
Collision-Free Accumulators and
Fail-Stop Signature Schemes Without Trees*

Niko BariCl and Birgit Pfitzmann2

dvg Hannover, Postfacb 91 02 40, D-30422 Hannover, Germany
Universitat Dortmund, Informatik 6! D-44221 Dortmund, Germany;

email pfitzb@ls6.informatik.uni-dortmund.de

Abstract. One-way accumulators, introduced by Benaloh and de Mare,
can be used to accumulate a large number of values into a single one,
which can then be used to authenticate every input value without the
need to transmit the others. However, the one-way property does is not
sufficient for all applications.
In this paper, we generalize the definition of accumulators and define
and construct a collision-free subtype. As an application, we construct
a fail-stop signature scheme in which many one-time public keys are
accumulated into one short public key. In contrast to previous construc-
tions with tree authentication, the length of both this public key and the
signatures can be independent of the number of messages that can be
signed.

1 Introduction

The security of digital signature schemes depends on so-called computational
assumptions, e.g., the factoring assumption. If somebody can break the assump-
tion on which the system is based, and if he can therefore get the private key
of the signer, he can construct signatures on messages chosen by himself. The
signer cannot prove tha t she did not, sign those rriessages herself.

This disadvantage was overcome with the introduction of "fail-stop" signa-
tu re schemes, e.g., [WaPDO, PfWaSO, HcPe93, PePf971. With these schemes, the
signer can produce a so-called proof of forgery to demonstrate tha t she did not
sign a message. This proof shows that the computational assumption has been
broken (fail) and that the system should therefore not be used any longer (stop).

Most of the currently known basic constructions of fail-stop signature schemes
(FSS schemes) can only be used to sign one single message. FSS schemes for
more than one message have becn constructed based on these one-time FSS
schemes by using tree authentication to authenticate the public one t ime keys.
Consequently, the length of signatures in such a scheme grows logarithmically in
the number of messages tha t can be signed. The question whether this can be

Work done while both authors were at the University of Hildesheim. Supported by
the DFG (German Research Foundation). A preliminary version was available as
[Pfit94], more details can be found in [Bari96].

W. Fumy (Ed.): Advances m Cryptology - EUROCRYPT '97, LNCS 1233, pp. 480-494, 1997.
0 Spnnger-Verlag Berlin Heidelberg 1997

481

avoided was also the main gap between known lower and upper bounds on the
complexity of fail-stop signature schemes [HePP93].

The accumulators presented in [BeMa94] seem to be a solution to this prob-
lem: a large number of values is accumulated into one value z . Later on, for
authentication of one of those values, y, an additional value is computed that
will authenticate y with respect to 2. The length of z and the additional value
can be independent of the number of values to be accumulated. If we use this
for FSS schemes and accumulate all the public one-time keys, the length of the
resulting public key and the signatures can be independent of the nnmber of
messages.

The accumulators defined in [BeMa94] have only a one-way property, i.e.,
given an output, it is hard to find a suitable input. Unfortunately, this is not
enough for an FSS scheme, because the adversary may be able to choose the one-
time public keys (i.e., the values to be accumulated), and thus to some extent)
the accumulated output, himself. Therefore we define and construct collision-free
accumulators. We take the opportunity to generalize the accumulators defined in
[BeMa94] to contain only those properties that are needed for our purpose and
also to include newer accumulators from [Nybe96a, Nybe96bI. The new collision-
frec accumulators are then included into a modular FSS scheme. Thus now we
really have a scheme where the length of both the public. key and the signatures
is independent of the number of messages.

The goal of constructing schemes without trees is similar to recent efforts
with non-fail-stop provably secure signatures to shorten the signatures by flat
trees [DwNa94, CrDa961, but the measures developed there cannot be used for
FSS schemes.

1.1 Organization of this Paper

In Section 2, we present onr definitions and constructions of accumulators. In
Section 3, we describe conversion algorithms as an interface between the one-time
FSS scheme and the accumulator which is used to authenticate the individual
public one-time keys. The general construction of our accumulator FSS scheme
is given in Section 4. Two example accumulator FSS schemes follow in Section 5.

2 Accumulators

Accumulators were introduced in [BeMa94] as a new way of “summarizing” a
large number N of values in one value. The accumulators as defined in [BeMa94]
have some properties we do not need for our purposes, so we generalize their
definition a little. Then we define some subtypes of accumulators with different
levels of security. Nevertheless, the accumulators as given in [BeMa94] are an
important subtype that we call ~l~mentary accumulators (see Section 2.2).

