on dynamical properties of the Ising model appeared. The other half of the
2005 Prize is shared by John L. Hall of the University of Colorado and Theodor
W. Hänsch of Ludwig-Maximilians-Universität Munich.



222 W. Janke

with only two states per spin to any general model that can be simulated with
the Metropolis procedure. Also detailed balance is straightforward to prove.

By using trivial identities for hyperbolic functions, (5.43) can be further
recast to read

W (σi −→ −σi) =
1
2

[
cosh(β∆E/2) − sinh(β∆E/2)

cosh(β∆E/2)

]

=
e−β∆E/2

eβ∆E/2 + e−β∆E/2
.

(5.44)
Notice that this agrees with the flip probability (5.41) of the heat-bath al-
gorithm for the Ising model, i.e., heat-bath updates for the special case of a
2-state model and the Glauber update algorithm are identical.

The Glauber (or equivalently heat-bath) update algorithm for the Ising
model is also of theoretical interest since in this case the MC (pseudo-) dy-
namics can be calculated analytically – albeit only in one dimension [55]. For
two and higher dimensions no exact solutions are known.

5.4 Initial Non-Equilibrium Period and Ageing

The initial equilibration or thermalization period, in general, is a non-trivial
non-equilibrium process which is of interest it its own right. Long suspected
to be a consequence of the slow dynamics of glassy systems only, the phe-
nomenon of ageing for example has also been found in the phase-ordering
kinetics of simple ferromagnets such as the Ising model. To study this effect
numerically, we only need the methods introduced so far since most theoret-
ical concepts assume a local spin-flip dynamics as realized by one the three
update algorithms discussed above. Similarly to the concept of universality
classes in equilibrium, all three algorithms should yield qualitatively similar
results, being representatives of what is commonly referred to as dynamical
Glauber universality class.

Let us assume that we pick as the initial configuration of the Markov
chain a completely disordered state. If the simulation is run at a temperature
T > Tc, equilibration will, in fact, be fast and nothing spectacular happens.
If we choose instead to do the simulation right at Tc or at a temperature
T < Tc, the situation is, however, quite different. In the latter two cases
one speaks of a “quench”, since the starting configuration is in a statistical
sense far away from a typical equilibrium configuration at temperature T .
This is easiest to understand for temperatures T < Tc, where the typical
equilibrium state consists of homogeneously ordered configurations. After the
quench, local regions of parallel spins start forming domains or clusters, and
the non-equilibrium dynamics of the system is governed by the movement
of the domain walls. In order to minimize their surface energy, the domains
grow and straighten their surface. This mechanism is illustrated in Fig. 5.4
for the 2D Ising and 3-state Potts model, showing the time evolution after a
quench to T < Tc from an initially completely disordered state. This leads
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Fig. 5.4. Phase-ordering with progressing MC “time” (from top to bottom) of
initially disordered spin configurations for the 2D Ising model at T = 1.5 ≈ 0.66 Tc

(left) and the 2D 3-state Potts model at T = 0.4975 ≈ Tc/2 (right) (from Ref. [75])
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to a growth law for the typical correlation length scale of the form ξ ∼ t1/z,
where t is the time (measured in units of sweeps) elapsed since the quench.
In the case of a simple ferromagnet like the Ising- or q-state Potts model
with a non-conserved scalar order parameter, the dynamical exponent can be
found exactly as z = 2 [56], according to diffusion or random-walk arguments.
Right at the transition temperature, critical dynamics (for a recent review,
see Ref. [57]) plays the central role and the dynamical exponent takes the
somewhat larger non-trivial value z ≈ 2.17 [58]. To equilibrate the whole
system, ξ must approach the system size L, so that the typical relaxation
time for equilibration scales as

τrelax ∼ Lz . (5.45)

Note that this implies in the infinite-volume limit L → ∞ that true equilib-
rium can never be reached.

Since 1/z < 1, the relaxation process after the quench happens on a grow-
ing time scale. This can be revealed most clearly by measurements of two-
time quantities f(t, s) with t > s, which no longer transform time-translation
invariantly as they would do for small perturbations in equilibrium, where f
would be a function of the time difference t−s only. Instead, in phase-ordering
kinetics, two-time quantities depend non-trivially on the ratio t/s of the two
times. The dependence of the relaxation on the so-called “waiting time” s is
the notional origin of ageing: older samples respond more slowly.

Commonly considered two-time quantities are the two-time autocorrela-
tion function (in q-state Potts model notation)

C(t, s) =
1

q − 1

(
q

V

V∑

i=1

[
δσi(t),σi(s)

]
av

− 1

)

(5.46)

and the two-time response function

R(t, s) =
δ[σi(t)]av
δh(s)

∣
∣
∣
∣
h=0

, (5.47)

where h(s) is the amplitude of a small spatially random external field which is
switched off after the waiting time s and [. . . ]av denotes an average over differ-
ent random initial configurations (and random fields in (5.47)). In computer
simulation studies it is more convenient to consider the integrated response
or thermoremanent magnetization (TRM) [59],

ρ(t, s) = T

∫ s

0

duR(t, u) =
T

h
MTRM(t, s) . (5.48)

Dynamical scaling arguments predict the scaling forms (for reviews see, e.g.,
Refs. [60,61])

C(t, s) = s−bfC(t/s) , R(t, s) = s−1−afR(t/s) , (5.49)
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with scaling functions fC and fR which approach for large values of the scaling
variable x ≡ t/s the power-law behaviour

fC(x) → x−λC/z , fR(x) → x−λR/z (x � 1) . (5.50)

In phase-ordering kinetics after a quench to T < Tc, b = 0 and z = 2 [56]. As
the other exponents depend on the dimensionality of the considered system,
we shall focus here on two dimensions only, where for the Ising model, it is
commonly accepted that λC = λR = 5/4. The value of the remaining exponent
a, however, is more controversial [62]. In the literature there are strong claims
for a = 1/z = 1/2 [60,63], but also a = 1/4 [64] has been conjectured.

Extending the symmetry considerations to local scale invariance in analogy
to conformal invariance [65], even the explicit form of the scaling function
fR(x) has been predicted [66,67],

fR(x) = r0x
1+a−λR/z(x− 1)−1−a , (5.51)

where r0 is a normalization constant. The integration over the response func-
tion in (5.48) leads for the thermoremanent magnetization to the scaling
form [64,68–70]

ρ(t, s) = r0s
−afM (t/s) + r1s

−λR/zgM (t/s) , (5.52)

where some care is necessary in dealing with cross-over effects leading to the
second term which can be argued to take the explicit form gM (x) ≈ x−λR/z.
The first term follows directly from the integration over the explicit expression
for fR(x) in (5.51) which results in a hypergeometric function [67,69],

fM (x) = x−λR/z
2F1(1 + a, λR/z − a;λR/z − a+ 1; 1/x) . (5.53)

Due to the linear combination of scaling functions in (5.52) with s-dependent
prefactors, the scaling properties cannot be tested easily. One therefore usually
subtracts first the correction term ∝ gM (x) and then considers fM (x). While
the two-time autocorrelation function C(t, s) is conceptually and in particular
computationally the much simpler quantity, local scale invariance predictions
are much harder to derive for C(t, s) than for R(t, s). The expression for fC(x)
contains combinations of hypergeometric and incomplete Gamma functions,
depending on three additional undetermined constants apart from a normal-
ization factor [71].

In computer simulations one proceeds as follows. One prepares many inde-
pendent disordered start configurations of the order of a few hundred to a few
thousand and monitors for each of them the time evolution after the quench to
T < Tc or, in critical relaxation [57], to T = Tc. Here it is important to make
sure that the time evolutions are statistically independent of each other. In
practice this means that different random number sequences have to be used
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for each sample.4 The final result (for each time s and t) is then an average
over these samples.

For the 2D and 3D Ising model, extensive numerical tests of the scaling
predictions have been performed by Henkel, Pleimling and collaborators [69–
71], showing a very good agreement with the almost parameter-free analytical
expressions. To check the generality of the scaling arguments, we extended this
work in a recent MC study [75,76] to more general q-state Potts models in two
dimensions. Figures 5.5 and 5.6 compare our numerical results for the 2D Ising
(q = 2) and 3-state Potts model after a quench to T = 1.5 ≈ 0.66Tc (in Ising
model normalization) and T = 0.4975 ≈ Tc/2, respectively (assuming in both
cases λC = λR with λC ≈ 1.25 [75, 76] and a = 1/z = 1/2). We see that the
two models behave very similarly during ageing, i.e., also for the 3-state Potts
model the scaling predictions (5.49) are well satisfied. Moreover, the explicit
analytical predictions for fM (t/s) in (5.53) and (the more complicated one)
for C(t, s) as given in Ref. [71] relying on local scale invariance are both in
excellent agreement with the MC data. For details of the numerical set-up,
see Refs. [75, 76], where also additional simulations of the 2D 8-state Potts
model are described that give similarly good results.

5.5 Statistical Analysis of Monte Carlo Data

About a decade ago most of the statistical analysis methods discussed in this
section were still quite cumbersome since due to disk-space limitations they
usually had to be applied “on the flight” during the simulation. In particular
dynamical aspects of a given model are usually not easy to predict beforehand
such that the guess of reasonable analysis parameters was quite difficult. The
situation has changed dramatically when it became affordable to store hun-
dreds of megabytes on hard-disks. Since then a simulation study can clearly
be separated into “raw data generation” and “data analysis” parts. The in-
terface between these two parts should consist of time series of measurements
of the relevant physical observables taken during the actual simulations. In
principle there are no limitations on the choice of observables O which could
be, for example, the energy H or the magnetization µ. Once the system is
in equilibrium (which, in general, is non-trivial to assure), we simply save
Oj ≡ O[{σi}j ] where j labels the measurements. Given these data files one
can perform detailed error analyses; in particular adapting parameters to a
specific situation is now straightforward and very fast.

4 If the same sequence of random numbers, i.e., the same dynamics, would be
used for all samples with different start configurations, then one would study the
phenomenon of “damage spreading” [72–74], where one basically asks how likely
it is that two initially different configurations merge after some time into the same
state when evolving under exactly the same dynamics.
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different data symbols correspond to different waiting times s. The solid lines show
the local scale invariance prediction (5.53) which depends only a single normalization
parameter
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5.5.1 Estimators

If the time series data result from an importance sampling MC simulation,
the expectation value 〈O〉 can be estimated as a simple arithmetic mean over
the Markov chain,

O =
1
N

N∑

j=1

Oj , (5.54)

where we assume that the time series collects, after an appropriate equili-
bration period, a total of N measurements. Conceptually it is important to
distinguish between the expectation value 〈O〉 and the mean value O, which
is an estimator for the former. While 〈O〉 is an ordinary number and repre-
sents the exact thermal average (which is only for very few models known),
the estimator O is still a random number, fluctuating around the theoretically
expected value. Of course, in practice this is a “virtual” concept as one does
not probe the fluctuations of the mean value directly since this would require
repeating the whole MC simulation many times. However, one can estimate
its variance,

σ2
O = 〈[O − 〈O〉]2〉 = 〈O2〉 − 〈O〉2 , (5.55)

from the statistical properties of individual measurements Oj in a single MC
run.

5.5.2 Uncorrelated Measurements and Central-Limit Theorem

For simplicity, let us first make the unrealistic assumption that the N sub-
sequent measurements Oj are all completely uncorrelated (as would be true
only in simple sampling). Then the relation between the two variances would
simply be

σ2
O = σ2

Oj
/N , (5.56)

where σ2
Oj

= 〈O2
j 〉 − 〈Oj〉2 is the variance of the individual measurements. A

further, milder assumption is, of course, that the simulation is already in equi-
librium so that time-translation invariance over the Markov chain is satisfied.
Equation (5.56) is true for any distribution P(Oj) of the Oj . For the energy
or magnetization the latter distributions are often plotted as physically di-
rectly relevant histograms (see, e.g., Fig. 5.14(b) below) whose squared width
(= σ2

Oj
) is proportional to the specific heat or susceptibility, respectively.

Whatever form the distribution P(Oj) assumes (which, in fact, is already
often close to Gaussian because the Oj are usually lattice averages over many
degrees of freedom), by the central limit theorem the distribution of the mean
value is Gaussian, at least for uncorrelated data in the asymptotic limit of
large N . The variance of the mean, σ2

O, is the squared width of this (N
dependent) distribution which is usually taken as the “one-sigma” squared
error, ε2O ≡ σ2

O, and quoted together with the mean value O. Under the
assumption of a Gaussian distribution for the mean, the interpretation is that
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about 68% of all simulations under the same conditions would yield a mean
value in the range [O − σO,O + σO]. For a “two-sigma” interval which also
is sometimes used, this percentage goes up to about 95.4%, and for a “three-
sigma” interval which is rarely quoted, the confidence level is higher than
99.7%.

5.5.3 Correlated Measurements and Autocorrelation Times

In “real life” things become more involved since when using importance sam-
pling update algorithms subsequent measurements are necessarily correlated
in time [77–79]. Inserting (5.54) into (5.55), one obtains

σ2
O = 〈O2〉 − 〈O〉2 =

1
N2

N∑

i,j=1

〈OiOj〉 −
1
N2

N∑

i,j=1

〈Oi〉〈Oj〉 , (5.57)

and by collecting diagonal and off-diagonal terms one arrives at

σ2
O =

1
N2

N∑

i=1

(
〈O2

i 〉 − 〈Oi〉2
)

+
1
N2

N∑

i�=j

(〈OiOj〉 − 〈Oi〉〈Oj〉) . (5.58)

The first term is identified as the variance of the individual measurements
multiplied with 1/N . In the second sum we first use the symmetry i ↔ j to
reduce the summation to

∑N
i�=j = 2

∑N
i=1

∑N
j=i+1. Reordering the summation

and using time-translation invariance (assuming that equilibrium has already
been reached, cf. the previous Sect. 5.4) we finally get

σ2
O =

1
N

[

σ2
Oi

+ 2
N∑

k=1

(〈O1O1+k〉 − 〈O1〉〈O1+k〉)
(

1 − k

N

)]

, (5.59)

where, due to the last factor, the k = N term may trivially be kept in the
summation. Factoring out σ2

Oi
, this can be written as

ε2O ≡ σ2
O =

σ2
Oi

N
2τ ′O,int , (5.60)

where we have introduced the (proper) integrated autocorrelation time

τ ′O,int =
1
2

+
N∑

k=1

A(k)
(

1 − k

N

)

, (5.61)

with

A(k) =
〈OiOi+k〉 − 〈Oi〉〈Oi〉

〈O2
i 〉 − 〈Oi〉〈Oi〉

(5.62)

denoting the normalized autocorrelation function (A(0) = 1).
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For large time separations k the autocorrelation function decays exponen-
tially (a = const.),

A(k) k→∞−→ ae−k/τO,exp , (5.63)

which defines the exponential autocorrelation time τO,exp. Since in any mean-
ingful simulation study N � τO,exp, A(k) in (5.61) is already exponentially
small before the correction term in parentheses becomes important. For sim-
plicity this correction is hence usually omitted (as is the “prime” of τ ′O,int in
(5.61)) and one employs the following definition for the integrated autocorre-
lation time:

τO,int =
1
2

+
N∑

k=1

A(k) . (5.64)

The notion “integrated” derives from the fact that this may be interpreted as
a trapezoidal discretization of the (approximate) integral τO,int ≈

∫ N

0
dkA(k).

Notice that, in general, τO,int (and also τ ′O,int) is different from τO,exp. In fact,
one can show [80] that τO,int ≤ τO,exp in realistic models. Only if A(k) is a
pure exponential, the two autocorrelation times, τO,int and τO,exp, coincide
(up to minor corrections for small τO,int, see Eq. (5.86) below) [79].

Close to a critical point, the autocorrelation time scales for an infinite
system typically as

τO,int ∝ τO,exp ∝ ξz , (5.65)

where z is the dynamical critical exponent. For local algorithms, z ≈ 2, which
can be understood by a random-walk argument. Since ξ ∝ |T − Tc|−ν → ∞
when T → Tc, also τ diverges when the critical point is approached. This leads
to the phenomenon of critical slowing down at a continuous phase transition.
In a finite system with extent L, ξ is basically replaced by L and

τO,int ∝ τO,exp ∝ Lz . (5.66)

Non-local update algorithms such as multigrid schemes or in particular the
cluster methods discussed later in Sect. 5.6 can reduce the value of the dy-
namical critical exponent z significantly, albeit in a model-dependent fashion.

At a first-order phase transition the “slowing-down” problem is even more
severe, but the mechanism is completely different. Here, a finite system close
to the (pseudo-) transition point can flip between the coexisting pure phases
by crossing a two-phase region. Relative to the weight of the pure phases, this
region of state space is strongly suppressed by an additional Boltzmann factor
exp(−2σLd−1), where σ denotes the interface tension between the coexisting
phases, Ld−1 is the (projected) “area” of the interface and the factor 2 ac-
counts for periodic boundary conditions, which enforce for simple topological
reasons always an even number of interfaces [16]. Whatever update algorithm
is used, the time spent for crossing this highly suppressed rare-event region
scales proportional to the inverse of this interfacial Boltzmann factor, i.e., the
autocorrelation time behaves as
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τ ∝ e2σLd−1
. (5.67)

This exponential increase of autocorrelations with system size at a first-order
phase transition is often described in the literature as supercritical slowing
down (even though, strictly speaking, nothing is “critical” here). This type of
slowing-down problem can be overcome in part by means of tempering and
multicanonical methods also discussed later in Sects. 5.8 and 5.9.

As far as the accuracy of MC data is concerned, the important point
of Eq. (5.60) is that due to temporal correlations of the measurements the
statistical error εO ≡

√
σ2
O on the MC estimator O is enhanced by a factor

of
√

2τO,int. This can be rephrased by writing the statistical error similar to

the uncorrelated case as εO =
√
σ2
Oj
/Neff , but now with a parameter

Neff = N/2τO,int ≤ N , (5.68)

describing the effective statistics. This shows more clearly that only every
2τO,int iterations the measurements are approximately uncorrelated and gives
a better idea of the relevant effective size of the statistical sample. In view of
the scaling behaviour of the autocorrelation time in (5.65) or (5.66) respec-
tively (5.67), it is obvious that without extra care this effective sample size
may become very small close to a continuous or first-order phase transition.
Since some quantities (e.g., the specific heat or susceptibility) can severely be
underestimated if the effective statistics is too small [81], any serious simula-
tion should therefore provide at least a rough order-of-magnitude estimate of
autocorrelation times.

5.5.4 Bias

For a better understanding of the latter point, let us consider as a specific
example the specific heat, C = β2V

(
〈e2〉 − 〈e〉2

)
= β2V σ2

ei
. The standard

estimator for the variance is

σ̂2
ei

= e2 − e2 = (e− e)2 =
1
N

N∑

i=1

(ei − e)2 . (5.69)

What is the expected value of σ̂2
ei

? To answer this question, we subtract and
add 〈e〉2,

〈σ̂2
ei
〉 = 〈e2 − e2〉 = 〈e2〉 − 〈e〉2 −

(
〈e2〉 − 〈e〉2

)
, (5.70)

and then use the previously derived result: The first two terms on the r.h.s.
of (5.70) just give σ2

ei
, and the second two terms in parentheses yield σ2

e =
σ2

ei
2τe,int/N , as calculated in (5.60). Combining these two results we arrive at

〈σ̂2
ei
〉 = σ2

ei

(

1 − 2τe,int

N

)

= σ2
ei

(

1 − 1
Neff

)

�= σ2
ei
. (5.71)
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The estimator σ̂2
ei

as defined in (5.69) thus systematically underestimates the
true value by a term of the order of τe,int/N . Such an estimator is called weakly
biased (“weakly” because the statistical error ∝ 1/

√
N is asymptotically larger

than the systematic bias; for medium or small N , however, also prefactors need
to be carefully considered).

We thus see that for large autocorrelation times or equivalently small ef-
fective statistics Neff , the bias may be quite large. Since τe,int scales quite
strongly with the system size for local update algorithms, some care is neces-
sary in choosing the run time N . Otherwise the FSS of the specific heat and
thus the determination of the static critical exponent α/ν could be completely
spoiled by the temporal correlations!

As a side remark we note that even in the completely uncorrelated case the
estimator (5.69) is biased, 〈σ̂2

ei
〉 = σ2

ei
(1 − 1/N), since with our conventions in

this case τe,int = 1/2 (some authors use a different convention in which τ more
intuitively vanishes in the uncorrelated case; but this has certain disadvantages
in other formulas). In this case one can (and usually does) define a bias-
corrected estimator,

σ̂2
ei,corr =

N

N − 1
σ̂2

ei
=

1
N − 1

N∑

i=1

(ei − e)2 , (5.72)

which obviously satisfies 〈σ̂2
ei,corr〉 = σ2

ei
. For the squared error on the

mean value, this leads to the error formula ε2e = σ̂2
e,corr = σ̂2

ei,corr/N =
1

N(N−1)

∑N
i=1 (ei − e)2, i.e., to the celebrated replacement of one of the 1/N -

factors by 1/(N −1) “due to one missing degree of freedom”. Note that in the
case of correlated data, a similar construction is at best approximately possi-
ble since the bias in (5.71) depends on the a priori unknown autocorrelation
time τe,int.

5.5.5 Numerical Estimation of Autocorrelation Times

The above considerations show that not only for the error estimation but
also for the computation of static quantities themselves it is important to
have control over autocorrelations. Unfortunately, it is very difficult to give
reliable a priori estimates, and an accurate numerical analysis is often too
time consuming. As a rough estimate it is about ten times harder to get
precise information on dynamic quantities than on static quantities like critical
exponents. A (weakly biased) estimator Â(k) for the autocorrelation function
is obtained by replacing in (5.62) the expectation values (ordinary numbers)
by mean values (random variables), e.g., 〈OiOi+k〉 by OiOi+k. With increasing
separation k the relative variance of Â(k) diverges rapidly. To get at least an
idea of the order of magnitude of τO,int and thus the correct error estimate
(5.60), it is useful to record the “running” autocorrelation time estimator
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τ̂O,int(kmax) =
1
2

+
kmax∑

k=1

Â(k) , (5.73)

which approaches τO,int in the limit of large kmax where, however, its statistical
error increases rapidly. As a compromise between systematic and statistical
errors, an often employed procedure is to determine the upper limit kmax

self-consistently by cutting off the summation once kmax ≥ 6τ̂O,int(kmax),
where A(k) ≈ e−6 ≈ 10−3. In this case an a priori error estimate is available
[79,82,83],

ετO,int = τO,int

√
2(2kmax + 1)

N
≈ τO,int

√
12
Neff

. (5.74)

For a 5% relative accuracy one thus needs at least Neff ≈ 5 000 or N ≈
10 000 τO,int measurements. As an order of magnitude estimate consider the
2D Ising model with L = 100 simulated with a local update algorithm. The
integrated autocorrelation time for this example is of the order of L2 ≈ 1002

(ignoring an priori unknown prefactor of “order unity” which depends on the
considered quantity), thus implying N ≈ 108. Since in each sweep L2 spins
have to be updated and assuming that each spin update takes about 0.1 µsec,
we end up with a total time estimate of about 105 seconds ≈ 1 CPU-day to
achieve this accuracy.

Another possibility is to approximate the tail end of A(k) by a single
exponential as in (5.63). Summing up the small k part exactly, one finds [84]

τO,int(kmax) = τO,int − ce−kmax/τO,exp , (5.75)

where c is a constant. The latter expression may be used for a numerical
estimate of both the exponential and integrated autocorrelation times [84].

5.5.6 Binning Analysis

It should be clear by now that ignoring autocorrelation effects can lead to
severe underestimates of statistical errors. Applying the full machinery of
autocorrelation analysis discussed above, however, is often too cumbersome.
On a day by day basis the following binning analysis is much more convenient
(though somewhat less accurate). By grouping the N original time-series data
into NB non-overlapping bins or blocks of length k (such that5 N = NBk),
one forms a new, shorter time series of block averages,

O(B)
j ≡ 1

k

k∑

i=1

O(j−1)k+i , j = 1, . . . , NB , (5.76)

5 Here we assume that N was chosen cleverly. Otherwise one has to discard some
of the data and redefine N .
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which by choosing the block length k � τ are almost uncorrelated and can
thus be analyzed by standard means. The mean value over all block averages
obviously satisfies O(B) = O and their variance can be computed according to
the unbiased estimator (5.72), leading to the squared statistical error of the
mean value,

ε2O ≡ σ2
O = σ2

B/NB =
1

NB(NB − 1)

NB∑

j=1

(O(B)
j −O(B))2 . (5.77)

By comparing with (5.60) we see that σ2
B/NB = 2τO,intσ

2
Oi
/N . Recalling the

definition of the block length k = N/NB , this shows that one may also use

2τO,int = kσ2
B/σ

2
Oi

(5.78)

for the estimation of τO,int. Estimates of τO,int obtained in this way are often
referred to as “blocking τ” or “binning τ”.

5.5.7 Jackknife Analysis

But even if the data are completely uncorrelated in time, one still has to
handle the problem of error estimation for quantities that are not directly
measured in the simulation but are computed as a non-linear combination of
“basic” observables. This problem can either be solved by error propagation
or by using the Jackknife method [85,86] where instead of considering rather
small blocks of length k and their fluctuations as in the binning method, one
forms NB large Jackknife blocks O(J)

j containing all data but the j’th block
of the previous binning method,

O(J)
j =

NO − kO(B)
j

N − k
, j = 1, . . . , NB . (5.79)

Each of the Jackknife blocks thus consists of N−k data, i.e., it contains almost
as many data as the original time series. When non-linear combinations of
basic variables are estimated, the bias is hence comparable to that of the total
data set (typically 1/(N − k) compared to 1/N). The NB Jackknife blocks
are, of course, trivially correlated because one and the same original data
enter in NB − 1 different Jackknife blocks. This trivial correlation caused by
re-using the original data over and over again has nothing to do with temporal
correlations. As a consequence the Jackknife block variance σ2

J will be much
smaller than the variance estimated in the binning method. Because of the
trivial nature of the correlations, however, this reduction can be corrected by
multiplying σ2

J with a factor (NB − 1)2, leading to

ε2O ≡ σ2
O =

NB − 1
NB

NB∑

j=1

(O(J)
j −O(J))2 . (5.80)
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To summarize this section, any realization of a Markov chain, i.e., MC up-
date algorithm, is characterized by autocorrelation times which enter directly
in the statistical errors of MC estimates. Since temporal correlations always
increase the statistical errors, it is a very important issue to develop MC up-
date algorithms that keep autocorrelation times as small as possible. This is
the reason why cluster and other non-local algorithms are so important.

5.5.8 A Simplified Model: The Bivariate Gaussian Time Series

A useful “gauge model” for all the statistical analysis tools discussed so far
is the bivariate Gaussian time series which allows for fairly simple exact solu-
tions. Once the numerical routines reproduce the exact answers for this arti-
ficial time series, it is almost certain that they also work properly for “true”
time series generated by a MC simulation. The bivariate Gaussian time series
is generated by the recursion

e0 = e′0 ,

ei = ρei−1 +
√

1 − ρ2e′i , i ≥ 1 , (5.81)

where 0 ≤ ρ < 1 and the e′i are independent, identically distributed (often
abbreviated as “i.i.d.”) Gaussian random variables satisfying 〈e′i〉 = 0 and
〈e′ie′j〉 = δij . By iterating the recursion (5.81) it is then easy to see that
〈ei〉 = 0, 〈e2i 〉 = 1 and

ek = ρek−1 +
√

1 − ρ2e′k = ρke0 +
√

1 − ρ2

k∑

l=1

ρk−le′l , (5.82)

so that
A(k) = 〈e0ek〉 = ρk ≡ e−k/τexp . (5.83)

In this simplified model the autocorrelation function is thus a pure exponential
with an exponential autocorrelation time given by

τexp = −1/ ln ρ . (5.84)

It should be stressed that in realistic situations a purely exponential decay can
only be expected asymptotically for large k where the slowest mode dominates.
For smaller time separations usually also many other modes contribute whose
autocorrelation time is smaller.

The visual appearance of uncorrelated and correlated data with τexp = 10
and 50 is depicted in Figs. 5.7(a)–(c) where in each case one percent of the
total “MC time” evolution consisting of 100 000 consecutive “measurements”
according to the rule (5.81) is shown. Despite the quite distinct temporal
evolutions, histogramming the time series leads to the same Gaussian dis-
tribution within error bars, as it should, cf. Fig. 5.7(d). The corresponding
autocorrelation functions A(k) are shown in Fig. 5.8(a).
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Fig. 5.7. “MC time” evolution according to the bivariate Gaussian process (5.81)
(only the first percent shown) in (a) the uncorrelated case, (b) with τexp = 10, and
(c) with τexp = 50. All three time evolutions with a total of 100 000 consecutive
“measurements” lead to the same Gaussian histogram shown in (d)
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Fig. 5.8. (a) Autocorrelation functions and (b) integrated autocorrelation time for
τexp = 10 on the basis of 100 000 “measurements” in comparison with exact results
for the bivariate Gaussian model shown as the solid lines
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The integrated autocorrelation time can also be calculated exactly,

τint =
1
2

+
∞∑

k=1

A(k) =
1
2

1 + ρ

1 − ρ
=

1
2
cth(1/2τexp) (5.85)

= τexp

[

1 +
1

12τ2
exp

+ O(1/τ4
exp)

]

. (5.86)

This shows that for a purely exponential autocorrelation function to a very
good approximation, τint ≈ τexp, which would immediately follow from τint ≈∫∞
0

dkA(k) = τexp.
As explained in the last section, one usually truncates the summation in

(5.85) self-consistently at about kmax = 6τint (≈ 6τexp) since A(k) becomes
very noisy for large time separations. Observing that (5.85) is nothing but a
geometric series, also the resulting correction can be calculated exactly,

τint(kmax) ≡
1
2

+
kmax∑

k=1

A(k) =
1
2
cth(1/2τexp)

[

1 − 2e−(kmax+1)/τexp

1 + e−1/τexp

]

(5.87)

= τint

{
1 − [1 − tanh(1/2τexp)]e−kmax/τexp

}
(5.88)

≈ τint

[

1 −
(

1 − 1
2τexp

)

e−kmax/τexp

]

(τexp � 1) , (5.89)

showing that with increasing kmax the asymptotic value of τint ≡ τint(∞)
is approached exponentially fast. This is illustrated in Fig. 5.8(b) for the
bivariate Gaussian time series with τexp = 10. Here we also see that for too
large kmax the estimate for τint(kmax) can deviate quite substantially from the
exact value due to its divergent variance. The usually employed self-consistent
cutoff would be around 6τexp = 60 where τint(kmax) ≈ 9.89.

Let us now turn to the binning analysis by decomposing as in (5.76) the
total number of measurements N into NB non-overlapping blocks of length k
(N = NBk). In our simple example, the expected value of the block averages
is, of course, zero, 〈eB,n〉 = 1

k

∑k
i=1〈e(n−1)k+i〉 = 0. The variance of the block

variables is hence just the expectation value of e2B,n,

σ2
B = 〈e2B,n〉 =

1
k2

k∑

i,j=1

ρ|i−j| =
1
k2



k + 2
k∑

i=1

i−1∑

j=1

ρi−j





=
1
k

[

1 +
2ρ

1 − ρ
− 2ρ

k

1 − ρk

(1 − ρ)2

]

. (5.90)

Recalling (5.85) this can be rewritten as

kσ2
B = 2τint

[
1 − τint

k

(
1 − e−k/τexp

)
/ cosh2(1/2τexp)

]
(5.91)

≈ 2τint

[
1 − τexp

k

(
1 − e−k/τexp

)]
(τexp � 1) , (5.92)
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Fig. 5.9. Binning analysis of 100 000 “measurements” in the bivariate Gaussian
model with τexp = 10. The solid line shows the exact result

showing that with increasing block length k the asymptotic value 2τint is
approached according to a power law. For an illustration see Fig. 5.9.

