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Abstract.  One-way accumulators, introduced by Benaloh and de Mare, 
can be used to accumulate a large number of values into a single one, 
which can then be used to authenticate every input value without the 
need to transmit the others. However, the one-way property does is not 
sufficient for all applications. 
In this paper, we generalize the definition of accumulators and define 
and construct a collision-free subtype. As an application, we construct 
a fail-stop signature scheme in which many one-time public keys are 
accumulated into one short public key. In contrast to previous construc- 
tions with tree authentication, the length of both this public key and the 
signatures can be independent of the number of messages that can be 
signed. 

1 Introduction 

The  security of digital signature schemes depends on so-called computational 
assumptions, e.g., the factoring assumption. If somebody can break the assump- 
tion on which the system is based, and if he can therefore get the  private key 
of the signer, he can construct signatures on messages chosen by himself. The  
signer cannot prove tha t  she did not, sign those rriessages herself. 

This disadvantage was overcome with the  introduction of "fail-stop" signa- 
tu re  schemes, e.g., [WaPDO, PfWaSO, HcPe93, PePf971. With these schemes, the  
signer can produce a so-called proof of forgery to demonstrate tha t  she did not 
sign a message. This proof shows that the computational assumption has been 
broken (fail) and that the  system should therefore not be used any longer (stop). 

Most of the  currently known basic constructions of fail-stop signature schemes 
(FSS schemes) can only be used to sign one single message. FSS schemes for 
more than one message have becn constructed based on these one-time FSS 
schemes by using tree authentication to authenticate the  public one t ime  keys. 
Consequently, the length of signatures in such a scheme grows logarithmically in 
the  number of messages tha t  can be signed. The  question whether this can be 
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avoided was also the main gap between known lower and upper bounds on the 
complexity of fail-stop signature schemes [HePP93]. 

The accumulators presented in [BeMa94] seem to be a solution to  this prob- 
lem: a large number of values is accumulated into one value z .  Later on, for 
authentication of one of those values, y, an additional value is computed that 
will authenticate y with respect to 2. The length of z and the additional value 
can be independent of the number of values to be accumulated. If we use this 
for FSS schemes and accumulate all the public one-time keys, the length of the 
resulting public key and the signatures can be independent of the nnmber of 
messages. 

The accumulators defined in [BeMa94] have only a one-way property, i.e., 
given an output, it is hard to  find a suitable input. Unfortunately, this is not 
enough for an  FSS scheme, because the adversary may be able to  choose the one- 
time public keys (i.e., the values to be accumulated), and thus to some extent) 
the accumulated output, himself. Therefore we define and construct collision-free 
accumulators. We take the opportunity to generalize the accumulators defined in 
[BeMa94] to contain only those properties that  are needed for our purpose and 
also to  include newer accumulators from [Nybe96a, Nybe96bI. The new collision- 
frec accumulators are then included into a modular FSS scheme. Thus now we 
really have a scheme where the length of both the public. key and the signatures 
is independent of the number of messages. 

The goal of constructing schemes without trees is similar to recent efforts 
with non-fail-stop provably secure signatures to  shorten the signatures by flat 
trees [DwNa94, CrDa961, but the measures developed there cannot be used for 
FSS schemes. 

1.1 Organization of this Paper 

In Section 2,  we present onr definitions and constructions of accumulators. In 
Section 3, we describe conversion algorithms as an interface between the one-time 
FSS scheme and the accumulator which is used to authenticate the individual 
public one-time keys. The general construction of our accumulator FSS scheme 
is given in Section 4. Two example accumulator FSS schemes follow in Section 5. 

2 Accumulators 

Accumulators were introduced in [BeMa94] as a new way of “summarizing” a 
large number N of values in one value. The accumulators as defined in [BeMa94] 
have some properties we do not need for our purposes, so we generalize their 
definition a little. Then we define some subtypes of accumulators with different 
levels of security. Nevertheless, the accumulators as given in [BeMa94] are an 
important subtype that we call ~l~mentary accumulators (see Section 2.2). 

