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Abstract. In 1991 Lai, Massey and Murphy introduced the IPES (Im- 
proved Proposed Encryption Standard), later renamed IDEA (Interna- 
tional Data Encryption Algorithm). In this paper we give two new at- 
tacks on a reduced number of rounds of IDEA. A truncated differential 
attack on IDEA reduced to 3.5 rounds and a differential-linear attack on 
IDEA reduced to 3 rounds. The truncated differential attack contains a 
novel method for det,erxnining the secret key. 

1 Introduction 

The block cipher IDEA (International Data Encryption Algorithm) was pro- 
posed by X. Lai and J. Massey in [ll] as a strengthened version of PES (for Pro- 
posed Encryption Standard) proposed by the same authors in [lo]. The blocks 
a,re 64 bits and the keys are 128 bits. Both ciphers are based on the design 
concept of "mixing operations from different algebraic groups". IDEA was de- 
veloped to  increase the security against differential cryptanalysis. In [9] it was 
argued that  for 3 rounds of IDEA there are no useful differentials and concluded 
that IDEA is resistant against a differential attack after 4 of its 8 rounds. 

IDEA is an iterated cipher consisting of 8 rounds followed by an output, 
transformation. We count the output transformation as an extra half round. The 
complete first round and the output transformation are depicted in the compu- 
tational graph shown in Figure 1. The two multiplications and the two additions 
in the middle of the figure are called the MA-structure. The key schedule takes 
as input a 128 bit key and returns 52 subkeys, each of 16 bits. 

W. Meier cryptanalysed 2 rounds of IDEA in a differential-like attack using 
a partial distributive law [14]. J. Daemen found large classes of weak keys for 
IDEA [4] and also described an attack on 2.5 rounds of IDEA for all keys in [3]. 

Differential cryptanalysis was introduced by Biham and Shamir in [I]. In 
an attack on an iterated cipher one considers plaintext pairs P, P* of a certain 
difference and the corresponding ciphertexts C and C*. The main tool in t,he 
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Fig. 1. Computational graph for the encryption process of the IDEA cipher. 

differential att,ack is the characteristic, a list of the expected differences in the ci- 
phertcxts after each round of the cipher. Lai and Massey introduced the notions 
of differentials in [ll, 91. Later in [6] Kriudsen extended the notions of differen- 
tials to that of truncated differentials, where only subsets of the differences are 
predicted. A right pair is a pair of plairitexts, for which the ciphertext differ- 
ences follow t,he differential. In a differential attack an attacker needs to get at 
least onc right pair. However, an attacker might not be able to  determine which 
pairs are right pairs from the differences in the ciphertexts, but if the charac- 
teristic or differential predicts also the differences in (parts of) the ciphertexts, 
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often an attacker can discard pairs, which are not right pairs. A wrong pair is a 
pair of plaintexts, for which the differences in the ciphertexts do not follow the 
differential, but which looks like a right pair t,o t,he attacker. 

In the linear att,ack [12] by Ma.tsui one considers linear combinations of some 
bits of the plaintext, the ciphertext, arid t,he key, ant1 defines linear characterist,ics. 
Nyberg introduced the linear hull [15], the analogue to  differentials in differential 
att,ac:ks. In [5]  Hellman m d  Tzmgford combined the differential and the 1inea.r 
attack t,o the differential-linear attack, and applied it to 8 rounds of the DES. 

In t,his paper we give t,wo new attacks on IDEA. In Section 2 the differential 
attack using truncated differentials is described, which can be used to break 3.5 
rounds of IDEA. In Section 3 the differential-linear attack is described, whkh 
can be used to break 3 rounds of IDEA and Section 4 gives concluding remarks. 
Full versions of the &tacks in this paper arc described in [2 ,  81. 

2 Truncated Differential Attack 

In this section we describe a differential attack on 3.5 rounds of IDEA using 
truncated differentials. We define the difference of two bit strings A and A* of 
the same lengt,h as 

For differential cryptanalysis of IDEA wit,h ot,her definitions of difference, we 
refer to  [11, 141. Under the definition of difference (1) IDEA is not a Markov 
cipher [ll]. Also, as we will see, the probabilities of the differentials used depentf 
very much on the key used in the enc:rypt,ions. Thus, the hypothesis of stochastic 
equivalence [Ill, i.e., that the average probability of a differential taken over all 
keys is approximately the same as the probability for a fixed key for virtually 
d l  kegs, does not hold for IDEA with difference (1). 