5.5.9 Applications to the 2D Ising Model

In this section the autocorrelation and error analysis is illustrated for the
2D Ising model which albeit still very simple exhibits already some effects
also seen in more complicated systems. The simulations are done with the
Metropolis update algorithm for a 16×16 square lattice with periodic bound-
ary conditions at the infinite-volume critical point βc = ln(1 +

√
2)/2 ≈

0.440 686 793 4 . . . . The spins were updated in sequential order by propos-
ing always a spin flip6 and accepting or rejecting this proposal according to
(5.33). The raw data of the simulation are collected in a time-series file, stor-
ing 1000000 measurements of the energy and magnetization taken after each
sweep over the lattice, after discarding (quite generously) the first 200000
sweeps to equilibrate the system.

The last 500 sweeps of the time evolution of the energy are shown in
Fig. 5.10(a), which should be compared with the Gaussian model time se-
ries in Figs. 5.7(b) and (c). Using the complete time series the autocorrelation
functions were computed according to (5.62). The only difference to the analy-
sis of the simplified model is that instead of using the Gaussian data one now
reads in the Ising model time series – the analysis program is exactly the

6 If the spins are updated in sequential order, but a spin flip is proposed with only
50% probability, the temporal correlations are much larger (τe,int ≈ 27) [87]. This
quite unusual update procedure was (inadvertently) chosen in Ref. [87], because
always proposing a spin flip with sequential update order does not work properly
for the 1D model with its only two nearest neighbours.
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Fig. 5.10. (a) Part of the time evolution of the energy e = E/V for the 2D Ising
model on a 16× 16 lattice at βc and (b) the resulting autocorrelation function. The
inset shows the same data on a logarithmic scale, revealing the fast initial drop for
very small k and the noisy behaviour for large k. The solid lines show a fit to the
ansatz A(k) = a exp(−k/τe,exp) in the range 10 ≤ k ≤ 40 with τe,exp = 11.3 and
a = 0.432

same. The result for the energy autocorrelations is shown in Fig. 5.10(b). On
the linear-log scale of the inset we clearly see the asymptotic linear behaviour
of lnA(k). A linear fit of the form (5.63), A(k) = a exp(−k/τe,exp), in the
range 10 ≤ k ≤ 40 yields an estimate for the exponential autocorrelation time
of τe,exp ≈ 11.3. Apart from the noise for large k, which is also present in
the simplified model for finite statistics, the main difference to the artificial
data of the simplified model lies in the small k behaviour. For the Ising model
we clearly notice an initial fast drop, corresponding to faster relaxing modes,
before the asymptotic behaviour sets in. This is, in fact, the generic behaviour
of autocorrelation functions in realistic models.

Once the autocorrelation function is known, it is straightforward to sum
up the integrated autocorrelation time. The result for the energy is depicted
in Fig. 5.11(a), yielding an estimate of τe,int ≈ 5.93. The binning analysis
shown in Fig. 5.11(b) gives a consistent result as it should. Note that due to
the initial fast drop of A(k) the exponential autocorrelation time τe,exp ≈ 11.3
is much larger than the integrated autocorrelation time τe,int ≈ 5.93, which is
in accord with the general inequality [80] quoted above.

5.6 Cluster Algorithms

The main drawback of local update algorithms is their pronounced critical
slowing down at a continuous phase transition where temporal correlations di-
verge (thermodynamic limit) or become very large (finite-size scaling region):
τ ∝ ξz or ∝ Lz with z ≈ 2. Since excitations on all length scales become
important at Tc, it is intuitively clear that some sort of non-local updates
should alleviate this problem. While it was clear since long that clusters or
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Fig. 5.11. (a) Integrated autocorrelation time approaching τe,int ≈ 5.93 for large
upper cutoff kmax and (b) binning analysis for the energy of the 2D Ising model on
a 16 × 16 lattice at βc. The horizontal line in (b) shows 2τe,int with τe,int read off
from (a)

droplets should play a central role in such an update, it took until 1987 before
Swendsen and Wang [88] proposed a legitimate cluster update procedure for
Potts models. Soon after Wolff [89] discovered the so-called single-cluster vari-
ant and developed a generalization to O(n)-symmetric spin models. By now
cluster updates have been derived for many other models as well [90], but they
are still less general applicable than local update algorithms of the Metropolis
type. We therefore start again with the Ising model where (as for more general
Potts models) the prescription for a cluster-update algorithm can be easily
read off from the equivalent Fortuin-Kasteleyn representation [91–94],

Z =
∑

{σi}
exp



β
∑

〈ij〉
σiσj



 (5.93)

=
∑

{σi}

∏

〈ij〉
eβ
[
(1 − p) + pδσiσj

]
(5.94)

=
∑

{σi}

∑

{nij}

∏

〈ij〉
eβ
[
(1 − p)δnij ,0 + pδσiσj

δnij ,1

]
, (5.95)

with
p = 1 − e−2β . (5.96)

Here the nij are bond variables which can take the values nij = 0 or 1,
interpreted as “deleted” or “active” bonds. In the first line of this derivation
we used the trivial fact that the product σiσj of two Ising spins can only
take the two values ±1, so that exp(βσiσj) = x+ yδσiσj

can easily be solved
for x and y. And in the second line we made use of the “deep” identity
a+ b =

∑1
n=0 (aδn,0 + bδn,1).
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Fig. 5.12. Illustration of the bond variable update. The bond between unlike spins
is always “deleted” as indicated by the dashed line. A bond between like spins is only
“active” with probability p = 1 − exp(−2β). Only at zero temperature (β −→ ∞)
stochastic and geometrical clusters coincide

Swendsen-Wang Cluster

According to (5.95) a cluster update sweep then consists of alternating updates
of the bond variables nij for given spins with updates of the spins σi for a
given bond configuration. In practice one proceeds as follows:

1. Set nij = 0 if σi �= σj , or assign values nij = 1 and 0 with probability p
and 1 − p, respectively, if σi = σj , cp. Fig. 5.12.

2. Identify clusters of spins that are connected by “active” bonds (nij = 1).
3. Draw a random value ±1 independently for each cluster (including one-site

clusters), which is then assigned to all spins in a cluster.

Technically the cluster identification part is the most complicated step, but
there are by now quite a few efficient algorithms available which can even be
used on parallel computers. Vectorization, on the other hand, is only partially
possible.

Notice the difference between the just defined stochastic clusters and
geometrical clusters whose boundaries are defined by drawing lines through
bonds between unlike spins. In fact, since in the stochastic cluster definition
also bonds between like spins are “deleted” with probability p0 = 1 − p =
exp(−2β), stochastic clusters are on the average smaller than geometrical
clusters. Only at zero temperature (β −→ ∞) p0 approaches zero and the
two cluster definitions coincide. As described above, the cluster algorithm
is referred to as Swendsen-Wang (SW) or multiple-cluster update [88]. The
distinguishing point is that the whole lattice is decomposed into stochastic
clusters whose spins are assigned a random value +1 or −1. In one sweep one
thus attempts to update all spins of the lattice.

Wolff Cluster

Shortly after the original discovery of cluster algorithms, Wolff [89] proposed
a somewhat simpler variant in which only a single cluster is flipped at a time.
This variant is therefore sometimes also called single-cluster algorithm. Here
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Fig. 5.13. Illustration of the Wolff cluster update, using actual simulation results
for the 2D Ising model at 0.97×βc on a 100×100 lattice. Upper left: Initial configu-
ration. Upper right: The stochastic cluster is marked. Lower left: Final configuration
after flipping the spins in the cluster. Lower right: The flipped cluster

one chooses a lattice site at random, constructs only the cluster connected
with this site, and then flips all spins of this cluster. A typical example is
shown in Fig. 5.13. In principle, one could also here choose for the new spin
value +1 or −1 at random, but then nothing at all would be changed if one
hits the current value of the spins.

Here a sweep consists of V/〈|C|〉 single cluster steps, where 〈|C|〉 denotes
the average cluster size. With this definition autocorrelation times are directly
comparable with results from the Metropolis or Swendsen-Wang algorithm.
Apart from being somewhat easier to program, Wolff’s single-cluster variant
is usually more efficient than the Swendsen-Wang multiple-cluster algorithm,
especially in 3D. The reason is that with the single-cluster method, on the
average, larger clusters are flipped.
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Figure 5.13 also nicely illustrates the difference between geometrical and
stochastic FK clusters as already pointed out in Sect. 5.2 in connection with
Fig. 5.2. In the upper right configuration plot one clearly sees that the sto-
chastic cluster is much smaller than the underlying black geometrical one. It is
worth to emphasize again that only the stochastic FK clusters encode in their
fractal and percolation properties the critical behaviour of the thermodynamic
system. In the 3D Ising model, geometrical clusters do not even percolate at
the proper critical temperature (but already at a about 2% smaller temper-
ature). This is one of the reasons why early attempts to construct “cluster
updates” (working with geometrical clusters) were not successful. In 2D, also
geometrical clusters do percolate at Tc, but they are still not useful for algo-
rithmic purposes because their fractal properties are not directly related to the
critical behaviour of the thermodynamic system at hand. Rather they encode
the properties of a tricritical point in a related model (the diluted q = 1 Potts
model) [27]. For instance, while at the end of this section it will be shown that
the average FK cluster size 〈|C|〉FK is a so-called improved estimator for the
Ising susceptibility, 〈|C|〉FK = χ′/β ∝ Lγ/ν , and hence scales in 2D with the
proper Ising model exponents γ = 7/4 = 1.75 and ν = 1, one finds for the
average geometrical cluster size 〈|C|〉geo ∝ Lγgeo/νgeo with the exact exponent
ratio γgeo/νgeo = 91/48 = 1.8958 . . . . Note that both cluster quantities can
be measured in the same MC simulation run [27].

Performance for the Ising Model

The advantage of cluster algorithms is most pronounced close to criticality
where excitations on all length scales occur. A convenient performance mea-
sure is thus the dynamical critical exponent z (even though one should always
check that the proportionality constant in τ ∝ Lz is not exceedingly large,
but this is definitely not the case here [95]). Some results on z are collected
in Table 5.2, which allow us to conclude:

(1) Compared to local algorithms with z ≈ 2, z is dramatically reduced for
both cluster variants in 2D and 3D.

(2) In 2D, Swendsen-Wang and Wolff cluster updates are equally efficient,
while in 3D, the Wolff update is clearly favourable.

(3) In 2D, the scaling with system size can hardly be distinguished from a
very weak logarithmic scaling. Note that this is consistent with the Li-
Sokal bound [96] for the Swendsen-Wang cluster algorithm of τSW ≥ C
(= C0 +A lnL for the 2D Ising model), implying zSW ≥ α/ν (= 0 for the
2D Ising model).

(4) Different observables (e.g., energy E and magnetization M) may yield
quite different values for z when defined via the scaling behaviour of the
integrated autocorrelation time.
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Table 5.2. Dynamical critical exponents z for the 2D and 3D Ising model (τ ∝
Lz). The subscripts indicate the observables and method used (“exp” resp. “int”:
exponential resp. integrated autocorrelation time, “rel”: relaxation, “dam”: damage
spreading)

Algorithm 2D 3D Observable Authors

Metropolis 2.1667(5) – zM,exp Nightingale and Blöte [58]
– 2.032(4) zdam Grassberger [97]
– 2.055(10) zM,exp Ito et al. [98]

Swendsen-Wang cluster 0.35(1) 0.75(1) zE,exp Swendsen and Wang [88]
0.27(2) 0.50(3) zE,int Wolff [95]
0.20(2) 0.50(3) zχ,int Wolff [95]
0(log L) – zM,exp Heermann and Burkitt [99]
0.25(5) – zM,rel Tamayo [100]

Wolff cluster 0.26(2) 0.28(2) zE,int Wolff [95]
0.13(2) 0.14(2) zχ,int Wolff [95]
0.25(5) 0.3(1) zE,rel Ito and Kohring [101]

Embedded Clusters

While it is quite easy to generalize the derivation (5.93)–(5.96) to q-state Potts
models (because as in the Ising model each contribution to the energy, δσiσj

,
can take only two different values), for O(n) spin models with Hamiltonian

H = −J
∑

〈ij〉
σi · σj ; σi = (σi,1,σi,2, . . . ,σi,n) ; |σi| = 1 (5.97)

one needs a new strategy for n ≥ 2 [89, 102–104] (the case n = 1 degenerates
again to the Ising model). Here the basic idea is to isolate Ising degrees of
freedom by projecting the spins σi onto a randomly chosen unit vector r,

σi = σ
‖
i + σ⊥

i ; σ
‖
i = ε |σi · r| r; ε = sign(σi · r) . (5.98)

If this is inserted in the original Hamiltonian one ends up with an effective
Hamiltonian

H = −
∑

〈ij〉
Jijεiεj + const , (5.99)

with positive random couplings Jij = J |σi ·r||σj ·r| ≥ 0, whose Ising degrees
of freedom εi can be updated with a cluster algorithm as described above.

Improved Estimators

A further advantage of cluster algorithms is that they lead quite naturally
to so-called improved estimators which are designed to further reduce the
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statistical errors. Suppose we want to measure the expectation value 〈O〉 of
an observable O. Then any estimator Ô satisfying 〈Ô〉 = 〈O〉 is permissible.
This does not determine Ô uniquely since there are infinitely many other
possible choices, Ô′ = Ô + X̂ , where the added estimator X̂ is assumed to
have zero expectation, 〈X̂ 〉 = 0. The variances of the estimators Ô′, however,
can be quite different and are not necessarily related to any physical quantity
(contrary to the standard mean-value estimator of the energy whose variance
is proportional to the specific heat). It is exactly this freedom in the choice of
Ô which allows the construction of improved estimators.

For the single-cluster algorithm an improved “cluster estimator” for the
spin-spin correlation function in the high-temperature phase, G(xi − xj) ≡
〈σi · σj〉, is given by [104]

Ĝ(xi − xj) = n
V

|C|r · σi r · σj ΘC(xi)ΘC(xj) , (5.100)

where r is the normal of the mirror plane used in the construction of the
cluster of size |C| and ΘC(x) is its characteristic function (=1 if x ∈ C and
0 otherwise). For the Fourier transform, G̃(k) =

∑
x G(x) exp(−ik · x), this

implies the improved estimator

ˆ̃G(k) =
n

|C|





(
∑

i∈C

r · σi cos kxi

)2

+

(
∑

i∈C

r · σi sinkxi

)2


 , (5.101)

which, for k = 0, reduces to an improved estimator for the susceptibility χ′

in the high-temperature phase,

ˆ̃G(0) = χ̂′/β =
n

|C|

(
∑

i∈C

r · σi

)2

. (5.102)

For the Ising model (n = 1) this reduces to χ′/β = 〈|C|〉, i.e., the improved es-
timator of the susceptibility is just the average cluster size of the single-cluster
update algorithm. For the XY and Heisenberg model one finds empirically that
in two as well as in three dimensions 〈|C|〉 ≈ 0.81χ′/β for n = 2 ( [102, 108])
and 〈|C|〉 ≈ 0.75χ′/β for n = 3 ( [104,109]), respectively.

It should be noted that by means of the estimators (5.100)–(5.102) a sig-
nificant reduction of variance should only be expected outside the FSS region
where the average cluster size is small compared to the volume of the system.

5.7 Reweighting Techniques

Even though the physics underlying reweighting techniques [110, 111] is ex-
tremely simple and the basic idea has been known since long (see the list
of references in Ref. [111]), their power in practice has been realized only
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relatively late in 1988. The important observation by Ferrenberg and Swend-
sen [110,111] was that the best performance is achieved near criticality where
histograms are usually broad. In this sense reweighting techniques are com-
plementary to improved estimators.

5.7.1 Single-Histogram Technique

The single-histogram reweighting technique [110] is based on the following
very simple observation. If we denote the number of states (spin configura-
tions) that have the same energy E by Ω(E), the partition function at the
simulation point β0 = 1/kBT0 can always be written as7

Z(β0) =
∑

{s}
e−β0H({s}) =

∑

E

Ω(E)e−β0E ∝
∑

E

Pβ0(E) , (5.103)

where we have introduced the unnormalized energy histogram (density)

Pβ0(E) ∝ Ω(E)e−β0E . (5.104)

If we would normalize Pβ0(E) to unit area, the r.h.s. would have to be divided
by
∑

E Pβ0(E) = Z(β0), but the normalization will be unimportant in what
follows. Let us assume we have performed a Monte Carlo simulation at inverse
temperature β0 and thus know Pβ0(E). It is then easy to see that

Pβ(E) ∝ Ω(E)e−βE = Ω(E)e−β0Ee−(β−β0)E ∝ Pβ0(E)e−(β−β0)E , (5.105)

i.e., the histogram at any point β can be derived, in principle, by reweighting
the simulated histogram at β0 with the exponential factor exp[−(β − β0)E].
Notice that in reweighted expectation values,

〈f(E)〉(β) =
∑

E

f(E)Pβ(E)/
∑

E

Pβ(E) , (5.106)

the normalization of Pβ(E) indeed cancels. This gives for instance the energy
〈e〉(β) = 〈E〉(β)/V and the specific heat C(β) = β2V [〈e2〉(β) − 〈e〉(β)2], in
principle, as a continuous function of β from a single MC simulation at β0,
where V = Ld is the system size.

As an example of this reweighting procedure, using actual Swendsen-Wang
cluster simulation data (with 5000 sweeps for equilibration and 50 000 sweeps
for measurements) of the 2D Ising model at β0 = βc = ln(1 +

√
2)/2 =

0.440 686 . . . on a 16× 16 lattice with periodic boundary conditions, the spe-
cific heat C(β) is shown in Fig. 5.14(a) and compared with the curve obtained
from the exact Kaufman solution [33,34] for finite Lx×Ly lattices. This clearly

7 For simplicity we consider here only models with discrete energies. If the energy
varies continuously, sums have to be replaced by integrals, etc. Also lattice size
dependences are suppressed to keep the notation short.
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Fig. 5.14. (a) The specific heat of the 2D Ising model on a 16 × 16 square lattice
computed by reweighting from a single MC simulation at β0 = βc, marked by the
filled data symbol. The continuous line shows for comparison the exact solution of
Kaufman [33,34]. (b) The corresponding energy histogram at β0, and reweighted to
β = 0.375 and β = 0.475. The dashed lines show for comparison the exact histograms
obtained from Beale’s [112] expression

demonstrates that, in practice, the β-range over which reweighting can be
trusted is limited. The reason for this limitation are unavoidable statistical
errors in the numerical determination of Pβ0 using a MC simulation. In the
tails of the histograms the relative statistical errors are largest, and the tails
are exactly the regions that contribute most when multiplying Pβ0(E) with
the exponential reweighting factor to obtain Pβ(E) for β values far off the
simulation point β0. This is illustrated in Fig. 5.14(b) where the simulated
histogram at β0 = βc is shown together with the reweighted histograms at
β = 0.375 ≈ β0 − 0.065 and β = 0.475 ≈ β0 + 0.035, respectively. Here
the quality of the histograms can be judged by comparing with the curves
obtained from Beale’s [112] exact expression for Ω(E).

As a rule of thumb, the range over which reweighting should produce ac-
curate results can be estimated by requiring that the peak location of the
reweighted histogram should not exceed the energy value at which the input
histogram had decreased to about one half or one third of its maximum value.
In most applications this range is wide enough to locate from a single simu-
lation, e.g., the specific-heat maximum by employing standard maximization
routines to the continuous function C(β). This is by far more convenient, ac-
curate and faster than the traditional way of performing many simulations
close to the peak of C(β) and trying to determine the maximum by spline or
least-squares fits.

For an analytical estimate of the reweighting range we now require that
the peak of the reweighted histogram is within the width 〈e〉(T0) ± ∆e(T0)
of the input histogram (where a Gaussian histogram would have decreased to
exp(−1/2) ≈ 0.61 of its the maximum value),
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|〈e〉(T ) − 〈e〉(T0)| ≤ ∆e(T0) , (5.107)

where we have made use of the fact that for a not too asymmetric histogram
Pβ0(E) the maximum location approximately coincides with 〈e〉(T0). Recalling
that the half width ∆e of a histogram is related to the specific heat via (∆e)2 ≡
〈(e − 〈e〉)2〉 = 〈e2〉 − 〈e〉2 = C(β0)/β2

0V and using the Taylor expansion
〈e〉(T ) = 〈e〉(T0)+C(T0)(T −T0)+ . . . , this can be written as C(T0)|T −T0| ≤
T0

√
C(T0)/V or

|T − T0|
T0

≤ 1√
V

1
C(T0)

. (5.108)

Since C(T0) is known from the input histogram this is quite a general estimate
of the reweighting range. For the example in Fig. 5.14 with V = 16×16, β0 =
βc ≈ 0.44 and C(T0) ≈ 1.5, this estimate yields |β − β0|/β0 ≈ |T − T0|/T0 ≤
0.04, i.e., |β − β0| ≤ 0.02 or 0.42 ≤ β ≤ 0.46. By comparison with the exact
solution we see that this is indeed a fairly conservative estimate of the reliable
reweighting range.

If we only want to know the scaling behaviour with system size V = LD,
we can go one step further by considering three generic cases:

i) Off-critical , where C(T0) ≈ const., such that

|T − T0|
T0

∝ V −1/2 = L−D/2 . (5.109)

ii) Critical , where C(T0) � a1 +a2L
α/ν , with a1 and a2 being constants, and

α and ν denoting the standard critical exponents of the specific heat and
correlation length, respectively. For α > 0, the leading scaling behaviour
becomes |T−T0|/T0 ∝ L−D/2L−α/2ν . Assuming hyperscaling (α = 2−Dν)
to be valid, this simplifies to

|T − T0|
T0

∝ L−1/ν , (5.110)

i.e., the typical scaling behaviour of pseudo-transition temperatures in
the finite-size scaling regime of a second-order phase transition [113]. For
α < 0, C(T0) approaches asymptotically a constant and the leading scaling
behaviour of the reweighting range is as in the off-critical case.

iii)First-order transitions, where C(T0) ∝ V . This yields

|T − T0|
T0

∝ V −1 = L−D , (5.111)

which is again the typical finite-size scaling behaviour of pseudo-transition
temperatures close to a first-order phase transition [16].
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If we also want to reweight other quantities such as the magnetization
〈m〉 we have to go one step further. The conceptually simplest way would
be to store two-dimensional histograms Pβ0(E,M) where M = V m is the
total magnetization. We could then proceed in close analogy to the preceding
case, and even reweighting to non-zero magnetic field h would be possible,
which enters via the Boltzmann factor exp(βh

∑
i si) = exp(βhM). However,

the storage requirements may be quite high (of the order of V 2), and it is
often preferable to proceed in the following way. For any function g(M), e.g.,
g(M) = Mk, we can write

〈g(M)〉 =
∑

{s}
g(M({s}))e−β0H/Z(β0) =

∑

E,M

Ω(E,M)g(M)e−β0E/Z(β0)

=
∑

E

∑
M Ω(E,M)g(M)
∑

M Ω(E,M)

∑

M

Ω(E,M)e−β0E/Z(β0) . (5.112)

Recalling that
∑

M Ω(E,M)e−β0E/Z(β0) = Ω(E)e−β0E/Z(β0) = Pβ0(E)
and defining the microcanonical expectation value of g(M) at fixed energy
E (sometimes denoted as a “list”),

〈〈g(M)〉〉(E) ≡
∑

M Ω(E,M)g(M)
∑

M Ω(E,M)
, (5.113)

we arrive at
〈g(M)〉 =

∑

E

〈〈g(M)〉〉(E)Pβ0(E) . (5.114)

Identifying 〈〈g(M)〉〉(E) with f(E) in Eq. (5.106), the actual reweighting pro-
cedure is precisely as before. Mixed quantities, e.g. 〈EkM l〉, can be treated
similarly. One caveat of this method is that one has to decide beforehand which
“lists” 〈〈g(M)〉〉(E) one wants to store during the simulation, e.g., which pow-
ers k in 〈〈Mk〉〉(E) are relevant. An example for computing 〈〈|M |〉〉(E) and
〈〈M2〉〉(E) using the data of Fig. 5.14 is shown in Fig. 5.15.

An alternative and more flexible method is based on time series. Suppose
we have performed a MC simulation at β0 and stored the time series of N
measurements E1, E2, . . . , EN and M1,M2, . . . ,MN . Then the most general
expectation values at another inverse temperature β can simply be obtained
from

〈f(E,M)〉 =
N∑

i=1

f(Ei,Mi)e−(β−β0)Ei/

N∑

i=1

e−(β−β0)Ei , (5.115)

i.e., in particular all moments 〈EkM l〉 can be computed. Notice that this can
also be written as

〈f(E,M)〉 = 〈f(E,M)e−(β−β0)E〉0/〈e−(β−β0)E〉0 , (5.116)
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Fig. 5.15. Microcanonical expectation values for (a) the absolute magnetization
and (b) the magnetization squared obtained from the 2D Ising model simulations
shown in Fig. 5.14

where the subscript 0 refers to expectation values taken at β0. Another very
important advantage of the last formulation is that it works without any
systematic discretization error also for continuously distributed energies and
magnetizations.

As nowadays hard-disk space is no real limitation anymore, it is advisable
to store time series in any case. This guarantees the greatest flexibility in the
data analysis. As far as the memory requirement of the actual reweighting code
is concerned, however, the method of choice is sometimes not so clear. Using
directly histograms and lists, one typically has to store about (6 − 8)V data,
while working directly with the time series one needs 2N computer words.
The cheaper solution (also in terms of CPU time) thus obviously depends on
both, the system size V and the run length N . It is hence sometimes faster to
generate from the time series first histograms and the required lists and then
proceed with reweighting the latter quantities.

5.7.2 Multi-Histogram Technique

The basic idea of the multi-histogram technique [114] can be summarized as
follows:

i) Perform m MC simulations at β1, β2, . . . , βm with Ni, i = 1, . . . ,m, mea-
surements,

ii) reweight all runs to a common reference point β0,
iii) combine at β0 all information by computing error weighted averages,
iv) reweight the “combined histogram” to any other β.

Here we shall assume that the histograms Pβi
(E) are “naturally” nor-

malized,
∑

E Pβi
(E) = Ni, such that the statistical errors for each of the

histograms Pβi
(E) are approximately given by

√
Pβi

(E). By choosing as ref-
erence point β0 = 0 and working out the error weighted combined histogram



5 Introduction to Simulation Techniques 251

one ends up with

Ω(E) =
∑m

i=1 Pβi
(E)

∑m
i=1 NiZ

−1
i e−βiE

, (5.117)

where the unknown partition function values Zi ≡ Z(βi) are determined self-
consistently from

Zi =
∑

E

Ω(E)e−βiE =
∑

E

e−βiE

∑m
k=1 Pβk

(E)
∑m

k=1 NkZ
−1
k e−βkE

, (5.118)

up to an unimportant overall constant. A good starting point for the recursion
is to fix, say, Z1 = 1 and use single histogram reweighting to get an estimate
of Z2/Z1 = exp[−(F̂2 − F̂1)], where F̂i = βiF (βi). Once Z2 is determined,
the same procedure can be applied to estimate Z3 and so on. In the limit of
infinite statistics, this would already yield the solution of (5.118). In realistic
simulations the statistics is of course limited and the (very few) remaining
recursions average this uncertainty to get a self-consistent set of Zi. In order to
work in practice, the histograms at neighbouring β-values must have sufficient
overlap, i.e., the spacings of the simulation points must be chosen according
to the estimates (5.109)–(5.111).

Multiple-histogram reweighting has been widely applied in many different
applications. Some problems of this method are that autocorrelations cannot
properly be taken into account when computing the error weighted average
(which is still correct but no longer optimized), the procedure for computing
mixed quantities such as 〈EkM l〉 is difficult to justify (even though it does
work as an “ad hoc” prescription quite well), and the statistical error analysis
becomes quite cumbersome.

As an alternative one may compute by reweighting from each of the m sim-
ulations all quantities of interest as a function of β, including their statistical
error bars which now also should take care of autocorrelations as discussed
in Subsect. 5.5.3. In this way one obtains, at each β-value, m estimates, e.g.
e1(β)±∆e1, e2(β)±∆e2, . . . , em(β)±∆em, which may be optimally combined
according to their error bars to give e(β) ±∆e. If the relative error ∆e/e(β)
is minimized, this leads to [109]

e(β) =

(
e1(β)
(∆e1)

2 +
e2(β)
(∆e2)

2 + · · · + em(β)
(∆em)2

)

(∆e)2 , (5.119)

with
1

(∆e)2
=

1
(∆e1)

2 +
1

(∆e2)
2 + · · · + 1

(∆em)2
. (5.120)

Notice that in this way the average for each quantity can be individually
optimized.
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5.8 Tempering Methods

Loosely speaking, tempering methods may be characterized as “dynamical
multi-histogramming”. Similarly to the static reweighting approach, in “sim-
ulated” as well as in “parallel” tempering one considers m simulation points
β1 < β2 < · · · < βm which here, however, are combined already during the
simulation in a specific, dynamical way.

5.8.1 Simulated Tempering

In simulated tempering simulations [115,116] one starts from a joint partition
function (expanded ensemble)

ZST =
m∑

i=1

egi

∑

{s}
e−βiH({s}) , (5.121)

where gi = βif(βi) and the inverse temperature β is treated as an additional
dynamical degree of freedom that can take the values β1, . . . , βm. Employing
a Metropolis algorithm, a proposed move from β = βi to βj takes place
with probability min [1, exp[−(βj − βi)H({s})] + gj − gi]. Similar to multi-
histogram reweighting (and also to multicanonical simulations), the free-
energy parameters gi are a priori unknown and have to be adjusted iteratively.
To assure a reasonable acceptance rate for the β-update moves (usually be-
tween neighbouring βi-values), the histograms at βi and βi+1, i = 1, . . . ,m−1,
must overlap. An estimate for a suitable spacing δβ = βi+1 − βi of the simu-
lation points βi is hence immediately given by the results (5.109)–(5.111) for
the reweighting range,

δβ ∝






L−D/2 off-critical ,
L−1/ν critical ,
L−D first-order .

(5.122)

Overall the simulated tempering method shows some similarities to the “avoid-
ing rare events” variant of multicanonical simulations briefly discussed in the
next section.

5.8.2 Parallel Tempering

In parallel tempering (exchange Monte Carlo, multiple Markov chain Monte
Carlo) simulations [117, 118] the starting point is the product of partition
functions (extended ensemble),

ZPT =
m∏

i=1

Z(βi) =
m∏

i=1

∑

{s}i

e−βiH({s}i) , (5.123)
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and all m systems at different simulation points β1 < β2 < · · · < βm are
simulated in parallel, using any legitimate update algorithm (Metropolis,
cluster,. . . ). This freedom in the choice of update algorithm is a big advan-
tage of the parallel tempering method. After a certain number of sweeps,
exchanges of the current configurations {s}i and {s}j are attempted (equiv-
alently, the βi may be exchanged, as is done in most implementations).
Adapting the Metropolis criterion (5.34) to the present situation, the pro-
posed exchange will be accepted with probability W = min(1, e∆), where
∆ = (βj − βi)[E({s}j) − E({s}i)]. To assure a reasonable acceptance rate,
usually only “nearest-neighbour” exchanges (j = i±1) are attempted and the
βi should again be spaced with the δβ given in (5.122). In most applications,
the smallest inverse temperature β1 is chosen in the high-temperature phase
where the autocorrelation time is expected to be very short and the system
rapidly decorrelates. Conceptually this approach follows again the “avoiding
rare events” strategy.

Notice that in parallel tempering no free-energy parameters must be ad-
justed. The method is thus very flexible and moreover can be almost trivially
parallelized.

5.9 Multicanonical Ensembles

To conclude this introduction to simulation techniques, at least a very brief
outline of multicanonical ensembles shall be given. For more details, in par-
ticular on practical implementations, see the recent reviews [4,119–122]. Sim-
ilar to the tempering methods of the last section, multicanonical simulations
may also be interpreted as a dynamical multi-histogram reweighting method.
This interpretation is stressed by the notation used in the original papers by
Berg and Neuhaus [123,124] and explains the name “multicanonical”. At the
same time, this method may also be viewed as a specific realization of non-
Boltzmann sampling [125] which has been known since long to be a legitimate
alternative to the more standard MC approaches [126]. The practical signifi-
cance of non-Boltzmann sampling was first realized in the so-called “umbrella
sampling” method [127], but it took many years before the introduction of
the multicanonical ensemble [123, 124] turned non-Boltzmann sampling into
a widely appreciated practical tool in computer simulation studies of phase
transitions. Once the feasibility of such a generalized ensemble approach was
realized, many related methods and further refinements were developed.