2.1 General Accumulators 

Definition 1. A family a of accumuZators has the following components: 
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- Sets accu-keys(k, N ) ,  which contain all possible keys for the security para- 
meter k and %,he number N of values to be accumulated, and a probabilistic 
polynomial-time algorithm accu-gen(k, N )  that  chooses an accumulator key 
n from accu-keys(k, N ) .  If the choice is uniformly random, we often simply 
write E R .  
In our examples, accu-keys(k, N )  is independent of N .  

- Sets Y, containing the suitable inputs for an accumulator key n. 
- A probabilistic polynomial-time algorithm accu-eval which, on input an ac- 

cumulator key n and N values y1,.  . . , ;YN E Y,, outputs a value z and an 
auxiliary value auz, which will hc used by the other algorithms. 
We write u,(y~,  . . . , y ~ )  instead of accu-ewal(n,yl,.  . . , p l y ) .  
Every execution of accu-eval with the same input (n ,  yl,. . . , y ~ )  must yield 
the same output z .  

- A probabilistic polynomial-time algorithm auth that ,  on input n, yi, and UUZ, 

computes a value accu, from a set ACCU,, which is needed to authenticate 
Y i .  

We write auth,(y,, a m )  instead of auth(sr, yi, aus) .  
- A polynomial-time algorithm authentic which, on input (n ,  z , y i ,  (LCCZL,), 

checks whether yi E Y, together with Q C C U ,  E ACCU, is authenticated by z .  
If SO, the output is o k ,  otherwise not-ok. 
We write authentic,(z, yi, accui) instead of authentic(n, z ,  yi, accui). 

Additionally, there must be two polynomial-time algorithms: one that,  on input 
n and y ,  checks whether y E YTL, and one that,  on input n and U G C U ,  checks 
whether uccu E ACCU,. Finally, we require that every yi  in the inpiit of a, can 
be authenticated by the output of a,, formally: 

In [BeMa94], a onc-way property is defined for accumulators. Generalized to 
our definition, it means that it is hard for an adversary who is given values 
(91 , .  . . , y ~ ) ,  their accumulation result z ,  and another value y' to find a value 
accu' that  authenticates y' with respect to z .  

That  article also informally considers a slightly stronger property that we call 
strongly one-way. It  means that given only ( ~ 1 , .  . . , y ~ )  and x ,  it is hard to find 
a pair (y', uccu') such that authentic,l(z,y',  U C C U ' )  = ok with y' @ {yl, . . . , y ~ } .  
I.c.,  now the attacker can choose the value y' himself. The importance of a strong 
one-way property was also recognized in [Nybe96a]. 

For our accumulator FSS scheme, we need an even stronger property, because 
the adversary might be able to choose all the public one-time keys that are to  
be accumulated, i t . ,  not even the values y1, . . . , Y N  are now given. 
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Definition 2. A family a of accumulators is N- t imes  collision-free for N 2 1 if it 
is hard to find y l ,  . . . , y ~ ,  another value y' and uccu' such that y' is authenticat$ 
by accu' and a,(yl,.  . . , y ~ ) :  for all probabilistic polynornial-time adversaries A ,  
all c > 0, and all sufficiently large k :  

authentic, ( 2 ,  y', UCCIL ' )  = ok A y' 4 { y l , .  . . , y N }  

A y ' , y ~ , .  . . , Y N  E Y, A accu' E ACCIL, :: 
n t accu-gen(k, N ) ;  
(accu' ,  y', y l ,  . . . , y N )  +- i ( k ,  ~ , n , ) ;  

1 

Definition 3. A family a of accumulators is collision-free if a is N-times collision- 
free for all N > 1. 

2.2 Elementary Accumulators 

In [BeMa94], accumulators were defined as functions h,: X7,, x Y, -+ X,, where 
n is again an accumulator key. With repeated use as in 

= h,,(.'-h,,(ILILiI,?/I),yp),---yN), 

where the result of one application of h, is inserted as tho first argument in the 
next application of h,, all yl,. . . , : y ~  E YN are accumulated to a value z E x, 
given an initial value x E Start, C_ X,. 

according to 
the general definition, where the initial value x is part of the key of a ,  as follows: 

With such a function h,,, we can create an accumulator 

( 2 ,  auz) = q n , & l , .  . . I Y N )  

with z as above and a m  = (z, y1,. . . , y ~ ) .  We use (x, y l ,  . . . , y ~ )  as the auxiliary 
output, so that we can use it for the computation of the values accu,. 