Consider the following one-round differential for IDEA. 

(a,, b,  c, d )  denotes the four-word input difference and ( e ,  f ,  g ,  h )  denotes the differ- 
ence after the key addition. This transition has probability p l .  Wit,h probability 
172 tjhe input difference (ecDg, f teh)  to  the MA-structure leads to an output differ- 
ence ( k , l ) .  The output, differenw of t,he round is given as ( c ~ ~ Z , g @ l ,  j @ k ,  hcfik).  

The 3-roiind t>ruricated differential uscd in our attack on IDEA is: 

[ u , E )  * z2 ( E ,  D )  - (0, D, 0, E )  (C, c, 0,O) A (D, El 0,O) 
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where the words A t o  H represent any values. The average probability of the 
truncated differential is 2-". This probability is computed over all choices of 
the inputs to a round and to  the MA-structure and over all choices of the round 
keys arid where we have also assumed that the MA-structure acts like a random 
function. 

This differential has a mirror image with the same probability: 

(0,O; c, C )  

(070, c, C )  4 ( O , O ,  D ,  E )  } (D,O,E,O) 

(F, F,  030) 

( 0 , O I l ( O , 0 1  

( D , E ) Y  ( E , D )  

( O , O ) - f t ( O , O )  

(0;  A,  0, B )  ' y  (0, C, 0, C )  

(D,O,  E ,  0) '? ( F ,  0, F, 0) 

(F, F, 0,O) A (G, 0, ff, 0) 

These differentials are called truncated differentials, since we predict orily 
two of the four words, the zeros, of the differences after each round. 

We consider the attack also for reduced versions of IDEA, that operate on 
four nibbles, IDEA(16) arid on four bytes IDEA(32), respectively, instead of four 
16-bit words [9]. These reduct,ioris allow us to  actually implement the attack and 
experimentally verify our results. The above differentials are defined similarly 
for the reduccd versions. The average probabilities are 2-16 respectively 2--32.  

2.1 Description of the attack 

First the attack on IDEA (full block length) is described. A structure of plain- 
texts consists of 232 texts: p1 and p3 are fixed, p~ and p a  take on all possible 
values. We can use every combination of two texts as a pair. This means we 
generate Z32 . (232 - 1)/2 NN 263 pairs from a structure. For every stnicturc the 
expected number of right pairs is 0.5. The differential requires that Aco and ACZ 
are equal to zero, and only such pairs are considered. On the average only one 
out of 23' pairs will survive this test. For each surviving pair do the following: 
for all possible keys ZA'), Z i') check whether 

(.) @')) CH (1); c) zi')) = (p2 EI z4')j ~ f ,  ( p ;  EI 24')). (2) 

On the average, this holds for 216 values of (ZA", 2;"). Similarly we check for 
which keys in the output, transformalion, it holds that 

(cl E) ( z p - l )  cft (.; (1) (zi4)j-l) = (c:3 ~ 4 ~ 1 )  8) (c; ~ 4 ~ ) ) .  (3) 

Note that for a right pair these tests arc successful for the correct value of the 
kty. In total it can be expected that each pair suggests 232 64-bit key values and 
therefore every structure will suggest 26" keys. Therefore every value of the key 
will be suggested 0.5 times per used structure and, as indicated above, every 
structure will suggest t,he correct value of the key 0.5 times. One might expect 
that, among all the key values suggested by wrong pairs is also the correct value of 
the key. However, a wrong pair in the above attack will not suggest the correct, 
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value of the key. For a non-discarded pair of plaintexts and their ciphertexts 
a key will be suggested if the tests (2) and (3) succeed. For the correct value 
of the key this means that the input) difference to t,he second round will be 
(6, C, 0,O). The output difference of the third round will be ( O , O ,  F ,  F ) ,  and 
the input difference of the t,hird round will bc (O,o, 0, I?). Thus, the difference 
in the second round after the key addition will he (0‘: E‘, 0,O) and t,he output 
difference of the round is (O ,D,  0, E). But this implies that D’ = D and E’ = E ,  
because of the structme of the round fiinction of IDEA. It follows that if the 
correct value of the key is suggested for a pair of plaintexts, this must be a right 
pair. Summing up, for every structure in the attack there will be 0.5 right pairs, 
which suggest the correct value of the key, and 2:” wrong pairs, which on the 
average suggest a wrong value of the key 0.5 t>irnes. Thus, for the above attack 
the traditional mcthod of Riharn-Shamir [ I ]  will not work, the SIN-ratio is 1, 
meaning that the correct value of the key cannot be distinguished from any other 
value of the key. 