Conceptually the method can be divided into two main strategies. The first
strategy can be best described as “avoiding rare events” which is close in spirit
to the alternative tempering methods. In this variant one tries to connect the
important parts of phase space by “easy paths” which go around suppressed
rare-event regions which hence cannot be studied directly. The second ap-
proach is based on “enhancing the probability of rare event states”, which is
for example the typical strategy for dealing with the highly suppressed mixed-
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phase region of first-order phase transitions [16,122]. This allows a direct study
of properties of the rare-event states such as, e.g., interface tensions or more
generally free energy barriers, which would be very difficult (or practically
impossible) with canonical simulations and also with the tempering methods
discussed in Sect. 5.8.

In both multicanonical versions, the canonical Boltzmann distribution

Pcan(φ) ∝ exp(−βH(φ)) (5.124)

is replaced by an auxiliary distribution

Pmuca(φ) ∝ W ({Qi}) exp(−βH(φ)) ≡ exp(−βH(φ) − f({Qi(φ)})) , (5.125)

where φ denotes generically the degrees of freedom and Qi stands for a macro-
scopic observable such as the energy or magnetization. With a suitably chosen
reweighting factor W ({Qi}), the probability distribution Pmuca({Qi}) of the
macroscopic variables {Qi} can be tuned to take any desired form. Canonical
expectation values can always be recovered exactly by inverse reweighting,

〈O〉can = 〈OW−1({Qi})〉muca/〈W−1({Qi})〉muca , (5.126)

similar to Eq. (5.116).
The Monte Carlo sampling of Pmuca(φ) proceeds in the usual way by com-

paring βH(φ)+ f({Qi(φ)}) before and after a proposed update move of φ. In
most applications local update algorithms have been employed, but for certain
classes of models also non-local multigrid methods are applicable [84,128]. A
combination with non-local cluster update algorithms, on the other hand, is
not straightforward. Only by making direct use of the random-cluster repre-
sentation as a starting point, a multibondic variant [129–131] has been devel-
oped.

The performance of the simulation depends, however, in the first place on
the choice of {Qi} and the reweighting factor W ({Qi}), since for instance in
the special case W ≡ 1 the troublesome canonical ensemble is recovered. The
proper identification of the relevant set of Qi’s requires considerable physical
intuition and insight into the specific system under study. While for disor-
dered complex systems this may be a serious problem, in studies of first-
order phase transitions the proper choice is clear since typically the energy E
(temperature-driven transition) or magnetization M (field-driven transition)
are the relevant variables. In both cases, the reweighting factor is usually cho-
sen such that the multicanonical probability density Pmuca = WPcan is ap-
proximately flat between the two peaks of the canonical distribution. The most
important technical point is the procedure for constructing the multicanonical
weights, for which iterative procedures have been developed [4, 119–122].

If Pmuca was completely flat and the MC update moves would perform
an ideal random walk, one would expect that after V 2 local updates the sys-
tem has travelled on average a distance V in energy or magnetization. Since
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one lattice sweep consists of V local updates, the autocorrelation time should
scale in this idealized picture as τ ∝ V . Numerical tests for various mod-
els with a first-order phase transition have shown that in practice the data
are at best consistent with a behaviour τ ∝ V α, with α ≥ 1. While for the
temperature-driven transitions of 2D Potts models the multibondic variant
seems to saturate the bound [129–131], employing local update algorithms,
typical fit results are α ≈ 1.1−1.3, and due to the limited accuracy of the
data even a weak exponential growth cannot really be excluded. In fact, at
least for the field-driven first-order transition of the 2D Ising model, it has been
demonstrated recently [132, 133] that even for a perfectly flat multicanonical
distribution a “hidden” free energy nucleation barrier leads to an exponen-
tial growth of τ , which is, however, much weaker than in the corresponding
canonical simulation.

5.10 Concluding Remarks

The intention of these lecture notes was to give an elementary introduction to
the basic concepts of modern Monte Carlo simulations and to illustrate their
usefulness by applications to the very simple Ising lattice spin model. The
basic Monte Carlo methods based on local update rules are straightforward
to apply to all models with discrete degrees of freedom and with some extra
care also to continuous variables and off-lattice models. Some generalizations
of cluster update methods have already been indicated. Also other models
may be efficiently simulated by this non-local method, but there is no guar-
antee that for a given model a cluster update procedure can be developed.
The statistical error analysis part is obviously completely general, and also
reweighting, tempering and multicanonical methods can be adapted to almost
every problem at hand.
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Introduction

The aim of these notes is a description of the statics and dynamics of zero-
range processes (ZRP) [1] and of related models. These models are simplified
models of physical reality. Yet, besides the fact that they play an important
role in the elucidation of conceptual problems of statistical mechanics and
probability theory, they are instrumental in the understanding of a variety
of complex physical situations. For instance the Ehrenfest model [2, 3] is the
simplest example of a model belonging to the class of models described in the
present text. A useful review of some of the applications of ZRP in physical
situations can be founded in [4].

In these notes, we present a review of the subject, coming back on some
of its conceptual aspects. We restrict all discussions to homogeneous models
where all sites are equivalent. Before commencing, we summarise in a few
words the main organisation of the text.

In Part I: Statics (Sects. 6.1–6.6), we first show that ZRP are special
members of a class of stochastic processes which have the property that their
stationary measures are known and have a product structure. The probability
of a configuration of the system is given by the Boltzmann formula for an
equilibrium urn model with independent sites. Reversibility (for symmetric
dynamics) and pairwise balance (for asymmetric dynamics) are inherently
related to the structure of the stationary measure. Generalisations to multiple-
species ZRP are then addressed. The properties of the stationary measure of
ZRP leading to a phase transition between a fluid phase and a condensed
phase are finally briefly reviewed, as a preparation for the second part of
these notes.

The stochastic nature of ZRP is fully revealed by the study of their dynam-
ics. This is the subject of Part II (Sects. 6.7–6.9). We first address the non-
stationary dynamical behaviour of the system when it evolves from a random
initial disordered configuration to its stationary state. Then we investigate
some aspects of its stationary dynamics, when the system fluctuates in its

C. Godrèche: From Urn Models to Zero-Range Processes: Statics and Dynamics, Lect. Notes
Phys. 716, 261–294 (2007)
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stationary state. In both cases the model used is that giving rise to conden-
sation.

Part I: Statics (Sects. 6.1–6.6)

6.1 Dynamical Urn Models and Zero-Range Processes

6.1.1 Dynamical Urn Models

We name dynamical urn model (DUM) the following stochastic process. Con-
sider a finite connected graph, made of M sites (or urns), on which N particles
are distributed. The occupation Ni(t) of site i (i = 1, . . . ,M) is a random vari-
able, and the total number of particles

M∑

i=1

Ni(t) = N

is conserved in time. The model is defined by dynamical rules describing how
particles hop from site to site. An elementary step of the dynamics consists
in choosing a departure site d and an arrival site a connected to site d, and in
transferring one of the particles present on site d to site a. This process takes
place with rate Wk,l per unit time, depending on the occupations both of the
departure site, k = Nd �= 0, and of the arrival site, l = Na

1.
On the complete graph (i.e., in the mean-field geometry), all sites are

connected, i.e., sites d and a are chosen independently at random. On finite-
dimensional lattices, site a is chosen among the first neighbours of site d.
In one dimension, site a is chosen to be the right neighbour of site d with
probability p, or its left neighbour with probability q = 1−p. In the following
we consider the one-dimensional symmetric dynamics, corresponding to p =
1/2, and the general asymmetric one, corresponding to p �= 1/2, both with
periodic boundary conditions.

A configuration of the system is specified by the occupation numbers
Ni(t), i.e., a complete knowledge of its dynamics involves the determination
of P(N1,N2, . . . , NM ), the probability of finding the system in a given config-
uration at time t.

The process defined above can also be named a Migration process, and
can be pictorially viewed in terms of colonies and migration. The sites are the
colonies, or cities. An individual leaves its colony for another one, with a rate
Wk,l which depends on the number of members present in both the departure
and the arrival colonies. Thus, for example, the philanthrope is characterized
by a rate decreasing with k and increasing with l, the misanthrope by the
converse.
1 Throughout this text we use the notation Ni for the random occupation of site

i, and k (an integer) for the value taken by this random variable.
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6.1.2 Zero-Range Processes

Zero-range processes are just particular cases of DUM, with the additional
restriction that the rate Wk,l only depends on the occupation of the departure
site:

Wk,l = uk .

This simple restriction is enough to lead to a remarkable property of the
stationary probability [1, 5]. Indeed, the probability of a configuration of the
system is equal to

P(N1, . . . , NM ) =
1

ZM,N

M∏

i=1

pNi
, (6.1)

where it is understood that
∑

Ni = N , and where the factor pk = pNi=k

satisfies the relation
uk pk = pk−1 , (6.2)

which leads to the explicit form

p0 = 1 , pk =
1

u1 . . . uk
. (6.3)

The normalisation factor, hereafter refered to as the partition function, reads

ZM,N =
∑

N1

· · ·
∑

NM

pN1 · · · pNM
δ

(
∑

i

Ni, N

)

. (6.4)

One important observation to make is that the stationary measure is insensi-
tive to the bias.

These results can be proved by inspection. The master equation at sta-
tionarity reads

0 =
∑

C′ �=C
M(C|C′)P(C′) −

∑

C′′ �=C
M(C′′|C)P(C) , (6.5)

where C = {N1, . . . , NM}, and M(C|C′) is the transition rate from C′ to C.
Consider a system of M = 3 sites for simplicity. At stationarity the master
equation reads explicitly

p [P(N1 + 1, N2 − 1, N3)uN1+1(1 − δ(N2, 0)) + c.p.+ c.p.]
+ q [P(N1 + 1, N2, N3 − 1)uN1+1(1 − δ(N3, 0)) + c.p.+ c.p.]
= P(N1, N2, N3)[uN1(1 − δ(N1, 0)) + c.p.+ c.p.] , (6.6)

where c.p. stands for circular permutation. Carrying the product form (6.1)
into the equation, and using (6.2), satisfies the master equation. This is the
unique solution of the problem.
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The cancelation of terms in the equation occurs by pair. Pairs correspond
to terms bearing the same p (respectively q) factor, and the same 1− δ(Ni, 0)
factor. Hence we have for example, after cancelling terms 1−δ(N2, 0) on both
sides,

pP(N1 + 1, N2 − 1, N3)uN1+1 = pP(N1, N2, N3)uN2 , (6.7)

i.e., using the product form (6.1), with N1 = k and N2 = l,

pk+1 pl−1 uk+1 = pk pl ul , (6.8)

which is precisely the relation that leads to (6.2).
It is interesting to emphasize the interpretation of (6.7), or (6.8). Consider

the following configurations:

C = (N1, N2, N3) ,
C′ = (N1 + 1, N2 − 1, N3) ,
C′′ = (N1, N2 − 1, N3 + 1) ,

and the corresponding rates

M(C|C′) = p uN1+1 ,

M(C′|C) = q uN2 ,

M(C′′|C) = p uN2 .

In general, i.e. for a general value of 0 < p < 1, (6.7) reads

M(C|C′)P(C′) = M(C′′|C)P(C) .

This is a condition for pairwise balance [6]. It expresses the equality between
the probability fluxes flowing from C′ to C, and from C to C′′. In the particular
case where p = 1/2, or more generally when the dynamics is symmetric, then
(6.7) becomes the condition for detailed balance

M(C|C′)P(C′) = M(C′|C)P(C) .

6.1.3 Equilibrium Urn Models with Independent Sites

We now adopt a completely different point of view. We consider equilibrium
urn models with independent sites, on which a dynamics is then defined, in
such a way that equilibrium is recovered at long times.

As above, we consider a finite connected graph, made of M sites (or urns),
on which N particles are distributed. The number of particles on site i is
the random variable Ni, with

∑
Ni = N . The total energy of the system is

defined as the sum

E(N1, . . . , NM ) =
M∑

i=1

E(Ni) .
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Let
pNi

= e−βE(Ni) (6.9)

be the unnormalized Boltzmann weight attached to site i. Then, clearly, the
probability of a configuration of the system is given by the product form (6.1),
and ZM,N appears as the usual partition function for this statistical mechan-
ical system.

We now define a dynamics for this model, such that equilibrium is attained
in the limit of long times. We therefore choose a rule obeying detailed balance
for the move of a particle. This implies that the dynamics should be symmetric.
Restricting to the one-dimensional case, (p = 1/2), if Ni = k and Ni±1 = l,
we have

pkpl Wk,l = pk−1pl+1 Wl+1,k−1 , (6.10)

which expresses the probability balance between the configurations {Nd =
k,Na = l} where (d = i, a = i ± 1), and {Nd = l + 1, Na = k − 1} where
(d = i ± 1, a = i). It applies as well to the case of the complete graph.
For example, with the Metropolis rule, the move is allowed with probability
min(1, exp(−β∆E)), where ∆E is the change in energy due to the move.

Let us mention two well-studied models in this class: the backgammon
model and the zeta-urn model, that we briefly describe. The backgammon
model is a simple example of a system which exhibits slow relaxation due to
entropy barriers [7, 8]. The following choice of an energy function is done:

E(Ni) = −δ(Ni, 0) .

The statics of this model is trivial. Its interest lies in its dynamical behaviour.
The dynamics of the model has been thoroughly studied in the mean-field
geometry, with Metropolis dynamics, and with the additional rule that a par-
ticle (instead of a site) is chosen at random. The rate for the Metropolis rule
reads

Wk,l = min
(

1,
pk−1pl+1

pkpl

)

.

From (6.9), we have

p0 = eβ , pk = 1 , (k > 1) ,

and therefore Wk,0 = e−β for any k > 1, and Wk,l = 1 otherwise, or in
compact form:

Wk,l = 1 + (e−β − 1)δl,0(1 − δk,1) (k > 0) .

As can be read on this expression, at low temperature increasing the number
of empty sites is not favoured. The total energy is indeed equal to minus the
number of empty sites, so that particles tend to condensate in fewer and fewer
sites as times passes, at least at low temperature.

The static zeta urn model has energy function
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E(Ni) = ln(Ni + 1) , (6.11)

hence
pk =

1
(1 + k)β

.

The model was initially introduced as a mean-field model of discretized quan-
tum gravity [9]. Its dynamics was subsequently defined and investigated in
the mean-field geometry with heat-bath dynamics [10,11].

If instead, the transfer rate is taken to be that of a ZRP, with Wk,l = uk,
where uk = pk−1/pk, the universal properties of the dynamics of the zeta urn
model are not changed [12]. We thus get

uk =
(

1 +
1
k

)β

≈ 1 +
β

k
.

The model is therefore in the same universality class as the ZRP with conden-
sation studied in the rest of this text, and defined with the rate uk = 1+ b/k.
The parameter b for this model can therefore be identified with the inverse
temperature.

To summarise at this point, we have so far encountered two classes of
dynamical urn models with stationary product measures. On the one hand,
ZRP are defined for any value of the drive, and are such that the transfer rate
Wk,l only depends on k. On the other hand, equilibrium urn models with in-
dependent sites are defined from the start without drive, but the transfer rate
has the full dependence in both k and l. A natural question to ask is whether
there exist models possessing both features, namely models with stationary
product measure, even when submitted to a drive, and with transfer rate Wk,l

not restricted to depend only on k.

6.1.4 Dynamical Urn Models with Stationary Product Measure

We address the question just posed. Given a DUM, what choice of rate Wk,l is
compatible with a stationary measure of the form (6.1), even if the dynamics
is not symmetric?

Let us restrict to the case of the one-dimensional geometry with asymmet-
ric hops. The results are as follows:

• In the general case, 0 < p < 1, two conditions are imposed on the rate
Wk,l. The first condition is

pkpl Wk,l = pk−1pl+1 Wl+1,k−1 . (6.12)

The second condition reads

Wk,l −Wl,k = Wk,0 −Wl,0 . (6.13)

Equation (6.12) expresses the condition of pairwise balance.
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• In the symmetric case (p = 1/2), the only condition imposed on the trans-
fer rate is (6.12), or equivalently (6.10). It expresses the condition of de-
tailed balance. In other words, if the stationary measure is a product, it is
necessarily an equilibrium measure and we are taken back to the situation
of Sect. 6.1.3.

Let us give the proof. By hypothesis, the stationary probability is given and
has the product form (6.1), with given pNi

. We rewrite the master equation
(6.5) as an equality between gain and loss terms, after dividing both hand
sides by P(C),

pGR + qGL = pLR + qLL ,

with right and left contributions

LR =
∑

i

WNi,Ni+1 , LL =
∑

i

WNi+1,Ni
,

GR =
∑

i

WNi+1,Ni+1−1
pNi+1pNi+1−1

pNi
pNi+1

,

GL =
∑

i

WNi+1+1,Ni−1
pNi+1+1pNi−1

pNi
pNi+1

.

We now specialize to the configuration where all sites are empty except
for sites i and i+ 1:

C = {N1 = 0, . . . , Ni−1 = 0, Ni = k,Ni+1 = l, Ni+2 = 0, . . . , NM = 0} .

We obtain

p

(

W1,k−1
p1pk−1

p0pk
+Wk+1,l−1

pk+1pl−1

pkpl

)

+q
(

W1,l−1
p1pl−1

p0pl
+Wl+1,k−1

pk−1pl+1

pkpl

)

= p(Wk,l +Wl,0) + q(Wl,k +Wk,0) . (6.14)

Taking k = 0, (6.14) reduces to

p1pl−1 W1,l−1 = p0pl Wl,0 , (6.15)

which expresses the probability balance between the configurations {Nd =
1, Na = l − 1} and {Nd = l, Na = 0}. This equality is then used in (6.14) to
yield the fundamental equation

p(Wk,l −Wk,0) + q(Wl,k −Wl,0)

= p

(

Wk+1,l−1
pk+1pl−1

pkpl
−Wl,0

)

+ q

(

Wl+1,k−1
pk−1pl+1

pkpl
−Wk,0

)

. (6.16)

From this equation, the two conditions (6.12) and (6.13) are obtained, as
shown in the appendix. The conditions thus found are necessary. They are also
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sufficient as one can convince oneself by redoing the reasoning for a generic
configuration. The analysis done here applies as well to the complete graph,
for which the dynamics is symmetric.

Coming back to the case of a ZRP, condition (6.13) is trivially satisfied,
while the pairwise balance condition (6.12) yields (6.8), rewritten here for
convenience,

pkpl uk = pk−1pl+1 ul+1 .

The ZRP appears as the minimal model of the class of DUM leading to a
product measure in the stationary state independent of the asymmetry. It is
important to realize that this measure is that of an equilibrium urn model
with independent sites (see Subsect. 6.1.3) and therefore any result on the
statics of a ZRP pertains to the field of equilibrium statistical mechanics.

The original work on the question posed in the present section is due
to [13]. The dynamical urn model described in the present notes is named a
misanthrope process in [13] because the rates Wk,l considered in this reference
are increasing functions of k. Yet another presentation, restricted to the 1D
totally asymmetric case (p = 1) can be found in [4].

6.2 A Counterexample

Let us now examine the case where the transfer rate only depends on the
occupation of the arrival site,

Wk,l = vl(1 − δk,0) . (6.17)

If the dynamics is symmetric, the only constraint to take into account in
order to have product probability in the stationary state is the detailed bal-
ance condition (6.12), which reads here pk+1pl−1 vl−1 = pkpl vk. The relation
pl−1 vl−1 = pl follows, which determines the measure fully. However, if the
dynamics is not symmetric, (6.13) is violated by (6.17), which rules out the
possibility of stationary product measure for this case.

Let us illustrate the difficulty on the simple case of a system of M = 3
sites. The stationary master equation reads

p [P(N1 + 1, N2 − 1, N3) vN2−1(1 − δ(N2, 0)) + c.p.+ c.p.]
+ q [P(N1 + 1, N2, N3 − 1) vN3−1(1 − δ(N3, 0)) + c.p.+ c.p.]

= pP(N1, N2, N3)[vN1(1 − δ(N3, 0)) + c.p.+ c.p.]
+ qP(N1, N2, N3)[vN1(1 − δ(N2, 0)) + c.p.+ c.p.] .

There is no way of pairing the terms in the master equation to obtain their
mutual cancellation if p �= 1/2, while this is possible for p = 1/2. More
generally, the stationary probability is unknown for the asymmetric process
(for arbitrary system size M) [14].
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6.3 Two-Species ZRP: Conditions for Product Measure

A simple generalization of the ZRP defined so far consists in considering two
(or more generally n) coexisting species on each site [15,16], named particles
of type A and B respectively. The hopping rates for A and B particles only
depend on the occupations of the departure site: NA

i = k, NB
i = l. They

are respectively denoted by uk,l and vk,l. The new fact is that the condition
for product stationary measure imposes a constraint on the rates uk,l and
vk,l [15, 16], given by equation (6.21).

We revisit this problem, keeping the line of thought followed for the (single-
species) ZRP in Sect. 6.1. We want to show that, as was the case for the
single-species ZRP, for the two-species ZRP satisfying (6.21) the following
properties come together:

• The stationary probability is a product and is insensitive to the bias. It is
the stationary probability of an equilibrium urn model with independent
sites.

• If the dynamics is symmetric, the process is reversible, i.e. satisfies detailed
balance, otherwise, in the presence of a bias, pairwise balance holds.

6.3.1 Equilibrium Urn Models with Independent Sites

Let us first consider an equilibrium urn model for two species with independent
sites. A configuration of the system is denoted by C = {N1, . . . ,NM}, where
Ni = (NA

i , N
B
i ). The energy is given by the sum

E(C) =
∑

i

E(Ni) .

The Boltzmann weight reads

P(C) =
1

ZM,NA,NB

∏

i

pNi
, (6.18)

where NA and NB are respectively the total number of A and B particles,
and Z the partition function. A dynamics yielding this equilibrium measure
should fulfill detailed balance. We restrict the rates to depend only on the
departure site. With for the departure site: NA

d = k,NB
d = l, and the arrival

site: NA
a = m,NB

a = n, we must impose

pk,l pm,n uk,l = pk−1,l pm+1,n um+1,n

pk,l pm,n vk,l = pk,l−1 pm,n+1 vm,n+1 , (6.19)

hence,
uk,l pk,l = pk−1,l , vk,l pk,l = pk,l−1 . (6.20)

These relations generalise (6.2). Consideration of the two possible paths lead-
ing from pk,l to pk−1,l−1, using (6.21), imposes a “gauge” condition on the
rates:

uk,l vk−1,l = vk,l uk,l−1 . (6.21)
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6.3.2 Product Measure

We can now proceed as for the single-species ZRP. We claim that, even in
the presence of a bias, (6.18), (6.20), hold. The proof is by inspection: (6.18)
carried into the master equation of the process is seen to be a solution if
(6.19), or (6.20), hold. The constraint (6.21) follows. See [15,16].

6.3.3 Reversibility Implies Stationary Product Measure

Finally we show by a direct route that (6.21) is a consequence of reversibility,
when the dynamics is symmetric. We use the Kolmogorov condition, a nec-
essary and sufficient condition for the reversibility of a Markov process (i.e.,
for detailed balance to hold), which states that the product of rates along
any cycle in the state space of the process and for the reverse cycle should be
equal [17,18]. Consider the configuration

(N1 = (k, l),N2 = (m,n), . . .) .

We consider the following cycle in the space of states of the process

(k, l;m,n) → (k, l − 1;m,n+ 1) → (k + 1, l − 1;m− 1, n+ 1)
→ (k + 1, l;m− 1, n) → (k, l;m,n) .

For the cycle considered above, the Kolmogorov condition yields
vk,l uk+1,l

vk+1,l uk+1,l−1
=

um,n vm,n+1

um,n+1 vm−1,n+1
.

This condition is satisfied if and only if (6.21) holds.

6.3.4 An Example of a Two-Species ZRP
with Non Product Stationary Measure

Consider the ZRP defined by the following rates [19]

uk,l = 1 +
b

l
, vk,l = 1 +

b

k
.

These rates violate (6.21), and therefore, as explained above, this process
violates time reversal symmetry even in the absence of a bias. The study of
the stationary properties of the model is addressed in [20].

6.4 Two Extreme Cases

6.4.1 The Case of Two Sites

We come back to the case of a general dynamical urn model, with one species,
where now the number of sites is M = 2. This case is interesting for several
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reasons. Firstly the model stands by itself, for instance the Ehrenfest urn
model belongs to this class, as shown below. Secondly, it illustrates some
aspects of the general theory for a system of arbitrary size M . Finally, it
relates to the other case considered in this section, a thermodynamic system
on the complete graph, the master equation of which is formally that of a
two-site system.

Since N2 = N − N1, a configuration of the system is entirely defined
by the occupation of site 1, N1, and the hopping rate only depends on one
variable: Wk,l = uk. Let us denote the occupation probability of site 1, i.e.,
the probability of a configuration of the system, by

fk(t) = P(N1(t) = k) .

It obeys the master equation

dfk(t)
dt

= µk+1 fk+1 + λk−1 fk−1 − (µk + λk)fk (1 ≤ k ≤ N − 1) ,

df0(t)
dt

= µ1 f1 − λ0f0 , (6.22)

dfN (t)
dt

= λN−1 fN−1 − µNfN ,

where λk and µk are respectively the rate at which a particle enters site 1,
coming from site 2, or leaves site 1 for site 2:

λk = uN−k , µk = uk .

The equations for k = 0 or k = N are special, since u0 = 0. The above
equations describe a biased random walk on the interval (0, N), with reflecting
boundaries at 0 and N , the position of the walker being the random variable
N1(t), i.e., the number of particles on site 1.

The time-independent solution to (6.22) satisfies

µk+1 fk+1,eq − λk fk,eq = . . . = µ1 f1,eq − λ0 f0,eq = 0 ,

which yields the detailed balance condition at equilibrium

µk+1 fk+1,eq = λk fk,eq . (6.23)

From this equation it is easy to obtain

fk,eq =
pk pN−k

Z2,N
, Z2,N =

N∑

k=0

pkpN−k ,

where the pk are given by (6.3). These expressions are special instances of
Eqs. (6.1) and (6.4) which hold for the general case. Elements on the dynamics
of the two-site model can be found in [21].
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Remark. This historical Ehrenfest model [2,3] is a special instance of a 2-site
dynamical urn model. Consider N particles, labeled from 1 to N , which are
distributed in two urns (sites). At random times, given by a Poisson process
with unit rate, a particle is chosen at random (i.e., an integer between 1 and N
is chosen at random), and moved from the site on which it is to the other site.
The master equation reads

dfk(t)
dt

=
k + 1
N

fk+1(t) +
N + 1 − k

N
fk−1(t) − fk(t) . (6.24)

Indeed, a move of a particle from site number 1 to site number 2 (resp. from
site number 2 to site number 1) occurs with a rate k/N (resp. (N − k)/N)
per unit time.

Note that the rule of choosing a labeled particle is different from the rule
adopted above for dynamical urn models (as was already the case for the
backgammon model). Yet we can describe this model as a 2-site dynamical
urn model, by taking uk = k (dropping the factor N which enters the scale
of time). Then pk = 1/k!, and the distribution of particles amongst the two
sites is binomial,

fk,eq = 2−N

(
N

k

)

(k = 0, . . . , N) , (6.25)

as is well known for the Ehrenfest model.

6.4.2 A Thermodynamic System on the Complete Graph

In the mean-field geometry, for a thermodynamic system, the temporal evo-
lution of the occupation probability fk(t) is given by the master equation

dfk(t)
dt

= µk+1 fk+1 + λk−1 fk−1 − (µk + λk)fk (k ≥ 1) ,

df0(t)
dt

= µ1 f1 − λ0f0 , (6.26)

where

µk = uk , (k > 0) , λk =
∞∑

l=1

ulfl ≡ ūt , (k ≥ 0) . (6.27)

These are respectively the rates at which a particle leaves site 1, or arrives
on this site. In other words, on the complete graph, all sites other than site 1
play the role of a single site from which particles are emitted with rate ūt, and
therefore (6.26) is formally similar to the master equation (6.22) for a system
of two sites. In the present case this set of equations is non linear because ūt

is itself a function of the fk(t).
In the stationary state the detailed balance condition (6.23) reads
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fk+1,eq

fk,eq
=

λk

µk+1
=

ūeq

uk+1
,

yielding

fk,eq =
λ0 . . . λk−1

µ1 . . . µk
f0,eq ,

where f0,eq is fixed by normalisation. Hence

fk,eq =
pkū

k
eq∑∞

k=0 pkūk
eq

, (6.28)

with the pk given by (6.3). This expression is a particular instance of the
general case (6.37).

6.5 Statics of ZRP: Fundamental Properties

We collect here the results found so far concerning single-species ZRP’s. A
ZRP is a dynamical urn model, for which the rate of transfer of a particle,
uk, only depends on the occupation of the departure site, k. The stationary
state of a ZRP is that of an equilibrium urn model with independent sites: the
probability of a configuration of the system is (independently of the asymme-
try)

P(N1, . . . , NM ) =
1

ZM,N

M∏

i=1

pNi
, (6.29)

with partition function

ZM,N =
∑

N1

· · ·
∑

NM

pN1 · · · pNM
δ

(
∑

i

Ni, N

)

. (6.30)

The factor pNi
obeys the pairwise balance condition (6.12), i.e., pkpl uk =

pk−1pl+1 ul+1, and hence
pk uk = pk−1 ,

which gives the explicit form of pk (for uk given)

p0 = 1 , pk =
1

u1 . . . uk
. (6.31)

The value given to p0 is arbitrary. The energy function associated to the
underlying equilibrium urn model mentioned above is defined using Eq. (6.9).

The partition function ZM,N obeys the recursion formula

ZM,N =
N∑

k=0

pk ZM−1,N−k . (6.32)
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This ensures that the stationary single-site occupation probability

fk,st = P(N1 = k) =
pk ZM−1,N−k

ZM,N
(6.33)

is normalised. We have

Z0,N = δN,0 , Z1,N = pN , Z2,N =
N∑

k=0

pkpN−k , (6.34)

and so on. Using an integral representation of the Kronecker delta function,

δ(m,n) =
∮

dz
2πizn+1

zm ,

we obtain
ZM,N =

∮
dz

2πizN+1
P (z)M , (6.35)

where the generating series of the weights pk reads

P (z) =
∑

k≥0

pkz
k .

In other words, ZM,N is the coefficient of zN in P (z)M . Static properties of
the ZRP are therefore entirely encoded in this series.

In the thermodynamic limit (M → ∞ at fixed density N/M = ρ), the free
energy per site,

F = − lim
M→∞

1
M

lnZM,N ,

can be obtained by evaluating the contour integral in (6.35) by the saddle-
point method. The saddle-point value z0 depends on the density ρ through
the equation

z0P
′(z0)

P (z0)
= ρ . (6.36)

The free energy per site is F = ρ ln z0−lnP (z0), and the stationary occupation
probability reads

fk,st =
pk z

k
0

P (z0)
. (6.37)

Equation (6.36) can be rewritten as

〈N1〉 =
∑

k

kfk,st = ρ . (6.38)

Note that the function

ρ(z0) = z0
P ′(z0)
P (z0)
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is increasing with z0 because

z0
dρ(z0)
dz0

= VarN1 .

Finally the stationary average rate reads

ūst(M,N) = 〈uN1〉 =
∑

k

uk fk,st =
∑

k

uk
pk ZM−1,N−k

ZM,N
=

ZM,N−1

ZM,N
. (6.39)

In the thermodynamic limit, we have ūst = z0 (defined in (6.36) above). The
expression (6.28) found for the case of the complete graph in the thermody-
namic limit is a particular example of (6.37).

6.6 Statics of ZRP: Examples and the Phenomenon
of Condensation

We illustrate through examples the considerations of the previous section. In
particular we discuss the possible solutions of Eq. (6.36) (or (6.38)). Two pos-
sible situations can arise. Either ρ(z0) is allowed to increase without bounds,
in which case the equation has a solution in z0 for any value of ρ. Or ρ(z0)
reaches a maximal value, ρc, in which case the equation has no solution if
ρ > ρc.