In [BeMa94], such a function h,, has to he quasi-commutative, i.e., 

h , (h , (z ,y~) ,yz)  = h,(h,(z,ya),yl)  for all z E X ,  and ~ 1 , y z  E Y,. 

We do not need this property for our accumulator FSS scheme, but if one has 
a function with this property, one can easily construct, algorithms to create and 
verify the values accui [BeMa94]: 

au.th,(yi, ( z , y l , .  . . , y N ) )  = h,, (. . . L ( I L ~ ~ ( .  . . hn(x ,y l ) ,  . . . yI-l),yi+l), . . . Y N  

and 
authentic,(z, y,, U C C I L , )  = ok iff z = h,,(accu,, yi). 

In this case, the list of all values amui can be computed with O ( N  . log, N )  
applications of h,, with a tree-like evaluation. This can be done offline after z 
has been published. 

1 
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2.3 Examples 

In the following two subsections, we give two examples of accumulators. Both 
are based on the elementary accumulator given in [BeMa94], but with some 
modifications to fulfill the collision-freeness needed for the accu~riulator FSS 
scheme. 

Another elementary and strongly one-way accumulator is described in 
[Nybe96a, Nybe96bl. In short, i t  uses a hash function h that  generates a long 
random output oi of fixed length T . d for every input yi, where T and d are 
two security parameters. Then ni is transformed into a bitstring bi of length T 

that has far more 1's than 0's. To accumulate the values (y l ,  . . . , y ~ ) ,  the C O ~ -  
responding strings b, are multiplied modulo 2 coordinatewise. In the result, a 
bit can be zero only if at  least one bi has a zero bit a t  the same place. The 
main advantage of this accumulator is t,he absence of any trapdoor information, 
whereas in the following accumulators based on the RSA assumption, someone 
knows the factors of the RSA modulus. A disadvantage is its long output, too 
long for the public key of an FSS scheme. 

RSA Accumulator Without Random Oracle. The first cxample is almost 
the same accumulator as presented in [BeMa94], based on the elementary BCCU- 
mulator function hn(x ,  y) = xu mod n. 

Definition 4. The following family uRSA is called R S A  accumulator without 
random oracle: 

- ~ ~ ~ u - l c e y ~ ~ . ~ * ( k , N )  := ((Tz,z) 1 TL E RSA-Mod(k) A 5 E Z,,} 

- aRSA (n,z)(yl,. . . , y ~ )  := Z ~ ~ " . Y N  mod n, 

- n ~ t h ~ ~ , ~ ~ ~ ( y ~ , ( z , y 1 , .  . . ,yN)) := : x u 1 " ' g z - 1 y t + 1 . " y ~  mod n, 
- a u t h e n t i c ~ ~ $ l ( z ,  y, accu) := ok iff mcuY = z( niodn) 

- := {y 1 y < n A y prime) 

Here, RSA_Mod(k) is the set of RSA moduli of length k [RSA78]. The difference 
to the original accumulator is the restriction of the input domain to  prime num- 
bers. In addition, to  prove collision-freeness, we have to make a stronger RSA 
assumption. 
Assumption (strong RSA assumption). For all probabilistic polynomial- 
time algorithms A, all c > 0, and all sufficiently large k ,  

P(y '  G z(modn,) A e prime A e < 71 :: 

~ E R  RSA-Mod(l;);s E R  Z , , ; ( Y , ~ )  +- A(7~,3:)) 5 k-'. 

Thus the adversary A is given 71 and 3: as in a usual RSA assumption, but he 
may choose the exponent e for which he extracts the root. We are neither aware 
of any corroboration that it should be hard, nor can we break it.  Four obvious 
attacks do not work, i.e., they are equivalent to breaking some other problem 
believed to  be hard: 
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- If the adversary chooses a random e first, he has to  break RSA. 
- If he chooses a random y first, he has t o  compute a discrete logarithm. 
- If he tries t o  find d and e with y = xd and (d)‘ = 2, then ord(z) divides 

f := de - I ,  where ord(Ic) is the smallest i > 0 with :cz G 1 (mod n). He can 
then also break RSA for the samo n, and z: Let a random public exponent e’ 
be given. It is sufficient t o  consider the case where e’ is prime and 110 factor 
of f. Then we set d’ := e’-l mod f and obtain (d‘)‘’ = .7: (mod n)  because 
ord(z) divides d‘e’ - 1. 