2.1 General Accumulators

Definition 1. A family a of accumuZators has the following components:

482

- Sets accu-keys(k, N) , which contain all possible keys for the security para-
meter k and %,he number N of values to be accumulated, and a probabilistic
polynomial-time algorithm accu-gen(k, N) that chooses an accumulator key
n from accu-keys(k, N) . If the choice is uniformly random, we often simply
write E R .
In our examples, accu-keys(k, N) is independent of N .

- Sets Y, containing the suitable inputs for an accumulator key n.
- A probabilistic polynomial-time algorithm accu-eval which, on input an ac-

cumulator key n and N values y1,. . . , ;YN E Y,, outputs a value z and an
auxiliary value auz, which will hc used by the other algorithms.
We write u,(y~, . . . , y ~) instead of accu-ewal(n,yl,. . . , p l y) .
Every execution of accu-eval with the same input (n , yl,. . . , y ~) must yield
the same output z .

- A probabilistic polynomial-time algorithm auth that , on input n, yi, and UUZ,

computes a value accu, from a set ACCU,, which is needed to authenticate
Y i .

We write auth,(y,, a m) instead of auth(sr, yi, aus) .
- A polynomial-time algorithm authentic which, on input (n , z , y i , (LCCZL,),

checks whether yi E Y, together with Q C C U , E ACCU, is authenticated by z .
If SO, the output is o k , otherwise not-ok.
We write authentic,(z, yi, accui) instead of authentic(n, z , yi, accui).

Additionally, there must be two polynomial-time algorithms: one that, on input
n and y , checks whether y E YTL, and one that, on input n and U G C U , checks
whether uccu E ACCU,. Finally, we require that every yi in the inpiit of a, can
be authenticated by the output of a,, formally:

In [BeMa94], a onc-way property is defined for accumulators. Generalized to
our definition, it means that it is hard for an adversary who is given values
(91 , . . . , y ~) , their accumulation result z , and another value y' to find a value
accu' that authenticates y' with respect to z .

That article also informally considers a slightly stronger property that we call
strongly one-way. It means that given only (~ 1 , . . . , y ~) and x , it is hard to find
a pair (y', uccu') such that authentic,l(z,y', U C C U ') = ok with y' @ {yl, . . . , y ~ } .
I.c., now the attacker can choose the value y' himself. The importance of a strong
one-way property was also recognized in [Nybe96a].

For our accumulator FSS scheme, we need an even stronger property, because
the adversary might be able to choose all the public one-time keys that are to
be accumulated, i t . , not even the values y1, . . . , Y N are now given.

483

Definition 2. A family a of accumulators is N- t imes collision-free for N 2 1 if it
is hard to find y l , . . . , y ~ , another value y' and uccu' such that y' is authenticat$
by accu' and a,(yl,. . . , y ~) : for all probabilistic polynornial-time adversaries A ,
all c > 0, and all sufficiently large k :

authentic, (2 , y', UCCIL ') = ok A y' 4 { y l , . . . , y N }

A y ' , y ~ , . . . , Y N E Y, A accu' E ACCIL, ::
n t accu-gen(k, N) ;
(accu' , y', y l , . . . , y N) +- i (k , ~ , n ,) ;

1

Definition 3. A family a of accumulators is collision-free if a is N-times collision-
free for all N > 1.

2.2 Elementary Accumulators

In [BeMa94], accumulators were defined as functions h,: X7,, x Y, -+ X,, where
n is again an accumulator key. With repeated use as in

= h,,(.'-h,,(ILILiI,?/I),yp),---yN),

where the result of one application of h, is inserted as tho first argument in the
next application of h,, all yl,. . . , : y ~ E YN are accumulated to a value z E x,
given an initial value x E Start, C_ X,.

according to
the general definition, where the initial value x is part of the key of a , as follows:

With such a function h,,, we can create an accumulator

(2 , auz) = q n , & l , . . . I Y N)

with z as above and a m = (z, y1,. . . , y ~) . We use (x, y l , . . . , y ~) as the auxiliary
output, so that we can use it for the computation of the values accu,.

In [BeMa94], such a function h,, has to he quasi-commutative, i.e.,

h , (h , (z ,y~) ,yz) = h,(h,(z,ya),yl) for all z E X , and ~ 1 , y z E Y,.

We do not need this property for our accumulator FSS scheme, but if one has
a function with this property, one can easily construct, algorithms to create and
verify the values accui [BeMa94]:

au.th,(yi, (z , y l , . . . , y N)) = h,, (. . . L (I L ~ ~ (. . . hn(x ,y l) , . . . yI-l),yi+l), . . . Y N

and
authentic,(z, y,, U C C I L ,) = ok iff z = h,,(accu,, yi).

In this case, the list of all values amui can be computed with O (N . log, N)
applications of h,, with a tree-like evaluation. This can be done offline after z
has been published.

