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Abstract. We present a theoretical model for breaking various cryp- 
tographic schemes by taking advantage of random hardware faults. We 
show how to attack certain implementations of RSA and Rabin signa- 
tures. We also show how various authentication protocols, such as Fiat- 
Shamir and Schnorr, can be broken using hardware faults. 

1 Introduction 

Direct attacks on the famous RSA cryptosystem seem to require that one factor 
the modulus. Therefore, it is interesting to ask whether there are attacks that 
avoid this. The answer is yes: the first was the recent attack based on timing [4]. 
It was observed that a few bits could be obtained from the time that operations 
took. This would allow one to  break the system without factoring. 

We have a new type of attack that also avoids directly factoring the modulus. 
We essentially use the fact that from time to time the hardware performing the 
computations may introduce errors. There are several models that may enable 
a malicious adversary to  collect and possibly cause faults. We give a high level 
description: 

Transient faults Consider a certification authority (CA) that is constantly 
generating certificates and sending them out to  clients. Due to  random tran- 
sient hardware faults the CA might generate faulty certificates on rare oc- 
casions. If a faulty certificate is ever sent t o  a client, we show that in some 
cases that client can break the CA's system and generate fake certificates. 
Note that on many systems, a client is alerted when a faulty certificate is 
received. 

La ten t  faults Latent faults are hardware or software bugs that are difficult to  
catch. As an example, consider the Intel floating point division bug. Such 
bugs may also cause a CA to  generate faulty certificates from time to time. 

Induced faults When an adversary has physical access to  a device she may try 
to  purposely induce hardware faults. For instance, one may attempt to attack 
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a tamper-resistant device by deliberately causing it to malfunction. We show 
that the erroneous values computed by the device enable the adversary to  
extract the secret stored on it. 

We consider a fault model in which faults are transient. That is, the hard- 
ware fault only affects the current data, but not subsequent data. For instance, 
a bit stored in a register might spontaneously flip. Or a certain gate may spon- 
taneously produce an incorrect value. Note that the change is totally silent: the 
hardware and the system have no clue that the change has taken place. We as- 
sume that the probability of such faults is small so that only a small number of 
them occur during the computation. 

Our attack is effective against several cryptographic schemes such as the 
RSA system and Rabin signatures [lo]. The attack also applies to  several au- 
thentication schemes such as Fiat-Shamir [5] and Schnorr [ll]. As expected, the 
attack itself depends on the exact implementation of each of these schemes. For 
an implementation of RSA based on the Chinese remainder theorem we show 
that given one faulty version of an RSA signature one can efficiently factor the 
RSA modulus with high probability. The same approach can also be used to  
break Rabin’s signature scheme. In Section 6 we show that hardware faults can 
be used to  break other implementations of the RSA system though many more 
faulty values are required. 

In Section 4 we show that the Fiat-Shamir identification scheme [5] is vul- 
nerable to  our hardware faults attack. Given a few faulty values an adversary 
can completely recover the private key of the party trying to authenticate itself. 
In Section 5 we obtain the same result for Schnorr’s identification protocol [ll]. 
Both schemes are suitable for use on smart cards. 

It is important to emphasize that the attack described in this paper is cur- 
rently theoretical. We are not aware of any published results physically experi- 
menting with this type of attack. The purpose of these results is to  demonstrate 
the danger that hardware faults pose to various cryptographic protocols. The 
conclusion one may draw from these results is the importance of verifying the 
correctness of a computation for security reasons. For instance, a smart card 
using RSA t o  generate signatures should check that the correct signature has in- 
deed been produced. The same applies to a certification authority using RSA to 
generate certificates. In protocols where the device has to keep some state (such 
as in identification protocols) our results show the importance of protecting the 
registers storing the state information by adding error detection bits (e.g. CRC). 
We discuss these points in more detail at the end of the paper. 

We note that FIPS [6] publication 140-1 suggests that hardware faults may 
compromise the security of a module. Our results explicitly demonstrate the 
extent of the damage caused by such faults. 
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2 Chinese remainder based implementations 

2.1 The RSA system 

In this section we consider a system using RSA to generate signatures in a naive 
way. Let N = pq  be a product of two large prime integers. To sign a message 2 
using RSA the system computes 2' mod N where s is a secret exponent. Here 
the message 2 is assumed to be an integer in the range 1 to N (usually one first 
hashes the message to an integer in that range). The security of the system relies 
on the fact that factoring the modulus N is hard. In fact, if the factors of N 
are known then one can easily break the system, i.e., sign arbitrary documents 
without prior knowledge of the secret exponent. 