- The  attacker could try to  choose special values e for which RSA would be 
easier t o  break. However, no such exponents seem to  be known. There are 
attacks for short secret exponents [WienSO], but our e corresponds t o  the 
public exponent, and we see no way for the attacker t o  influence the cor- 
responding secret exponent. A well-known attack on short public exponents 
[Hbst86] only applies to situations where the attacker sees several messages 
encrypted with that  exponent using different moduli. Similarly, the new class 
of attacks on short public exponents in [CFPR96] only applies to situat,ions 
where the attacker sees the ciphertexts of several messages with a known 
polynomial relationship, encrypted using the same modulus. 

Theorem 5.  Under the strong RSA assumption, Q~~~ is collision-free. 

Proof sketch. An adversary who finds a collision in o . ~ . ~ ~  for given n, x, i.e., who 
finds yl, . . . ,YN, y’: and accu’ with 

accu’y = :cY1’ ‘ Y N  (mod n), 

can break the strong RSA assumption as follows: Let e := y’ and T := y1 . . YN. 
Now the e-th root g,~ of 1c can be constructed as in [Sham83, BeMa941: Compute 
a ,  b E Z with ar+by‘ = 1 with the extended Euclidean algorithm (this is possible 
because g’ is prime) and let y := a ~ c u ’ ~ ~ d ’ .  Thus 

y p  a C C , u ’ a ~ ‘ 2 b y ’  - 2 ~ a + b ~ ’  = - IC (mod R.). 

0 

RSA Accumulator With Random Oracle. The  second example uses, as 
the name of the first suggests, a random oracle R [BeRo93]. Whenever asked t o  
compute R(y) for a new value g, the oracle generates a random number r as its 
answer, and it stores all previous pairs (y, r )  so that  it answers with the same r 
if asked the same y again. 

In practice, one replaces the random oracle by an  efficient hash function. Of 
course, this replacement is only a heuristic. 

By using a random oracle, we can construct an accumulator that  is collision- 
free under the normal R S A  assumption. The  elementary accumulator uses the 
function 

mod n. hRSAfi? (n,fi?,l) (x, (y, d i s t ) )  := P ( y ) + d z s t  
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We do not use Q ( y )  directly, because in thc proof we will need that the exponents 
are prime numbers. So we append 1 bits such that 2'L'(y) + dist is prime. Of 
course, this might not be possible for all values of y ,  so we accept only those 9's 
as input for which a suitable dist exists. 

Definition 6. Let a family M of sets Mk be given where membership is decid- 
able in polynomial time. It contains the values that we really want t o  accumulate 
for each security parameter k .  The following family is called RSA accumulator 
with random oracle (for M ) :  

RSAR - accu-keys ( k ,  N )  := { (n ,  R,  1, z) 1 n E RSA-Mod(k + 1 )  
A fi E {f I f :  fir --f zndiv2,} A i = p g , 2 k l  A z E z,} 

- Y(n,n,l,z) RSAR = { ( y , d i s t )  I y E Mk A dist E Z2l A 2 ' Q ( y )  + dist prime}, i.c., 
the values that we actually ncciimulate are pairs of a value that we want to  
accumulate and a suffix that turns its hash value into a prime number. 
.R.SA R - ( n , ? J z ) ( ( Y l ,  d i s h ) ,  . . . ,  ( ? / N ,  d i s t d )  := 

2(2'o(Y1 ) + d i d 1  ) . . . ( 2 ' R ( Y ~ ) + d z s t ~ )  mod n, 
- authy:,An:,s) ( ( Y i ,  d i s h ) ,  (Z, (y1, d i s h ) ,  . . . , ( Y N ,  d i S t N ) ) )  := 

2(,'R(yl)+dzstl)...(2'R(y;-1)+dzsl ,- l).(2'R(y,+l)+dasti+l)...(2'R(yw)tdzst~) mod n, 

- authentic?:,$:,z)(z, ( y ,  dist), am,,) := ok iff accu21R('J)+dast = z(modn,) 

Theorem 7. This  accumulator i s  collision-free under  the normal  RSA assump- 
tion. 