6.6.1 Two Simple Examples

Let uk = k. This model can be seen as a multi-urn generalisation of the
Ehrenfest model. We have P (z) = ez. The radius of convergence of this series
is infinite. Hence Eq. (6.36) has a solution for any value of ρ: ρ(z0) = z0, hence
z0 = ρ, and

fk,st = e−ρ ρ
k

k!
,

which is a Poisson distribution. The fast decay of the distribution is charac-
teristic of an homogeneous fluid phase.

As a second example let uk = 1. Then P (z) = 1/(1 − z). The partition
function of a finite system is

ZM,N =
(
M +N − 1

N

)

.

The radius of convergence of P (z) is equal to 1. At this maximal allowed value
of z, ρ(z) = z/(1− z) is infinite. Therefore (6.36) has a solution for any value
of ρ: z0 = ρ/(1 + ρ), and finally

fk,st =
1

1 + ρ

(
ρ

1 + ρ

)k

.

The system is again in a fluid phase.
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6.6.2 The Canonical Example for the Phenomenon
of Condensation

We consider the ZRP with transfer rate

uk = 1 +
b

k
.

This case, and closely related models, have been studied in various refer-
ences [9–12, 22–27]. We follow here the approach and notations of [21]. For
this choice of rate,

pk =
Γ (b+ 1) k!
Γ (k + b+ 1)

=
∫ 1

0

duuk b(1 − u)b−1 ≈ Γ (b+ 1)
kb

,

P (z) =
∫ 1

0

du
b(1 − u)b−1

1 − zu
= 2F1(1, 1; b+ 1; z) , (6.40)

where 2F1 is the hypergeometric function. The function P (z) has a branch
cut at z = 1, with a singular part of the form2

Psg(z) ≈ AP (1)(1 − z)b−1 ,

so that P (z) is only differentiable n ≡ Int(b) − 1 many times at z = 1:

P (z) ≈ P (1) + (1 − z)P ′(1) + · · · + (1 − z)n

n!
P (n)(1) + Psg(z) .

The following values are of interest:

P (1) =
b

b− 1
, A =

(b− 1)π
sinπb

,

P ′(1) =
b

(b− 1)(b− 2)
, P ′′(1) =

4b
(b− 1)(b− 2)(b− 3)

.
(6.41)

For b ≤ 2, ρ(1) is infinite. The system is in a fluid phase:

fk,st ∼ k−b e−k| ln z0| (6.42)

For b > 2, ρ(1) is finite. The system has a continuous phase transition at
a finite critical density

ρc =
P ′(1)
P (1)

=
∑

k k pk∑
k pk

=
1

b− 2
,

such that the saddle point z0 reaches the singular point z = 1. This critical
density separates a fluid phase (ρ < ρc) and a condensed phase (ρ > ρc).
2 Whenever b = n ≥ 2 is an integer, the amplitude A diverges. The singular part

of the generating series is of the form Psg(z) ≈ n(−1)n(1 − z)n−1 ln(1 − z).
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Fluid Phase (ρ < ρc)

The equation (6.36) has a solution for any ρ < ρc. The single site probability
has the form (6.42).

Critical Density (ρ = ρc)

The occupation probability

fk,st =
pk

P (1)
≈ (b− 1)Γ (b)

kb
(6.43)

falls off as a power-law in the thermodynamic limit. The critical free energy
reads

Fc = − lnP (1) = − ln
b

b− 1
.

The second moment of the occupation probability,

µc = 〈N2
1 〉 =

∑

k≥0

k2 fk,st =
P ′(1) + P ′′(1)

P (1)
=

b+ 1
(b− 2)(b− 3)

, (6.44)

is convergent for b > 3 (regime of normal fluctuations), and divergent for
2 < b < 3 (regime of anomalous fluctuations).

Condensed Phase (ρ > ρc)

A large and finite system in the condensed phase essentially consists of a
uniform critical background, containing on average Nc = Mρc particles, and
of a macroscopic condensate, containing on average ∆ = N −Nc = M(ρ−ρc)
excess particles with respect to the critical state.

The occupation probability fk,st accordingly splits into two main contri-
butions [24]. The contribution of the critical background, corresponding to
small values of the occupation (k 	 M), is approximately given by (6.43).
The contribution of the condensate shows up as a hump located around k = ∆.
The hump is a Gaussian whose width scales as M1/2 whenever µc is finite,
i.e., for b > 3, whereas it has power-law tails and a larger width, scaling as
M1/(b−1), in the regime of anomalous fluctuations (2 < b < 3). The weight of
the condensate probability hump is approximately 1/M , in accord with the
picture that the system typically contains a well-defined condensate located
on a single site at any given time.

6.6.3 Rate uk = 1 + a/kσ: Stretched-Exponential
Critical Behaviour

Consider the ZRP with hopping rate [21,22,26]
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uk = 1 +
a

kσ
, (6.45)

where σ is an arbitrary exponent. The situation of interest corresponds to
0 < σ < 1. Equation (6.3) leads to the estimate

pk ∼ exp

(

−a
k∑

�=1

1
�σ

)

∼ exp
(

− a

1 − σ
k1−σ

)

. (6.46)

The generating series P (z) has an essential singularity at z = 1 with an
exponentially small discontinuity. The critical density

ρc =
P ′(1)
P (1)

=
∑

k k pk∑
k pk

is finite. The occupation probability at the critical density, fk,st = pk/P (1),
decays as a stretched exponential law.

Part II: Dynamics (Sects. 6.7–6.9)

6.7 Zero-Range Processes: Nonstationary Dynamics (I)

The question is to determine the temporal evolution of the system starting
from a random disordered initial condition. Here we study the dynamics of
the class of ZRP giving rise to a condensation transition in their stationary
state. For simplicity we will choose the hopping rate

uk = 1 +
b

k
.

We address the question first in the fully connected geometry.
The same question can be addressed for dynamical urn models (see e.g. [8]).

The analysis that follows [12], as well as that contained in the next section,
are essentially the same as that performed for the zeta-urn model [10,11].

6.7.1 Dynamics on the Complete Graph

We wish to determine the temporal evolution of the occupation probability
fk(t). Conservation of probability and of density yields

∞∑

k=0

fk(t) = 1 , (6.47)

∞∑

k=1

k fk(t) = ρ , (6.48)
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where we have taken the thermodynamic limit N → ∞,M → ∞, with fixed
density ρ = N/M . We consider a system with Poissonian initial distribution
of occupation probabilities,

fk(0) = e−ρ ρ
k

k!
,

i.e., such that initially particles are distributed at random amongst sites.
Since the Eq. (6.26) are non-linear they have no explicit solution in closed

form. Yet one can extract from them an analytical description of the dynamics
of the system at long times, both in the condensed phase, and at criticality.
The structure of the reasoning borrows to former studies on urn models [10,
11]. (For a review, see [8].)

As we show below, there exists two different regimes in the evolution of
the system, both in the condensed phase or at criticality, which we study
successively.

(a) Nonequilibrium Dynamics of Condensation (ρ > ρc)

Since ūeq = 1, we set, for large times,

ūt ≈ 1 +A εt , (6.49)

where the small time scale εt is to be determined, and A is an unknown
amplitude.

Regime I: k fixed, t large.

For t large enough, sites empty (uk) faster than they fill (ūt). In this regime
there is convergence to equilibrium, hence we set

fk(t) ≈ fk,eq(1 + vk εt) , (6.50)

with fk,eq given by (6.43), and where the vk are unknown. This expression
carried into (6.26) yields the stationary equation ḟk = 0, because the deriva-
tive ḟk, proportional to ε̇t, is negligible compared to the right-hand side. We
thus obtain an equation similar to the detailed balance condition:

fk+1,eq

fk,eq

1 + vk+1 εt

1 + vk εt
=

1 +Aεt

uk+1
.

Using (6.43) and (6.3), we obtain, at leading order in εt, vk+1 − vk = A, and
finally

vk = v0 + k A . (6.51)

At this stage, v0 and the amplitude A are still to be determined.
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Regime II: k and t are simultaneously large.

This is the scaling regime, with scaling variable x = k εt. Following the treat-
ment of [10,11], we look for a similarity solution of (6.26) of the form

fk(t) ≈ (ρ− ρc) ε2t g(x) . (6.52)

We thus obtain for g(x) the linear differential equation

g′′(x) +
(
x

2
−A+

b

x

)

g′(x) +
(

1 − b

x2

)

g(x) = 0 ,

with εt ≈ t−
1
2 . This is precisely the differential equation found in [10,11], for

the zeta-urn model. The amplitude A can be determined by the fact that the
equation has an acceptable solution g(x) vanishing as x → 0 and x → ∞ [10].
The amplitude A and the scaling function g(x) are universal quantities, only
depending on the value of b. The sum rules (6.47) and (6.48) yield respectively

∫ ∞

0

dx g(x) =
v0 +Aρc

ρc − ρ
,

∫ ∞

0

dxxg(x) = 1 .

The differential equation above has no closed form solution. However further
information on the form of the solution g(x) can be found in [10,11].

An intuitive description of the dynamics of condensation in the scaling
regime is as follows. The typical occupancy kcond of the sites making the
condensate scales as t

1
2 . The total number of particles in the condensate is

equal to M(ρ − ρc), the remaining M ρc lying in the fluid. Therefore the
number of sites belonging to the condensate scales as M(ρ− ρc)t−

1
2 .

(b) Nonequilibrium Critical Dynamics (ρ = ρc)

The analysis follows closely that done in [11]. We set

ūt ≈ 1 +Aεt ,

with εt = t−ω, where the exponent ω is to be determined, and we consider
the same two regimes as above. In regime I, we still set (6.50) for fk(t). The
reasoning leading to the relationship vk = v0 + k A (see (6.51)) is still valid
here. In regime II, we look for a similarity solution to (6.26) of the form

fk(t) ≈ fk,eq gc(x) x = k t−
1
2 . (6.53)

Indeed, for any large but finite time t, the system looks critical, i.e., the occu-
pation probabilities fk(t) have essentially converged toward their equilibrium
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values (6.43), for k 	 t1/2, while for k � t1/2 the system still looks disor-
dered. The fk(t) are expected to fall off very fast, which is confirmed by the
following analysis.

The sum rules (6.47) and (6.48) lead respectively to the following equa-
tions, provided that b > 3,

v0 +Aρc = 0 , (6.54)

t−ω (v0ρc +Aµc) = t−(b−2)/2(b− 1)Γ (b)
∫ ∞

0

duu1−b(1 − gc(u)) , (6.55)

where µc =
∑

k2 fk,eq is given in Eq. (6.44). Equation (6.55) fixes the value
of ω:

ω = (b− 2)/2 . (6.56)

The differential equation obeyed by gc(x) is obtained by carrying (6.53) into
(6.26). It reads

g′′c (x) +
(
x

2
− b

x

)

g′c(x) = 0 ,

the solution of which is, with gc(0) = 1,

gc(x) =
2−b

Γ ( b+1
2 )

∫ ∞

x

dy ybe−y2/4 . (6.57)

The fall-off of gc(x) for x � 1 is very fast: gc(x) ∼ exp(−x2/4), hence fk(t) ∼
exp(−k2/4t). We finally obtain

A =
(b− 1)Γ (b)
µc − ρ2

c

∫ ∞

0

duu1−b(1 − gc(u)) =
(b− 2)(b− 3)

b− 1
Γ

(
b

2

)

.

Let us mention that for any hopping rate of the form uk ≈ 1 + b/k, the
scaling functions, g(x) in the condensed phase (more precisely: g(x)/(ρ−ρc)),
and gc(x) at criticality, are universal. In both cases the scaling variable is
x = k t−1/2. The critical density ρc, and, as a consequence, any quantity
depending on ρc, such as the amplitude v0, are non universal, with values
depending on the precise definition of uk. As noted above, the amplitude A
is a universal quantity in the condensed phase.

6.7.2 Late Stages of the Dynamics and the Case of One Dimension

As mentioned above, in the first stage of the dynamics, in the MF geometry,
the number of most populated sites decays as M/t1/2. Hence, after a time of
order M2, the system contains a finite number of highly populated sites, i.e.,
condensate precursors.

The late stage of the non-stationary dynamics, where all but one of the
precursors die out, is thus expected to also last a length of time of the order
of the diffusive timescale M2. This is substantiated by numerical simulations
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in [25]. Another argument is presented in Subsect. 6.9.4. The whole non-
stationary process of the formation of the condensate is therefore characterised
by a single timescale

τnon−st ∼ M2 .

The same results hold for the 1DAS case. The analysis relies upon numer-
ical work or heuristic and scaling arguments [12,25].

A similar scenario holds in the 1DS geometry, the only difference being
that τnon−st now scales as M3. The shift of the dynamical exponent by one
unit in the 1DS geometry has a common origin [12, 25]: it stems from the
Gambler’s ruin problem [28]. An analogous phenomenon is encountered for
example in the coarsening law for the domain growth, and in the motion of a
tagged particle, in 1D Kawasaki dynamics [29].

We refer to the original references for further results (scaling functions,
critical case, etc.).

6.8 Zero-Range Processes: Nonequilibrium
Dynamics (II)

So far we considered the dynamics of one-time quantities, related to the ran-
dom variable N1(t). We now explore another facet of the nonequilibrium dy-
namics of the ZRP with hopping rate uk = 1 + b/k, namely the two-time
nonstationary aspects of its dynamics. This essentially means that any func-
tion of the two times depends on both times, instead of depending on their
difference, which would be the case at stationarity. The situation here is anal-
ogous to that encountered when a ferromagnetic spin system is quenched from
a high temperature, corresponding to an initial disordered configuration, to a
lower temperature, T ≤ Tc [30, 31].

We consider the same ZRP as in the previous section, on the complete
graph, in the thermodynamic limit. The system relaxes from a nonequilibrium
initial condition towards equilibrium. In order to characterize the fluctuations
of the local density of particles, N1(t), around its mean 〈N1(t)〉 = ρ, we study
its associated two-time correlation and response functions, and fluctuation-
dissipation ratio.

6.8.1 General Framework

The connected two-time correlation function of the density between time s
(waiting time) and time t (observation time), with s ≤ t, is defined as

C(t, s) = 〈N1(s)N1(t)〉 − ρ2 .

It can be rewritten as

C(t, s) =
∑

k≥1

k γk(t, s) − ρ2 ,
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where the function γk(t, s) is defined by

γk(t, s) =
∑

j≥1

j fj(s)P{N1(t) = k | N1(s) = j}

with the initial value at t = s

γk(s, s) = k fk(s) .

Its temporal evolution for t ≥ s is given by the master equation (6.26):

∂γk(t, s)
∂t

= µk+1 γk+1 + λk−1 γk−1 −
(
µk + λk

)
γk (k ≥ 1) ,

∂γ0(t, s)
∂t

= µ1 γ1 − λ0 γ0 . (6.58)

The rates λk and µk are defined in (6.27). The rate λk only depends on the
fk(t), hence (6.58) are linear equations for the γk(t, s).

The local response function measures the influence on the mean density on
site number 1 of a perturbation in the canonically conjugate variable, i.e., the
local chemical potential acting on the same site. Suppose that site number 1
is subjected to a small time-dependent chemical potential α1(t), so that the
total reduced energy of the system (see Sect. 6.5) is now

βE
(
{Ni}

)
=

M∑

i=1

βE(Ni) + α1(t)N1 .

The mean density on site number 1 reads

〈N1(t)〉 = ρ+
∫ t

0

dsR(t, s)α1(s) + · · · ,

where only the term linear in α(s) is written explicitly. The kernel of the linear
response is the two-time response function

R(t, s) =
δ〈N1(t)〉
δα1(s)

.

The temporal evolution of this function is given by a master equation similar
to (6.26) [11].

The zero-range processes that we consider here have a fast convergence to-
wards equilibrium, with a finite relaxation time τrelax in their fluid phase, as
is the case for a generic statistical-mechanical model in its high-temperature
disordered phase. If the earlier time exceeds the relaxation time (s � τrelax),
the system is at equilibrium. One-time quantities take their equilibrium val-
ues. Two-time quantities, such as the correlation and response functions, are
invariant under time translations:
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C(t, s) = Ceq(τ) , R(t, s) = Req(τ) , (6.59)

where τ = t− s ≥ 0. They are related by the fluctuation-dissipation theorem

Req(τ) = −dCeq(τ)
dτ

. (6.60)

In the condensed phase and at criticality the relaxation time τrelax becomes
infinite. If the waiting time s and the observation time t are much smaller than
τrelax, both time-translation invariance (6.59) and the fluctuation-dissipation
theorem (6.60) are violated. It is convenient [32] to characterize departure
from equilibrium by the fluctuation-dissipation ratio

X(t, s) =
R(t, s)
∂C(t, s)

∂s

. (6.61)

In general, this dimensionless quantity depends on both times s and t and on
the observable under consideration. It may also exhibit a non-trivial scaling
behavior in the two-time plane. In all known cases it is observed that

0 ≤ X(t, s) ≤ 1 .

6.8.2 Application: ZRP with Condensation (uk = 1 + b/k)

Nonequilibrium Critical Dynamics (ρ = ρc)

Let us first note that the variance of the population of site number 1 converges
to its equilibrium value Ceq = µc − ρ2

c as a power law:

C(t, t) = 〈N1(t)2〉 − ρ2
c ≈ Ceq −

23−b t−(b−3)/2

(b− 3)Γ ((b+ 1)/2)
. (6.62)

The derivation of the behaviour of the two-time density correlation and re-
sponse functions is the same as in [11]. In the nonequilibrium scaling regime
(s, t � 1), one finds

C(t, s) ≈ s−(b−3)/2 Φ(x) ,
∂C(t, s)

∂s
≈ s−(b−1)/2 Φ1(x) ,

R(t, s) ≈ s−(b−1)/2 Φ2(x),

(6.63)

where
x = t/s ≥ 1 .

As a consequence, in the scaling regime, the fluctuation-dissipation ratio
X(t, s) only depends on x:

X(t, s) ≈ X (x) =
Φ2(x)
Φ1(x)

.
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The dimensionless scaling function X (x) is universal, and it admits a non-
trivial limit value in the regime where the two time variables s and t are well
separated in the scaling regime [33]:

X∞ = lim
s→∞

lim
t→∞

X(t, s) = X (∞) .

Explicit expressions for the above scaling functions can be derived, using
a spectral decomposition in Laguerre polynomials [11]. The limit fluctuation-
dissipation ratio thus obtained

X∞ =
b+ 1
b+ 2

(b > 3) ,

lies in an unusually high range (4/5 < X∞ < 1) for a critical system. In-
deed, statistical-mechanical models such as ferromagnets are observed to have
0 < X∞ ≤ 1/2 at their critical point. The upper bound X∞ = 1/2, corre-
sponding to the mean-field situation [33], is also observed in a range of simpler
models [32,34].

The above results illustrate general predictions on nonequilibrium critical
dynamics [31, 33–35]. The exponent of the waiting time s in the first line
of (6.63) already appears in (6.62). It is related to the anomalous dimension
of the observable under consideration, and would read (d− 2 + η)/zc for a d-
dimensional ferromagnet, where η is the equilibrium correlation exponent and
zc the dynamical critical exponent. The scaling functions Φ(x), Φ1,2(x) are
universal up to an overall multiplicative constant, and they obey a common
power-law fall-off in x−b/2. The latter exponent is not related to exponents
pertaining to usual equilibrium critical dynamics. It reads −λc/zc = Θc−d/zc

for a ferromagnet, where λc is the critical autocorrelation exponent [36] and
Θc is the critical initial-slip exponent [35].

Nonequilibrium Dynamics of Condensation (ρ > ρc)

In the scaling regime, two-time quantities are found to scale as [11]

C(t, s) ≈ (ρ− ρc)s1/2 Φ(x) , (x = t/s) ,
∂C(t, s)

∂s
≈ (ρ− ρc)s−1/2 Φ1(x) ,

R(t, s) ≈ (ρ− ρc)s−1/2 Φ2(x) ,

X(t, s) ≈ X (x) =
Φ2(x)
Φ1(x)

.

(6.64)

The scaling functions Φ(x), Φ1,2(x) have finite values, both at coinciding times
(x = 1) and in the limit of large time separations (x = ∞). The limit fluctua-
tion-dissipation ratio X∞ = X (∞) depends continuously on b throughout the
condensed phase (b > 2), and vanishes only as

X∞ = b−1/2 − b−3/4

4
+ · · ·
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for b large, which corresponds formally to low temperature, while coarsening
systems are known [37] to have identically X∞ = 0 throughout their low-
temperature phase. In Fig. 6.1 a summary of the values of X∞ is presented.

This dynamics is different from the usual phase-ordering dynamics [30].
Indeed, when a ferromagnet is quenched below its critical temperature, do-
main growth and phase separation take place in a statistically homogeneous
way, at least for an infinite system. In the present situation, condensation
takes place in a very inhomogeneous fashion, since fewer and fewer sites are
involved in the process.

Fig. 6.1. Plot of the limit fluctuation-dissipation ratio X∞ against b. Upper curve:
critical point (b > 3, ρ = ρc). Lower curve: condensed phase (b > 2, ρ > ρc). Thin
dashed lines: continuation of the results to lower values of b

6.8.3 One Dimension

For both the symmetric and asymmetric cases the response can be defined in
the same fashion as above. There is no analytical tools at our disposal to com-
pute these functions, even in the scaling regime. However, for the symmetric
case, the fluctuation-dissipation still holds at equilibrium, while it should be
violated in the stationary state of the asymmetric case.

6.9 Stationary Dynamics of the Condensate

6.9.1 The Question Posed

Consider a ferromagnetic system, an Ising spin system for instance. At equi-
librium in the low temperature phase, the spin symmetry is spontaneously
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Fig. 6.2. Dynamics of the condensate (1DS geometry with b = 4, M = 40, N = 80).
Upper panel: instantaneous number of particles Nmax(t) on the most populated site.
Lower panel: location imax(t) of that site

broken. There are two possible equilibrium states, one with positive magneti-
sation, the other one with negative magnetisation. However, if one observes a
large but finite system, then as time passes, the magnetisation keeps chang-
ing sign, the system flipping between the two possible equilibrium states.
Ergodicity is restored for a finite system. The typical time between two flips
is exponential in Ld−1, where L is the linear size of the system, and d the
dimension of space.

A similar situation occurs for in the condensed phase of a ZRP. Here
the spontaneously broken symmetry is translational invariance. For a large
but finite system in the stationary state, as time passes, the condensate keeps
moving across the system. It spends long lengths of time on a given site, before
suddenly disappearing and reappearing on another site. The typical value of
these lengths of time defines the characteristic time τ of the dynamics of the
condensate. The aim of this section is to analyse the nature of this motion
and in particular to characterise how τ scales with the system size M .

6.9.2 Numerical Observations

An intuitive understanding of the phenomenon is easily gained by perform-
ing Monte-Carlo simulations. These simulations, done in the three geome-
tries: mean-field (MF), one-dimensional asymmetric (1DAS) (p = 1), and
one-dimensional symmetric (1DS) (p = q = 1/2), lead to a common picture.
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The condensate is immobile for rather long lapses of time; it then performs
sudden random non-local jumps all over the system, at Poissonian times whose
characteristic scale grows rapidly with the system size M . Figure 6.2 illustrates
this process for the 1DS case, for a system of size M = 40, with N = 80
particles, i.e., ρ = 2, and b = 4, hence ρc = 1/2. The upper panel shows the
track of the instantaneous number of particles Nmax(t) on the most populated
site. The signal for Nmax(t) fluctuates around ∆ ≡ M(ρ− ρc) = 60, the mean
size of the condensate. The lower panel shows the label imax(t) of that site,
i.e., the location of the condensate. The non-local character of the motion of
the condensate is clearly visible, whereas the longest lapses of time where the
condensate stays still give a heuristic measure of the characteristic time τ .

We show in what follows that τ ∼ M b for the fully connected geometry
and the directed case, while τ ∼ M b+1 for the symmetric case. Moving the
condensate is therefore slower than forming the condensate (τnon−st ∼ M2,
τnon−st ∼ M3 respectively, see Subsect. 6.7.2).

6.9.3 Theoretical Analysis

All the idea relies on a problem of barrier crossing. Defining the potential as
Vk = − ln fk,st, then a dip in the probability fk,st corresponds to a barrier
in the potential. The flipping time τ is the time to cross the barrier, or the
first-passage time from right to left. Let us explain these ideas in more detail.

Fig. 6.3. Logarithmic plot of the occupation probability fk,st in the condensed phase
(b = 4, ρ = 4, ρc = 2), against the ratio k/M . Top to bottom: M = 20, 40, 80, 160,
and 320. Full lines: fk,st obtained by (6.32) and (6.33). Full (empty) symbols: maxima
(minima) of occupation probability. Dashed vertical lines: asymptotic locations of
the minima: k/M = ∆/(2M) = (ρ − ρc)/2 = 3/4, and of the maxima: k/M =
∆/M = ρ − ρc = 3/2
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We first analyse the behaviour of the occupation probability fk,st in the
condensed phase. Figure 6.3 shows a logarithmic plot of fk,st, computed using
equations (6.32) and (6.33), against the ratio k/M , for b = 4, ρ = 2, and
several values of M . This plot exhibits the following features.

• For k 	 M , the distribution fk,st is approximately given by the power
law (6.43) of an infinite critical system.

• The contribution of the condensate slowly builds up as a probability hump
around k = ∆ = M(ρ− ρc), the mean number of excess particles.

• One observes a broad and shallow probability “dip” in the region located
between the critical background and the condensate hump, i.e., in the
region k � 1 and ∆− k � 1.

The region of the dip is dominated by configurations where the excess particles
are shared by two sites. Indeed, one has (see [21] for a proof)

fk,st ≈ (b− 1)Γ (b)
∆b

kb(∆− k)b
(k � 1,∆− k � 1) . (6.65)

The observed locations of the maxima (k ≈ ∆) and minima (k ≈ ∆/2) of the
occupation probability corroborate this picture, as explained in the caption
of Fig. 6.3.

These observations lead to the following crude estimate for the character-
istic time:

τ ∼ 1
fmin

, (6.66)

since the minimum fmin of fk,st corresponds to a barrier to cross, in the spirit
of the Arrhenius law. The limiting scale of time is that required for the passage
of this potential barrier. Equation (6.65) implies that fmin is reached near the
middle of the dip region (k ≈ N/2), and therefore (6.66) yields

τ ∼ ∆b . (6.67)

We now present a more precise treatment. Assume that the condensate is
on site number 1 at the initial observation time (t = 0). The number N1(t) of
particles on that site is initially very large, N1(0) ≈ ∆, and therefore evolves
slowly, until the condensate dissolves into the critical background. Thus

• We single out N1(t) as the collective co-ordinate of the system, that is the
appropriate slow variable describing the dynamics of the condensate.

• We model the dynamics of N1(t) by (6.22), i.e., by a biased diffusive motion
on the interval k = 0, . . . , N . The left hopping rate is taken equal to the
microscopic rate: µk = uk. The right hopping rate λk is chosen such that,
in the stationary state, the probability fk,st of the effective model coincide
with the occupation probability (6.33) of the original ZRP. The detailed
balance condition (6.23) yields
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λk =
µk+1fk+1,st

fk,st
=

ZM−1,N−k−1

ZM−1,N−k
= ūst(M − 1, N − k) ,

where the right side of the equation is the average rate coming from M−1
sites, containing N−k particles (see (6.39)). The rate λk is thus a function
of k, M , and N . For M = 2, this formula gives λk = uN−k, as expected.
In the fluid phase, in the thermodynamic limit, the rates λk converge to
z0, defined in (6.36). Finally, for the condensed phase, in the dip region,
we obtain

λk ≈ 1 +
b

∆− k
≡ u∆−k .

This effective description reduces the full model to a Markovian model
for one degree of freedom in an asymmetric potential. The two valleys of the
potential are separated by a high (power-law) barrier. The left potential valley,
corresponding to the critical background, has a weight PL ≈ 1, whereas the
right potential valley, corresponding to the hump of the condensate, has a
weight PR ≈ 1/M 	 1 (see Subsect. 6.6.2).

In this framework the stationary dynamics of the condensate is charac-
terised by a single diverging timescale. We choose to define this timescale,
denoted by τMarkov, to be the crossing time TL from the right valley to the
left one in the effective Markovian problem. The characteristic time is thus
expressed by

τMarkov ≡ TL =
N∑

�=1

1
µ�f�,st

N∑

m=�

fm,st , (6.68)

in terms of known quantities, the rates µk and the stationary probabilities
fk,st. Its asymptotic growth is easily determined by noting that (6.68) is dom-
inated by the behaviour of the probability fk,st in the region of the dip. Hence,
inserting the expression (6.65) into (6.68), and evaluating the sum as an inte-
gral, we obtain

τMarkov ≈ bΓ (b+ 1)
(b− 1)Γ (2b+ 2)

∆b+1

M
=

bΓ (b+ 1)
(b− 1)Γ (2b+ 2)

(ρ− ρc)b+1M b . (6.69)

In order to compare the above theoretical predictions to the measured
flipping time τ , we compute the two-time stationary correlation function

C(t, 0) = 〈N1(t)N1(0)〉 − ρ2 .

This quantity decays exponentially with a relaxation constant which gives a
natural measure of τ . It is found that τ ∼ τMarkov ∼ M b in the MF and 1DAS
geometries, and that τ ∼ MτMarkov ∼ M b+1 in the 1DS geometry. For the
latter case the occurrence of one supplementary power in the system size has
the same origin as for nonequilibrium dynamics.
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6.9.4 Last Remarks

Table 6.1 summarises the values of the dynamical exponents z and Z, such
that τnon−st ∼ Mz and τ ∼ MZ , where τ is the characteristic timescale for
the stationary motion of the condensate.

As recalled above, the non-stationary dynamical exponents are insensitive
to the exponent b, and more generally to the statics, provided the system is
in its condensed phase. This feature is easily understood in the context of
the Markovian Ansatz proposed in the present work. Indeed the last stage of
the formation of the condensate, i.e., the disappearance of the smaller of the
last two precursors, implies no barrier crossing. In terms of the occupation
of the condensate, it corresponds to the transition from N1 to ∆, where the
initial occupation N1 of the larger precursor was already larger than ∆/2,
corresponding to the top of the potential barrier. This explains why τnon−st

is given by the diffusive timescale, both in the framework of the Markovian
Ansatz and in the MF and 1DAS geometries.

Table 6.1. Non-stationary and stationary dynamical exponents of the ZRP with
static exponent b > 2

Geometry z Z

MF, 1DAS 2 b

1DS 3 b + 1

6.10 Further References

Complementary aspects to the present notes can be found in [4, 38–40].
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Appendix: Proof of Eqs. (6.12) and (6.13)

We recall the fundamental equation (6.16)
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p(Wk,l −Wk,0) + q(Wl,k −Wl,0)

= p

(

Wk+1,l−1
pk+1pl−1

pkpl
−Wl,0

)

+ q

(

Wl+1,k−1
pk−1pl+1

pkpl
−Wk,0

)

. (A.1)

We first prove (6.12) for the symmetric case, p = 1/2. Setting xk =
Wk,l pkpl, where k + l = n, (A.1) can be rewritten as

xk − xn−(k−1) = xk+1 − xn−k .

This expression is therefore a constant independent of k, which is equal to
zero, as can be seen by taking k = n. We thus obtain

xk+1 = xn−k

which is the detailed balance condition

pkpl Wk,l = pk−1pl+1 Wl+1,k−1 . (A.2)

We now show that in the general case, p �= 1/2, Eq. (A.1) yields two
constraints on the rate: Eq. (A.2) to be interpreted as the pairwise balance
condition, and Eq. (6.13)

Wl,k −Wk,l = Wl,0 −Wk,0 . (A.3)

Set ak = pkpl Wk,l. Equation (A.1) can be rewritten as

yk+1 − yk = (p− q)(an−k − ak) (A.4)

where
yk = p xk − q xn−(k−1), y0 = 0 . (A.5)

If
yk+1 = yn−k (A.6)

then it follows immediately that xk+1 = xn−k, which is the condition for
pairwise balance seen above. This relation itself plugged into (A.5), yields

xk+1 − xk = an−k − ak

which is (A.3). In order to prove (A.6) we set

Ak = a1 + · · · + ak

i.e. ak = Ak −Ak−1. We thus have

yk + (p− q)(Ak−1 +An−k) = yk+1 + (p− q)(Ak +An−k−1)

which is equal to (p− q)An, hence

yk = (p− q)(An −An−k −Ak + ak) .