The computationally expensive part of signing using RSA is the modular 
exponentiation of the input z. For efficiency some implementations exponentiate 
as follows: using repeated squaring they first compute El = xs mod p and E2 = 
2' mod q.  They then use the Chinese remainder theorem (CRT) to compute the 
signature E = 2' mod N .  We explain this last step in more detail. Let a, b be 
two precomputed integers satisfying: 

b E O  (modp) 
b E l  (modq) 

and { a r  1 (modp) { U E O  (modq) 

Such integers always exist and can be easily found given p and q. It now follows 
that 

Thus, the signature E is computed by forming a linear combination of El and 
E2. This exponentiation algorithm is more efficient than using repeated squaring 
modulo N since the numbers involved are smaller. 

E = aE1 + bEz (mod N )  

2.2 

Our simple attack on RSA signatures using the above implementation enables 
us to factor the modulus N .  Once the modulus is factored the system is consid- 
ered to be broken. Our attack is based on obtaining two signatures of the same 
message. One signature is the correct one; the other is a faulty signature. At 
the end of the section we describe an improvement due to  Arjen Lenstra [9] that 
factors the modulus using just a single faulty signature of a known message M .  

Let M be a message and let E = M 8  mod N be the correct signature of the 
message. Let E be a faulty signature. Recall that E and E are computed as 

RSA's vulnerability to hardware faults 

E = aE1 + bEz (mod N )  and E = a& + bE2 (mod N )  

Suppose that by some miraculous event a hardware fault occurs only during 
the computation of one of El ,  Ez. Without loss of generality, suppose a hard- 
ware fault occurs during the computation of El but no fault occurs during the 
computation of E2, i.e. E z  = E2. Observe that 

E - E = (aE1+  bE2) - (a& + bkz) = a(E1-  E l )  
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NOW, if El - El is not divisible by p then 

and so N can be easily factored. Notice that if the factors of N are originally 
chosen at random then it is extremely unlikely that p divides El - E l .  After all, 
El - El can have at most logN factors. 

To summarize, using one faulty signature and one correct one the modulus 
used in the RSA system can be efficiently factored. We note that the above 
attack works under a very general fault model. It makes no difference what type 
of fault or how many faults occur in the computation of E l .  All we rely on is 
the fact that faults occur in the computation modulo only one of the primes. 

Arjen Lenstra [9] observed that, in fact, one faulty signature of a known mes- 
sage M is sufficient. Let E = M J  mod N .  Let E be a faulty signature obtained 
under the same fault as above, that is E E E mod q but E f E mod p .  It now 
follows that 

gcd(M - ke) N )  = q 

where e is the public exponent used to verify the signature, i.e. Ee = M mod 
N .  Thus, using the fact that the message M is known it  became possible to 
factor the modulus given only one faulty signature. This is of interest since most 
impIementations of RSA signatures avoid signing the same message twice using 
some padding technique. Lenstra’s improvement shows that as long as the entire 
signed message is known, even such RSA/CRT systems are vulnerable to  the 
hardware faults attack. 

The attack on Chinese remainder theorem implementations applies t o  other 
cryptosystems as well. For instance, the same attack applies to Rabin’s signature 
scheme [lo]. A Rabin signature of a number t mod N is the modular square root 
o f t .  The extraction of square roots modulo a composite makes use of CRT and 
is therefore vulnerable to  the attack described above. 

3 Register faults 

From here on our attacks are based on a specific fault model which we call register 
faults. Consider a tamper-resistant device. We view the device as composed of 
some circuitry and a small amount of memory. The circuitry is responsible for 
performing the arithmetic operations. The memory (registers plus a small on 
chip RAM) is used to store temporary values. 