Proof sketch. We have to  show that for all N ,  all probabilistic polynomial-time 
algorithms A, all c > 0, and all sufficiently large k ,  

p accu12' fz(y')+dZSt' = - Z ( 2 ' i 2 ( l / l ) + d Z S t  I ) . . . (a ' f l (  (/&! )+dZ.StN ] ( modn) 

A ( y ' > d Z s t ' )  $ ( ( Y ~ , ~ Z S ~ I ) ,  ...,(Y ~ , d i ~ t N ) }  
A ( y ' ,  d i s t ' ) , ( y l ,  d z s t l ) ,  . . . , ( y ~ ,  distN) f {(y, d i d )  1 
A accu' E z,, :: 

( 
E Mk 

A dist E (0 , .  . . ,2'  - 1) A 2 '0(y)  + dist prime} 

1 := [log, 2 k l ;  7L € R  RSA-Mod(k + 1 ) ;  
,Q E l i  {f I f :  Mk --, Z n c i i v % ( } ; Z  E R  ZTzi 

(accu ' ,  (y', dist ' ) ,  (91, d i S t l ) ,  . . . , (yiy. d i S t N ) )  c P ( k , N , n , , l , z )  
1 

5 F' 
- 

where xsL means A" with access to  the oracle R Assume that an algorithm-A 
contradicts this inequality for some N.  We ran then construct an algorithm A? 
that calls AIR and, whenever that is succpssfiil, s&s 

r' := 2'0(y') + dist' and 
ri := 2 ' ~ ( y i )  + disti for i = 1,. . . , N ,  
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and computes the r’-th root of z using the extended Euclidean algorithm for 
these values as in the proof of the previous theorem. The only exception is if 
r’ equals one of the Ti’s. Then an oracle collision has been found, which can 
only happen with very small probability. Hence it is sufficient to prove for all 
probabilistic polynomial-time algorithms All all c > 0, and all sufficiently large 
k ,  

P y - 2 A T’ prime A T’ < n, A d i d  < 2’ :: ( 
1 := [log, 2 k l ;  n ER RSA-Mod(k + 1 ) ;  
f j  E H  {f I f :  Mk --+ ~ n c ~ i v ~ l } ; ~  E R  zn; 

1 
kC 

(y,y‘,dist’) + A ,  -n (k ,N ,n , , l , x ) ; r ’  := 2’Q(y’)+ dist’) 5 -. 

Without loss of generality, we can assume that 2, has asked the oracle for 
O(y‘). The number of values that A1 asks for is bounded by a polynomial Q(k).  
Whatever strategy A1 uses in choosing its oracle queries, it amounts to the same 
thing as if it were given a list of Q ( k )  random numbers p and had to select 
r’ among the numbers 2‘p + d is t .  Thus this new adversary 2 2  is given a list of 
Q(k) ‘2‘ exponents and has to extract a root for at least one of them. If this were 
possible with non-negligible probability, it would also be possible - to extract an 
e-th root for one given random e. For this, a new adversary A3, given e ,  inserts 
(e div 2‘) at  a random place into a, list of Q(k) - 1 random numbers and appends 
the values dist. 2 3  calls 22, and with a probability smaller by the factor &(k) .2‘ 

0 

- 

it gets the e-th root of z (recall that 2‘ = k ) .  

The proof also shows another result that is interesting in practice, where the 
function used instead of the oracle is not perfect: To find an accumulator collision, 
one at  least either has to either find a collision of this function (where collision- 
freeness is a much weaker requirement than “being like an oracle”) or to break 
the strong RSA assumption. 

3 Conversion Algorithm 

We want to use collision-free accumulators as defined in the previous section to 
accumulate the public one-time keys in an FSS scheme. But what if the public 
one-time keys are not suitable as input for the accumulator? For example, the 
RSA accumulator without random oracle as defined in Section 2.3 needs prime 
numbers as input, and none of the known FSS schemes uses prime numbers as 
public one-time keys. Hence one has to convert the public onetime keys to prime 
numbers that can then be accumulated by the accumulator. 