1

484

2.3 Examples

In the following two subsections, we give two examples of accumulators. Both
are based on the elementary accumulator given in [BeMa94], but with some
modifications to fulfill the collision-freeness needed for the accu~riulator FSS
scheme.

Another elementary and strongly one-way accumulator is described in
[Nybe96a, Nybe96bl. In short, i t uses a hash function h that generates a long
random output oi of fixed length T . d for every input yi, where T and d are
two security parameters. Then ni is transformed into a bitstring bi of length T

that has far more 1's than 0's. To accumulate the values (y l , . . . , y ~) , the C O ~ -
responding strings b, are multiplied modulo 2 coordinatewise. In the result, a
bit can be zero only if at least one bi has a zero bit a t the same place. The
main advantage of this accumulator is t,he absence of any trapdoor information,
whereas in the following accumulators based on the RSA assumption, someone
knows the factors of the RSA modulus. A disadvantage is its long output, too
long for the public key of an FSS scheme.

RSA Accumulator Without Random Oracle. The first cxample is almost
the same accumulator as presented in [BeMa94], based on the elementary BCCU-
mulator function hn(x , y) = xu mod n.

Definition 4. The following family uRSA is called R S A accumulator without
random oracle:

- ~ ~ ~ u - l c e y ~ ~ . ~ * (k , N) := ((Tz,z) 1 TL E RSA-Mod(k) A 5 E Z,,}

- aRSA (n,z)(yl,. . . , y ~) := Z ~ ~ " . Y N mod n,

- n ~ t h ~ ~ , ~ ~ ~ (y ~ , (z , y 1 , . . . ,yN)) := : x u 1 " ' g z - 1 y t + 1 . " y ~ mod n,
- a u t h e n t i c ~ ~ $ l (z , y, accu) := ok iff mcuY = z(niodn)

- := {y 1 y < n A y prime)

Here, RSA_Mod(k) is the set of RSA moduli of length k [RSA78]. The difference
to the original accumulator is the restriction of the input domain to prime num-
bers. In addition, to prove collision-freeness, we have to make a stronger RSA
assumption.
Assumption (strong RSA assumption). For all probabilistic polynomial-
time algorithms A, all c > 0, and all sufficiently large k ,

P(y ' G z(modn,) A e prime A e < 71 ::

~ E R RSA-Mod(l;);s E R Z , , ; (Y , ~) +- A(7~,3:)) 5 k-'.

Thus the adversary A is given 71 and 3: as in a usual RSA assumption, but he
may choose the exponent e for which he extracts the root. We are neither aware
of any corroboration that it should be hard, nor can we break it. Four obvious
attacks do not work, i.e., they are equivalent to breaking some other problem
believed to be hard:

485

- If the adversary chooses a random e first, he has to break RSA.
- If he chooses a random y first, he has t o compute a discrete logarithm.
- If he tries t o find d and e with y = xd and (d)‘ = 2, then ord(z) divides

f := de - I , where ord(Ic) is the smallest i > 0 with :cz G 1 (mod n). He can
then also break RSA for the samo n, and z: Let a random public exponent e’
be given. It is sufficient t o consider the case where e’ is prime and 110 factor
of f. Then we set d’ := e’-l mod f and obtain (d‘)‘’ = .7: (mod n) because
ord(z) divides d‘e’ - 1.

- The attacker could try to choose special values e for which RSA would be
easier t o break. However, no such exponents seem to be known. There are
attacks for short secret exponents [WienSO], but our e corresponds t o the
public exponent, and we see no way for the attacker t o influence the cor-
responding secret exponent. A well-known attack on short public exponents
[Hbst86] only applies to situations where the attacker sees several messages
encrypted with that exponent using different moduli. Similarly, the new class
of attacks on short public exponents in [CFPR96] only applies to situat,ions
where the attacker sees the ciphertexts of several messages with a known
polynomial relationship, encrypted using the same modulus.

Theorem 5. Under the strong RSA assumption, Q~~~ is collision-free.

Proof sketch. An adversary who finds a collision in o . ~ . ~ ~ for given n, x, i.e., who
finds yl, . . . ,YN, y’: and accu’ with

accu’y = :cY1’ ‘ Y N (mod n),

can break the strong RSA assumption as follows: Let e := y’ and T := y1 . . YN.
Now the e-th root g,~ of 1c can be constructed as in [Sham83, BeMa941: Compute
a , b E Z with ar+by‘ = 1 with the extended Euclidean algorithm (this is possible
because g’ is prime) and let y := a ~ c u ’ ~ ~ d ’ . Thus

y p a C C , u ’ a ~ ‘ 2 b y ’ - 2 ~ a + b ~ ’ = - IC (mod R.).