Our fault model assumes that the circuitry contains no faults. On the other 
hand, a value stored in a register may be corrupted. With low probability, one 
(or a few) of the bits of the value stored in some register may flip. We will 
need this event to occur with sufficiently low probability so that there is some 
likelihood of the fault occurring exactly once throughout the computation. As 
before, all errors are transient and the hardware has no clue that the change has 
taken place. 
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4 The Fiat-Shamir identification scheme 

The Fiat-Shamir [5] identification scheme is an efficient method enabling one 
party, Alice, to  authenticate it’s identity to another party, Bob. They first agree 
on an la-bit modulus N which is a product of two large primes and a security 
parameter t .  Alice’s secret key is a set of invertible elements s1, . . . , st mod N .  
Her public key is the square of these numbers v1 = s:, . . . , vt = sp (mod N ) .  
To authenticate herself to  Bob they engage in the following protocol: 

1. Alice picks a random r E Z$ and sends r2 mod N to  Bob. 
2. Bob picks a random subset S E (1,. . . , t }  and sends the subset to Alice. 
3. Alice computes y = r . HiEs s, mod N and sends y to  Bob. 
4. Bob verifies Alice’s identity by checking that y2 = r2 . niEs vi  (mod N )  . 

For the purpose of authentication one may implement Alice’s role in a tamper 
resistant device. The device contains the secret information and is used by Alice 
to authenticate herself to  various parties. We show that using register faults one 
can extract the secret s1, . . . , st from the device. We use register faults that occur 
while the device is waiting for a challenge from the outside world. 

Theoreml. Let ilr be an n-bit modulus and t the predetermined security pa- 
rameter of the Fiat-Shamir protocol. Given t faulty runs of the protocol one can 
recover the secret s1, . . . , st in the tame it takes t o  perform O(nt + t 2 )  modular 
muitiplieations. 

Proof. Suppose that due to  a miraculous fault, one of the bits of the register 
holding the value r is flipped while the device is waiting for Bob to  send it 
the set S. In this case, Bob receives the correct value r2 mod N ,  however y is 
computed incorrectly by the device. Due to the fault, the device outputs: 

i E S  

where E is the value added to  the register as a result of the fault. Since the fault 
is a single bit flip we know that E = f2’ for some i = 0, , . . , n - 1. Observe that 
Bob knows the value niEs v; and he can therefore compute 

Since there are only la possible values for E Bob can guess its value. When E is 
guessed correctly Bob can recover r since 

( r +  E)’ - r p 2  = 2 E .  r +  E2 (mod N )  

and this linear equation in T can be easily solved. Bob’s ability to  discover the 
secret random value r is the main observation which enables him to break the 
system. Using the value of r and E Bob can compute: 
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To summarize, Bob can compute the value n,,, s i  by guessing the fault value 
E and using the formula: 

(mod N) 
2 E . y  
- r2 + E 2  

We now argue that Bob can verify that the fault value E was guessed cor- 
rectly. Let T be the hypothesized value of n,,, sj obtained from the above for- 
mula. To test if T is correct Bob can verify that the relation T2 = niEs Vi mod N 
holds. Usually only one of the possible values for E will satisfy the relation. In 
such a case Bob correctly obtains the value of ni,, s i .  

Even in the unlikely event that two values E ,  E' satisfy the relation, Bob 
can still break the system. If there are two possible values El E' generating two 
values T, T', T # T' satisfying the relation then clearly T2 = (TI)' mod N .  If 
T # -T' mod N then Bob can already factor N .  Suppose T = -T' mod N .  
Then since one of T or T' must equal n,,, si (one of E ,  E' is the correct fault 
value) it follows that Bob now knows ni,, si mod N up to sign. For our purposes 
this is good enough. 

The testing method above enables Bob to  check whether a certain value of 
E is the correct one. By testing all n possible values of E until the correct one is 
found Bob can compute n,,, s i .  Consequently, to  correctly determine the value 
of njEs s i  for one set S requires O(n + t )  modular multiplications. For t sets we 
need O(nt + t 2 )  modular multiplications. 