Of course, such a conversion could be done within the underlying one-time 
FSS scheme or within the accumulator. But then one has to prove their security 
again. Thus it seems better to use a simple conversion algorithm that has no ef- 
fect on the security as an interface between the FSS scheme and the accumulator. 
In this way, we get a general modular construction for which one can use any 
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collision-free accumula.tor and any one-time FSS scheme provided that one finds 
a conversion algorithm for them. As examples, we present two instantiations in 
Section 5. For this purpose, we use a family A of conversion algorithms, which 
has the following components: 

A function calc-pars that  computes the seciirity parameters k’ for the ac- 
cumulator and (k*,o*) for the underlying FSS scheme if given as input, 
( k ,  o, N), the security parameters of the desired accumulator FSS scheme 
and the number of messages to be signed. The output must fulfill 

- A polynomial-tirnp algorithm .l-gen which, on input k’, of and an accumu- 
lator key ‘YL, computes a key par specifying an individual member of A.  

- A probabilistic polynomial-time algorithm .Leva1 which, on input a conver- 
sion key par and a public one-time key pkil outputs either a value p k ,  E Y, 
(a  suitsable input for the accumulator with the key 7 ~ )  or “unsuitable”. The 
success probability should a t  least be the inverse of some polynomial; in the 
examples, it will be at  least constant. 
We write A4,,,(pk,) instead of A_eval(pur, pki). 

- A polynomial-time inversion algorithm, abbreviated A&, with 
( A p a r ( p k i ) )  = p k ,  for all A4, ,nr(pkz)  # “unsuituble”. 

Note that the conversion of a one-time key is not necmsarily deterministic, but 
the inversion has to be. So it is possiblc to includc some random bits in the 
output of Apnr that are needed for an accumulator, but the result of A&!r is 
always unique. 

We now show the core of a simple example Aprim, which we will use in 
Section 5. It converts input numbers into prime numbers, if possible, using the 
same idea as in Section 2.3: The parameter par is a small integer 1. On input 
T E IN, the algorithm Aprim,l checks for d is t  = 1,3,. . . ,2‘-  1 whether the number 
2’z + dist is prime. If so, it returns 2‘2 + dist ,  othcrwise “unsuitable”. To get 
z back from the output h, the inversion algorithm simply cuts off the 1 least 
significant bits. 

Another example of a conversion algorithm is of course the identity function, 
which can be used whenever no conversion is necessary. 

4 Accumulator FSS Scheme 

In this section, we describe the accumulator FSS scheme. I t  is based on 

- a one-time FSS scheme with prekey and parameters ( k * , u * ) ,  
- a family of collision-free accumulators with parameters (k’, N ) ,  and 
- a family of conversion algorithms for the one-time FSS scheme and the ac- 

cumulator. 
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We use so-called one-time FSS schemes with prekey, e.g., [PePf97]. This prekey 
is generated by a center trusted by all recipients and verified by the signer, who 
need not trust the center. The center is used instead of the recipients themselves 
for simplicity. Based on this prekey, the signer can generate as many one-time 
key pairs as she wants. Among the two security parameters, cr* is chosen by the 
signer for her information-theoretical security, whereas k” is chosen by the center 
for the computational security of the recipients. 

For simplicity, we only consider schemes that fulfil the simplified security 
criteria for schemes with prekey from [PfitSG, Theorem 7.341. First, this means 
that proofs of forgery only depend on the prekey. This is natural because only 
the prekey is not  chosen by the signer, i.e., a proof of forgery has to  show a secret 
hidden in the prekey. Secondly, it is required that  for every good prekey (one 
that the signer accepts with significant probability), for every one-time key pair 
based on it and every forgery, the probability that the forgery cannot be proved 
is a t  most 2 ~ “ ’ .  

One-time FSS Scheme with Prekey 

4.2 Construction 

Key generation. The accumulator FSS scheme gets only ( k , a , N )  as input. 
The remaining security parameters are calculated with 

(k’, k * , a * )  := cak-pu.rs(k ,  g, N ) .  

The center generates 

- a prekey, using the algorithm gen(lc*, cr*) of the one-time FSS scheme. 
- an accumulator key ,n with n c uccu-gen(k’, N ) .  
- the parameter for the conversion algorithm as PUT := A - g e n ( k * , u * , n ) .  

The signer verifies the prekey. She need not verify the accumulator key because 
it has no effect on her security. A weak accumulator key may make it easier for 
an adversary t o  find an accumulator collision and forge a signature. But this is 
no problem for the signer because she car1 show the collision as a proof of forgery. 
All these global values are part of the signer’s public key, but for readability we 
omit them in the following. 