0

RSA Accumulator With Random Oracle. The second example uses, as
the name of the first suggests, a random oracle R [BeRo93]. Whenever asked t o
compute R(y) for a new value g, the oracle generates a random number r as its
answer, and it stores all previous pairs (y, r) so that it answers with the same r
if asked the same y again.

In practice, one replaces the random oracle by an efficient hash function. Of
course, this replacement is only a heuristic.

By using a random oracle, we can construct an accumulator that is collision-
free under the normal R S A assumption. The elementary accumulator uses the
function

mod n. hRSAfi? (n,fi?,l) (x, (y, d i s t)) := P (y) + d z s t

486

We do not use Q (y) directly, because in thc proof we will need that the exponents
are prime numbers. So we append 1 bits such that 2'L'(y) + dist is prime. Of
course, this might not be possible for all values of y , so we accept only those 9's
as input for which a suitable dist exists.

Definition 6. Let a family M of sets Mk be given where membership is decid-
able in polynomial time. It contains the values that we really want t o accumulate
for each security parameter k . The following family is called RSA accumulator
with random oracle (for M) :

RSAR - accu-keys (k , N) := { (n , R, 1, z) 1 n E RSA-Mod(k + 1)
A fi E {f I f : fir --f zndiv2,} A i = p g , 2 k l A z E z,}

- Y(n,n,l,z) RSAR = { (y , d i s t) I y E Mk A dist E Z2l A 2 ' Q (y) + dist prime}, i.c.,
the values that we actually ncciimulate are pairs of a value that we want to
accumulate and a suffix that turns its hash value into a prime number.
.R.SA R - (n , ? J z) ((Y l , d i s h) , . . . , (? / N , d i s t d) :=

2(2'o(Y1) + d i d 1) . . . (2 ' R (Y ~) + d z s t ~) mod n,
- authy:,An:,s) ((Y i , d i s h) , (Z, (y1, d i s h) , . . . , (Y N , d i S t N))) :=

2(,'R(yl)+dzstl)...(2'R(y;-1)+dzsl ,- l).(2'R(y,+l)+dasti+l)...(2'R(yw)tdzst~) mod n,

- authentic?:,$:,z)(z, (y , dist), am,,) := ok iff accu21R('J)+dast = z(modn,)

Theorem 7. This accumulator i s collision-free under the normal RSA assump-
tion.

Proof sketch. We have to show that for all N , all probabilistic polynomial-time
algorithms A, all c > 0, and all sufficiently large k ,

p accu12' fz(y')+dZSt' = - Z (2 ' i 2 (l / l) + d Z S t I) . . . (a ' f l ((/&!)+dZ.StN] (modn)

A (y ' > d Z s t ') $ ((Y ~ , ~ Z S ~ I) , ...,(Y ~ , d i ~ t N) }
A (y ' , d i s t ') , (y l , d z s t l) , . . . , (y ~ , distN) f {(y, d i d) 1
A accu' E z,, ::

(
E Mk

A dist E (0 , . . . ,2' - 1) A 2 '0(y) + dist prime}

1 := [log, 2 k l ; 7L € R RSA-Mod(k + 1) ;
,Q E l i {f I f : Mk --, Z n c i i v % (} ; Z E R ZTzi

(accu ' , (y', dist ') , (91, d i S t l) , . . . , (yiy. d i S t N)) c P (k , N , n , , l , z)
1

5 F'
-

where xsL means A" with access to the oracle R Assume that an algorithm-A
contradicts this inequality for some N. We ran then construct an algorithm A?
that calls AIR and, whenever that is succpssfiil, s&s

r' := 2'0(y') + dist' and
ri := 2 ' ~ (y i) + disti for i = 1,. . . , N ,

487

and computes the r’-th root of z using the extended Euclidean algorithm for
these values as in the proof of the previous theorem. The only exception is if
r’ equals one of the Ti’s. Then an oracle collision has been found, which can
only happen with very small probability. Hence it is sufficient to prove for all
probabilistic polynomial-time algorithms All all c > 0, and all sufficiently large
k ,

P y - 2 A T’ prime A T’ < n, A d i d < 2’ :: (
1 := [log, 2 k l ; n ER RSA-Mod(k + 1) ;
f j E H {f I f : Mk --+ ~ n c ~ i v ~ l } ; ~ E R zn;

1
kC

(y,y‘,dist’) + A , -n (k ,N ,n , , l , x) ; r ’ := 2’Q(y’)+ dist’) 5 -.