Observe that once Bob has a method for computing n,,, si  for various sets 
S of his choice, he can easily find s1, . . . , s t .  The simplest approach is for Bob 
to  construct ni,, si for singleton sets, i.e. sets S containing a single element. 
If S = {k} then niES s; = sk and hence the s;'s are immediately found. How- 
ever, it is possible that the device might refuse to  accept singleton sets S.  In 
this case Bob can still find the si 's as follows. We represent a set S (1, . . . , t }  
by its characteristic vector U E (0, l}t, i.e. U; = 1 if i E S and U; = 0 other- 
wise. Bob picks sets Sl, . . . , St such that the corresponding set of characteristic 
vectors U1, .  . . , Ut form a t x t full rank matrix over 222. Bob then uses the 
method described above to  construct the values Ti == n,,,, si  for each of the 
sets S1 , . . . , St. To determine s1 Bob constructs elements a l ,  . . . , at E (0 , l )  such 
that 

a1U1 + . . .+ atUt = ( 1 , 0 , 0 , .  , . , O )  (mod 2) 

These elements can be efficiently constructed since the vectors U1, . . . , Ut are 
linearly independent over Zz. When all computations are done over the integers 
we obtain that 

for some known integers bl , . . . , b t .  Bob can now compute s1 using the formula 
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Recall that the values vi = s: (mod N )  are publicly available. The values 
s2, . . . , st can be constructed using the same procedure. This phase of the algo- 
rithm requires O(t2) modular multiplications. 

To summarize, the entire algorithm above made use of t faults and made 
0 O(nt + t 2 )  modular multiplications. 

We emphasize that the faults occur while the device is waiting for a challenge 
from the outside world. Consequently, the adversary knows at exactly what time 
the register faults must be induced. 

We described the algorithm above for the case where a register fault causes 
a single bit flip. More generally, the algorithm can be made to handle a small 
number of bit flips per register fault. However, finding the correct fault value E 
becomes harder. If a single register fault causes c bits in the register to flip then 
the running time of the algorithm becomes O(nct) modular multiplications. 

4.1 A modification of the Fiat-Shamir scheme 

One may suspect that our attack on the Fiat-Shamir scheme is successful due 
to the fact that the scheme is based on squaring. Recall that Bob was able to 
compute the random value r chosen by the device since he was given r2 and 
(T + E)2  where E is the fault value. One may try to modify the scheme and use 
higher powers. We show that our techniques can be used to break this modified 
scheme as well. 

The modified scheme uses some publicly known exponent e instead of squar- 
ing. As before, Alice's secret key is a set of invertible elements s1, . . . , st mod N .  
Her public key the set of numbers w 1  = s:, . . . , wt = s: mod N .  To authenticate 
herself to Bob they engage in the following protocol: 

1. Alice picks a random r and sends re mod N to Bob. 
2. Bob picks a random subset S E (1,. . . , t }  and sends the subset to Alice. 
3. Alice computes y = r . n,,, si  mod N and sends y to Bob. 
4. Bob verifies Alice's identity by checking that ye = re . n,,, 216 (mod N )  . 

When e = 2 this protocol reduces to the original Fiat-Shamir protocol. Using 
the methods described in the previous section Bob can obtain the values L1 = 
re mod N and LZ = (r+E)e mod N .  As before we may assume that Bob guessed 
the value of E correctly. Given these two values Bob can recover T by observing 
that r is a common root of the two polynomials 

xe = L1 (modN)  and = Lz (mod N) 

Furthermore, T is very likely to  be the only common root of the two polyno- 
mials. Consequently, when the exponent e is polynomial in n Bob can recover 
r by computing the GCD of the two polynomials. Once Bob has a method for 
computing T he can recover the secrets sl, . . . , st as discussed in the previous 
section. 
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5 Attacking Schnorr's identification scheme 

The security of Schnorr's identification scheme [ll] is based on the hardness of 
computing discrete log modulo a prime. Alice and Bob first agree on a prime 
p and a generator g of Z;. Alice chooses a secret integer s and publishes y = 
g' mod p as her public key. To authenticate herself to  Bob, Alice engages in the 
following protocol: 

1. Alice picks a random integer r E [ O , p )  and sends z = g r  modp to Bob. 
2. Bob picks a random integer t E [0, T ]  and sends t to Alice. Here T < p is 

some upper bound chosen ahead of time. 
3. Alice sends u = T + t . s mod p - 1 to Bob. 
4. Bob verifies that gu = z ,yt mod p .  

For the purpose of authentication one may implement Alice's role in a tamper 
resistant device. The device contains the secret information s and is used by Alice 
to authenticate herself to various parties. We show that using register faults one 
can extract the secret s from the device. In this section log z denotes logarithm 
of z to the base e .  