However, as we will see, the probability of the above differentials used in the 
attack depends very much on the secret key. For some keys the probability is less 
t,ha,n the average probability and for other keys it is larger. We extend the key 
search method of a differential att,ac:k to  the cases whcrc the probability of the 
differential for thc correct value of the secret key is different from the average 
probability over all keys. The bigger this difference the faster the attack. If the 
difference is big enough arid if we assume that# wrong values of the secret key is 
suggested randomly and uniformly by the attack, the correct value of t,he key 
will be found using sufficiently many plaintext pairs. This is a novel approach in 
differential attacks and reminiscent of the key search method in a linear attack 

For t,he actual attack, there is an overlap between the key bits we count on in 
the first round and the bits we count, on in the last round. Furthermore, because 
of the absence of a carry bit after the highest order bit of the rriodular addition, 
we are unable to  distinguish keys that differ only in these bits, so we will regard 
thesc two values of the key as one. These two observations are very important 
t o  reduce t,he memory requirements when we implement the attack. Using the 
first differential above 14 key bits overlap and two bits arc indistinguishable for 
IDEA, which means that we would seardi for only 48 bit key values. For the 
reduced versions of IDEA we implemented key schedules, such that relatively 
as many key bits overlap. For IDEA(32) and IDEA(16) seven and three bits 
overlap, respectively. This means t,hat in these cases we search for only 23 bit 
and 11 bit key values. To find other key bits a similar attack with the second 
differential above can be executed. 

P21. 

2.2 Experimental verification 

We implemented the att,ack using the first differential on IDEA( 16). First we 
calculated the probability of the different,ial for all keys by exhaustive search. 
Table 1 shows these probabilitics for diffcrent classes of keys. The average prob- 
ability over all keys was estimated to 2-’”.”. The key-dependency of the proba- 
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14% 
10% 

21% 2-18 < 5 2 - 1 7  

30% 2-17 < < 2-16 
2-'6 < < 2 - 1 5  

2--15  < y  5 1 
- 

Table 1. Probability of the uscd differential for IDEA(16) with 3.5 rounds for classes 
of the secret key. 

40% 
51% 
59% 128 
67% 256 2'6 

Table 2. Average number of chosen plaintexts needed in the attack on IDEA(16) with 
3.5 rounds in 1000 attacks. 

bilities sterns mostly from t,he second round of tho differential, where a difforcnce 
( D ,  E )  in the inputs to  the MA-structure must, result in difference ( E ,  D )  in t,he 
oiit,puts of the MA-st,ructure. Of most interest, are the classes of keys that devi- 
ate most from the average probability. It, is interesting to see that for about l in 
every 8 possible values of the secret, key the probability of the used differential 
is zero. The numbers in Table 1 also indicate t,hat the attack will not work for 
some classes of kcys, namely the classes of keys for which the probabilities arc 
too close to  the average probability over all choices of t,he keys. 

In Table 2 WP list the results of 1000 implerrient,ations of our attack on 
IDEA( 16) for increasing number of chosen plaintexts. We used key rankings 
as in [13] arid testcd whether the correct value of the key was among the eight 
least, and eight Iiiost suggested values, t,hus the attack retmns 1 G  suggestions for 
11 bits of the secret key. As seen, using all plaintcxts the correct, value of the 
key is among those 16 values iri abont (37% of all cases. Note that there are a 
total of 216 plairit,exts of TDEA(1G) arid that an exhaustive search for the key 
will take the time of about 2:j2 encryptions. 