Therefore yk − (p− q)ak is symmetric in the change k → n− k, and finally

yk − (p− q)ak = yn−k − (p− q)an−k

which, using (A.4), yields (A.6).
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10. Drouffe J M, Godrèche C and Camia F 1998 J. Phys. A 31 L19
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to Nonequilibrium Dynamics
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It is explained how field-theoretic methods and the dynamic renormalisation
group (RG) can be applied to study the universal scaling properties of systems
that either undergo a continuous phase transition or display generic scale in-
variance, both near and far from thermal equilibrium. Part 1 introduces the
response functional field theory representation of (nonlinear) Langevin equa-
tions. The RG is employed to compute the scaling exponents for several uni-
versality classes governing the critical dynamics near second-order phase tran-
sitions in equilibrium. The effects of reversible mode-coupling terms, quench-
ing from random initial conditions to the critical point, and violating the
detailed balance constraints are briefly discussed. It is shown how the same
formalism can be applied to nonequilibrium systems such as driven diffusive
lattice gases. Part 2 describes how the master equation for stochastic parti-
cle reaction processes can be mapped onto a field theory action. The RG is
then used to analyse simple diffusion-limited annihilation reactions as well as
generic continuous transitions from active to inactive, absorbing states, which
are characterised by the power laws of (critical) directed percolation. Certain
other important universality classes are mentioned, and some open issues are
listed.

7.1 Critical Dynamics

Field-theoretic tools and the renormalisation group (RG) method have had
a tremendous impact in our understanding of the universal power laws that
emerge near equilibrium critical points (see, e.g., Refs. [1–6]), including the
associated dynamic critical phenomena [7,8]. Our goal here is to similarly de-
scribe the scaling properties of systems driven far from thermal equilibrium,
which either undergo a continuous nonequilibrium phase transition or display
generic scale invariance. We are then confronted with capturing the (stochas-
tic) dynamics of the long-wavelength modes of the “slow” degrees of freedom,

U.C. Täuber: Field-Theory Approaches to Nonequilibrium Dynamics, Lect. Notes Phys. 716,
295–348 (2007)
DOI 10.1007/3-540-69684-9 7 c© Springer-Verlag Berlin Heidelberg 2007
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namely the order parameter for the transition, any conserved quantities, and
perhaps additional relevant variables. In these lecture notes, I aim to briefly
describe how a representation in terms of a field theory action can be obtained
for (1) general nonlinear Langevin stochastic differential equations [8, 9]; and
(2) for master equations governing classical particle reaction–diffusion sys-
tems [10–12]. I will then demonstrate how the dynamic (perturbative) RG
can be employed to derive the asymptotic scaling laws in stochastic dynami-
cal systems; to infer the upper critical dimension dc (for dimensions d ≤ dc,
fluctuations strongly affect the universal scaling properties); and to systemat-
ically compute the critical exponents as well as to determine further universal
properties in various intriguing dynamical model systems both near and far
from equilibrium. (For considerably more details, especially on the more tech-
nical aspects, the reader is referred to Ref. [13].)

7.1.1 Continuous Phase Transitions and Critical Slowing Down

The vicinity of a critical point is characterised by strong correlations and large
fluctuations. The system under investigation is then behaving in a highly coop-
erative manner, and as a consequence, the standard approximative methods of
statistical mechanics, namely perturbation or cluster expansions that assume
either weak interactions or short-range correlations, fail. Upon approaching
an equilibrium continuous (second-order) phase transition, i.e., for |τ | 	 1,
where τ = (T − Tc)/Tc measures the deviation from the critical temperature
Tc, the thermal fluctuations of the order parameter S(x) (which characterises
the different thermodynamic phases, usually chosen such that the thermal
average 〈S〉 = 0 vanishes in the high-temperature “disordered” phase) are, in
the thermodynamic limit, governed by a diverging length scale

ξ(τ) ∼ |τ |−ν . (7.1)

Here, we have defined the correlation length via the typically exponential
decay of the static cumulant or connected two-point correlation function
C(x) = 〈S(x)S(0)〉 − 〈S〉2 ∼ e−|x|/ξ, and ν denotes the correlation length
critical exponent. As T → Tc, ξ → ∞, which entails the absence of any charac-
teristic length scale for the order parameter fluctuations at criticality. Hence
we expect the critical correlations to follow a power law C(x) ∼ |x|−(d−2+η)

in d dimensions, which defines the Fisher exponent η. The following scaling
ansatz generalises this power law to T �= Tc, but still in the vicinity of the
critical point,

C(τ,x) = |x|−(d−2+η) C̃±(x/ξ) , (7.2)

with two distinct regular scaling functions C̃+(y) for T > Tc and C̃−(y) for
T < Tc, respectively. For its Fourier transform C(τ, q) =

∫
ddx e−iq·x C(τ,x),

one obtains the corresponding scaling form

C(τ, q) = |q|−2+η Ĉ±(q ξ) , (7.3)

with new scaling functions Ĉ±(p) = |p|2−η
∫

ddy e−ip·y |y|−(d−2+η) C̃±(y).
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As we will see in Subsect. 7.1.5, there are only two independent static
critical exponents. Consequently, it must be possible to use the static scal-
ing hypothesis (7.2) or (7.3), along with the definition (7.1), to express the
exponents describing the thermodynamic singularities near a second-order
phase transition in terms of ν and η through scaling laws. For example, the
order parameter in the low-temperature phase (τ < 0) is expected to grow
as 〈S〉 ∼ (−τ)β . Let us consider Eq. (7.2) in the limit |x| → ∞. In or-
der for the |x| dependence to cancel, C̃±(y) ∝ |y|d−2+η for large |y|, and
therefore C(τ, |x| → ∞) ∼ ξ−(d−2+η) ∼ |τ |ν(d−2+η). On the other hand,
C(τ, |x| → ∞) → −〈S〉2 ∼ −(−τ)2β for T < Tc; thus we identify the order
parameter critical exponent through the hyperscaling relation

β =
ν

2
(d− 2 + η) . (7.4)

Let us next consider the isothermal static susceptibility χτ , which according to
the equilibrium fluctuation–response theorem is given in terms of the spatial
integral of the correlation function C(τ,x): χτ (τ) = (kBT )−1 limq→0 C(τ, q).
But Ĉ±(p) ∼ |p|2−η as p → 0 to ensure nonsingular behaviour, whence
χτ (τ) ∼ ξ2−η ∼ |τ |−ν(2−η), and upon defining the associated thermodynamic
critical exponent γ via χτ (τ) ∼ |τ |−γ , we obtain the scaling relation

γ = ν (2 − η) . (7.5)

The scaling laws (7.2), (7.3) as well as scaling relations such as (7.4) and
(7.5) can be put on solid foundations by means of the RG procedure, based on
an effective long-wavelength Hamiltonian H[S], a functional of S(x), that cap-
tures the essential physics of the problem, namely the relevant symmetries in
order parameter and real space, and the existence of a continuous phase tran-
sition. The probability of finding a configuration S(x) at given temperature
T is then given by the canonical distribution

Peq[S] ∝ exp (−H[S]/kBT ) . (7.6)

For example, the mathematical description of the critical phenomena for an
O(n)-symmetric order parameter field Sα(x), with vector index α = 1, . . . , n,
is based on the Landau–Ginzburg–Wilson functional [1–6]

H[S] =
∫

ddx
∑

α

[
r

2
[Sα(x)]2 +

1
2

[∇Sα(x)]2

+
u

4!
[Sα(x)]2

∑

β

[Sβ(x)]2 − hα(x)Sα(x)
]

, (7.7)

where hα(x) is the external field thermodynamically conjugate to Sα(x),
u > 0 denotes the strength of the nonlinearity that drives the phase transfor-
mation, and r is the control parameter for the transition, i.e., r ∝ T − T 0

c ,
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where T 0
c is the (mean-field) critical temperature. Spatial variations of the

order parameter are energetically suppressed by the term ∼ [∇Sα(x)]2, and
the corresponding positive coefficient has been absorbed into the fields Sα.

We shall, however, not pursue the static theory further here, but instead
proceed to a full dynamical description in terms of nonlinear Langevin equa-
tions [7, 8]. We will then formulate the RG within this dynamic framework,
and therein demonstrate the emergence of scaling laws and the computation
of critical exponents in a systematic perturbative expansion with respect to
the deviation ε = d− dc from the upper critical dimension.

In order to construct the desired effective stochastic dynamics near a crit-
ical point, we recall that correlated region of size ξ become quite large in the
vicinity of the transition. Since the associated relaxation times for such clus-
ters should grow with their extent, one would expect the characteristic time
scale for the relaxation of the order parameter fluctuations to increase as well
as T → Tc, namely

tc(τ) ∼ ξ(τ)z ∼ |τ |−zν , (7.8)

which introduces the dynamic critical exponent z that encodes the critical
slowing down at the phase transition; usually z ≥ 1. Since the typical re-
laxation rates therefore scale as ωc(τ) = 1/tc(τ) ∼ |τ |zν , we may utilise the
static scaling variable p = q ξ to generalise the crucial observation (7.8) and
formulate a dynamic scaling hypothesis for the wavevector-dependent disper-
sion relation of the order parameter fluctuations [14,15],

ωc(τ, q) = |q|z ω̂±(q ξ) . (7.9)

We can then proceed to write down dynamical scaling laws by simply
postulating the additional scaling variables s = t/tc(τ) or ω/ωc(τ, q). For
example, as an immediate consequence we find for the time-dependent mean
order parameter

〈S(τ, t)〉 = |τ |β Ŝ(t/tc) , (7.10)

with Ŝ(s → ∞) = const., but Ŝ(s) ∼ s−β/zν as s → 0 in order for the τ
dependence to disappear. At the critical point (τ = 0), this yields the power-
law decay 〈S(t)〉 ∼ t−α, with

α =
β

z ν
=

1
2 z

(d− 2 + η) . (7.11)

Similarly, the scaling law for the dynamic order parameter susceptibility (re-
sponse function) becomes

χ(τ, q, ω) = |q|−2+η χ̂±(q ξ, ω ξz) , (7.12)

which constitutes the dynamical generalisation of Eq. (7.3), for χ(τ, q, 0) =
(kBT )−1C(τ, q). Upon applying the fluctuation–dissipation theorem, valid in
thermal equilibrium, we therefrom obtain the dynamic correlation function
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C(τ, q, ω) =
2kBT

ω
Imχ(τ, q, ω) = |q|−z−2+η Ĉ± (q ξ, ω ξz) , (7.13)

and for its Fourier transform in real space and time,

C(τ,x, t) =
∫

ddq

(2π)d

∫
dω
2π

ei(q·x−ωt) C(τ, q, ω) = |x|−(d−2+η) C̃± (x/ξ, t/ξz) ,

(7.14)
which reduces to the static limit (7.2) if we set t = 0.

The critical slowing down of the order parameter fluctuations near the
critical point provides us with a natural separation of time scales. Assum-
ing (for now) that there are no other conserved variables in the system, which
would constitute additional slow modes, we may thus resort to a coarse-grained
long-wavelength and long-time description, focusing merely on the order para-
meter kinetics, while subsuming all other “fast” degrees of freedom in random
“noise” terms. This leads us to a mesoscopic Langevin equation for the slow
variables Sα(x, t) of the form

∂Sα(x, t)
∂t

= Fα[S](x, t) + ζα(x, t) . (7.15)

In the simplest case, the systematic force terms here just represent purely
relaxational dynamics towards the equilibrium configuration [16],

Fα[S](x, t) = −D δH[S]
δSα(x, t)

, (7.16)

where D represents the relaxation coefficient, and H[S] is again the effective
Hamiltonian that governs the phase transition, e.g. given by Eq. (7.7). For
the stochastic forces we may assume the most convenient form, and take them
to simply represent Gaussian white noise with zero mean, 〈ζα(x, t)〉 = 0, but
with their second moment in thermal equilibrium fixed by Einstein’s relation

〈
ζα(x, t) ζβ(x′, t′)

〉
= 2kBT D δ(x − x′) δ(t− t′) δαβ . (7.17)

As can be verified by means of the associated Fokker–Planck equation for the
time-dependent probability distribution P[S, t], Eq. (7.17) guarantees that
eventually P[S, t → ∞] → Peq[S], the canonical distribution (7.6). The sto-
chastic differential equation (7.15), with (7.16), the Hamiltonian (7.7), and
the noise correlator (7.17), define the relaxational model A (according to the
classification in Ref. [7]) for a nonconserved O(n)-symmetric order parameter.

If, however, the order parameter is conserved, we have to consider the as-
sociated continuity equation ∂t S

α +∇ ·Jα = 0, where typically the conserved
current is given by a gradient of the field Sα: Jα = −D∇Sα + . . .; as a con-
sequence, the order parameter fluctuations will relax diffusively with diffusion
coefficient D. The ensuing model B [7,16] for the relaxational critical dynamics
of a conserved order parameter can be obtained by replacing D → −D∇2 in
Eqs. (7.16) and (7.17). In fact, we will henceforth treat both models A and B
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simultaneously by setting D → D (i∇)a, where a = 0 and a = 2 respectively
represent the nonconserved and conserved cases. Explicitly, we thus obtain

∂Sα(x, t)
∂t

= −D (i∇)a δH[S]
δSα(x, t)

+ ζα(x, t)

= −D (i∇)a
[
r − ∇2 +

u

6

∑

β

[Sβ(x)]2
]
Sα(x, t)

+D (i∇)a hα(x, t) + ζα(x, t) , (7.18)

with
〈
ζα(x, t) ζβ(x′, t′)

〉
= 2kBT D (i∇)a δ(x − x′) δ(t− t′) δαβ . (7.19)

Notice already that the presence or absence of a conservation law for the order
parameter implies different dynamics for systems described by identical static
behaviour. Before proceeding with the analysis of the relaxational models,
we remark that in general there may exist additional reversible contributions
to the systematic forces Fα[S], see Subsect. 7.1.6, and/or dynamical mode-
couplings to additional conserved, slow fields, which effect further splitting
into several distinct dynamic universality classes [6, 7, 13].

Let us now evaluate the dynamic response and correlation functions in the
Gaussian (mean-field) approximation in the high-temperature phase. To this
end, we set u = 0 and thus discard the nonlinear terms in the Hamiltonian
(7.7) as well as in Eq. (7.18). The ensuing Langevin equation becomes linear in
the fields Sα, and is therefore readily solved by means of Fourier transforms.
Straightforward algebra and regrouping some terms yields

[
−iω +Dqa

(
r + q2

)]
Sα(q, ω) = Dqa hα(q, ω) + ζα(q, ω) . (7.20)

With 〈ζα(q, ω)〉 = 0, this gives immediately

χαβ
0 (q, ω) =

∂〈Sα(q, ω)〉
∂hβ(q, ω)

∣
∣
∣
∣
h=0

= Dqa G0(q, ω) δαβ , (7.21)

with the response propagator

G0(q, ω) =
[
−iω +Dqa (r + q2)

]−1
. (7.22)

As is readily established by means of the residue theorem, its Fourier back-
transform in time obeys causality,

G0(q, t) = Θ(t) e−Dqa (r+q2) t . (7.23)

Setting hα = 0, and with the noise correlator (7.19) in Fourier space
〈
ζα(q, ω) ζβ(q′, ω′)

〉
= 2kBT Dqa (2π)d+1δ(q + q′) δ(ω + ω′) δαβ , (7.24)
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we obtain the Gaussian dynamic correlation function
〈
Sα(q, ω)Sβ(q′, ω′)

〉
0

=
C0(q, ω) (2π)d+1δ(q + q′) δ(ω + ω′), where

C0(q, ω) =
2kBTDqa

ω2 + [Dqa(r + q2)]2
= 2kBT Dqa |G0(q, ω)|2 . (7.25)

The fluctuation–dissipation theorem (7.13) is of course satisfied; moreover, as
function of wavevector and time,

C0(q, t) =
kBT

r + q2
e−Dqa(r+q2) |t| . (7.26)

In the Gaussian approximation, away from criticality (r > 0, q �= 0) the
temporal correlations for models A and B decay exponentially, with the re-
laxation rate ωc(r, q) = Dq2+a(1 + r/q2). Upon comparison with the dy-
namic scaling hypothesis (7.9), we infer the mean-field scaling exponents
ν0 = 1/2 and z0 = 2 + a. At the critical point, a nonconserved order pa-
rameter relaxes diffusively (z0 = 2) in this approximation, whereas the con-
served order parameter kinetics becomes even slower, namely subdiffusive with
z0 = 4. Finally, invoking Eqs. (7.12), (7.13), (7.14), or simply the static limit
C0(q, 0) = kBT/(r + q2), we find η0 = 0 for the Gaussian model.

The full nonlinear Langevin equation (7.18) cannot be solved exactly. Yet
a perturbation expansion with respect to the coupling u may be set up in a
slightly cumbersome, but straightforward manner by direct iteration of the
equations of motion [16, 17]. More elegantly, one may utilise a path-integral
representation of the Langevin stochastic process [18, 19], which allows the
application of all the standard tools from statistical and quantum field the-
ory [1–6], and has the additional advantage of rendering symmetries in the
problem more explicit [8, 9, 13].

7.1.2 Field Theory Representation of Langevin Equations

Our starting point is a set of coupled Langevin equations of the form (7.15)
for mesoscopic, coarse-grained stochastic variables Sα(x, t). For the stochastic
forces, we make the simplest possible assumption of Gaussian white noise,

〈ζα(x, t)〉 = 0 ,
〈
ζα(x, t) ζβ(x′, t′)

〉
= 2Lα δ(x − x′) δ(t− t′) δαβ , (7.27)

where Lα may represent a differential operator (such as the Laplacian ∇2 for
conserved fields), and even a functional of Sα. In the time interval 0 ≤ t ≤ tf ,
the moments (7.27) are encoded in the probability distribution

W[ζ] ∝ exp
[

−1
4

∫

ddx

∫ tf

0

dt
∑

α

ζα(x, t)
[
(Lα)−1ζα(x, t)

]
]

. (7.28)

If we now switch variables from the stochastic noise ζα to the fields Sα by
means of the equations of motion (7.15), we obtain
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W[ζ]D[ζ] = P[S]D[S] ∝ e−G[S] D[S] , (7.29)

with the statistical weight determined by the Onsager–Machlup functional [9]

G[S] =
1
4

∫

ddx

∫

dt
∑

α

(
∂Sα

∂t
− Fα[S]

)[

(Lα)−1

(
∂Sα

∂t
− Fα[S]

)]

.

(7.30)
Note that the Jacobian for the nonlinear variable transformation {ζα} →

{Sα} has been omitted here. In fact, the above procedure is properly defined
through appropriately discretising time. If a forward (Itô) discretisation is ap-
plied, then indeed the associated functional determinant is a mere constant
that can be absorbed in the functional measure. The functional (7.30) already
represents a desired field theory action. Since the probability distribution for
the stochastic forces should be normalised,

∫
D[ζ]W [ζ] = 1, the associated

“partition function” is unity, and carries no physical information (as opposed
to static statistical field theory, where it determines the free energy and hence
the entire thermodynamics). The Onsager–Machlup representation is how-
ever plagued by technical problems: Eq. (7.30) contains (Lα)−1, which for
conserved variables entails the inverse Laplacian operator, i.e., a Green func-
tion in real space or the singular factor 1/q2 in Fourier space; moreover the
nonlinearities in Fα[S] appear quadratically. Hence it is desirable to linearise
the action (7.30) by means of a Hubbard–Stratonovich transformation [9].

We shall follow an alternative, more general route that completely avoids
the appearance of the inverse operators (Lα)−1 in intermediate steps. Our
goal is to average over noise “histories” for observables A[S] that need to be
expressible in terms of the stochastic fields Sα: 〈A[S]〉ζ ∝

∫
D[ζ]A[S(ζ)]W [ζ].

For this purpose, we employ the identity

1 =
∫

D[S]
∏

α

∏

(x,t)

δ

(
∂Sα(x, t)

∂t
− Fα[S](x, t) − ζα(x, t)

)

=
∫

D[iS̃]
∫

D[S] exp
[

−
∫

ddx

∫

dt
∑

α

S̃α

(
∂Sα

∂t
− Fα[S] − ζα

)]

, (7.31)

where the first line constitutes a rather involved representation of the unity (in
a somewhat symbolic notation; again proper discretisation should be invoked
here), and the second line utilises the Fourier representation of the (functional)
delta distribution by means of the purely imaginary auxiliary fields S̃ (and
factors 2π have been absorbed in its functional measure).

Inserting (7.31) and the probability distribution (7.28) into the desired
stochastic noise average, we arrive at

〈A[S]〉ζ ∝
∫

D[iS̃]
∫

D[S] exp
[

−
∫

ddx

∫

dt
∑

α

S̃α

(
∂Sα

∂t
− Fα[S]

)]

A[S]

×
∫

D[ζ] exp
(

−
∫

ddx

∫

dt
∑

α

[
1
4
ζα(Lα)−1ζα − S̃α ζα

])

. (7.32)
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We may now evaluate the Gaussian integrals over the noise ζα, which yields

〈A[S]〉ζ =
∫

D[S]A[S]P[S] , P[S] ∝
∫

D[iS̃] e−A[S̃,S] , (7.33)

with the statistical weight now governed by the Janssen–De Dominicis “re-
sponse” functional [9, 18,19]

A[S̃, S] =
∫

ddx

∫ tf

0

dt
∑

α

[

S̃α

(
∂Sα

∂t
− Fα[S]

)

− S̃α Lα S̃α

]

. (7.34)

Once again, we have omitted the functional determinant from the variable
change {ζα} → {Sα}, and normalisation implies

∫
D[iS̃]

∫
D[S] e−A[S̃,S] = 1.

The first term in the action (7.34) encodes the temporal evolution according
to the systematic terms in the Langevin equations (7.15), whereas the second
term specifies the noise correlations (7.27). Since the auxiliary variables S̃α,
often termed Martin–Siggia–Rose response fields [20], appear only quadrati-
cally here, they may be eliminated via completing the squares and Gaussian
integrations; thereby one recovers the Onsager–Machlup functional (7.30).

The Janssen–De Dominicis functional (7.34) takes the form of a (d + 1)-
dimensional statistical field theory with two independent sets of fields Sα and
S̃α. We may thus bring the established machinery of statistical and quantum
field theory [1–6] to bear here; it should however be noted that the response
functional formalism for stochastic Langevin dynamics incorporates causality
in a nontrivial manner, which leads to important distinctions [8].

Let us specify the Janssen–De Dominicis functional for the purely relax-
ational models A and B [16, 17], see Eqs. (7.18) and (7.19), splitting it into
the Gaussian and anharmonic parts A = A0 + Aint [9], which read

A0[S̃, S] =
∫

ddx

∫

dt
∑

α

(

S̃α

[
∂

∂t
+D (i∇)a (r − ∇2)

]

Sα

−D S̃α (i∇)a S̃α −D S̃α (i∇)a hα

)

, (7.35)

Aint[S̃, S] = D
u

6

∫

ddx

∫

dt
∑

α,β

S̃α (i∇)a Sα Sβ Sβ . (7.36)

Since we are interested in the vicinity of the critical point T ≈ Tc, we have
absorbed the constant kBTc into the fields. The prescription (7.33) tells us how
to compute time-dependent correlation functions

〈
Sα(x, t)Sβ(x′, t′)

〉
. Using

Eq. (7.35), the dynamic order parameter susceptibility follows from

χαβ(x − x′, t− t′) =
δ〈Sα(x, t)〉
δhβ(x′, t′)

∣
∣
∣
∣
h=0

= D
〈
Sα(x, t) (i∇)a S̃β(x′, t′)

〉
;

(7.37)
for the simple relaxational models (only), the response function is just given by
a correlator that involves an auxiliary variable, which explains why the S̃α are
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referred to as “response” fields. In equilibrium, one may employ the Onsager–
Machlup functional (7.30) to derive the fluctuation–dissipation theorem [9]

χαβ(x − x′, t− t′) = Θ(t− t′)
∂

∂t′
〈
Sα(x, t)Sβ(x′, t′)

〉
, (7.38)

which is equivalent to Eq. (7.13) in Fourier space.
In order to access arbitrary correlators, we define the generating functional

Z[j̃, j] =
〈

exp
∫

ddx

∫

dt
∑

α

(
j̃α S̃α + jα Sα

)〉

, (7.39)

wherefrom the correlation functions follow via functional derivatives,
〈∏

ij

Sαi S̃αj

〉

=
∏

ij

δ

δjαi

δ

δj̃αj
Z[j̃, j]

∣
∣
∣
∣
j̃=0=j

, (7.40)

and the cumulants or connected correlation functions via
〈∏

ij

Sαi S̃αj

〉

c

=
∏

ij

δ

δjαi

δ

δj̃αj
lnZ[j̃, j]

∣
∣
∣
∣
j̃=0=j

. (7.41)

In the harmonic approximation, setting u = 0, Z[j̃, j] can be evaluated explic-
itly (most directly in Fourier space) by means of Gaussian integration [9,13];
one thereby recovers (with kBT = 1) the Gaussian response propagator (7.22)
and two-point correlation function (7.25). Moreover, as a consequence of
causality,

〈
S̃α(q, ω) S̃β(q′, ω′)

〉

0
= 0.

7.1.3 Outline of Dynamic Perturbation Theory

Since we cannot evaluate correlation functions with the nonlinear action (7.36)
exactly, we resort to a perturbational treatment, assuming, for the time being,
a small coupling strength u. The perturbation expansion with respect to u is
constructed by rewriting the desired correlation functions in terms of averages
with respect to the Gaussian action (7.35), henceforth indicated with index
’0’, and then expanding the exponential of −Aint,

〈∏

ij

Sαi S̃αj

〉

=

〈∏
ij S

αi S̃αj e−Aint[S̃,S]
〉

0〈
e−Aint[S̃,S]

〉

0

=
〈∏

ij

Sαi S̃αj

∞∑

l=0

1
l!

(
−Aint[S̃, S]

)l
〉

0

. (7.42)

The remaining Gaussian averages, a series of polynomials in the fields Sα

and S̃α, can be evaluated by means of Wick’s theorem, here an immediate
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consequence of the Gaussian statistical weight, which states that all such av-
erages can be written as a sum over all possible factorisations into Gaussian
two-point functions 〈Sα S̃β〉0, i.e., essentially the response propagator G0,
Eq. (7.22), and 〈Sα Sβ〉0, the Gaussian correlation function C0, Eq. (7.25).
Recall that the denominator in Eq. (7.42) is exactly unity as a consequence of
normalisation; alternatively, this result follows from causality in conjunction
with our forward descretisation prescription, which implies that we should
identify Θ(0) = 0. (We remark that had we chosen another temporal dis-
cretisation rule, any apparent contributions from the denominator would be
precisely cancelled by the in this case nonvanishing functional Jacobian from
the variable transformation {ζα} → {Sα}.) At any rate, our stochastic field
theory contains no “vacuum” contributions.

The many terms in the perturbation expansion (7.42) are most lucidly
organised in a graphical representation, using Feynman diagrams with the
basic elements depicted in Fig. 7.1. We represent the response propagator
(7.22) by a directed line (here conventionally from right to left), which encodes
its causal nature; the noise by a two-point “source” vertex, and the anharmonic
term in Eq. (7.36) as a four-point vertex. In the diagrams representing the
different terms in the perturbation series, these vertices serve as links for the
propagator lines, with the fields Sα being encoded as the “incoming”, and the
S̃α as the “outgoing” components of the lines. In Fourier space, translational
invariance in space and time implies wavevector and frequency conservation
at each vertex, see Fig. 7.2 below. An alternative, equivalent representation
uses both the response and correlation propagators as independent elements,
the latter depicted as undirected line, thereby disposing of the noise vertex,
and retaining the nonlinearity in Fig. 7.1(c) as sole vertex.

Following standard field theory procedures [1–5], one establishes that the
perturbation series for the cumulants (7.41) is given in terms of connected
Feynman graphs only (for a detailed exposition of this and the following re-
sults, see Ref. [13]). An additional helpful reduction in the number of diagrams
to be considered arises when one considers the vertex functions, which gen-
eralise the self-energy contributions Σ(q, ω) in the Dyson equation for the
response propagator, G(q, ω)−1 = Dqa χ(q, ω)−1 = G0(q, ω)−1 − Σ(q, ω).

=

=

(a) ωq,

q

-q

q

ω+ D q  i  r + q
1

(a )2βα

α

β

(b)
a δαβD q2

δαβ

β

β

α

α
(c)

= u
6

  D qa

Fig. 7.1. Elements of dynamic perturbation theory for the O(n)-symmetric relax-
ational models: (a) response propagator; (b) noise vertex; (c) anharmonic vertex
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To this end, we define the fields Φ̃α = δ lnZ/δj̃α and Φα = δ lnZ/δjα, and
introduce the new generating functional

Γ [Φ̃, Φ] = − lnZ[j̃, j] +
∫

ddx

∫

dt
∑

α

(
j̃α Φ̃α + jα Φα

)
, (7.43)

wherefrom the vertex functions are obtained via the functional derivatives

Γ
(Ñ,N)
{αi};{αj} =

Ñ∏

i

δ

δΦ̃αi

N∏

j

δ

δΦαj
Γ [Φ̃, Φ]

∣
∣
∣
∣
j̃=0=j

. (7.44)

Diagrammatically, these quantities turn out to be represented by the possible
sets of one-particle (1PI) irreducible Feynman graphs with N incoming and
Ñ outgoing “amputated” legs; i.e., these diagrams do not split into allowed
subgraphs by simply cutting any single propagator line. For example, for the
two-point functions a direct calculation yields the relations

Γ (1,1)(q, ω) = Dqa χ(−q,−ω)−1 = G0(−q,−ω)−1 −Σ(−q,−ω) ,(7.45)

Γ (2,0)(q, ω) = − C(q, ω)
|G(q, ω)|2 = −2D qa

ω
ImΓ (1,1)(q, ω) , (7.46)

where the second equation for Γ (2,0) follows from the fluctuation–dissipation
theorem (7.13). Note that Γ (0,2)(q, ω) = 0 vanishes because of causality.

The perturbation series can then be organised graphically as an expansion
in successive orders with respect to the number of closed propagator loops.
As an example, Fig. 7.2 depicts the one-loop contributions for the vertex
functions Γ (1,1) and Γ (1,3) in the time domain with all required labels. One
may formulate general Feynman rules for the construction of the diagrams and
their translation into mathematical expressions for the lth order contribution
to the vertex function Γ (Ñ,N):

1. Draw all topologically different, connected one-particle irreducible graphs
with Ñ outgoing and N incoming lines connecting l relaxation vertices ∝
u. Do not allow closed response loops (since in the Itô calculus Θ(0) = 0).

2. Attach wavevectors qi, frequencies ωi or times ti, and component indices
αi to all directed lines, obeying “momentum (and energy)” conservation
at each vertex.

k
t´

α α

β -k

α β

α

α0

α

t
-k

k

q-k

t t´

(a) (b)

Fig. 7.2. One-loop diagrams for (a) Γ (1,1) and (b) Γ (1,3) in the time domain
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3. Each directed line corresponds to a response propagator G0(−q,−ω) or
G0(q, ti−tj) in the frequency and time domain, respectively, the two-point
vertex to the noise strength 2D qa, and the four-point relaxation vertex
to −D qa u/6. Closed loops imply integrals over the internal wavevectors
and frequencies or times, subject to causality constraints, as well as sums
over the internal vector indices. Apply the residue theorem to evaluate
frequency integrals.

4. Multiply with −1 and the combinatorial factor counting all possible ways
of connecting the propagators, l relaxation vertices, and k two-point ver-
tices leading to topologically identical graphs, including a factor 1/l! k!
originating in the expansion of exp(−Aint[S̃, S]).