Theorem 2.  Let p be an n-bit prime.  Given nlog4n faulty runs of the protocol 
one can recover the secret s with probability at least 3 an the time it takes to 
perform O(n2 log n) modular multiplications. 

Proof. Bob wishing to extract the secret information stored in the device first 
picks a random challenge t E The same challenge will be used in all 
invocations of the protocol. Since the device cannot possibly store all challenges 
given to it thus far, it cannot possibly know that Bob is always providing the 
same challenge t .  The attack enables Bob to  determine the value t - s mod p - 1 
from which the secret value s can be easily found. For simplicity we set z = 
t s  mod p - 1 and assume that g" mod p is known to Bob. 

Suppose that due to a miraculous fault, one of the bits of the register holding 
the value r is flipped while the device is waiting for Bob to send it the challenge 
t .  More precisely, when the third phase of the protocol is executed the device 
finds f = T f 2' in the register holding r.  Consequently, the device will output 
i = i + z mod p - 1.  Suppose 7' = r + 2i. Bob can determine the value of i (the 
fault position) by trying all possible values i = 0, . . . , n - 1 until an i satisfying 

is found. Assuming a single bit flip, there is exactly one such i. The above identity 
proves to Bob that i = r + 2' showing that the i'th bit of r flipped from a 0 
to a 1. Consequently, Bob now knows that indeed that i'th bit of T must be 0. 
Similar logic can be used to handle the case where i = r - 2'. In this case Bob 
can deduce that the i'th bit of r is 1. 

More abstractly, Bob is given z + r('), . . . , z  + dk) mod p - 1 for random 
values r ( l ) ,  . . . , r @ )  (recall k = n log4n). Furthermore, Bob knows the value of 



45 

some bit of each of dl), . . . , dk). Obtaining this information requires O(n2 log n)  
modular multiplications since for each of the iE. faults one must test all n possible 
values of i. Each test requires a constant number of modular multiplications. 

We claim that using this information Bob can recover z in time O(n2) .  We 
assume the k faults occur at uniformly and independently chosen locations in 
the register r .  The probability that at  least one fault occurs in every bit position 
of the register T is at least 1 - n (1 - $) = 5 .  In other words, 
with probability at least 2, for every 0 5 i < n there exists an di) among 
dl), . . . , dk) such that the i’th bit of di) is known to Bob (we regard the first 
bit as the LSB). 

To recover z Bob first guesses the log 8n most significant bits of z. Later we 
show that Bob can verify whether his guess is correct. Bob tries all possible log 8n, 
bit strings until the correct one is found. Let X be the integer that matches z on 
the most significant log8n bits and is zero on all other bits. For now we assume 
that Bob correctly guessed the value of X. Bob recovers the rest of 1: starting 
with the LSB. Inductively su pose Bob already knows bits xi -1 . .  . zlzo of 1: 
(Initially i = 0). Let Y = Cizo 23 zj. To determine bit zi Bob uses di), of which 
he knows the i’th bit and the value of 2 + di). Let b be the i’th bit of di). Then 

k 2 1 - n . 

‘ P .  

zi = b @ i’th bit(z + T ( ’ )  - Y - X mod p - 1) 

assuming no wrap around, i.e., 0 5 z + d i )  - Y - X < p - 1. By construction 
we know that 0 5 1: - X - Y < p / 8 n .  Hence, wrap around will occur only if 
di )  > (1 - & ) p .  Since the T’S are independently and uniformly chosen in the 
range [ O , p )  the probability that this doesn’t happen in all n iterations of the 
algorithm is ( 1  - &)” > s. 

To summarize, we see that for the algorithm to run correctly two events 
must simultaneously occur. First, all bits of T must be “covered” by faults. 
Second, all the P,  must be less than (1 - & ) p .  Since each event occurs with 
probability at least 2, both events happen simultaneously with probability at  
least f .  Consequently, with probability at  least f ,  once X is guessed correctly 
the algorithm runs in linear time and outputs the correct value of x. Of course, 
once a candidate x is found it can be easily verified using the public data. There 
are O(n)  possible values for X and hence the running time of this step is O(n2) .  
Since the first part of the algorithm requires O(n2 log n) modular multiplications 

0 it dominates in the overall running time. 