The signer now chooses N key pairs (sk,, p k , )  of the underlying one-time FSS 
scheme, based on the given prekey. 

She computes p k ,  := A,..(pki) for i = 1,.  . . , N .  If there is any pki 6 i.e., 
p k ,  = “unsuitable”, she has t o  generate a new key pair ( sk i ,  p k , )  and to  repeat 
the computation of p k , .  

Finally, the signer computes the main public key pk of the accumulator FSS 
scheme by accumulating the pk , ’ s :  

h h 

h 

h 

h 
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She publishes p k  and stores a u z  for later use. Formally, her secret key sk contains 
not only the secret one-time keys skl  , , . . , s k ~ ,  but also the converted public one- 
time keys p k , ,  . . . , p k ,  and the auxiliary output a u x .  
Signing. The signature on the i-t2h message, mi, is 

h - 

+. 
s := (st, pk,,  U C C U i ) ,  

where si is the one-time signature on this message with the one-time key s k i ,  
and p k ,  and accu( are needed for the authentication of the one-time public key 
pk,.  The value accui is computed using 

I 

h 

accui +- auth,(pki ,  a u z ) .  

Since aCCUi is independent of the message, it can be precomputed when the 
computer is idle. 

Testing. A value s = ( s i , p k i ,  accu i )  is an acceptable signature on thc message 
m,, iff 

h 

A 

1. si is an acceptable one-time signature on mi with respect to p k i  = A $ ( p k i ) ,  

3. U C C U ~  E ACCU,, and 
4. pk authenticates p k t ,  i.e., au then t i c , (pk ,pk i ,  accu i )  = ok .  

2. & E y,,, 
h h 

h 

Proving Forgeries. If (s', p t ' ,  accu')  is an acceptable signature on a message 
m' not previously signed by the signer, she can generate a proof of forgery as 
follows: 

h 

1. If pk'  = A;ir(pk') E { p k , ,  . . . ,yk,},  she tries to generate a proof of forgery 
in the one-time FSS scheme. 

2. Otherwise, she shows the accumulator collision 
A h - 

proof := ( ( p k , ,  . . . , p k N ) ,  ( p k ' ,  a c c u ' ) ) .  

This proof shows that the assumption on which the accumulator is based 
has been broken. 

Verifying Proofs of Forgery. 

1. If proof is said to be a proof of forgery in the one-time FSS scheme, one 

2. Otherwise pruuf is accepted iff it fulfills the following conditions: 
verifies that. 

(a) 2 4 {$I,. . . , G N h  
(b) $1,. . . , G , , p 2  E u,,, 
(c) accu' E A C C U ,  and 
(d) au then t i c , (pk ,pk ' ,  accu')  = ok with ( p k ,  U U S )  +- u T L ( p k I , . .  . ,pk,). 

A h h 
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4.3 Security 

Theorem 8.  The accumulator  FSS scheme  as  defined in t h e  previous section i s  
secure for  both t he  signer and th.e rec:cl;pien,ts as  defined in [Pf W a 9 0 ,  PePfW]. 

Proof sketch.  For the information-theoretic security of the signer, we first show 
that any forgery that is not a forgery in the onetime FSS scheme, i.e., that 
does not fulfil the condition of Item 1 in “Proving Forgeries”, is provable with 
probability 1: If pk‘ $ { p k , ,  , . . ,pk ,} ,  then pk‘  $ {GI,. . . ,pk,} because the 
inversion is deterministic. Thus the valuc the signer computes in Item 2 is 
indeed an accumulator collision. 

If the forgery i s  in the underlying one-time scheme, the signer can prove it 
with an error probability less than 2-“‘, and thus less than 2-“ (given that the 
prekey is good), because 

I. 
h 

- with probability 1, she finds the one-time key pair ( s l c i , pk i )  whose public 
one-time key the forger has used, 

- for every generated one-time key pair, the probability is at  most 2-“* that 
no proof of forgery can be found in the underlying FSS scheme, independent! 
of the number of “~,nmitabZe” public one-time keys generated before, and 

- the forger gains no information about ski by the accumulation. 