Without loss of generality, we can assume that 2, has asked the oracle for
O(y‘). The number of values that A1 asks for is bounded by a polynomial Q(k).
Whatever strategy A1 uses in choosing its oracle queries, it amounts to the same
thing as if it were given a list of Q (k) random numbers p and had to select
r’ among the numbers 2‘p + d is t . Thus this new adversary 2 2 is given a list of
Q(k) ‘2‘ exponents and has to extract a root for at least one of them. If this were
possible with non-negligible probability, it would also be possible - to extract an
e-th root for one given random e. For this, a new adversary A3, given e , inserts
(e div 2‘) at a random place into a, list of Q(k) - 1 random numbers and appends
the values dist. 2 3 calls 22, and with a probability smaller by the factor &(k) .2‘

0

-

it gets the e-th root of z (recall that 2‘ = k) .

The proof also shows another result that is interesting in practice, where the
function used instead of the oracle is not perfect: To find an accumulator collision,
one at least either has to either find a collision of this function (where collision-
freeness is a much weaker requirement than “being like an oracle”) or to break
the strong RSA assumption.

3 Conversion Algorithm

We want to use collision-free accumulators as defined in the previous section to
accumulate the public one-time keys in an FSS scheme. But what if the public
one-time keys are not suitable as input for the accumulator? For example, the
RSA accumulator without random oracle as defined in Section 2.3 needs prime
numbers as input, and none of the known FSS schemes uses prime numbers as
public one-time keys. Hence one has to convert the public onetime keys to prime
numbers that can then be accumulated by the accumulator.

Of course, such a conversion could be done within the underlying one-time
FSS scheme or within the accumulator. But then one has to prove their security
again. Thus it seems better to use a simple conversion algorithm that has no ef-
fect on the security as an interface between the FSS scheme and the accumulator.
In this way, we get a general modular construction for which one can use any

4aa

collision-free accumula.tor and any one-time FSS scheme provided that one finds
a conversion algorithm for them. As examples, we present two instantiations in
Section 5. For this purpose, we use a family A of conversion algorithms, which
has the following components:

A function calc-pars that computes the seciirity parameters k’ for the ac-
cumulator and (k*,o*) for the underlying FSS scheme if given as input,
(k , o, N), the security parameters of the desired accumulator FSS scheme
and the number of messages to be signed. The output must fulfill

- A polynomial-tirnp algorithm .l-gen which, on input k’, of and an accumu-
lator key ‘YL, computes a key par specifying an individual member of A.

- A probabilistic polynomial-time algorithm .Leva1 which, on input a conver-
sion key par and a public one-time key pkil outputs either a value p k , E Y,
(a suitsable input for the accumulator with the key 7 ~) or “unsuitable”. The
success probability should a t least be the inverse of some polynomial; in the
examples, it will be at least constant.
We write A4,,,(pk,) instead of A_eval(pur, pki).

- A polynomial-time inversion algorithm, abbreviated A&, with
(A p a r (p k i)) = p k , for all A4, ,nr(pkz) # “unsuituble”.

Note that the conversion of a one-time key is not necmsarily deterministic, but
the inversion has to be. So it is possiblc to includc some random bits in the
output of Apnr that are needed for an accumulator, but the result of A&!r is
always unique.

We now show the core of a simple example Aprim, which we will use in
Section 5. It converts input numbers into prime numbers, if possible, using the
same idea as in Section 2.3: The parameter par is a small integer 1. On input
T E IN, the algorithm Aprim,l checks for d is t = 1,3,. . . ,2‘- 1 whether the number
2’z + dist is prime. If so, it returns 2‘2 + dist , othcrwise “unsuitable”. To get
z back from the output h, the inversion algorithm simply cuts off the 1 least
significant bits.

Another example of a conversion algorithm is of course the identity function,
which can be used whenever no conversion is necessary.

4 Accumulator FSS Scheme

In this section, we describe the accumulator FSS scheme. I t is based on

- a one-time FSS scheme with prekey and parameters (k * , u *) ,
- a family of collision-free accumulators with parameters (k’, N) , and
- a family of conversion algorithms for the one-time FSS scheme and the ac-

cumulator.

4.1

We use so-called one-time FSS schemes with prekey, e.g., [PePf97]. This prekey
is generated by a center trusted by all recipients and verified by the signer, who
need not trust the center. The center is used instead of the recipients themselves
for simplicity. Based on this prekey, the signer can generate as many one-time
key pairs as she wants. Among the two security parameters, cr* is chosen by the
signer for her information-theoretical security, whereas k” is chosen by the center
for the computational security of the recipients.

For simplicity, we only consider schemes that fulfil the simplified security
criteria for schemes with prekey from [PfitSG, Theorem 7.341. First, this means
that proofs of forgery only depend on the prekey. This is natural because only
the prekey is not chosen by the signer, i.e., a proof of forgery has to show a secret
hidden in the prekey. Secondly, it is required that for every good prekey (one
that the signer accepts with significant probability), for every one-time key pair
based on it and every forgery, the probability that the forgery cannot be proved
is a t most 2 ~ “ ’ .