We note that the attack also works when a register fault induces multiple 
bit flips in the register T (i.e. i = P + 2,j). As long as the number of bit 
flips c is constant, their exact location can be found in polynomial time. We also 
note that the faults we use occur while the device is waiting for a challenge from 
the outside world. Consequently, the adversary knows at exactly what time the 
faults should be induced. 



46 

6 Breaking other implementations of RSA 

In Section 2.1 we observed that CRT based implementations of RSA can be 
easily broken in the presence of hardware faults. In this section we show that 
using register faults it is possible to  break other implementations of RSA as well. 
Let N be an n-bit RSA composite and s a secret exponent. The exponentiation 
function t - zs mod N can be computed using either one of the following two 
algorithms (we let s = sn-1sn-2 . . . slso be the binary representation of s): 

- Algorithm I 
init yltz; z t l .  
main For k = 0 , .  . . , n - 1 .  

If sk = 1 then z + z .  y 
y + y 2  (modN) .  

(mod N ) .  

output  2. 
- Algorithm I1 

init z t 1. 
main For k = n - 1 down to 0. 

If Sk = 1 then z + z2 .t 
Otherwise, z t z2 

(mod N ) .  
(mod N ) .  

output  2.  

For both algorithms given several faulty values one can recover the secret 
exponent in polynomial time. Here by faulty values we mean values obtained 
in the presence of register faults. The attack only uses erroneous signatures of 
randomly chosen messages; the attacker need not obtain the correct signature 
of any of the messages. Furthermore, an attacker need not obtain multiple sig- 
natures of the same message. The following result was the starting point of our 
research on fault based cryptanalysis: 

Theorem3. Let N be an n-bit RSA modulus. For a n y  1 5 m 5 n, given 
(n/m)Iog2n faults, the secret exponent s can be extracted from a device imple- 
menting the first exponentiation algorithm with probability at  least 4 in the tame 
it takes t o  perform O ( ( P n 3  log2 n)/m2) RSA encryptions. 

Proof. We use the following type of faults: let M E ZN be a message to be signed. 
Suppose that at a single random point during the computation of M S  mod N a 
register fault occurs. More precisely, at  a random point in the computation one of 
the bits of the register z is flipped. We denote the resulting erroneous signature 
by E .  We intend to show that an ensemble of such erroneous signatures enables 
one to  recover the secret exponent s. Even if other types of faulty signatures are 
added to the ensemble, they do not confuse our algorithm. 

Let 1 = (n/m)log2n and let M I , .  . . , Ml E ZN be a set of random messages. 
Set Ei = Mi” mod N to  be the correct signature of Mi. Let E; be an erroneous 
signature of Mi. We are given E i  but do not know the value of Ei. A register 
fault occurs at exactly one point during the computation of E i ,  Let ki be the 
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value of k (recall k is the counter in algorithm I) at the point at which the 
fault occurs. Thus, for each faulty signature, I?,, there is a corresponding Ici 

indicating the time at  which the fault occurs. We may sort the messages so that 
0 5 kl  5 kz 5 . . . 5 k ,  < n. The time at  which the faults occur is chosen 
uniformly (among the n iterations) and independently at random. It follows 
that given 1 such faults, with probability at least half, k i + l  - k i  < rn for all 
i = 1, . . . , I - 1. To see this observe that the probability that no fault occurs in 
a specific interval of width rn is (y)' < 1/2n. Since there are at most n such 
intervals the probability that all of them contain a fault is at  least 1 - n . & = 4. 
Note that since we do not know where the faults occur, the values ki are unknown 
to us. 

Let s = ~ ~ - 1 . .  . s 1 s o  be the bits of the secret exponent s. We recover a block 
of these bits at  a time starting with the MSBs. Suppose we already know bits 
sn-l  . . . s k ,  for some i. Initially i = 1 + 1 indicating that no bits are known. I've 
show how to recover bits s k , - l S k , - z . .  . s k , - l .  w e  intend to try all possible bit 
vectors until the correct one is found. Since even the length of the block we are 
looking for is unknown, we have to  try all possible lengths. The algorithm works 
as follows: 

1. For all lengths r = 1 , 2,3 . . . do: 
2. For all candidate r-bit vectors U k 1 - 1 u k , - 2  . . . uk , - , .  do: 
3 .  Set w = c,",-:, sj2J + E;L.:-r u j 2 3 .  In other words, w matches the bits of 

4. Test if the current candidate bit vector is correct by checking if one of the 
s and u at all known bit positions and is zero everywhere else. 

erroneous signatures E3 , j = 1, . . . , I  satisfies 

3b E (0,. . . , n} s.t. (kj & 2 b M y ) e  = Mj (mod N )  

Recall that e is the public signature verification exponent. The f means that 
the condition is satisfied if it holds with either a plus or minus. 