Next we implemented attacks on IDEA(32). First we estimated the proba- 
bilities of the used differentials for differcnt classes of keys. The result follows 
from Table 3. Based on the results of 160 experiments with random keys, we es- 
timated the average probability over all keys to 2-32.7. Note that this is slightly 
less than first estimation made in the beginning of this section. This difference 
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#Kcys/All keys 
1% 
7% 
15% 
31% 
54% 

83% 
65% 

2 - 3 5  < 1, < 2 - 3 3  0 10% 
31% < p 5 2-32  2 - 3 3  (I 
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# Structures # Chosen plaintex 
16 22" 

64 Z L L  
128 Z2J 
256 2 2 4  

512 2 2 5  

1024 Z L h  
2048 217 

Table 3. Probability of the iised clifferent,ial foI IDEA(32) for classes of the secret key. 

Table 4. Average number of chosen plaintexts needed in thc &tack on IDEA(32) with 
3.5 rounds in 100 attacks. 

is c:aused by the fact, t,hat, the T\.IA-structmiire is not a random mapping. We im- 
plemented the attack for 100 different randomly chosen keys using up to 2048 
structures. The results are given in Table 4. Using the above results on reduced 
versions of IDEA, we estimate the number of chosen plaintexts needed in our 
attack on IDEA. From Table 2 it follows that one finds 25% and 51% of the keys 
using 2"n/4 respectively 27n/8 chosen plaintexts for n = 16 for IDEA(16). From 
Table 4 it follows that one finds 1% and more than 83%) of the keys using 2"'"/' 
respectively 27"/8 chosen plaintexts for 71 = 32 for IDEA(32). As can be seen the 
mimber of keys we can recover increases for larger block sizes with relatively the 
same amourit of data. We predict that a similar increase will occur for the att,ack 
on IDEA. Next we consider the workload and the amount of memory needed. 
One needs enough memory to store one structure. Once one structure has been 
analysed it is thrown away and a new structure analysed. Thus, the memory 
requirement for the attack on IDEA is 232 words of each 64 bits. The workload 
is the estimated number of operations needed to perform the attack, measured 
as the number of encryptions of the cipher. The 232 ciphertexts in a structure 
are hashed on the values of cg  and c2, since for a right pair the pairs of these 
values are equal. The workload of the hashing and storing of the ciphertexts is 
small compared to the time of t,he rest of the at,t,ack. For each pair that survives 
tjhe filtering process we try all possible 216 values of the affected keys of each 
side of Eq. ( 2 ) .  These tests can be sped up by pre-calculating a table to avoid 
the expensive multiplicat,ion operation. This table would be of size 232 16-bit 
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#Keys/All keys/# Structures/# Chosen plaintexts] Workload 
>1% 28 2 4 ~  

Table 5.  Estimated number of chosen plaintexts needed in the attack on IDEA with 
3.5 rounds wi th  232 words of memory. 

words. We estimate t,hat a multiplication t,akes the equivalent of 3.5 additions, 
and that an addition, an exclusive-or and a table-lookup take about, t,he same 
time. The workload is about 2l’ ericryptions of IDEA with 3.5 rounds for every 
analysed pair. Totally, t,he workload is about 243 encryptions for every struct,ure. 
Because of the overlap of key bits in this first round test with the key bits in the 
output transformation, the second part of the key search, i.e. using Equation ( 3 ) ,  
is rniich faster than the first, and can be ignored in the workload estimation. 

The estimated number of chosen plaintexts and the workload for our att,ack 
on IDEA is given in Table 5. Note that an exhaustive search for the key of IDEA 
takes the time of about 2128 encryptions of IDEA. Finally we discuss how to  find 
additional key bits. The attack outlined above finds 48 bits of the 128 bit key of 
IDEA. However, once these key bits have been found, one can do a similar attack 
using the second truncated differential. As noted earlier the key-dependency of 
the probability of the first differential comes mostly from the second round of 
the differentials. Since the second round is the sanie for t,he two differentials, one 
can expect that for a fixed key the probabilities of the two differentials are very 
close. After doing the attack with the second differential one has all 64 key bits in 
the beginning of the first, round and all 64 key bits of the output transformation. 
Subsequently, one can do similar attacks on a further reduced version of IDEA. 