For later use, we provide the explicit results for the two-point vertex func-
tions to two-loop order. After some algebra, the three diagrams in Fig. 7.3
give

Γ (1,1)(q, ω) = iω +Dqa

[

r + q2 +
n+ 2

6
u

∫

k

1
r + k2

−
(
n+ 2

6
u

)2 ∫

k

1
r + k2

∫

k′

1
(r + k′2)2

− n+ 2
18

u2

∫

k

1
r + k2

∫

k′

1
r + k′2

1
r + (q − k − k′)2

×
(

1 − iω

iω +∆(k) +∆(k′) +∆(q − k − k′)

)]

, (7.47)

where we have separated out the dynamic part in the last line, and introduced
the abbreviations ∆(q) = Dqa (r + q2) and

∫
k

=
∫

ddk/(2π)d [13]. For the
noise vertex, Fig. 7.4(a) yields [13]

Γ (2,0)(q, ω) = −2Dqa

[

1 +Dqa n+ 2
18

u2

∫

k

1
r + k2

∫

k′

1
r + k′2

× 1
r + (q − k − k′)2

Re
1

iω +∆(k) +∆(k′) +∆(q − k − k′)

]

; (7.48)

notice that for model B, as a consequence of the conservation law for the
order parameter and ensuing wavevector dependence of the nonlinear vertex,

+ + + ...

Fig. 7.3. One-particle irreducible diagrams for Γ (1,1)(q, ω) to second order in u
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(b)(a)

Fig. 7.4. (a) Two-loop diagram for Γ (2,0)(q, ω); (b) one-loop graph for Γ (1,3)

see Fig. 7.1(c), to all orders in the perturbation expansion

a = 2 : Γ (1,1)(q = 0, ω) = iω ,
∂

∂q2
Γ (2,0)(q, ω)

∣
∣
∣
∣
q=0

= −2D . (7.49)

At last, with the shorthand notation k = (q, ω), the analytical expression
corresponding to the graph in Fig. 7.4(b) for the four-point vertex function
at symmetrically chosen external wavevector labels reads

Γ (1,3)(−3k/2; {k/2}) = D

(
3
2

q

)a

u

[

1 − n+ 8
6

u

×
∫

k

1
r + k2

1
r + (q − k)2

(

1 − iω
iω +∆(k) +∆(q − k)

)]

. (7.50)

7.1.4 Renormalisation

Consider a typical loop integral, say the correction in Eq. (7.50) to the four-
point vertex function Γ (1,3) at zero external frequency and momentum, whose
“bare” value, without any fluctuation contributions, is u. In dimensions d < 4,
one obtains, after introducing d-dimensional spherical coordinates and render-
ing the integrand dimensionless (x = |k|/√r):

u

∫
ddk

(2π)d

1
(r + k2)2

=
u r−2+d/2

2d−1πd/2Γ (d/2)

∫ ∞

0

xd−1

(1 + x2)2
dx , (7.51)

where we have inserted the surface area Sd = 2πd/2/Γ (d/2) of the d-
dimensional unit sphere, with Euler’s Gamma function, Γ (1 + x) = xΓ (x).
Note that the integral on the right-hand side is finite. Thus, we see that the
effective expansion parameter in perturbation theory is not just u, but the
combinaton ueff = u r(d−4)/2. Far away from Tc, it is small, and the pertur-
bation expansion well-defined. However, ueff → ∞ as r → 0 for d < 4: we
are facing infrared (IR) divergences, induced by the strong critical fluctua-
tions that render the loop corrections singular. A straightforward application
of perturbation theory will therefore not provide meaningful results, and we
must expect the fluctuation contributions to modify the critical power laws.
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Conversely, for dimensions d ≥ 4, the integral in (7.51) develops ultraviolet
(UV) divergences as the upper integral boundary is sent to infinity (k = |k|),

∫ Λ

0

kd−1

(r + k2)2
dk ∼

{
ln(Λ2/r) d = 4
Λd−4 d > 4

}

→ ∞ as Λ → ∞ . (7.52)

In lattice models, there is a finite wavevector cutoff, namely the Brillouin
zone boundary, Λ ∼ (2π/a0)d for a hypercubic lattice with lattice constant
a0, whence physically these UV problems do not emerge. Yet we shall see that
a formal treatment of these unphysical UV divergences will allow us to infer
the correct power laws for the physical IR singularities associated with the
critical point. The borderline dimension that separates the IR and UV singular
regimes is referred to as upper critical dimension dc; here dc = 4. Note that
at dc, UV and IR singularities are intimately connected and appear in the
form of logarithmic divergences, see Eq. (7.52). The situation is summarised
in Table 7.1, where we have also stated that models with continuous order
parameter symmetry, such as the Hamiltonian (7.7) with n ≥ 2, do not allow
long-range order in dimensions d ≤ dlc = 2 (Mermin–Wagner–Hohenberg
theorem [21–23]). Here, dlc is called the lower critical dimension; for the Ising
model represented by Eq. (7.7) with n = 1, of course dlc = 1.

Table 7.1. Mathematical and physical distinctions of the regimes d < dc, d = dc,
and d > dc, for the O(n)-symmetric models A and B (or static Φ4 field theory)

Dimension Perturbation Model A / B or Critical
Interval Series Φ4 Field Theory Behaviour

d ≤ dlc = 2 IR-singular ill-defined no long-range
UV-convergent u relevant order (n ≥ 2)

2 < d < 4 IR-singular super-renormalisable nonclassical
UV-convergent u relevant exponents

d = dc = 4 logarithmic IR-/ renormalisable logarithmic
UV-divergence u marginal corrections

d > 4 IR-regular nonrenormalisable mean-field
UV-divergent u irrelevant exponents

The upper critical dimension can be obtained in a more direct manner
through simple power counting. To this end, we introduce an arbitrary mo-
mentum scale µ, i.e., define the scaling dimensions [x] = µ−1 and [q] = µ. If in
addition we choose [t] = µ−2−a, or [ω] = µ2+a, then the relaxation constant
becomes dimensionless, [D] = µ0. For the deviation from the critical point,
we obtain [r] = µ2, and the positive exponent indicates that this control pa-
rameter constitutes a relevant coupling in the theory; as we shall see below,
its renormalised counterpart grows under subsequent RG transformations. For
the nonlinear coupling, one finds [u] = µ4−d, so it is relevant for d < 4: nonlin-
ear thermal fluctuations will qualitatively affect the physical properties at the
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phase transition; but u becomes irrelevant for d > 4: one then expects mean-
field (Gaussian) critical exponents. At the upper critical dimension dc = 4,
the nonlinear coupling u is marginally relevant: this will induce logarithmic
corrections to the mean-field scaling laws, see Table 7.1.

It is obviously not a simple task to treat the IR-singular perturbation
expansion in a meaningful, well-defined manner, and thus allow nonanalytic
modifications of the critical power laws (note that mean-field scaling is com-
pletely determined by dimensional analysis or power counting). The key of
the success of the RG approach is to focus on the very specific symmetry
that emerges near critical points, namely scale invariance. There are sev-
eral (largely equivalent) versions of the RG method; we shall here formu-
late and employ the field-theoretic variant [1–6, 8, 13]. In order to proceed,
it is convenient to evaluate the loop integrals in momentum space by means
of dimensional regularisation, whereby one assigns finite values even to UV-
divergent expressions, namely the analytically continued values from the UV-
finite range. For example, even for noninteger dimensions d and σ, we set

∫
ddk

(2π)d

k2σ

(τ + k2)s =
Γ (σ + d/2)Γ (s− σ − d/2)

2d πd/2 Γ (d/2)Γ (s)
τσ−s+d/2 . (7.53)

The renormalisation program then consists of the following steps:

1. We aim to carefully keep track of formal, unphysical UV divergences. In
dimensionally regularised integrals (7.53), these appear as poles in ε =
dc−d; their residues characterise the asymptotic UV behaviour of the field
theory under consideration.

2. Therefrom we may infer the (UV) scaling properties of the control parame-
ters of the model under a RG transformation, namely essentially a change
of the momentum scale µ, while keeping the form of the action invariant.
This will allow us to define suitable running couplings.

3. We seek fixed points in parameter space where certain marginal couplings
(u here) do not change anymore under RG transformations. This describes
a scale-invariant regime for the model under consideration, where the UV
and IR scaling properties become intimately linked. Studying the para-
meter flows near a stable RG fixed point then allows us to extract the
asymptotic IR power laws.

As a preliminary step, we need to take into account that the fluctuations
will also shift the critical point downwards from the mean-field phase transi-
tion temperature T 0

c ; i.e., we expect the transition to occur at Tc < T 0
c . This

fluctuation-induced Tc shift can be determined by demanding that the inverse
static susceptibility vanish at Tc: χ(q = 0, ω = 0)−1 = τ = r − rc, where
τ ∼ T − Tc and thus rc = Tc − T 0

c . Using our previous results (7.45) and
(7.47), we find to first order in u (and with finite cutoff Λ),

rc = −n+ 2
6

u

∫ Λ

k

1
rc + k2

+O(u2) = −n+ 2
6

uSd Λ
d−2

(2π)d (d− 2)
+O(u2) . (7.54)
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Notice that this quantity depends on microscopic details (the lattice structure
enters the cutoff Λ) and is thus not universal; moreover it diverges for d ≥ 2
(quadratically near dc = 4) as Λ → ∞. We next use r = τ + rc to write
physical quantities as functions of the true distance τ from the critical point,
which technically amounts to an additive renormalisation; e.g., the dynamic
response function becomes to one-loop order

χ(q, ω)−1 = − iω

Dqa
+ q2 + τ

[

1 − n+ 2
6

u

∫

k

1
k2(τ + k2)

]

+O(u2) . (7.55)

The remaining loop integral is UV-singular in dimensions d ≥ dc = 4.
We may now formally absorb the remaining UV divergences into renor-

malised fields and parameters, a procedure called multiplicative renormalisa-
tion. For the renormalised fields, we use the convention

Sα
R = Z

1/2
S Sα , S̃α

R = Z
1/2

S̃
S̃α , (7.56)

where we have exploited the O(n) rotational symmetry in using identical
renormalisation constants (Z factors) for each component. The renormalised
cumulants with N order parameter fields Sα and Ñ response fields S̃α natu-
rally involve the product ZN/2

S Z
Ñ/2

S̃
, whence

Γ
(Ñ,N)
R = Z

−Ñ/2

S̃
Z

−N/2
S Γ (Ñ,N) . (7.57)

In a similar manner, we relate the “bare” parameters of the theory via Z
factors to their renormalised counterparts, which we furthermore render di-
mensionless through appropriate momentum scale factors,

DR = ZD D , τR = Zτ τ µ
−2 , uR = Zu uAd µ

d−4 , (7.58)

where we have separated out the factor Ad = Γ (3 − d/2)/2d−1 πd/2 for con-
venience. In the minimal subtraction scheme, the Z factors contain only the
UV-singular terms, which in dimensional regularisation appear as poles at
ε = 0, and their residues, evaluated at d = dc.

These renormalisation constants are not all independent, however; since
the equilibrium fluctuation–dissipation theorem (7.38) or (7.13) must hold in
the renormalised theory as well, we infer that necessarily

ZD =
(
ZS/ZS̃

)1/2
, (7.59)

and consequently from Eq. (7.45)

χR = ZS χ . (7.60)

Moreover, for model B with conserved order parameter Eq. (7.49) implies that
to all orders in the perturbation expansion
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a = 2 : ZS̃ ZS = 1 , ZD = ZS . (7.61)

For the following, it is crucial that the theory is renormalisable, i.e., a finite
number of reparametrisations suffice to formally rid it of all UV divergences.
Indeed, for the relaxational models A and B, and the static Ginzburg–Landau–
Wilson Hamiltonian (7.7), all higher vertex function beyond the four-point
function are UV-convergent near dc, and there are only the three independent
static renormalisation factors ZS , Zτ , and Zu, and in addition ZD for non-
conserved order parameter dynamics. As we shall see, these directly translate
into the two independent static critical exponents and the unrelated dynamic
scaling exponent z for model A; for model B with conserved order parameter,
Eq. (7.61) will yield a scaling relation between z and η.

In order to explicitly determine the renormalisation constants, we need
to ensure that we stay away from the IR-singular regime. This is guaranteed
by selecting as normalisation point either τR = 1 (i.e., Zτ τ = µ2) or q = µ.
Inevitably therefore, the renormalised theory depends on the corresponding
arbitrary momentum scale µ. Since there are no fluctuation contributions to
order u to either ∂Γ (1,1)(q, 0)/∂q2 or ∂Γ (1,1)(0, ω)/∂ω (at τR = 1), we find
ZS = 1 and ZD = 1 within the one-loop approximation. Expressions (7.55)
and (7.50) then yield with the formula (7.53)

Zτ = 1 − n+ 2
6

uR

ε
, Zu = 1 − n+ 8

6
uR

ε
. (7.62)

To two-loop order, we may infer the field renormalisation ZS from the static
susceptibility as the singular contributions to ∂χR(q, 0)/∂q2|q=0, and ZD for
model A, through a somewhat lengthy calculation [13], from either Γ (2,0)

R (0, 0)
or Γ (1,1)

R (0, ω), with the results

ZS = 1 +
n+ 2
144

u2
R

ε
, a = 0 : ZD = 1 − n+ 2

144

(

6 ln
4
3
− 1
)
u2

R

ε
. (7.63)

7.1.5 Scaling Laws and Critical Exponents

We now wish to related the renormalised vertex functions at different inverse
length scales µ. This is accomplished by simply recalling that the unrenor-
malised vertex functions obviously do not depend on µ,

0 = µ
d
dµ

Γ (Ñ,N)(D, τ, u) = µ
d
dµ

[
Z

Ñ/2

S̃
Z

N/2
S Γ

(Ñ,N)
R (µ,DR, τR, uR)

]
. (7.64)

In the second step, the bare quantities have been replaced with their renor-
malised counterparts. The innocuous statement (7.64) then implies a very
nontrivial partial differential equation for the renormalised vertex functions,
the desired renormalisation group equation,
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[

µ
∂

∂µ
+
Ñ γS̃ +N γS

2
+ γD DR

∂

∂DR
+ γτ τR

∂

∂τR
+ βu

∂

∂uR

]

× Γ
(Ñ,N)
R (µ,DR, τR, uR) = 0 . (7.65)

Here we have defined Wilson’s flow functions (the index “0” indicates that
the derivatives with respect to µ are to be taken with fixed unrenormalised
parameters)

γS̃ = µ
∂

∂µ

∣
∣
∣
∣
0

lnZS̃ , γS = µ
∂

∂µ

∣
∣
∣
∣
0

lnZS , (7.66)

γτ = µ
∂

∂µ

∣
∣
∣
∣
0

ln(τR/τ) = −2 + µ
∂

∂µ

∣
∣
∣
∣
0

lnZτ , (7.67)

γD = µ
∂

∂µ

∣
∣
∣
∣
0

ln(DR/D) =
1
2
(
γS − γS̃

)
, (7.68)

where we have used the relation (7.59); for model B, Eq. (7.61) gives in addi-
tion

γD = γS = −γS̃ . (7.69)

We have also introduced the RG beta function for the nonlinear coupling u,

βu = µ
∂

∂µ

∣
∣
∣
∣
0

uR = uR

(

d− 4 + µ
∂

∂µ

∣
∣
∣
∣
0

lnZu

)

. (7.70)

Explicitly, Eqs. (7.63) and (7.62) yield to lowest nontrivial order, with ε =
4 − d,

γS = −n+ 2
72

u2
R +O(u3

R) , (7.71)

a = 0 : γD =
n+ 2
72

(

6 ln
4
3
− 1
)

u2
R +O(u3

R) , (7.72)

γτ = −2 +
n+ 2

6
uR +O(u2

R) , (7.73)

βu = uR

[

−ε+
n+ 8

6
uR +O(u2

R)
]

. (7.74)

In the RG equation for the renormalised dynamic susceptibility, Eq. (7.60)
tells us that the second term in Eq. (7.65) is to be replaced with −γS . Its ex-
plicit dependence on the scale µ can be factored out via χR(µ,DR, τR, uR, q, ω)
= µ−2 χ̂R

(
τR, uR, q/µ, ω/DR µ2+a

)
, see Eq. (7.55), whence

[

−2− γS + γD DR
∂

∂DR
+ γτ τR

∂

∂τR
+βu

∂

∂uR

]

χ̂R(DR, τR, uR) = 0 . (7.75)

This linear partial differential equation is readily solved by means of the
method of characteristics, as is Eq. (7.65) for the vertex functions. The idea
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is to find a curve parametrisation µ(�) = µ � in the space spanned by the
parameters D̃, τ̃ , and ũ such that

�
dD̃(�)

d�
= D̃(�) γD(�) , �

dτ̃(�)
d�

= τ̃(�) γτ (�) , �
dũ(�)

d�
= βu(�) , (7.76)

with initial values DR, τR, and uR, respectively at � = 1. The first-order ordi-
nary differential equations (7.76), with γD(�) = γD(ũ(�)) etc. define running
couplings that describe how the parameters of the theory change under scale
transformations µ → µ �. The formal solutions for D̃(�) and τ̃(�) read

D̃(�) = DR exp

[∫ �

1

γD(�′)
d�′

�′

]

, τ̃(�) = τR exp

[∫ �

1

γτ (�′)
d�′

�′

]

. (7.77)

For the function χ̂(�) = χ̂R(D̃(�), τ̃(�), ũ(�)), we then obtain another ordinary
differential equation, namely

�
dχ̂(�)

d�
= [2 + γS(�)] χ̂(�) , (7.78)

which is solved by

χ̂(�) = χ̂(1) �2 exp

[∫ �

1

γS(�′)
d�′

�′

]

. (7.79)

Collecting everything, we finally arrive at

χR(µ,DR, τR, uR, q, ω) = (µ �)−2 exp

[

−
∫ �

1

γS(�′)
d�′

�′

]

× χ̂R

(

τ̃(�), ũ(�),
|q|
µ �

,
ω

D̃(�) (µ �)2+a

)

. (7.80)

The solution (7.80) of the RG equation (7.75), along with the flow equa-
tions (7.76), (7.77) for the running couplings tell us how the dynamic suscep-
tibility depends on the (momentum) scale µ � at which we consider the theory.
Similar relations can be obtained for arbitrary vertex functions by solving the
associated RG equations (7.65) [13]. The point here is that the right-hand side
of Eq. (7.80) may be evaluated outside the IR-singular regime, by fixing one
of its arguments at a finite value, say |q|/µ � = 1. The function χ̂R is regu-
lar, and can be calculated by means of perturbation theory. A scale-invariant
regime is characterised by the renormalised nonlinear coupling uR becoming
independent of the scale µ �, or ũ(�) → u∗ = const. For an RG fixed point to
be infrared-stable, we thus require

βu(u∗) = 0 , β′
u(u∗) > 0 , (7.81)
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since Eq. (7.76) then implies that ũ(� → 0) → u∗. Taking the limit � → 0
thus provides the desired mapping of physical observables such as (7.80) onto
the critical region. In the vicinity of an IR-stable RG fixed point, Eq. (7.77)
yields the power laws D̃(�) ≈ DR �γ

∗
D , where γ∗D = γD(� → 0) = γD(u∗), etc.

Consequently, Eq. (7.80) reduces to

χR(τR, q, ω) ≈ µ−2 �−2−γ∗
S χ̂R

(

τR �γ
∗
τ , u∗,

|q|
µ �

,
ω

DR µ2+a �2+a+γ∗
D

)

, (7.82)

and upon matching � = |q|/µ we recover the dynamic scaling law (7.12) with
the critical exponents

η = −γ∗S , ν = −1/γ∗τ , z = 2 + a+ γ∗D . (7.83)

To one-loop order, we obtain from the RG beta function (7.74)

u∗H =
6 ε

n+ 8
+O(ε2) . (7.84)

Here we have indicated that our perturbative expansion for small u has ef-
fectively turned into a dimensional expansion in ε = dc − d. In dimensions
d < 4, the Heisenberg fixed point u∗H is IR-stable, since β′

u(u∗H) = ε > 0. With
Eqs. (7.71) and (7.73), the identifications (7.83) then give us explicit results
for the static scaling exponents, as mere functions of dimension d = 4− ε and
the number of order parameter components n,

η =
n+ 2

2 (n+ 8)2
ε2 +O(ε3) ,

1
ν

= 2 − n+ 2
n+ 8

ε+O(ε2) . (7.85)

For model A with nonconserved order parameter, the two-loop result (7.72)
yields the independent dynamic critical exponent

a = 0 : z = 2 + c η , c = 6 ln
4
3
− 1 +O(ε) ; (7.86)

for model B with conserved order parameter, instead γ∗D = γ∗S = −η, whence
we arrive at the exact scaling relation

a = 2 : z = 4 − η . (7.87)

In dimensions d > dc = 4, the Gaussian fixed point u∗0 = 0 is stable
(β′

u(0) = −ε > 0). Therefore all anomalous dimensions disappear, i.e., γ∗S =
0 = γ∗D and γ∗τ = −2, and we are left with the mean-field critical exponents
η0 = 0, ν0 = 1/2, and z0 = 2 + a. Precisely at the upper critical dimension
dc = 4, the RG flow equation for the nonlinear coupling becomes

�
dũ(�)

d�
=

n+ 8
6

ũ(�)2 +O
(
ũ(�)3

)
, (7.88)

which is solved by
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ũ(�) =
uR

1 − n+8
6 uR ln �

. (7.89)

In four dimensions, ũ(�) → 0, but only logarithmically slowly, which causes
logarithmic corrections to the mean-field critical power laws. For example,
upon inserting Eq. (7.89) into the flow equation (7.76), one finds τ̃(�) ∼
τR �−2(ln |�|)−(n+2)/(n+8); with τ̃(� = ξ−1) = O(1), iterative inversion yields

ξ(τR) ∼ τ
−1/2
R (ln τR)(n+2)/2(n+8)

. (7.90)

This concludes our derivation of asymptotic scaling laws for the critical
dynamics of the purely relaxational models A and B, and the explicit com-
putation of the scaling exponents in powers of ε = dc − d. In the following
sections, I will briefly sketch how the response functional formalism and the
dynamic renormalisation group can be employed to study the critical dynam-
ics of systems with reversible mode-coupling terms, the “ageing’ behaviour
induced by quenching from random initial conditions to the critical point, the
effects of violating the detailed balance constraints on universal dynamic crit-
ical properties, and the generically scale-invariant features of nonequilibrium
systems such as driven diffusive Ising lattice gases.

7.1.6 Critical Dynamics with Reversible Mode-Couplings

In the previous chapters, we have assumed purely relaxational dynamics for
the order parameter, see Eq. (7.16). In general, however, there are also re-
versible contributions to the systematic force terms Fα that enter its Langevin
equation [7,24]. Consider the Hamiltonian dynamics of microscopic variables,
say, local spin densities, at T = 0: ∂t S

α
m(x, t) = {H[Sm], Sα

m(x, t)}. Here,
the Poisson brackets {A,B} constitute the classical analog of the quantum-
mechanical commutator i

�
[A,B] (correspondence principle). Upon coarse-

graining, the microscopic variables Sα
m become the mesoscopic hydrodynamic

fields Sα. Since the set of slow modes should provide a complete description
of the critical dynamics, we may formally expand

{
H[S], Sα(x)

}
=
∫

ddx′
∑

β

δH[S]
δSβ(x′)

Qβα(x′,x) , (7.91)

with the mutual Poisson brackets of the hydrodynamic variables

Qαβ(x,x′) =
{
Sα(x), Sβ(x′)

}
= −Qβα(x′,x) . (7.92)

By inspection of the associated Fokker–Planck equation, one may then
establish an additional equilibrium condition in order for the time-dependent
probability distribution to reach the canonical limit (7.6): P[S, t] → Peq[S] as
t → ∞ provided the probability current is divergence-free in the space spanned
by the stochastic fields Sα(x):
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∫

ddx
∑

α

δ

δSα(x)

(
Fα

rev[S] e−H[S]/kBT
)

= 0 . (7.93)

It turns out that this equilibrium condition is often more crucial than the
Einstein relation (7.17). In order to satisfy Eq. (7.93) at T �= 0, we must
supplement Eq. (7.91) by a finite-temperature correction, whereupon the re-
versible mode-coupling contributions to the systematic forces become

Fα
rev[S](x) = −

∫

ddx′
∑

β

[

Qαβ(x,x′)
δH[S]
δSβ(x′)

− kBT
δQαβ(x,x′)
δSβ(x′)

]

,

(7.94)
and the complete coupled set of stochastic differential equations reads

∂Sα(x, t)
∂t

= Fα
rev[S](x, t) −Dα(i∇)aα

δH[S]
δSα(x, t)

+ ζα(x, t) , (7.95)

where as before the Dα denote the relaxation coefficients, and aα = 0 or 2
respectively for nonconserved and conserved modes.

As an instructive example, let us consider the Heisenberg model for
isotropic ferromagnets, H[{Sj}] = − 1

2

∑N
j,k=1 Jjk Sj · Sk, where the spin op-

erators satisfy the usual commutation relations [Sα
j , S

β
k ] = i�

∑
γ ε

αβγSγ
j δjk.

The corresponding Poisson brackets for the magnetisation density read

Qαβ(x,x′) = −g
∑

γ

εαβγSγ(x) δ(x − x′) , (7.96)

where the purely dynamical coupling g incorporates various factors that
emerge upon coarse-graining and taking the continuum limit. The second
contribution in Eq. (7.94) vanishes, since it reduces to a contraction of the
antisymmetric tensor εαβγ with the Kronecker symbol δβγ , whence we arrive
at the Langevin equations governing the critical dynamics of the three order
parameter components for isotropic ferromagnets [25]

∂S(x, t)
∂t

= −gS(x, t) × δH[S]
δS(x, t)

+D∇2 δH[S]
δS(x, t)

+ ζ(x, t) , (7.97)

with 〈ζ(x, t)〉 = 0. Since [H[{Sj}],
∑

k S
α
k ] = 0, the total magnetisation is

conserved, whence the noise correlators should be taken as
〈
ζα(x, t) ζβ(x′, t′)

〉
= −2DkBT ∇2δ(x − x′) δ(t− t′) δαβ . (7.98)

The vector product term in Eq. (7.97) describes the spin precession in the local
effective magnetic field δH[S]/δS, which includes a contribution induced by
the exchange interaction.

The Langevin equation (7.97) and (7.98) with the Hamiltonian (7.7) for
n = 3 define the so-called model J [7]. In addition to the model B response
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functional (7.35) and (7.36) with a = 2 (setting kBT = 1 again), the reversible
force in Eq. (7.97) leads to an additional contribution to the action

Amc[S̃, S] = −g
∫

ddx

∫

dt
∑

α,β,γ

εαβγ S̃αSβ
(
∇2Sγ + hγ

)
, (7.99)

which gives rise to an additional mode-coupling vertex, as depicted in Fig. 7.5(a).
Power counting yields the scaling dimension [g] = µ3−d/2 for the associated
coupling strength, whence we expect a dynamical upper critical dimension
d′c = 6. However, since we are investigating a system in thermal equilibrium,
we can treat its thermodynamics and static properties separately from its dy-
namics. Obviously therefore, the static critical exponents must still be given
(to lowest nontrivial order and for d < dc = 4) by Eq. (7.85) for the three-
component Heisenberg model with O(3) rotational symmetry. Therefore our
sole task is to find the dynamic critical exponent z.

q

2

q

2
+ p

q
α

β

γ
   p

= εαβγ(q  p) g

(b)

q

q/2−k

(c)
q

− q

q/2+k

−q/2−k

−q/2+k
q/2+k

q/2−k

−q/2+k

q

(a)

Fig. 7.5. (a) Mode-coupling three-point vertex for model J. One-loop Feynman
diagrams for the propagator (b) and noise vertex (c) renormalisations in model J.
The same graphs (b), (c) apply for driven diffusive systems (Sect. 7.1.9)

Remarkably, z is entirely fixed by the symmetries of the problem and
can be determined exactly. To this end, we exploit the fact that the Sα are
the generators of the rotation group; indeed, it follows from Eq. (7.99) that
applying a time-dependent external field hγ(t) induces a contribution

〈
Sα(x, t)

〉

h
= g

∫ t

0

dt′
∑

β

εαβγ
〈
Sβ(x, t′)

〉

h
hγ(t) (7.100)

to the average magnetisation. As a consequence, we obtain for the nonlinear
susceptibility Rα;βγ = δ2〈Sα〉/δhβ δhγ |h=0,
∫

ddx′Rα;βγ(x, t;x − x′, t− t′) = g εαβγ χββ(x, t)Θ(t)Θ(t− t′) . (7.101)

An analogous expression must hold after renormalisation as well. If we define
the dimensionless renormalised mode-coupling according to

g2
R = Zg g

2 Bd µ
d−6 , fR = g2

R/D
2
R , (7.102)



7 Field-Theory Approaches to Nonequilibrium Dynamics 319

where Bd = Γ (4 − d/2)/2d d πd/2, Eq. (7.101) implies the identity [9]

Zg = ZS . (7.103)

For the RG beta function associated with the effective coupling entering the
loop corrections, we thus infer

βf = µ
∂

∂µ

∣
∣
∣
∣
0

fR = fR (d− 6 + γS − 2 γD) . (7.104)

Consequently, at any nontrivial IR-stable RG fixed point 0 < f∗ < ∞, we
have the exact scaling relation, valid to all orders in perturbation theory,

d < 6 : z = 4 + γ∗D = 4 +
d− 6 + γ∗S

2
=

d+ 2 − η

2
. (7.105)

Since the resulting value for the dynamic exponent, z ≈ 5/2 in three dimen-
sions, is markedly smaller than the model B mean-field z0 = 4, we conclude
that the reversible spin precession kinetics speeds up the order parameter
dynamics considerably [7, 9, 25].

An explicit one-loop calculation, either for the propagator self-energy
Γ (1,1)(q, ω), depicted in Fig. 7.5(b), or the noise vertex Γ (2,0)(q, ω), shown
in Fig. 7.5(c), yields [9, 13]

γD = −fR +O(u2
R, f

2
R) , (7.106)

which along with γS = 0 + O(u2
R, f

2
R) confirms that there exists a nontrivial

mode-coupling RG fixed point

f∗
J =

ε

2
+O(ε2) , (7.107)

where ε = 6 − d, which is IR-stable for d < 6. As η = 0 for d > 4, we
indeed recover the mean-field dynamic exponent z0 = 4 in d ≥ 6 dimensions.
With the leading singularity thus isolated, the regular scaling functions can
be computed numerically to high accuracy within a self-consistent one-loop
approximation that also goes under the name mode-coupling theory. Details of
this procedure, an alternative derivation, and many results of mode-coupling
theory as applied to the critical dynamics of magnets and comparisons with
experimental data can be found in Ref. [26].

Typically, reversible force terms of the form (7.94) involve dynamical cou-
plings of the order parameter to other conserved, slow variables. In addition,
there may also be static couplings to conserved fields in the Hamiltonian.
These various possibilities give rise to a range of different dynamic universal-
ity classes for near-equilibrium critical dynamics [7]. We shall not pursue these
further here (for a partial account within the field-theoretic RG approach, see
Ref. [13]), but instead proceed and now consider nonequilibrium effects.
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7.1.7 Critical Relaxation, Initial Slip, and Ageing

We begin with a brief discussion of the coarsening dynamics of systems de-
scribed by model A/B kinetics that are rapidly quenched from a disordered
state at T � Tc to the critical point T ≈ Tc [27, 28]. The situation may be
modeled as a relaxation from Gaussian random initial conditions, i.e., the
probability distribution for the order parameter at t = 0 can be taken as

P[S, t = 0] ∝ e−H0[S] = exp

(

−∆

2

∫

ddx
∑

α

[Sα(x, 0) − aα(x)]2
)

, (7.108)

where the functions aα(x) specify the most likely initial configurations. Power
counting for the parameter ∆ gives [∆] = µ2, whence it is a relevant pertur-
bation that will flow to ∆ → ∞ under the RG. Asymptotically, therefore, the
system will be governed by sharp Dirichlet boundary conditions. Whereas the
response propagators remains a causal function of the time difference between
applied perturbation and effect, G0(q, t− t′) = Θ(t− t′) e−Dqa (r+q2) (t−t′), see
Eq. (7.23), time translation invariance is broken by the initial state in the
Dirichlet correlator of the Gaussian model,

CD(q; t, t′) =
1

r + q2

(
e−Dqa (r+q2) |t−t′| − e−Dqa (r+q2) (t+t′)

)
. (7.109)

Away from criticality, i.e., for r > 0 and q �= 0, temporal correlations decay
exponentially fast, and the system quickly approaches the stationary equilib-
rium state. However, as T → Tc, the equilibration time diverges according to
tc ∼ |τ |−zν → ∞, and the system never reaches thermal equilibrium. Two-
time correlation functions will then depend on both times separately, in a
specific manner to be addressed below, a phenomenon termed critical “age-
ing” (for more details, see Refs. [29, 30]).