5 .  If a signature satisfying the above condition is found output U k , - l U k , - 2  . . . U k , - r  
and stop . At this point we know that k i - 1  = k i  -r and S k , - l S k , - 2  . . . s k , - l  - - 
U k t - 1 U k , - 2  * * . U k , - r *  

We show that the condition at step (4) is satisfied by the correct candidate 
Uk,-1?&,-2 . . . u k , - l .  To see this recall that E i - 1  is obtained from a fault at the 
Rd-l'st iteration. That is, at  the ICi-I'st iteration the value of z was changed to  
2 + z f 2b for some b .  Notice that at this point E d - 1  = zMiw_,. From that point 
on no fault occurred and therefore the signature E i - 1  satisfies 

(mod N )  i i - 1  = ; M E l  = Ei-1 f 2bMiW_i 

When in step (4) the signature hi-1 is corrected it properly verifies when raised 
to  the public exponent e .  Consequently, when the correct candidate is tested, 
the faulty signature E i - 1  guarantees that i t  is accepted. 

To bound the running time of the algorithm we bound the number of times 
the condition of step (4) is executed. One must try all possible candidate bit 



vectors u against all possible error locations b and erroneous signatures Ej. 
Consequently, the number of times the condition is tested is at most 

Hence, the algorithm runs in the time it takes to perform O((2"n310g2 n) /rn2)  
RSA encryptions. 

We still need to show that a wrong candidate will not pass the test of step 
(4) with high probability. Suppose some signature E,, incorrectly causes the 
wrong candidate u' to  be accepted at some point in the algorithm. That is, 
E,, f2'MM,w = E,, mod N even though E,, was generated by a different fault (here 
w is defined as in step (3) using the bits of u').  We know that & = Ev k 2 " M ~ '  
for some b l ,  wl with w1 # w. Therefore, 

E,, f 2' lMt1 f 2°F = E, (mod N )  

In other words, Mu is a root of a polynomialof the form ulxwl +a2zW = 0 mod N 
for some u l ,  u2, w1, w. To bound the number of roots write p(N) = n:='=, qr' and 
gcd(w1 - w ,  cp(N)) = nf=, $ where the qi  are distinct primes. The number of 

roots is upper bounded by a = n,=, q,". (this is the maximum number of roots 
of a polynomial of the form d " l - w  = u3 mod N ) .  Observe that a is a function 
of w and w1. Since the message Mv is chosen independently of the fault location 
(i e. independently of b l ,  201) it follows that Mu is a root with probability at most 
a / N .  Consequently, the probability that a specific E,, causes a specific wrong 
candidate u' to be accepted is bounded by a / N .  

Define 6 to be the maximum value of a over all possible values of w, wl (note 
that there are I possible values for w1 and 0(2"1) possible values for w). Let B be 
the number of times the equality test at  step (4) is invoked, i.e. B = O ( d 2 2 " ) .  
Then the probability that throughout the algorithm a wrong candidate is ever 
accepted is bounded by B Q I N .  We argue that with high probability (over the 
fault locations) 6 < N / n B .  This will prove that a wrong candidate is never 
accepted with probability at  least 1 - (over the random messages I&). This 
will complete the proof of the theorem. 

Suppose that over the random choice of the secret exponent s, and the ran- 
dom choice of the fault location k, we have that Pr[& > N/nB] > l / nc  for some 
fixed c 2 1. We show that in this case there is an efficient algorithm for factoring 
N .  This will prove that we may indeed assume that & < N / n B  with probability 
bigger than 1 - 5 for all c 2 1 (since otherwise N can already be factored). 