3 A Differential-linear Attack 

In this section we give a differential-linear attack on IDEA reduced to 3 rounds. 
We will use t,he notation P = (po,pl.p2,p3), C = (co1c1,c2, c3) to describe 
plaintexts, ciphertexts and their 18bi t  subblocks. The version we look a t  is 3 
rounds without the output, t,rarisformation and where we omit the swapping of 
the second and third ciphertext blocks. We will write 4 2 1  to indicate the it” bit 
of A, where A[O] is the least significant, bit (LSB) of A and A[15] denotes the most 
significant bit (MSB) for a 16-bit) word A. These indices will be ornitked whenever 
the context makes it clear which bit(s) we are considering. With A [ i , .  . . , j ]  we 
will indicate the row of bits A[i] . . . A[, j ] .  Also, we define some special 16-bitJ 
symbols pi for i = 0 , .  . . ,15, where p(~i[i] = 1 and p; [ j ]  = 0 for j # i. 
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Fig. 2. Two rounds of IDEA. 
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3.1 Choosing plaintexts 

Consider the two rounds of IDEA in Figure 2. The inserted boxes give the ex- 
pected values of t,he differentials used in our attack. 

we guess t)hc value of 24'). we encrypt a set of ylairitexts (po,p,,pz,p3), 
where po and pi arc fixed. With Apl = pi one gets X i  = p2 with probabilit,y 
0.5 (see c.g. [ l G ,  7 ] ) ,  and similarly with probability 0.5 one gets the difference pi 
in outputs of the second addition in the second round, as indicated in Figure 2, 
thus this part, of the tliffererit,ial has probability 1/4. A closer analysis shows that 
one can pick six plaintext pairs s w h  that, this part of the differential holds at 
least, once. Details are given in the full paper [ 2 ] .  The values of p3 are chosen 
such that for the pairs we are going to analyse 

This ensures that, the input difference of the MA-structure in the first round is 
zero. For one of the six pairs the difference after the key addition of the second 
round will be 

(01 0, I l l !  0). (4) 

3.2 Sets of linear relations 

We concent,rate on the first multiplication in the MA-structure of the second 
round and denote the input with p ( 2 )  a.nd the output with d 2 ) .  Then 

We observed that for every choice of 262) there are several possible values for pi 
such that, 

67.(2)[0] = 0 (5) 

with a probabilityp, such that the bias ip-1/2) > 0.166 over all p i 2 ) .  Furthermore 
we observed that, for all but 26 of the 216 possible values of Zi') there is at  least 
one pi for which t,hc bias is larger then 1/4. 

We are going to use t,his in a linear attack. Instead of having one relation 
that holds with an average probability for each key, we are going to  use a set of 
relations. For each key at least one of the relations has a large bias. This idea is 
central to  our attack. 

3.3 Propagation 

Froni now 011, we only consider the least significant, bits of the various lG-bit, 
intermediate results. For these bits the rnodiilar addition reduces to  an exclusive- 
or. Denote by t(') and t ( 3 )  the outputs of the second multiplication in the MA- 
striict,ure of the second and third round, respectively. Using (4) we get for the 
difference after the second round 

(At(2)  ~ pi @ AT(') (3 At(2) ,  oi AT-(') At(')). 



11 

Because the ciphert,ext ( C O ,  c1, c2, c3) equals the output of t,he third round, we 
can calculate 

At(3 )  = Ac2 A r ( 2 )  @ At(2) 
AT(') = ~ t ( ~ )  Ae, 83 pi (1) ~ t ( "  = ~ c ,  4 c 2  @> ~ r ( ~ ) ,  

where r ( 3 )  is defined in a similar way as d 2 ) .  In other words, we are able to predict, 
the least significant bit of the output difference of the first multiplication of the 
MA-structure of the last round. The inputs of this multiplication are t,he subkey 
Zi3)  and an intermediate result that, equals cg CH c2. For every ciphertext pair 
we can calculat,e cg @ c2 and predict A d 3 )  with a high probability. We keep a 
coiinter for every possible value of Zi3)  and increment the counters of the key 
values that are compatible with the calculated co (3 c2 and A d 3 ) .  

Note that we don't, know for which pi ( 5 )  holds with large probability. There- 
fore we have to  repeat the attack for different values of pi .  Also we guessed the 
value of Z,  . Our expcrimcnts suggest that for wrong guesses of the al- 
gorithm fails to  suggest a specific value for 2:"). Thus we can recognize wrong 
guesses. With this algorithm it is irnpossible t,o distinguish between the correct 
subkey values and their additive inverses modulo 2l6 + 1. 