One-time FSS Scheme with Prekey

4.2 Construction

Key generation. The accumulator FSS scheme gets only (k , a , N) as input.
The remaining security parameters are calculated with

(k’, k * , a *) := cak-pu.rs(k , g, N) .

The center generates

- a prekey, using the algorithm gen(lc*, cr*) of the one-time FSS scheme.
- an accumulator key ,n with n c uccu-gen(k’, N) .
- the parameter for the conversion algorithm as PUT := A - g e n (k * , u * , n) .

The signer verifies the prekey. She need not verify the accumulator key because
it has no effect on her security. A weak accumulator key may make it easier for
an adversary t o find an accumulator collision and forge a signature. But this is
no problem for the signer because she car1 show the collision as a proof of forgery.
All these global values are part of the signer’s public key, but for readability we
omit them in the following.

The signer now chooses N key pairs (sk,, p k ,) of the underlying one-time FSS
scheme, based on the given prekey.

She computes p k , := A,..(pki) for i = 1,. . . , N . If there is any pki 6 i.e.,
p k , = “unsuitable”, she has t o generate a new key pair (sk i , p k ,) and to repeat
the computation of p k , .

Finally, the signer computes the main public key pk of the accumulator FSS
scheme by accumulating the pk , ’ s :

h h

h

h

h

490

She publishes p k and stores a u z for later use. Formally, her secret key sk contains
not only the secret one-time keys skl , , . . , s k ~ , but also the converted public one-
time keys p k , , . . . , p k , and the auxiliary output a u x .
Signing. The signature on the i-t2h message, mi, is

h -

+.
s := (st, pk,, U C C U i) ,

where si is the one-time signature on this message with the one-time key s k i ,
and p k , and accu(are needed for the authentication of the one-time public key
pk,. The value accui is computed using

I

h

accui +- auth,(pki , a u z) .

Since aCCUi is independent of the message, it can be precomputed when the
computer is idle.

Testing. A value s = (s i , p k i , accu i) is an acceptable signature on thc message
m,, iff

h

A

1. si is an acceptable one-time signature on mi with respect to p k i = A $ (p k i) ,

3. U C C U ~ E ACCU,, and
4. pk authenticates p k t , i.e., au then t i c , (pk ,pk i , accu i) = ok .

2. & E y,,,
h h

h

Proving Forgeries. If (s', p t ' , accu') is an acceptable signature on a message
m' not previously signed by the signer, she can generate a proof of forgery as
follows:

h

1. If pk' = A;ir(pk') E { p k , , . . . ,yk,}, she tries to generate a proof of forgery
in the one-time FSS scheme.

2. Otherwise, she shows the accumulator collision
A h -

proof := ((p k , , . . . , p k N) , (p k ' , a c c u ')) .

This proof shows that the assumption on which the accumulator is based
has been broken.

Verifying Proofs of Forgery.

1. If proof is said to be a proof of forgery in the one-time FSS scheme, one

2. Otherwise pruuf is accepted iff it fulfills the following conditions:
verifies that.

(a) 2 4 {$I,. . . , G N h
(b) $1,. . . , G , , p 2 E u,,,
(c) accu' E A C C U , and
(d) au then t i c , (pk ,pk ' , accu') = ok with (p k , U U S) +- u T L (p k I , . . . ,pk,).

A h h

491

4.3 Security

Theorem 8. The accumulator FSS scheme as defined in t h e previous section i s
secure for both t he signer and th.e rec:cl;pien,ts as defined in [Pf W a 9 0 , PePfW].

Proof sketch. For the information-theoretic security of the signer, we first show
that any forgery that is not a forgery in the onetime FSS scheme, i.e., that
does not fulfil the condition of Item 1 in “Proving Forgeries”, is provable with
probability 1: If pk‘ $ { p k , , , . . ,pk ,} , then pk‘ $ {GI,. . . ,pk,} because the
inversion is deterministic. Thus the valuc the signer computes in Item 2 is
indeed an accumulator collision.

If the forgery i s in the underlying one-time scheme, the signer can prove it
with an error probability less than 2-“‘, and thus less than 2-“ (given that the
prekey is good), because

I.
h

- with probability 1, she finds the one-time key pair (s l c i , pk i) whose public
one-time key the forger has used,

- for every generated one-time key pair, the probability is at most 2-“* that
no proof of forgery can be found in the underlying FSS scheme, independent!
of the number of “~,nmitabZe” public one-time keys generated before, and

- the forger gains no information about ski by the accumulation.