'The factoring algorithm works as follows. It picks a random exponent s and 
random messages M I , .  . . , Mi E ZN. It then computes erroneous signatures E, 
of the Mi by using the first exponentiation algorithm to compute Mp mod N 
and deliberately simulating a random register fault at  a random iteration. By 
assumption, with probability at least l /nc we have (Y > N / n B .  Here the values 
w, wi ,  a and (Y are defined as above using the simulated faults. Since i5 > N / n B  

def e 
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there exist some w,w1 for which a > N / n B .  By definition of a it follows that 
p(N) divides t ( q -  w)" for some integer 0 < t 5 nB. To see this observe that a 
divides (w1 - w ) ~  and a = p(N)/t for some 0 < t 5 nB. These values 20, w1, t can 
be found using exhaustive search since there are only O(I.  2*l$ nB) = (n2")O( l )  
possibilities. Once a multiple of y ( N )  is constructed, namely t ( q  - w)", the 
modulus N can be efficiently factored. By repeating this process ne times we 
factor N with constant probability. The total running time of the algorithm is 
polynomial in n and 2". 

0 

If one allows the algorithm to obtain both the erroneous and correct signature 
of each message Mi then the running time of the algorithm can be improved. 
The test at  step (4) can be simplified to  

3b E (0 , .  . . , n }  s.t. Ej k 2*M? = Ej (mod N )  

thus saving the need for an RSA encryption on every invocation of the test. 

7 Defending against an attack based on hardware faults 

One can envision several methods of protection against the type of attack dis- 
cussed in the paper. The simplest method is for the device to check the output 
of the computation before releasing it. Though this extra verification step may 
reduce system performance, our attack suggests that it is crucial for security 
reasons. In some systems verifying a computation can be done efficiently (e.g. 
verifying an RSA signature when the public exponent is 3). In other systems 
verification appears to be costly (e.g. DSS). 

Our attack on authentication protocols such as the Fiat-Shamir scheme uses 
a register fault which occurs while the device is waiting for a response from 
the outside world. One can not protect against this type of a fault by simply 
verifying the computation. As far as the device is concerned, i t  computed the 
correct output given the input stored in its memory. Therefore, to  protect multi- 
round authentication schemes one must ensure that the internal state of the 
device can not be affected. Consequently, our attack suggests that for security 
reasons devices must protect internal memory by adding some error detection 
bits (e.g. CRC). 

Another way to prevent our attack on RSA signatures is the use of random 
padding. See for instance the system suggested by Bellare and Rogaway [l]. In 
such schemes the signer appends random bits to the message to  be signed. To 
verify the RSA signature the verifier raises the signature to the power of the 
public exponent and verifies that the message is indeed a part of the resulting 
value. The random padding ensures that the signer never signs the same message 
twice. Furthermore, given an erroneous signature the verifier does not know the 
full plain-text which was signed. Consequently, our attack cannot be applied to  
such a system. 
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8 Summary and open problems 

We described a general attack which makes use of hardware faults. The attack 
applies to  several cryptosystems. We showed that encryption schemes using Chi- 
nese remainder, e.g. RSA and Rabin signatures, are especially vulnerable to  this 
kind of attack. Other implementations of RSA are also vulnerable though many 
more faults are necessary. The idea of using hardware faults to attack crypto- 
graphic protocols applies to authentication schemes as well. For instance, we ex- 
plained how the Fiat-Shamir and Schnorr identification protocols may be broken 
using hardware faults. The same applies to the Guillou-Quisquater identification 
scheme [8] though we do not give the details here. Recently several symmetric 
ciphers such as DES have also been analyzed for their ability to  withstand a 
faults based attack [2]. 

Verifying the computation and protecting internal storage using error de- 
tection bits defeats attacks based on hardware faults. We hope that this paper 
demonstrates that these measures are necessary for security reasons. Methods of 
program checking [3] may come in useful when verifying computations in crypto- 
graphic protocols. Specifically, a recent result of Frankel, Gemmel and Yung [7] 
could prove useful in this context. 

An obvious open problem is whether the attacks described in this paper can 
be improved. That is, can one mount a successful attack using fewer faults? TO 
make the problem crisp we pose the following concrete question: can a general 
implementation of RSA be broken using significantly fewer faults than n, say fi? 
(here n is the size of the modulus). Such a result would significantly improve 
our Theorem 3. Ideally we would like to  break a general implementation of RSA 
using only a constant number of erroneous encryptions. 
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