The recipients want to be secure that no signatures they have accepted become 
invalid. Thus it should not be possible that 

- an adversary computes an acceptable signature that will be (correctly) proven 

- the signer can (incorrectly) deny a previously generated signature using a 
to be forged by the signer, and that 

proof of forgery. 

Hence it is sufficient to show that no proof of forgery can be computed. This 
is (computationally) true because a proof of forgery of the new scheme implies 
either a successful proof of forgery in the underlying one-time FSS scheme or a 
collision of the utilized accumulator. Since for both parts the security paramcter 
is at  least k (guaranteed by the function calc-pars), neither should be possible 
for a polynomially restricted forger. That some key pairs are thrown away during 
key generation does not help the adversary, because the proof is based on the 
prekey alone. 0 

5 Examples 

We construct two examples of accumulator FSS schemes, using the two accu- 
mulators from Section 2.3. As the underlying one-time FSS scheme, we choose 
the one described in [HePe93]. It is based on the Discrete Logarithm assump- 
tion. Its public keys are pairs ( q b )  of elements of the group where computing 
discrete logarithms is assumed to be hard; let their length in bits be the security 



492 

parameter k*. The algorithms of the accumulator FSS schemes are clear from 
the previous section as soon as we fix the conversion algorithms. 

The  first examples uses the accumulator uRSA. It needs prime numbers as 
inputs, so we convert the one-time public keys ( a , b )  with April,,, interpreting 
(a, b )  as one 2k*-bit number. 

The security parameters for the one-time FSS scheme and the accumulator 
are calculated by 

( k ' ,  k ' ,  r * )  = calc_pu7a(k,cT, N )  := (2k + [log, 2kl + 1, k,cT), 

and the key of the conversion algorithm by 

1 = A-gen(k*,r*,,n) := rlog22k*l. 

These fiinctions guarantee that the converted public one t ime  keys are in the 
domain of the accumulator: The parameters for the one-time FSS scheme are 
simply the given k and 0 .  The  parametcr k' for the accumulator is set such that 
the RSA modulus is longer than a one-time FSS key and the appended value 
dist. The length 1 of dist is a somewhat arbit,rary value ensuring that a prime 
will typically be found in the search interval. 

T h r  second example is based on the RSA accumulator with a random oracle 
assumption. This accumulator needs pairs (pk i ,  dis t i )  as input, so the conversion 
algorithm is similar to  Aprirn,l, but returns ( p k i ,  dis t , )  instead of 2'fl(pk,) + dist ,  
if that  value is prime. The security parameters are computed with 

( k ' ,  k * , O * )  = culc-pnrs(k,  cT, 1V) := ( k , k , a )  

and the key of the conversion algorithm is 

. L g e n ( k * , n * ,  (n, R, l , z ) )  :- ( 1 ,  fl), 

Concretely, this means that  the length of the RSA modulus used for the accu- 
mulator is independent of the length of the one-time keys, because only oracle 
outputs with appended values dist are accumulated, and the length of the oracle 
output is adapted accordingly. 

6 Conclusion 

We have presented a generalized definition of accumulators and the definition of a 
collision-free subtype. We constructed two collision-free accumulators, one based 
on a stronger RSA assumption than usual, the other based on a random oracle 
and the normal RSA assumption. We remind the reader that no new assumption 
in cryptology should be trusted, i.e., we certainly do not recommend the first 
version for use in practice for quite some time. These accumulators can be used 
to construct fail-stop signature schemes in which the length of the public key 
and of the signatures is independent of the number N of messages that can be 
signed, while the additional cost for signing is small, especially because most of 
the signature can be computed and sent before the message is known. 
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Key generation, however, takes significantly longer than  in constructions with 
trees. To avoid the  precornputation of a very long secret key, one can combine. 
the  constructions with top-down tree authentication. In this way, we get flat 
trees similar t o  those in [DwNa94]. For instance, one might use accumulation 
for 1024 pairs ( s k i , p k , )  each, form a tree with two levels of such structures, and 
generate the  structures of the  lower level on demand, signing their "public" keys 
with the  secret keys of the  upper level. Thus  one can sign one million messages 
with one public key. A complete signature consists of the  accumulation result z 
of one lower-level structure and two accumulator FSS signatures as described in 
Section 4. 
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