The field-theoretic treatment of the model A/B dynamical action (7.35),
(7.36) with the initial term (7.108) follows the theory of boundary critical
phenomena [31]. However, it turns out that additional singularities on the
temporal “surface” at t + t′ = 0 appear only for model A, and can be in-
corporated into a single new renormalisation factor; to one-loop order, one
finds [27,28]

a = 0 : S̃α
R(x, 0) = (Z0 ZS̃)1/2 S̃α(x, 0) , Z0 = 1 − n+ 2

6
uR

ε
. (7.110)

This in turn leads to a single independent critical exponent associated with
the initial time relaxation, the initial slip exponent, which becomes for the
purely relaxational models A and B with nonconserved and conserved order
parameter:

a = 0 : θ =
γ∗0
2 z

=
n+ 2

4 (n+ 8)
ε+O(ε2) , a = 2 : θ = 0 . (7.111)
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In order to obtain the short-time scaling laws for the dynamic response and
correlation functions in the ageing limit t′/t → 0, one requires additional
information that can be garnered from the short-distance operator product
expansion for the fields,

t → 0 : S̃(x, t) = σ̃(t) S̃0(x) , S(x, t) = σ(t) S̃0(x) . (7.112)

Subsequent analysis then yields eventually [27,28]

χ(q; t, t′ → 0) = |q|z−2+η

(
t

t′

)θ

χ̂0(q ξ, |q|z Dt) , (7.113)

C(q; t, t′ → 0) = |q|−2+η

(
t

t′

)θ−1

Ĉ0(q ξ, |q|z Dt) , (7.114)

and for the time dependence of the mean order parameter

〈S(t)〉 = S0 t
θ′
Ŝ
(
S0 t

θ′+β/zν
)
, (7.115)

a = 0 : θ′ = θ − z − 2 + η

z
, a = 2 : θ′ = θ = 0 . (7.116)

One may also compute the universal fluctuation–dissipation ratios in this
nonequilibrium ageing regime [29, 30]. It emerges, though, that these depend
on the quantity under investigation, which prohibits a unique definition of an
effective nonequilibrium temperature for critical ageing. The method sketched
above can be extended to models with reversible mode-couplings [32]. For
model J capturing the critical dynamics of isotropic ferromagnets, one finds

θ =
z − 4 + η

z
= −6 − d− η

d+ 2 − η
; (7.117)

in systems where a nonconserved order parameter is dynamically coupled to
other conserved modes, the initial slip exponent θ is actually not a universal
number, but depends on the width of the initial distribution [32].

7.1.8 Nonequilibrium Relaxational Critical Dynamics

Next we address the question [33], What happens if the detailed balance con-
ditions (7.17) and (7.93) are violated? To start, we change the noise strength
D → D̃ in the purely relaxational models A and B, which (in our units) vio-
lates the Einstein relation (7.17). However, this modification can obviously be
absorbed into a rescaled effective temperature, kBT → kBT

′ = D̃/D. Formally
this is established by means of the dynamical action (7.34), which now reads

A[S̃, S] =
∫

ddx

∫

dt
∑

α

S̃α

[

∂t S
α +D (i∇)a

(
r − ∇2

)
Sα

−D̃ (i∇)a S̃α +D
u

6
(i∇)a Sα

∑

β

SβSβ

]

. (7.118)
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Upon simple rescaling S̃α → S̃
′α = S̃α

√

D̃/D, Sα → S′α = Sα

√

D/D̃, the
response functional (7.118) recovers its equilibrium form, albeit with modi-
fied nonlinear coupling u → ũ = u D̃/D. However, the universal asymptotic
properties of these models are governed by the Heisenberg fixed point (7.84),
and the specific value of the (renormalised) coupling, which only serves as
the initial condition for the RG flow, does not matter. In fact, the relax-
ational dynamics of the kinetic Ising model with Glauber dynamics (model
A with n = 1) is known to be quite stable against nonequilibrium perturba-
tions [34, 35], even if these break the Ising Z2 symmetry [36]. For model J
the above rescaling modifies in a similar manner merely the mode-coupling

strength in Eq. (7.99), namely g → g̃ = g

√

D̃/D [37]. Again, since the dy-
namic critical behaviour is governed by the universal fixed point (7.107), ther-
mal equilibrium becomes effectively restored at criticality. More generally, it
has been established that isotropic detailed balance violations do not affect
the universal properties in other models for critical dynamics that contain
additional conserved variables either: the equilibrium RG fixed points tend to
be asymptotically stable [33].

In systems with conserved order parameter, however, we may in addition
introduce spatially anisotropic violations of Einstein’s relation; for example, in
model B one can allow for anisotropic relaxation −D∇2 → −D⊥ ∇2

⊥−D‖ ∇2
‖,

with different rates in two spatial subsectors and concomitantly anisotropic
noise correlations −D̃∇2 → −D̃⊥ ∇2

⊥ − D̃‖ ∇2
‖. We have thus produced a

truly nonequilibrium situation provided D̃⊥/D⊥ �= D̃‖/D‖, which we may
interpret as having effectively coupled the longitudinal and transverse spatial
sectors to heat baths with different temperatures T⊥ < T‖, say [38].

Evaluating the fluctuation-induced shift of the transition temperature,
see Eq. (7.54) one finds not surprisingly that the transverse sector softens
first, while the longitudinal sector remains noncritical. This suggests that we
can neglect the nonlinear longitudinal fluctuations as well as the ∇4

‖ term
in the propagator. These features are indeed encoded in the corresponding
anisotropic scaling: [q⊥] = µ, [q‖] = µ2, [ω] = µ4, whence [D̃⊥] = [D⊥] = µ0,
and [D̃‖] = [D‖] = µ−2 become irrelevant. Upon renaming D = D⊥ and
c = r‖D‖/D⊥, this ultimately leads to the randomly driven or two-temperature
model B [39, 40] as the effective theory describing the phase transition:

∂Sα(x, t)
∂t

= D
[
∇2

⊥
(
r − ∇2

⊥
)

+ c∇2
‖

]
Sα(x, t)

+
D ũ

6
∇2

⊥ Sα(x, t)
∑

β

[Sβ(x, t)]2 + ζα(x, t) , (7.119)

with the noise correlations
〈
ζα(x, t) ζβ(x′, t′)

〉
= −2D∇2

⊥ δ(x − x′) δ(t− t′) δαβ . (7.120)
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Quite remarkably, the Langevin equation (7.119) can be derived as an equi-
librium diffusive relaxational kinetics

∂Sα(x, t)
∂t

= D∇2
⊥

δHeff [S]
δSα(x, t)

+ ζα(x, t) (7.121)

from an effective long-range Hamiltonian

Heff [S] =
∫

ddq

(2π)d

q2
⊥(r + q2

⊥) + c q2
‖

2 q2
⊥

∑

α

∣
∣Sα(q)

∣
∣2

+
ũ

4!

∫

ddx
∑

α,β

[Sα(x)]2 [Sβ(x)]2 . (7.122)

Power counting gives [ũ] = µ4−d‖−d: the spatial anisotropy suppresses longi-
tudinal fluctuations and lower the upper critical dimension to dc = 4−d‖. The
anisotropic correlations encoded in Eq. (7.122) also reduce the lower critical
dimension and affect the nature of the ordered phase [39,41].

The scaling law for, e.g., the dynamic response function takes the form

χ(τ⊥, q⊥, q‖, ω) = |q⊥|−2+η χ̂

(
τ

|q⊥|1/ν
,

√
c |q‖|

|q⊥|1+∆
,

ω

D |q⊥|z
)

, (7.123)

where we have introduced a new anisotropy exponent ∆. Since the nonlinear
coupling ũ only affects the transverse sector, we find to all orders in the
perturbation expansion:

Γ (1,1)(q⊥ = 0, q‖, ω) = iω +D c q2
‖ , (7.124)

and consequently obtain the Z factor identity

Zc = Z−1
D = Z−1

S , (7.125)

which at any IR-stable RG fixed point implies the exact scaling relations

z = 4 − η , ∆ = 1 − γ∗c
2

= 1 − η

2
=

z

2
− 1 , (7.126)

whereas the scaling exponents for the longitudinal sector read

z‖ =
z

1 +∆
= 2 , ν‖ = ν (1 +∆) =

ν

2
(4 − η) . (7.127)

As for the equilibrium model B, the only independent critical exponents to
be determined are η and ν. To one-loop order, only the combinatorics of the
Feynman diagrams (see Fig. 7.2) enters their explicit values, whence one finds
for d < dc = 4 − d‖ formally identical results as for the usual Ginzburg–
Landau–Wilson Hamiltonian (7.7),
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η = 0 +O(ε2) ,
1
ν

= 2 − n+ 2
n+ 8

ε+O(ε2) , (7.128)

albeit with different ε = 4−d−d‖. To two-loop order, however, the anisotropy
manifestly affects the evaluation of the loop contributions, and the value for
η deviates from the expression in Eq. (7.85) [40].

Interestingly, an analogously constructed nonequilibrium two-temperature
model J with reversible mode-coupling vertex cannot be cast into a form that
is equivalent to an equilibrium system, for owing to the emerging anisotropy,
the condition (7.93) cannot be satisfied. A one-loop RG analysis yields a run-
away flow, and no stable RG fixed point is found [38]. Similar behaviour ensues
in other anisotropic nonequilibrium variants of critical dynamics models with
conserved order parameter; the precise interpretation of the apparent insta-
bility is as yet unclear [33].

7.1.9 Driven Diffusive Systems

Finally, we wish to consider Langevin representations of genuinely nonequi-
librium systems, namely driven diffusive lattice gases (for a comprehensive
overview, see Ref. [42]). First we address the coarse-grained continuum version
of the asymmetric exclusion process, i.e., hard-core repulsive particles that hop
preferentially in one direction. We describe this system in terms of a conserved
particle density, whose fluctuations we denote with S(x, t), such that 〈S〉 = 0,
obeying a continuity equation ∂t S(x, t)+∇ ·J(x, t) = 0. We assume the sys-
tem to be driven along the “‖’ direction; in the transverse sector (of dimension
d⊥ = d− 1) we thus just have a noisy diffusion current J⊥ = −D∇⊥S + η,
whereas there is a nonlinear term, stemming from the hard-core interactions,
in the current along the direction of the external drive, with J0 ‖ = const.: J‖ =
J0 ‖−D c∇‖S− 1

2 Dg S
2+η‖. For the stochastic currents, we assume Gaussian

white noise 〈ηi〉 = 0 = 〈η‖〉 and 〈ηi(x, t) ηj(x′, t′)〉 = 2D δ(x−x′) δ(t− t′) δij ,〈
η‖(x, t) η‖(x′, t′)

〉
= 2D c̃ δ(x − x′) δ(t − t′). Notice that since we are not in

thermal equilibrium, Einstein’s relation need not be fulfilled. We can however
always rescale the field to satisfy it in the transverse sector; the ratio w = c̃/c
then measures the deviation from equilibrium. These considerations yield the
generic Langevin equation for the density fluctuations in driven diffusive sys-
tems (DDS) [43, 44]

∂S(x, t)
∂t

= D
(
∇2

⊥ + c∇2
‖

)
S(x, t) +

Dg

2
∇‖S(x, t)2 + ζ(x, t) , (7.129)

with conserved noise ζ = −∇⊥ · η −∇‖η‖, where 〈ζ〉 = 0 and

〈ζ(x, t) ζ(x′, t′)〉 = −2D
(
∇2

⊥ + c̃∇2
‖

)
δ(x − x′) δ(t− t′) . (7.130)

Notice that the drive term ∝ g breaks both the system’s spatial reflection
symmetry and the Ising Z2 symmetry S → −S.
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The corresponding Janssen–De Dominicis response functional (7.34) reads

A[S̃, S] =
∫

ddx

∫

dt S̃

[
∂S

∂t
−D

(
∇2

⊥ + c∇2
‖

)
S

+D
(
∇2

⊥ + c̃∇2
‖

)
S̃ − Dg

2
∇‖ S

2

]

. (7.131)

It describes a “massless” theory, hence we expect the system to be generically
scale-invariant, without the need to tune it to a special point in parameter
space. The nonlinear drive term will induce anomalous scaling in the drive
direction, different from ordinary diffusive behaviour. In the transverse sector,
however, we have to all orders in the perturbation expansion simply

Γ (1,1)(q⊥, q‖ = 0, ω) = iω+D q2
⊥ , Γ (2,0)(q⊥, q‖ = 0, ω) = −2D q2

⊥ , (7.132)

since the nonlinear three-point vertex, which is of the form depicted in
Fig. 7.5(a), is proportional to iq‖. Consequently,

ZS̃ = ZS = ZD = 1 , (7.133)

which immediately implies

η = 0 , z = 2 . (7.134)

Moreover, the nonlinear coupling g itself does not renormalise either as a
consequence of Galilean invariance. Namely, the Langevin equation (7.129)
and the action (7.131) are left invariant under Galilean transformations

S′(x′
⊥, x

′
‖, t

′) = S(x⊥, x‖ −Dgv t, t) − v ; (7.135)

thus, the boost velocity v must scale as the field S under renormalisation, and
since the product Dg v must be invariant under the RG, this leaves us with

Zg = Z−1
D Z−1

S = 1 . (7.136)

The effective nonlinear coupling governing the perturbation expansion in
terms of loop diagrams turns out to be g2/c3/2; if we define its renormalised
counterpart as

vR = Z3/2
c v Cd µ

d−2 , (7.137)

with the convenient choice Cd = Γ (2 − d/2)/2d−1πd/2, we see that the asso-
ciated RG beta function becomes

βv = vR

(

d− 2 − 3
2
γc

)

. (7.138)

At any nontrivial RG fixed point 0 < v∗ < ∞, therefore γ∗c = 2
3 (d − 2).

We thus infer that below the upper critical dimension dc = 2 for DDS, the
longitudinal scaling exponents are fixed by the system’s symmetry [43,44],
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∆ = −γ∗c
2

=
2 − d

3
, z‖ =

2
1 +∆

=
6

5 − d
. (7.139)

An explicit one-loop calculation for the two-point vertex functions, see
Fig. 7.5(b) and (c), yields

γc = −vR

16
(3 + wR) , γc̃ = −vR

32
(
3w−1

R + 2 + 3wR

)
, (7.140)

βw = wR (γc̃ − γc) = −vR

32
(wR − 1) (wR − 3) . (7.141)

This establishes that in fact the fixed point w∗ = 1 is IR-stable (provided 0 <
v∗ < ∞), which means that asymptotically the Einstein relation is satisfied
in the longitudinal sector as well [43].

In this context, it is instructive to make an intriguing connection with the
noisy Burgers equation [45], describing simplified fluid dynamics in terms of
a velocity field u(x, t):

∂u(x, t)
∂t

+
Dg

2
∇
[
u(x, t)2

]
= D∇2u(x, t) + ζ(x, t) , (7.142)

〈ζi〉 = 0 , 〈ζi(x, t) ζj(x′, t′)〉 = −2D∇i∇j δ(x − x′) δ(t− t′) . (7.143)

For Dg = 1, the nonlinearity is just the usual fluid advection term. In one
dimension, the Burgers equation (7.142) becomes identical with the DDS
Langevin equation (7.129), so we immediately infer its anomalous dynamic
critical exponent z‖ = 3/2. At least in one dimension therefore, it should rep-
resent an equilibrium system which asymptotically approaches the canonical
distribution (7.6), where the Hamiltonian is simply the fluid’s kinetic energy
(and we have set kBT = 1). So let us check the equilibrium condition (7.93)
with Peq[u] ∝ exp

[
− 1

2

∫
u(x)2 ddx

]
:

∫

ddx
δ

δu(x, t)
·
[
∇u(x, t)2

]
e−

1
2

∫
u(x′,t)2 ddx′

=
∫
[
2∇ · u(x, t) − u(x, t) · ∇u(x, t)2

]
ddx e−

1
2

∫
u(x′,t)2 ddx′

.

With appropriate boundary conditions, the first term here vanishes, but the
second one does so only in d = 1: −

∫
u (du2/dx) dx =

∫
u2 (du/dx) dx =

1
3

∫
(du3/dx) dx = 0. Driven diffusive systems in one dimension are therefore

subject to a “hidden” fluctuation–dissipation theorem.
To conclude this part on Langevin dynamics, let us briefly consider the

driven model B or critical DDS [42], which corresponds to a driven Ising lattice
gas near its critical point. Here, a conserved scalar field S undergoes a second-
order phase transition, but similar to the randomly driven case, again only the
transverse sector is critical. Upon adding the DDS drive term from Eq. (7.129)
to the Langevin equation (7.119), we obtain



7 Field-Theory Approaches to Nonequilibrium Dynamics 327

∂S(x, t)
∂t

= D
[
∇2

⊥
(
r − ∇2

⊥
)

+ c∇2
‖

]
S(x, t) +

D ũ

6
∇2

⊥ S(x, t)3

+
Dg

2
∇‖ S(x, t)2 + ζ(x, t) , (7.144)

with the (scalar) noise specified in Eq. (7.120). The response functional thus
becomes

A[S̃, S] =
∫

ddx

∫

dt S̃

[
∂S

∂t
−D

[
∇2

⊥
(
r − ∇2

⊥
)

+ c∇2
‖

]
S

+D
(

∇2
⊥ S̃ − ũ

6
∇2

⊥ S3 − g

2
∇‖ S

2

)]

. (7.145)

Power counting gives [g2] = µ5−d, so the upper critical dimension here is
dc = 5, and [ũ] = µ3−d. The nonlinearity ∝ ũ is thus irrelevant and can
be omitted if we wish to determine the asymptotic universal scaling laws;
but recall that it is responsible for the phase transition in the system. The
remaining vertex is then proportional to iq‖, whence Eqs. (7.132) and (7.133)
hold for critical DDS as well, and the transverse critical exponents are just
those of the Gaussian model B,

η = 0 , ν = 1/2 , z = 4 . (7.146)

In addition, Galilean invariance with respect to Eq. (7.135) and therefore
Eq. (7.136) hold as before. With the renormalised nonlinear drive strength
defined similarly to Eq. (7.137), but a different geometric constant and the
scale factor µd−5, the associated RG beta function reads

βv = vR

(

d− 5 − 3
2
γc

)

, (7.147)

which again allows us to determine the longitudinal scaling exponents to all
orders in perturbation theory, for d < dc = 5,

∆ = 1 − γ∗c
2

=
8 − d

3
, z‖ =

4
1 +∆

=
12

11 − d
. (7.148)

It is worthwhile mentioning a few marked differences to the two-temperature
model B discussed in Subsect. 7.1.8: In DDS, there are obviously nonzero
three-point correlations, and in the driven critical model B the upper critical
dimension is dc = 5 as opposed to dc = 4 − d‖ for the randomly driven
version. Notice also that the latter is characterised by nontrivial static critical
exponents, but the kinetics is purely diffusive along the drive direction, z‖ = 2.
Conversely for the driven model B, only the longitudinal scaling exponents
are non-Gaussian.
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7.2 Reaction–Diffusion Systems

We now turn our attention to stochastic interacting particle systems, whose
microscopic dynamics is defined through a (classical) master equation. Below,
we shall see how the latter can be mapped onto a stochastic quasi-Hamiltonian
in a second-quantised bosonic operator representation [10–12]. Taking the
continuum limit on the basis of coherent-state path integrals then yields a field
theory action that may be analysed by the very same RG methods as described
before in Subsects. 7.1.3–7.1.5 (for more details, see the recent overview [12]).

7.2.1 Chemical Reactions and Population Dynamics

Our goal is to study systems of “particles” A,B, . . . that propagate through
hopping to nearest neighbors on a d-dimensional lattice, or via diffusion in
the continuum. Upon encounter, or spontaneously, with given stochastic rates,
these particles may undergo species changes, annihilate, or produce offspring.
At large densities, the characteristic time scales of the kinetics will be governed
by the reaction rates, and the system is said to be reaction-limited. In contrast,
at low densities, any reactions that require at least two particles to be in
proximity will be diffusion-limited: the basic time scale will be set by the
hopping rate or diffusion coefficient.

As a first approximation to the dynamics of such “chemical” reactions,
let us assume homogeneous mixing of each species. We may then hope to be
able to capture the kinetics in terms of rate equations for each particle con-
centration or mean density. Note that such a description neglects any spatial
fluctuations and correlations in the system, and is therefore in character a
mean-field approximation. As a first illustration consider the annihilation of
k−l > 0 particles of species A in the irreversible kth-order reaction k A → l A,
with rate λ. The corresponding rate equation employs a factorisation of the
probability of encountering k particles at the same point to simply the kth
power of the concentration a(t),

ȧ(t) = −(k − l)λa(t)k . (7.149)

This ordinary differential equation is readily solved, with the result

k = 1 : a(t) = a(0) e−λ t , (7.150)

k ≥ 2 : a(t) =
[
a(0)1−k + (k − l)(k − 1)λ t

]−1/(k−1)
. (7.151)

For simple “radioactive” decay (k = 1), we of course obtain an exponen-
tial time dependence, as appropriate for statistically independent events. For
pair (k = 2) and higher-order (k ≥ 3) processes, however, we find algebraic
long-time behaviour, a(t) → (λ t)−1/(k−1), with an amplitude that becomes
independent of the initial density a(0). The absence of a characteristic time
scale hints at cooperative effects, and we have to ask if and under which cir-
cumstances correlations might qualitatively affect the asymptotic long-time
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power laws. For according to Smoluchowski theory [12], we would expect the
annihilation reactions to produce depletion zones in sufficiently low dimen-
sions d ≤ dc, which would in turn induce a considerable slowing down of the
density decay, see Subsect. 7.2.3. For two-species pair annihilation A+B → ∅
(without mixing), another complication emerges, namely particle species seg-
regation in dimensions for d ≤ ds; the regions dominated by either species
become largely inert, and the annihilation reactions are confined to rather
sharp fronts [12].

Competition between particle decay and production processes, e.g., in the
reactions A → ∅ (with rate κ), A � A + A (with forward and back rates σ
and λ, respectively), leads to even richer scenarios, as can already be inferred
from the associated rate equation

ȧ(t) = (σ − κ) a(t) − λa(t)2 . (7.152)

For σ < κ, clearly a(t) ∼ e−(κ−σ) t → 0 as t → ∞. The system eventually
enters an inactive state, which even in the fully stochastic model is absorbing,
since once there is no particle left, no process whatsoever can drive the system
out of the empty state again. On the other hand, for σ > κ, we encounter an
active state with a(t) → a∞ = (σ−κ)/λ exponentially, with rate ∼ σ−κ. We
have thus identified a nonequilibrium continuous phase transition at σc = κ.
Indeed, as in equilibrium critical phenomena, the critical point is governed by
characteristic power laws; for example, the asymptotic particle density a∞ ∼
(σ−σc)β , and the critical density decay a(t) ∼ (λ t)−α with β0 = 1 = α0 in the
mean-field approximation. The following natural questions then arise: What
are the critical exponents once statistical fluctuations are properly included
in the analysis? Can we, as in equilibrium systems, identify and characterise
certain universality classes, and which microscopic or overall, global features
determine them and their critical dimension?

Already the previous set of reactions may also be viewed as a (crude) model
for the population dynamics of a single species. In the same language, we may
also formulate a stochastic version of the classic Lotka–Volterra predator–prey
competition model [46]: if by themselves, the “predators” A die out according
to A → ∅, with rate κ, whereas the prey reproduce B → B + B with rate σ,
and thus proliferate with a Malthusian population explosion. The predators
are kept alive and the prey under control through predation, here modeled as
the reaction A + B → A + A: with rate λ, a prey is “eaten” by a predator,
who simultaneously produces an offspring. The coupled kinetic rate equations
for this system read

ȧ(t) = λa(t) b(t) − κ a(t) , ḃ(t) = σ b(t) − λa(t) b(t) . (7.153)

It is straightforward to show that the quantity K(t) = λ[a(t)+b(t)]−σ ln a(t)−
κ ln b(t) is a constant of motion for this coupled system of differential equa-
tions, i.e., K̇(t) = 0. As a consequence, the system is governed by regular
population oscillations, whose frequency and amplitude are fully determined
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by the initial conditions. Clearly, this is not a very realistic feature (albeit
mathematically appealing), and moreover Eqs. (7.153) are known to be quite
unstable with respect to model modifications [46]. Indeed, if one includes
spatial degrees of freedom and takes account of the full stochasticity of the
processes involved, the system’s behaviour turns out to be much richer [47]:
In the species coexistence phase, one encounters for sufficiently large values of
the predation rate an incessant sequence of “pursuit and evasion” waves that
form quite complex dynamical patterns. In finite systems, these induce erratic
population oscillations whose features are however independent of the ini-
tial configuration, but whose amplitude vanishes in the thermodynamic limit.
Moreover, if locally the prey “carrying capacity” is limited (corresponding to
restricting the maximum site occupation number per site on a lattice), there
appears an extinction threshold for the predator population that separates the
absorbing state of a system filled with prey from the active coexistence regime
through a continuous phase transition [47].

These examples all call for a systematic approach to include stochastic
fluctuations in the mathematical description of interacting reaction–diffusion
systems that would be conducive to the application of field-theoretic tools, and
thus allow us to bring the powerful machinery of the dynamic renormalisation
group to bear on these problems. In the following, we shall describe such a
general method [48–50] which allows a representation of the classical master
equation in terms of a coherent-state path integral and its subsequent analysis
by means of the RG (for overviews, see Refs. [10–12]).

7.2.2 Field Theory Representation of Master Equations

The above interacting particle systems, when defined on a d-dimensional lat-
tice with sites i, are fully characterised by the set of occupation integer num-
bers ni = 0, 1, 2, . . . for each particle species. The master equation then de-
scribes the temporal evolution of the configurational probability distribution
P ({ni}; t) through a balance of gain and loss terms. For example, for the binary
annihilation and coagulation reactions A+A → ∅ with rate λ and A+A → A
with rate λ′, the master equation on a specific site i reads

∂P (ni; t)
∂t

= λ (ni + 2) (ni + 1)P (. . . , ni + 2, . . . ; t)

+λ′ (ni + 1)ni P (. . . , ni + 1, . . . ; t)
−(λ+ λ′)ni (ni − 1)P (. . . , ni, . . . ; t) , (7.154)

with initially P ({ni}, 0) =
∏

i P (ni), e.g., a Poisson distribution P (ni) =
n̄ni

0 e−n̄0/ni!. Since the reactions all change the site occupation numbers by
integer values, a second-quantised Fock space representation is particularly
useful [48–50]. To this end, we introduce the bosonic operator algebra

[
ai, aj

]
= 0 =

[
a†i , a

†
j

]
,
[
ai, a

†
j

]
= δij . (7.155)
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From these commutation relations one establishes in the standard manner
that ai and a†i constitute lowering and raising ladder operators, from which
we may construct the particle number eigenstates |ni〉,

ai |ni〉 = ni |ni − 1〉 , a†i |ni〉 = |ni + 1〉 , a†i ai |ni〉 = ni |ni〉 . (7.156)

(Notice that we have chosen a different normalisation than in ordinary quan-
tum mechanics.) A state with ni particles on sites i is then obtained from the
empty vaccum state |0〉, defined through ai |0〉 = 0, as the product state

|{ni}〉 =
∏

i

(
a†i

)ni

|0〉 . (7.157)

To make contact with the time-dependent configuration probability, we
introduce the formal state vector

|Φ(t)〉 =
∑

{ni}
P ({ni}; t) |{ni}〉 , (7.158)

whereupon the linear time evolution according to the master equation is trans-
lated into an “imaginary-time” Schrödinger equation

∂|Φ(t)〉
∂t

= −H |Φ(t)〉 , |Φ(t)〉 = e−H t |Φ(0)〉 . (7.159)

The stochastic quasi-Hamiltonian (rather, the time evolution or Liouville op-
erator) for the on-site reaction processes is a sum of local terms, Hreac =
∑

i Hi(a
†
i , ai); e.g., for the binary annihilation and coagulation reactions,

Hi(a
†
i , ai) = −λ

(
1 − a†i

2
)
a2

i − λ′
(
1 − a†i

)
a†i a

2
i . (7.160)

The two contributions for each process may be physically interpreted as fol-
lows: The first term corresponds to the actual process under consideration,
and describes how many particles are annihilated and (re-)created in each
reaction. The second term gives the “order” of each reaction, i.e., the num-
ber operator a†i ai appears to the kth power, but in normal-ordered form as

a†i
k
ak

i , for a kth-order process. Note that the reaction Hamiltonians such as
(7.160) are non-Hermitean, reflecting the particle creations and destructions.
In a similar manner, hopping between neighbouring sites 〈ij〉 is represented
in this formalism through

Hdiff = D
∑

〈ij〉

(
a†i − a†j

)(
ai − aj

)
. (7.161)

Our goal is of course to compute averages with respect to the configu-
rational probability distribution P ({ni}; t); this is achieved by means of the
projection state 〈P| = 〈0|

∏
i eai , which satisfies 〈P|0〉 = 1 and 〈P|a†i = 〈P|,
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since [eai , a†j ] = eai δij . For the desired statistical averages of observables that
must be expressible in terms of the occupation numbers {ni}, we then obtain

〈F (t)〉 =
∑

{ni}
F ({ni})P ({ni}; t) = 〈P|F ({a†i ai}) |Φ(t)〉 . (7.162)

Let first us explore the consequences of probability conservation, i.e., 1 =
〈P|Φ(t)〉 = 〈P|e−H t|Φ(0)〉. This requires 〈P|H = 0; upon commuting e

∑
i ai

with H, effectively the creation operators become shifted a†i → 1+a†i , whence
this condition is fulfilled provided Hi(a

†
i → 1, ai) = 0, which is indeed satisfied

by our explicit expressions (7.160) and (7.161). By this prescription, we may
also in averages replace a†i ai → ai, i.e., the particle density becomes a(t) =
〈ai〉, and the two-point operator a†iai a

†
jaj → ai δij + ai aj .

In the bosonic operator representation above, we have assumed that there
exist no restrictions on the particle occupation numbers ni on each site. If,
however, there is a maximum ni ≤ 2s+1, one may instead employ a represen-
tation in terms of spin s operators. For example, particle exclusion systems
with ni = 0 or 1 can thus be mapped onto non-Hermitean spin 1/2 “quantum”
systems. Specifically in one dimension, such representations in terms of inte-
grable spin chains have proved a fruitful tool; for overviews, see Refs. [51–54].
An alternative approach uses the bosonic theory, but encodes the site occu-
pation restrictions through appropriate exponentials in the number operators
e−a†

i ai [55].
We may now follow an established route in quantum many-particle the-

ory [56] and proceed towards a field theory representation through construct-
ing the path integral equivalent to the “Schrödinger” dynamics (7.159) based
on coherent states, which are right eigenstates of the annihilation operator,
ai |φi〉 = φi |φi〉, with complex eigenvalues φi. Explicitly, one finds

|φi〉 = exp
(

−1
2
|φi|2 + φi a

†
i

)

|0〉 , (7.163)

satisfying the overlap and (over-)completeness relations

〈φj |φi〉 = exp
(

−1
2
|φi|2 −

1
2
|φj |2 + φ∗

j φi

)

,

∫ ∏

i

d2φi

π
|{φi}〉 〈{φi}| = 1 .