The recipients want to be secure that no signatures they have accepted become
invalid. Thus it should not be possible that

- an adversary computes an acceptable signature that will be (correctly) proven

- the signer can (incorrectly) deny a previously generated signature using a
to be forged by the signer, and that

proof of forgery.

Hence it is sufficient to show that no proof of forgery can be computed. This
is (computationally) true because a proof of forgery of the new scheme implies
either a successful proof of forgery in the underlying one-time FSS scheme or a
collision of the utilized accumulator. Since for both parts the security paramcter
is at least k (guaranteed by the function calc-pars), neither should be possible
for a polynomially restricted forger. That some key pairs are thrown away during
key generation does not help the adversary, because the proof is based on the
prekey alone. 0

5 Examples

We construct two examples of accumulator FSS schemes, using the two accu-
mulators from Section 2.3. As the underlying one-time FSS scheme, we choose
the one described in [HePe93]. It is based on the Discrete Logarithm assump-
tion. Its public keys are pairs (q b) of elements of the group where computing
discrete logarithms is assumed to be hard; let their length in bits be the security

492

parameter k*. The algorithms of the accumulator FSS schemes are clear from
the previous section as soon as we fix the conversion algorithms.

The first examples uses the accumulator uRSA. It needs prime numbers as
inputs, so we convert the one-time public keys (a , b) with April,,, interpreting
(a, b) as one 2k*-bit number.

The security parameters for the one-time FSS scheme and the accumulator
are calculated by

(k ' , k ' , r *) = calc_pu7a(k,cT, N) := (2k + [log, 2kl + 1, k,cT),

and the key of the conversion algorithm by

1 = A-gen(k*,r*,,n) := rlog22k*l.

These fiinctions guarantee that the converted public one t ime keys are in the
domain of the accumulator: The parameters for the one-time FSS scheme are
simply the given k and 0 . The parametcr k' for the accumulator is set such that
the RSA modulus is longer than a one-time FSS key and the appended value
dist. The length 1 of dist is a somewhat arbit,rary value ensuring that a prime
will typically be found in the search interval.

T h r second example is based on the RSA accumulator with a random oracle
assumption. This accumulator needs pairs (pk i , dis t i) as input, so the conversion
algorithm is similar to Aprirn,l, but returns (p k i , dis t ,) instead of 2'fl(pk,) + dist ,
if that value is prime. The security parameters are computed with

(k ' , k * , O *) = culc-pnrs(k, cT, 1V) := (k , k , a)

and the key of the conversion algorithm is

. L g e n (k * , n * , (n, R, l , z)) :- (1 , fl),

Concretely, this means that the length of the RSA modulus used for the accu-
mulator is independent of the length of the one-time keys, because only oracle
outputs with appended values dist are accumulated, and the length of the oracle
output is adapted accordingly.

6 Conclusion

We have presented a generalized definition of accumulators and the definition of a
collision-free subtype. We constructed two collision-free accumulators, one based
on a stronger RSA assumption than usual, the other based on a random oracle
and the normal RSA assumption. We remind the reader that no new assumption
in cryptology should be trusted, i.e., we certainly do not recommend the first
version for use in practice for quite some time. These accumulators can be used
to construct fail-stop signature schemes in which the length of the public key
and of the signatures is independent of the number N of messages that can be
signed, while the additional cost for signing is small, especially because most of
the signature can be computed and sent before the message is known.

493

Key generation, however, takes significantly longer than in constructions with
trees. To avoid the precornputation of a very long secret key, one can combine.
the constructions with top-down tree authentication. In this way, we get flat
trees similar t o those in [DwNa94]. For instance, one might use accumulation
for 1024 pairs (s k i , p k ,) each, form a tree with two levels of such structures, and
generate the structures of the lower level on demand, signing their "public" keys
with the secret keys of the upper level. Thus one can sign one million messages
with one public key. A complete signature consists of the accumulation result z
of one lower-level structure and two accumulator FSS signatures as described in
Section 4.

Acknowledgments

We thank Michael Waidner, Joachim Biskup, Andreas Pfitzmann, and Ute von
J a n for helpful comments on this paper.

References

[Bari96] NIKO BARIC: Digitale Signaturen mrt Fail-stop Sicherheit ohne Baumau-
thentzjizierung. Diplomarbeit, Institut fur Informatik, Universitgt Hildes-
heim, July 1996.

[BeMa94] JOSH BENALOH and MICHAEL DE MARE: One- W a y Accumulators: A De-
centralrzed Alternative to Dagrtal Signatures. In Advances an Cryptology
-- E U R O C R Y P T '93, LNCS 765, pages 274 ~-285. Springer-Verlag, Berlin,
1994.
MIHIR BELLARK and PHILLIP ROGAWAY: Random Oracles are Practical:
A Paradigm for Designang Ef ic ient Protocols. In 1st A C M Conference on
Computer and Communications Security, November 1993, pages 62--73. acm
press, New York, 1993.

[CFPR96] DON COPPERSMITH, MATTHEW FRANKLIN, JACQUES PATARIN, and MI-
CHAEL R.EITER: Low-Exponent R S A with Related Messages. In Advances
in Cryptology -- C R Y P T O '96, LNCS 1070, pages 1-9. Springer-Verlag,
Berlin, 1996.
RONALD CRAMER and IVAN B. D A M G ~ R D : New Generation of Secure and
Practacal RSA-Based Signatures. In Advances in Cryptology -- C R Y P T O
'96, LNCS 1109. Springer-Verlag, Berlin, 1996.

[DwNa94] CYNTHIA DWORK and M O N ~ NAOK: A n Eficzent Existentially Unforge-
able Signature Scheme and its Application. In Advances in Cryptology -~

CRYPTO '94, LNCS 839, pages 234-246. Springer-Verlag, Berlin, 1994.
JOHAN HASTAD: O n Using RSA with Low Exponent in a Public Network.
In Advances in Cryptology - CRYPTO '85, LNCS 218, pages 403-408.
Springer-Verlag, Berlin, 1986.
EUGENE VAN HEYST and TORREN P . PEDERSEN: How to Make E f i c i en t
Fail-stop Signatures. In A d w m c e s in Cnjptology - E U R O C R Y P T '92,
LNCS 658, pages 366- 377. Springer-Verlag, Berlin, 1993.

[BeRo93]

[CrDa96]

[H&t86]

[HePe93]

494

[HePP93] EUGENE VAN HEIJST, TORBEN P. PEDERSEN, and BIRGIT PFITZMANN: New
Constructions of Fail-Stop Signatures and Lower Bounds. In Advances in
Cryptology ~ C R Y P T 0 '92, LNCS 740, pages 15-30. Springer-Verlag, Ber-
lin, 1993.

[Nybe96a] KAISA NYBERG: Commutativity in Cryptography. In Proceedings of the First
International Workshop on hnc t ional Analysis at Trier University, pages
331-342. Walter de Gruyter, Berlin, 1996.

(Nybe96bl KAISA NYRERG: Fast Accumulated Hashzng. In 3rd Fast Software Encryp-
tion Workshop, LNCS 1039, pages 83-87. Springer-Verlag, Berlin, 1996.

[PePf97] TORREN P. PEDERSEN and BIRGIT PFITZMANN: Fuil-Stop Signatures. to
appear in SIAM Journal on Computing, 26(2):291-330, April 1997.

[Pfit94] BIRGIT PFITZMANN: Fail-Stop Signatures Without Trees. Hildesheimer
Informatik-Berichte 16/94, ISSN 0941-3014, Institut fur Informatik, Uni-
versitat Hildesheim, June 1994.
BlKGIT PFITZMANN: Digital Szgnature Schemes - General Framework and
Fail-Stop Signatures. LNCS 1100. Springer-Verlag, Berlin, 1996.
BIRGIT P F I T Z M A N N and M I C H A E L WAIDNER: Formal Aspects of Fail-stop
Signatures. Interner Bericht 22/90, Fakultat fur Informatik, Universitat
Karlsruhe, December 1990.
RONALD L. RIVEST, ADI SHAMIK, and LEONARD ADLEMAN: A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Communica-
tions of the ACM, 21(2):120-126, February 1978.
ADI SHAMIR: On the Generation of Cryptographically Strong Pseudorandom
Sequences. ACM Transaction on Computer Systems, 1(1):38- 44, February
1983.
MICHAEL WAIDNER and BIftarr PFITZMANN: The Dining Cryptographers
in the Disco: Uncondition.nl Sende.r and Recipient Untraceability with Com-
putationally Secure Serviceability. In Advances in Cryptology - EURO-
CRYPT '89, LNCS 434, page 690. Springer-Verlag, Berlin, 1990.
MICHAEL J . WIENER: Cryptana1Ipi.s of Short RSA Secret Exponents. IEEE
Transactions on Information Theory, 36(3):553-558, May 1990.

[Pfit96]

[PfWagO]

[RSA78]

[Sham831

[WaPfSO]

[WienSO]

	Collision-Free Accumulators andFail-Stop Signature Schemes Without Trees*
	1 Introduction
	1.1 Organization of this Paper

	2 Accumulators
	2.1 General Accumulators
	2.2 Elementary Accumulators
	2.3 Examples

	3 Conversion Algorithm
	4 Accumulator FSS Scheme
	4.1 One-time FSS Scheme with Prekey
	4.2 Construction
	4.3 Security

	5 Examples
	6 Conclusion
	Acknowledgments
	References