(7.164)
Upon splitting the temporal evolution (7.159) into infinitesimal steps, and
inserting Eq. (7.164) at each time step, standard procedures (elaborated in
detail in Ref. [12]) yield eventually

〈F (t)〉 ∝
∫ ∏

i

D[φi]D[φ∗
i ]F ({φi}) e−A[φ∗

i ,φi] , (7.165)

with the action
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A[φ∗
i , φi] =

∑

i

(

−φi(tf )+
∫ tf

0

dt
[

φ∗
i

∂φi

∂t
+Hi(φ∗

i , φi)
]

−n̄0 φ
∗
i (0)

)

, (7.166)

where the first term originates from the projection state, and the last one from
the initial Poisson distribution. Notice that in the Hamiltonian, the creation
and annihilation operators a†i and ai are simply replaced with the complex
numbers φ∗

i and φi, respectively.
Taking the continuum limit, φi(t) → ψ(x, t), φ∗

i (t) → ψ̂(x, t), the “bulk”
part of the action becomes

A[ψ̂, ψ] =
∫

ddx

∫

dt
[

ψ̂

(
∂

∂t
−D∇2

)

ψ + Hreac(ψ̂, ψ)
]

, (7.167)

where the hopping term (7.161) has naturally turned into a diffusion propaga-
tor. We have thus arrived at a microscopic stochastic field theory for reaction–
diffusion processes, with no assumptions whatsoever on the form of the (in-
ternal) noise. This is a crucial ingredient for nonequilibrium dynamics, and
we may now use Eq. (7.167) as a basis for systematic coarse-graining and the
renormalisation group analysis. Returning to our example of pair annihilation
and coagulation, the reaction part of the action (7.167) reads

Hreac(ψ̂, ψ) = −λ
(
1 − ψ̂2

)
ψ2 − λ′

(
1 − ψ̂

)
ψ̂ ψ2 , (7.168)

see Eq. (7.160). Let us have a look at the classical field equations, namely
δA/δψ = 0, which is always solved by ψ̂ = 1, reflecting probability conserva-
tion, and δA/δψ̂ = 0, which, upon inserting ψ̂ = 1 gives here

∂ψ(x, t)
∂t

= D∇2 ψ(x, t) − (2λ+ λ′)ψ(x, t)2 , (7.169)

i.e., essentially the mean-field rate equation for the local particle density
ψ(x, t), see Eq. (7.149), supplemented with diffusion. The field theory ac-
tion (7.167), derived from the master equation (7.154), then provides a means
of including fluctuations in our analysis.

Before we proceed with this program, it is instructive to perform a shift
in the field ψ̂ about the mean-field solution, ψ̂(x, t) = 1 + ψ̃(x, t), whereupon
the reaction Hamiltonian density (7.168) becomes

Hreac(ψ̃, ψ) = (2λ+ λ′) ψ̃ ψ2 + (λ+ λ′) ψ̃2 ψ2 . (7.170)

In addition to the diffusion propagator, the annihilation and coagulation
processes thus give identical three- and four-point vertices; aside from non-
universal amplitudes, one should therefore obtain identical scaling behaviour
for both binary reactions in the asymptotic long-time limit [57]. Lastly, we
remark that if we interpret the action A[ψ̃, ψ] as a response functional (7.34),
despite the fields ψ̃ not being purely imaginary, our field theory becomes for-
mally equivalent to a “Langevin” equation, wherein additive noise is added to
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Eq. (7.169), albeit with negative correlator L[ψ] = −(λ+ λ′)ψ2, which repre-
sents “imaginary” multiplicative noise. This Langevin description is thus not
well-defined; however, one may render the noise correlator positive through
a nonlinear Cole–Hopf transformation ψ̃ = eρ̃, ψ = ρ e−ρ̃ such that ψ̃ ψ = ρ,
with Jacobian 1, but at the expense of “diffusion noise” ∝ Dρ (∇ρ̃ )2 in the ac-
tion [58]. In summary, binary (and higher-order) annihilation and coagulation
processes cannot be cast into a Langevin framework in any simple manner.

7.2.3 Diffusion-Limited Single-Species Annihilation Processes

We begin by analysing diffusion-limited single-species annihilation k A → ∅
[57, 59]. The corresponding field theory action (7.167) reads

A[ψ̂, ψ] =
∫

ddx

∫

dt
[

ψ̂

(
∂

∂t
−D∇2

)

ψ − λ
(
1 − ψ̂k

)
ψk

]

, (7.171)

which for k ≥ 3 allows no (obvious) equivalent Langevin description. Straight-
forward power counting gives the scaling dimension for the annihilation rate,
[λ] = µ2−(k−1)d, which suggests the upper critical dimension dc(k) = 2/(k−1).
Thus we expect mean-field behaviour ∼ (λ t)−1/(k−1), see Eq. (7.151), in any
physical dimension for k > 3, logarithmic corrections at dc = 1 for k = 3 and
at dc = 2 for k = 2, and nonclassical power laws for pair annihilation only in
one dimension. The field theory defined by the action (7.171) has two vertices,
the “annihilation” sink with k incoming lines only, and the “scattering” vertex
with k incoming and k outgoing lines. Neither allows for propagator renor-
malisation, hence the model remains massless with exact scaling exponents
η = 0 and z = 2, i.e., diffusive dynamics.

In addition, the entire perturbation expansion for the renormalisation for
the annihilation vertices is merely a geometric series of the one-loop diagram,
see Fig. 7.6 for the pair annihilation case (k = 2). If we define the renormalised
effective coupling according to

gR = Zg
λ

D
Bkd µ

−2(1−d/dc) , (7.172)

where Bkd = k!Γ (2−d/dc) dc/k
d/2 (4π)d/dc , we obtain for the single nontrivial

renormalisation constant

+ + +

+

. . .

. . .+. . .

Fig. 7.6. Vertex renormalisation for diffusion-limited binary annihilation A+A → ∅
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Z−1
g = 1 +

λBkd µ
−2(1−d/dc)

D (dc − d)
(7.173)

to all orders. Consequently, the associated RG beta function becomes

βg = µ
∂

∂µ

∣
∣
∣
∣
0

gR = −2 gR

dc
(d− dc + gR) , (7.174)

with the Gaussian fixed point g∗0 = 0 stable for d > dc(k) = 2/(k − 1),
leading to the mean-field power laws (7.151), whereas for d < dc(k) the flow
approaches

g∗ = dc(k) − d . (7.175)

Since the particle density has scaling dimension [a] = µd, we may write
aR(µ,DR, n0, gR) = µd âR(DR, n0 µ

−d, gR), where we have retained the de-
pendence on the initial density n0. Since the fields and the diffusion constant
do not renormalise (γD = 0 and γn0 = −d), the RG equation for the density
takes the form

[

d− dn0
∂

∂n0
+ βg

∂

∂gR

]

âR

(
n0 µ

−d, gR

)
= 0 , (7.176)

see Eq. (7.75). With the characteristics set equal to µ � = (D t)−1/2, the
solution of the RG equation (7.176) near the IR-stable RG fixed point g∗

becomes
aR(n0, t) ∼ (Dµ2 t)−d/2 âR

(
n0 (Dµ2 t)d/2, g∗

)
. (7.177)

Under the RG, the first argument in Eq. (7.177) flows to infinity. One therefore
needs to establish that the result for the scaling function â is finite to all orders
in the initial density [12,59]. One then finds the following asymptotic long-time
behaviour for pair annihilation below the critical dimension [57,59],

k = 2 , d < 2 : a(t) ∼ (D t)−d/2 . (7.178)

At the critical dimension, g̃(�) → 0 logarithmically slowly, and the process is
still diffusion-limited; this gives

k = 2 , d = 2 : a(t) ∼ (D t)−1 ln(D t) , (7.179)

k = 3 , d = 1 : a(t) ∼
[
(D t)−1 ln(D t)

]1/2
. (7.180)

7.2.4 Segregation for Multi-Species Pair Annihilation

In pair annihilation reactions of two distinct species A + B → ∅, where no
reactions between the same species are allowed, a novel phenomenon emerges
in sufficiently low dimensions d ≤ ds, namely particle segregation in separate
spatial domains, with the decay processes restricted to sharp reaction fronts
on their boundaries [60]. Note that the reaction A + B → ∅ preserves the
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difference of particle numbers (even locally), i.e., there is a conservation law
for c(t) = a(t) − b(t) = c(0) [61]. The rate equations for the concentrations

ȧ(t) = −λa(t) b(t) = ḃ(t) (7.181)

are for equal initial densities a(0) = b(0) solved by the single-species pair
annihilation mean-field power law

a(t) = b(t) ∼ (λ t)−1 , (7.182)

whereas for unequal initial densities c(0) = a(0) − b(0) > 0, say, the majority
species a(t) → a∞ = c(0) > 0 as t → ∞, and the minority population disap-
pears, b(t) → 0. From Eq. (7.181) we obtain for d > dc = 2 the exponential
approach

a(t) − a∞ ∼ b(t) ∼ e−c(0) λ t . (7.183)

Mapping the associated master equation onto a continuum field theory
(7.167), the reaction term now reads (with the fields ψ and ϕ representing the
A and B particles, respectively) [62]

Hreac(ψ̂, ψ, ϕ̂, ϕ) = −λ
(
1 − ψ̂ ϕ̂

)
ψ ϕ . (7.184)

As in the single-species case, there is no propagator renormalisation, and
moreover the Feynman diagrams for the renormalised reaction vertex are of
precisely the same form as for A + A → ∅, see Fig. 7.6. Thus, for unequal
initial densities, c(0) > 0, the mean-field power law ∼ λ t in the exponent of
Eq. (7.183) becomes again replaced with (D t)d/2 in dimensions d ≤ dc = 2,
leading to stretched exponential time dependence,

d < 2 : ln b(t) ∼ −td/2 , d = 2 : ln b(t) ∼ −t/ ln(Dt) . (7.185)

However, species segregation for equal initial densities, a(0) = b(0), even
supersedes the slowing down due to the reaction rate renormalisation. As
confirmed by a thorough RG analysis, this effect can be captured within the
classical field equations [62]. To this end, we add diffusion terms (with equal
diffusivities) to the rate equations (7.181) for the now local particle densities,
(
∂

∂t
−D∇2

)

a(x, t) = −λa(x, t) b(x, t) =
(
∂

∂t
−D∇2

)

b(x, t) . (7.186)

The local concentration difference c(x, t) thus becomes a purely diffusive
mode, ∂t c(x, t) = D∇2c(x, t), and we employ the diffusion Green function

G0(q, t) = Θ(t) e−D q2 t , G0(x, t) =
Θ(t)

(4πDt)d/2
e−x2/4Dt , (7.187)

compare Eq. (7.23), to solve the initial value problem,
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c(x, t) =
∫

ddx′G0(x − x′, t) c(x′, 0) . (7.188)

Let us furthermore assume a Poisson distribution for the initial density cor-
relations (indicated by an overbar), a(x, 0) a(x′, 0) = a(0)2 + a(0) δ(x−x′) =
b(x, 0) b(x′, 0) and a(x, 0) b(x′(0) = a(0)2, which implies c(x, 0) c(x′, 0) =
2 a(0)δ(x−x′). Averaging over the initial conditions then yields with Eq. (7.188)

c(x, t)2 = 2 a(0)
∫

ddx′G0(x − x′, t)2 = 2 a(0) (8πDt)−d/2 ; (7.189)

since the distribution for c will be a Gaussian, we thus obtain for the local
density excess originating in a random initial fluctuation,

|c(x, t)| =

√
2
π
c(x, t)2 = 2

√
a(0)
π

(8πDt)−d/4 . (7.190)

In dimensions d < ds = 4 these density fluctuations decay slower than the
overall particle number ∼ t−1 for d > 2 and ∼ t−d/2 for d < 2 in a homogeneous
system. Species segregation into A- and B-rich domains renders the particle
distribution nonuniform, and the density decay is governed by the slow power
law (7.190), a(t) ∼ b(t) ∼ (Dt)−d/4.

For very special initial states, however, the situation can be different. For
example, consider hard-core particles (or λ → ∞) regularly arranged in an
alternating manner . . . ABABABABAB . . . on a one-dimensional chain. The
reactions A + B → ∅ preserve this arrangement, whence the distinction be-
tween A and B particles becomes meaningless, and one indeed recovers the
t−1/2 power law from the single-species pair annihilation reaction.

Let us at last generalise to q-species annihilation Ai + Aj → ∅, with
1 ≤ i < j ≤ q, with equal initial densities ai(0) as well as uniform diffu-
sion and reaction rates. For q > 2, there exists no conservation law in the
stochastic system, and one may argue, based on the study of fluctuations
in the associated Fokker–Planck equation, that segregation happens only for
d < ds(q) = 4/(q−1) [63]. In any physical dimension d ≥ 2, one should there-
fore see the same behaviour as for the single-species reaction A+A → ∅; this
is actually obvious for q = ∞, since in this case the probability for particles
of the same species to ever meet is zero, whence the species labeling becomes
irrelevant. In one dimension, with its special topology, segregation does occur,
and for generic initial conditions one finds the decay law [63]

ai(t) ∼ t−α(q) + C t−1/2 , α(q) =
q − 1
2 q

, (7.191)

which recovers α(2) = 1/4 and α(∞) = 1/2. Once again, in special situations,
e.g., the alignment . . . ABCDABCDABCD . . . for q = 4, the single-species
scaling ensues. There are also curious cyclic variants, for example if for four
species we only allow the reactions A + B → ∅, B + C → ∅, C + D → ∅,
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and D + A → ∅. We may then obviously identify A = C and B = D, which
leads back to the case of two-species pair annihilation. Generally, within essen-
tially mean-field theory one finds for cyclic multi-species annihilation processes
ai(t) ∼ t−α(q,d), where for

2 < ds(q) =
{

4 q = 2, 4, 6, . . .
4 cos(π/q) q = 3, 5, 7, . . . : α(q, d) = d/ds(q) . (7.192)

Remarkably, for five species this yields the borderline dimension ds(5) = 1+
√

5
for segregation to occur, hence nontrivial decay exponents α(5, 2) = 1

2 (
√

5−1)
in d = 2 and α(5, 3) = 3

4 (
√

5 − 1) in d = 3 that involve the golden ratio [64].

7.2.5 Active to Absorbing State Transitions
and Directed Percolation

Let us now return to the competing single-species reactions A → ∅ (rate κ),
A → A + A (rate σ), and, in order to limit the particle density in the active
phase, A+A → A (rate λ). Adding diffusion to the rate equation (7.152), we
arrive at the Fisher–Kolmogorov equation of biology and ecology [46],

∂a(x, t)
∂t

= −D
(
r − ∇2

)
a(x, t) − λa(x, t)2 , (7.193)

where r = (κ− σ)/D. As discussed in Subsect. 7.2.1, it predicts a continuous
transition from an active to an inactive, absorbing state to occur at r = 0. If we
define the associated critical exponents in close analogy to equilibrium critical
phenomena, see Subsect. (7.1.1), the partial differential equation (7.193) yields
the Gaussian exponent values η0 = 0, ν0 = 1/2, z0 = 2, and α0 = 1 = β0.

By the methods outlined in Subsect. 7.2.2, we may construct the coherent-
state path integral (7.167) for the associated master equation,

A[ψ̂, ψ] =
∫

ddx

∫

dt
[

ψ̂

(
∂

∂t
−D∇2

)

ψ − κ
(
1 − ψ̂

)
ψ

+ σ
(
1 − ψ̂

)
ψ̂ ψ − λ

(
1 − ψ̂

)
ψ̂ ψ2

]

. (7.194)

Upon shifting the field ψ̂ about its stationary value 1 and rescaling according
to ψ̂(x, t) = 1+

√
σ/λ S̃(x, t) and ψ(x, t) =

√
λ/σ S(x, t), the action becomes

A[S̃, S] =
∫

ddx

∫

dt
[

S̃

(
∂

∂t
+D

(
r − ∇2

)
)

S − u
(
S̃ − S

)
S̃ S + λ S̃2 S2

]

.

(7.195)
Thus, the three-point vertices have been scaled to identical coupling strengths
u =

√
σ λ, which represents the effective coupling of the perturbation expan-

sion, see Fig. 7.8 below. Its scaling dimension is [u] = µ2−d/2, whence we
infer the upper critical dimension dc = 4. The four-point vertex ∝ λ, with
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[λ] = µ2−d, is thus irrelevant in the RG sense, and can be dropped for the
computation of universal, asymptotic scaling properties.

The action (7.195) with λ = 0 is known as Reggeon field theory [65], and
its basic characteristic is its invariance under rapidity inversion S(x, t) ↔
−S̃(x,−t). If we interpret Eq. (7.195) as a response functional, we see that it
becomes formally equivalent to a stochastic process with multiplicative noise
(〈ζ(x, t)〉 = 0) captured by the Langevin equation [66,67]

∂S(x, t)
∂t

= −D
(
r − ∇2

)
S(x, t) − uS(x, t)2 + ζ(x, t) , (7.196)

〈ζ(x, t) ζ(x′, t′)〉 = 2uS(x, t) δ(x − x′) δ(t− t′) (7.197)

(for a more accurate mapping procedure, see Ref. [68]), which is essentially a
noisy Fisher–Kolmogorov equation (7.193), with the noise correlator (7.197)
ensuring that the fluctuations indeed cease in the absorbing state where
〈S〉 = 0. It has moreover been established [69–71] that the action (7.195) de-
scribes the scaling properties of critical directed percolation (DP) clusters [72],
illustrated in Fig. 7.7. Indeed, if the DP growth direction is labeled as “time”
t, we see that the structure of the DP clusters emerges from the basic decay,
branching, and coagulation reactions encoded in Eq. (7.194).

t
"

Fig. 7.7. Directed percolation process (left) and critical DP cluster (right)

In fact, the field theory action should govern the scaling properties of
generic continuous nonequilibrium phase transitions from active to inactive,
absorbing states, namely for an order parameter with Markovian stochastic
dynamics that is decoupled from any other slow variable, and in the absence
of quenched randomness [71, 73]. This DP conjecture follows from the follow-
ing phenomenological approach [68] to simple epidemic processes (SEP), or
epidemics with recovery [46]:

1. A “susceptible” medium becomes locally “infected”, depending on the den-
sity n of neighboring “sick” individuals. The infected regions recover after
a brief time interval.

2. The state n = 0 is absorbing. It describes the extinction of the “disease’.
3. The disease spreads out diffusively via the short-range infection 1. of neigh-

boring susceptible regions.
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4. Microscopic fast degrees of freedom are incorporated as local noise or
stochastic forces that respect statement 2., i.e., the noise alone cannot
regenerate the disease.

These ingredients are captured by the coarse-grained mesoscopic Langevin
equation ∂t n = D

(
∇2 −R[n]

)
n + ζ with a reaction functional R[n], and

s stochastic noise correlator of the form L[n] = nN [n]. Near the extinction
threshold, we may expand R[n] = r + un + . . ., N [n] = v + . . ., and higher-
order terms turn out to be irrelevant in the RG sense. Upon rescaling, we
recover the Reggeon field theory action (7.195) for DP as the corresponding
response functional (7.34).

We now proceed to an explicit evaluation of the DP critical exponents
to one-loop order, closely following the recipes given in Subsects. 7.1.3–7.1.5.
The lowest-order fluctuation contribution to the two-point vertex function
Γ (1,1)(q, ω) (propagator self-energy) is depicted in Fig. 7.8(a). The Feynman
rules of Subsect. 7.1.3 yield the corresponding analytic expression

Γ (1,1)(q, ω) = iω +D (r + q2) +
u2

D

∫

k

1
iω/2D + r + q2/4 + k2

. (7.198)

The criticality condition Γ (1,1)(0, 0) = 0 at r = rc provides us with the
fluctuation-induced shift of the percolation threshold

rc = − u2

D2

∫ Λ

k

1
rc + k2

+O(u4) . (7.199)

Inserting τ = r − rc into Eq. (7.198), we then find to this order

Γ (1,1)(q, ω) = iω+D (τ + q2)− u2

D

∫

k

iω/2D + τ + q2/4
k2 (iω/2D + τ + q2/4 + k2)

, (7.200)

and the diagram in Fig. 7.8(b) for the three-point vertex functions, evaluated
at zero external wavevectors and frequencies, gives

Γ (1,2)({0}) = −Γ (2,1)({0}) = −2u

(

1 − 2u2

D2

∫

k

1
(τ + k2)2

)

. (7.201)

For the renormalisation factors, we use again the conventions (7.56) and
(7.58), but with

Fig. 7.8. DP renormalisation: one-loop diagrams for the vertex functions (a) Γ (1,1)

(propagator self-energy), and (b) Γ (1,2) = −Γ (2,1) (nonlinear vertices)
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uR = Zu uA
1/2
d µ(d−4)/2 . (7.202)

Because of rapidity inversion invariance, ZS̃ = ZS . With Eq. (7.53) the deriv-
atives of Γ (1,1) with respect to ω, q2, and τ , as well as the one-loop result for
Γ (1,2) in Eq. (7.201), all evaluated at the normalisation point τR = 1, provide
us with the Z factors

ZS = 1 − u2

2D2

Ad µ
−ε

ε
, ZD = 1 +

u2

4D2

Ad µ
−ε

ε
,

Zτ = 1 − 3u2

4D2

Ad µ
−ε

ε
, Zu = 1 − 5u2

4D2

Ad µ
−ε

ε
. (7.203)

From these we infer the RG flow functions

γS = vR/2 , γD = −vR/4 , γτ = −2 + 3vR/4 , (7.204)

with the renormalised effective coupling

vR =
Z2

u

Z2
D

u2

D2
Ad µ

d−4 , (7.205)

whose RG beta function is to this order

βv = vR

[
−ε+ 3vR +O(v2

R)
]
. (7.206)

For d > dc = 4, the Gaussian fixed point v∗0 = 0 is stable, and we recover
the mean-field critical exponents. For ε = 4 − d > 0, we find the nontrivial
IR-stable RG fixed point

v∗ = ε/3 +O(ε2) . (7.207)

Setting up and solving the RG equation (7.65) for the vertex function
proceeds just as in Subsect. 7.1.5. With the identifications (7.83) (with a = 0)
we thus obtain the DP critical exponents to first order in ε,

η = − ε

6
+O(ε2) ,

1
ν

= 2 − ε

4
+O(ε2) , z = 2 − ε

12
+O(ε2) . (7.208)

In the vicinity of v∗, the solution of the RG equation for the order parameter
reads, recalling that [S] = µd/2,

〈SR(τR, t)〉 ≈ µd/2 �(d−γ∗
S)/2 Ŝ

(
τR �γ

∗
τ , v∗R,DR µ2 �2+γ∗

D t
)
, (7.209)

which leads to the following scaling relations and explicit exponent values,

β =
ν(d+ η)

2
= 1 − ε

6
+O(ε2) , α =

β

z ν
= 1 − ε

4
+O(ε2) . (7.210)

The scaling exponents for critical directed percolation are known analyti-
cally for a plethora of physical quantities (but the reader should beware that
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various different conventions are used in the literature); for the two-loop re-
sults to order ε2 in the perturbative dimensional expansion, see Ref. [68]. In
Table 7.2, we compare the O(ε) values with the results from Monte Carlo
computer simulations, which allow the DP critical exponents to be measured
to high precision (for recent overviews on simulation results for DP and other
absorbing state phase transitions, see Refs. [74,75]). Yet unfortunately, there
are to date hardly any real experiments that would confirm the DP conjec-
ture [71, 73] and actually measure the scaling exponents for this prominent
nonequilibrium universality class.

Table 7.2. Comparison of the DP critical exponent values from Monte Carlo sim-
ulations with the results from the ε expansion

Scaling exponent d = 1 d = 2 d = 4 − ε

ξ ∼ |τ |−ν ν ≈ 1.100 ν ≈ 0.735 ν = 1/2 + ε/16 + O(ε2)
tc ∼ ξz ∼ |τ |−zν z ≈ 1.576 z ≈ 1.73 z = 2 − ε/12 + O(ε2)

a∞ ∼ |τ |β β ≈ 0.2765 β ≈ 0.584 β = 1 − ε/6 + O(ε2)
ac(t) ∼ t−α α ≈ 0.160 α ≈ 0.46 α = 1 − ε/4 + O(ε2)

7.2.6 Dynamic Isotropic Percolation and Multi-Species Variants

An interesting variant of active to absorbing state phase transitions emerges
when we modify the SEP rules (1) and (2) in Subsect. 7.2.5 to

1. The susceptible medium becomes infected, depending on the densities n
and m of sick individuals and the “debris”, respectively. After a brief time
interval, the sick individuals decay into immune debris, which ultimately
stops the disease locally by exhausting the supply of susceptible regions.

2. The states with n = 0 and any spatial distribution of m are absorbing,
and describe the extinction of the disease.

Here, the debris is given by the accumulated decay products,

m(x, t) = κ

∫ t

−∞
n(x, t′) dt′ . (7.211)

After rescaling, this general epidemic process (GEP) or epidemic with removal
[46] is described in terms of the mesoscopic Langevin equation [76]

∂S(x, t)
∂t

= −D
(
r − ∇2

)
S(x, t) −DuS(x, t)

∫ t

−∞
S(x, t′)Dt′ + ζ(x, t) ,

(7.212)
with noise correlator (7.197). The associated response functional reads [77,78]
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A[S̃, S] =
∫

ddx

∫

dt
[

S̃

(
∂

∂t
+D

(
r − ∇2

)
)

S − u S̃2 S +DuS

∫ t

S(t′)
]

.

(7.213)
For the field theory thus defined, one may take the quasistatic limit by

introducing the fields

ϕ̃(x) = S̃(x, t → ∞) , ϕ(x) = D

∫ ∞

−∞
S(x, t′) dt′ . (7.214)

For t → ∞, the action (7.213) thus becomes

Aqst[ϕ̃, ϕ] =
∫

ddx ϕ̃
[
r − ∇2 − u (ϕ̃− ϕ)

]
ϕ , (7.215)

which is known to describe the critical exponents of isotropic percolation [79].
An isotropic percolation cluster is shown in Fig. 7.9, to be contrasted with
the anisotropic scaling evident in Fig. 7.7(b). The upper critical dimension of
isotropic percolation is dc = 6, and an explicit calculation, with the diagrams
of Fig. 7.8, but involving the static propagators G0(q) = 1/(r+q2), yields the
following critical exponents for isotropic percolation, to first order in ε = 6−d,

η = − ε

21
+O(ε2) ,

1
ν

= 2 − 5 ε
21

+O(ε2) , β = 1 − ε

7
+O(ε2) . (7.216)

In order to calculate the dynamic critical exponent for this dynamic isotropic
percolation (dIP) universality class, we must return to the full action (7.213).
Once again, with the diagrams of Fig. 7.8, but now involving a temporally
nonlocal three-point vertex, one then arrives at

z = 2 − ε

6
+O(ε2) . (7.217)

For a variety of two-loop results, the reader is referred to Ref. [68]. It is also
possible to describe the crossover from isotropic to directed percolation within
this field-theoretic framework [80,81].

Fig. 7.9. Isotropic percolation cluster
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Let us next consider multi-species variants of directed percolation processes,
which can be obtained in the particle language by coupling the DP reactions
Ai → ∅, Ai � Ai + Ai via processes of the form Ai � Aj + Aj (with j �= i);
or directly by the corresponding generalisation within the Langevin represen-
tation with 〈ζi(x, t)〉 = 0,

∂Si

∂t
= Di

(
∇2 −Ri[Si]

)
Si + ζi , Ri[Si] = ri +

∑

j

gij Sj + . . . , (7.218)

〈ζi(x, t)ζj(x′, t′)〉=2SiNi[Si] δ(x − x′) δ(t− t′) δij , Ni[Si]=ui + . . . (7.219)

The ensuing renormalisation factors turn out to be precisely as for single-
species DP, and consequently the generical critical behaviour even in such
multi-species systems is governed by the DP universality class [58]. For ex-
ample, the predator extinction threshold for the stochastic Lotka–Volterra
system mentioned in Subsect. 7.2.1 is characterised by the DP exponents as
well [47]. But these reactions also generate Ai → Aj , causing additional terms∑

j �=i gj Sj in Eq. (7.218). Asymptotically, the inter-species couplings become
unidirectional, which allows for the appearance of special multicritical points
when several ri = 0 simultaneously [82]. This leads to a hierarchy of order
parameter exponents βk on the kth level of a unidirectional cascade, with

β1 = 1− ε

6
+O(ε2) , β2 =

1
2
− 13 ε

96
+O(ε2) , . . . , βk =

1
2k

−O(ε) ; (7.220)

for the associated crossover exponent, one can show Φ = 1 to all orders [58].
Quite analogous features emerge for multi-species dIP processes [58, 68].

7.2.7 Concluding Remarks

In these lecture notes, I have described how stochastic processes can be
mapped onto field theory representations, starting either from a mesoscopic
Langevin equation for the coarse-grained densities of the relevant order pa-
rameter fields and conserved quantities, or from a more microsopic master
equation for interacting particle systems. The dynamic renormalisation group
method can then be employed to study and characterise the universal scaling
behaviour near continuous phase transitions both in and far from thermal
equilibrium, and for systems that generically display scale-invariant features.
While the critical dynamics near equilibrium phase transitions has been thor-
oughly investigated experimentally in the past three decades, regrettably such
direct experimental verification of the by now considerable amount of theo-
retical work on nonequilibrium systems is largely amiss. In this respect, ap-
plications of the expertise gained in the nonequilibrium statistical mechanics
of complex cooperative behaviour to biological systems might prove fruitful
and constitutes a promising venture. One must bear in mind, however, that
nonuniversal features are often crucial for the relevant questions in biology.
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In part, the lack of clearcut experimental evidence may be due to the fact
that asymptotic universal properties are perhaps less prominent in accessible
nonequilibrium systems, owing to long crossover times. Yet fluctuations do
tend to play a more important role in systems that are driven away from ther-
mal equilibrium, and the concept of universality classes, despite the undoubt-
edly much increased richness in dynamical systems, should still be useful. For
example, we have seen that the directed percolation universality class quite
generically describes the critical properties of phase transitions from active
to inactive, absorbing states, which abound in nature. The few exceptions
to this rule either require the coupling to another conserved mode [83, 84];
the presence, on a mesoscopic level, of additional symmetries that preclude
the spontaneous decay A → ∅ as in the so-called parity-conserving (PC)
universality class, represented by branching and annihilating random walks
A → (n + 1)A with n even, and A + A → ∅ [85] (for recent developments
based on nonperturbative RG approaches, see Ref. [86]); or the absence of any
first-order reactions, as in the (by now rather notorious) pair contact process
with diffusion (PCPD) [87], which has so far eluded a successful field-theoretic
treatment [88]. A possible explanation for the fact that DP exponents have not
been measured ubiquitously (yet) could be the instability towards quenched
disorder in the reaction rates [89].

In reaction–diffusion systems, a complete classification of the scaling prop-
erties in multi-species systems remains incomplete, aside from pair annihila-
tion and DP-like processes, and still constitutes a quite formidable program
(for a recent overview over the present situation from a field-theoretic view-
point, see Ref. [12]). This is even more evident for nonequilibrium systems in
general, even when maintained in driven steady states. Field-theoretic meth-
ods and the dynamic renormalisation group represent powerful tools that I
believe will continue to crucially complement exact solutions (usually of one-
dimensional models), other approximative approaches, and computer simula-
tions, in our quest to further elucidate the intriguing cooperative behaviour
of strongly interacting and fluctuating many-particle systems.
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39. B. Schmittmann and R.K.P. Zia: Phys. Rev. Lett. 66, 357 (1991)
40. B. Schmittmann: Europhys. Lett. 24, 109 (1993)
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L. Canet, H. Chaté, B. Delamotte, I. Dornic, and M.A. Muñoz: e-print
cond-mat/0505170 (2005)

87. M. Henkel and H. Hinrichsen: J. Phys. A: Math. Gen. 37, R117 (2004)
88. H.K. Janssen, F. van Wijland, O. Deloubrière, and U.C. Täuber: Phys. Rev.
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