When 2;') is guessed correctly, tests have shown that we need at most 9000 < 
214 pairs to  dctcrniine Zi3) .  On the average we guess correctly after 2lS trials, 
therefore we need about, 2" plaintext pairs. Examining one plaintext pair takes 
it few exclusive-or operations and 216 table look-lips, one for cach value of 2i3). 
Since we examine 16 differentials, our attack needs totally about 220 simple 
operations, i.e., addition or exclusive-or, for each pair and the total workload is 
therefore about, 'i?49 simple operations. Using the estiniate of Section 2 that, an 
exclusive-or takes the same time as an addition and a multiplication takes 3.5 
times as much time as either of them, the workload is about equal to 0.75 . 244 
encryptions with 3 rounds of IDEA. 

(1) 

3.4 Finding additional key bits 

In this paragraph we will describe how to firid tlhe subkeys Zh3) and Zk') (or 
their additive inverses modulo 216 + 1). For this a method will be used similar 
to  the main one described in [3]. First we will give a definition of compatibility. 

Definitionl. A word A is said to  be compatible with B modulo N if there 
exists a pair of words C,C* with C (3 C* = A and C - C* (mod N )  = 13. 

It, is easy to  see that a word A is corripatihle to at, most 2k words modulo N ,  
where k. is the Hamming weight of A .  The probability that a randomly chosen 
word with Hamming weight, k and another one arc compatible modulo 216 is 
t,herefore smaller or equal to 2"lG. 

For this part of the attack we will consider only the plaintext, pairs that  
we already constructed with the correct, guess for 2;'' (or its additfive inverse 
modulo 2" + 1) that yield p i 5  after the key addition of the second round. The 
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difference after the second round is (/!, pt13pz, y, yiBu), see Figure 2. Like a,  y and 
6 the difference B is unknown. However, since 2:") is known (or 216 + 1 - Z:"), 
when also 2$3) and 2:;) would be known, we would be able t,o calculatc /j 

for each pair and thc intermediate values (gf ' ,  q! " ) ,  pf), qy))  before the MA- 
structure of the last round. Then @ @ p l s  must he compatible modulo 216 with 

guess their valiies and for each guess check this compatibility requirement. It 
can be shown [3] that the expected number of pairs needed to eliminate a wrong 
guess for a pair Zi"),Zi3) is approximately equal to  1 divided by the probability 
that, a random 16-bit word is compatible modulo 216 to another one. Tests have 
shown that this number is between 1 and 5. 

As in the previoiis section this search method doesn't, rnake a distinction 

tiplications with Zi3)  and 2:') to find Aqf) and Aqi3), but as 2i3) is fixed, 
multiplications with this key are many times tjhe same. Then it takes oiie mul- 
tiplication with (.Zf))-' to  find p. So finding 2f) arid Zb"' takes at most, 233 
multiplications rnodiilo 216 + 1. According to the estimates earlier made t,his is 
about eqiial to  1.5 I 229 encryptions with 3 rounds of IDEA. 

Finally, one can find the remaining key bits by doing additional attacks using 
similar characteristics as the above. The attack will have a better performance, 
since many key hit,s are already known. 

( # )  q') p+ Z ( " ) )  = (3)  *(a* . To find Zi3) and Z i 3 )  we simply 
1 1 41 

between 2,' ( ' 5 )  ,Z,? (3)  and their additive inverses rnodiilo 2lS + 1. It, takes two mul- 

4 Conclusions 

We have presented two attacks on IDEA with a Ieduced number of rounds. The 
first attack firitls thc secret key of 3.5 rounds of IDEA in more than 86% of 
all cases using an estimated number of 256 chosen plaintexts and a workload of 
about 267 encryptions of 3.5 roiinds of IDEA. With 240 chosen plaintexts the 
attack works for 1% of all kcys. The second attack finds the secret key of 3 
rounds of IDEA. It needs at rnost, 229 chosen pairs of plaintext and a workload 
of about 244 encryptions with 3 rounds of IDEA. 

Although our attacks make use of some sophisticat,ed techniques, the efficien- 
cies, in particular t,he workloads, of the algorithms probably can be improved 
greatly. Further we think that similar attacks can be successful against, more 
rounds of IDEA, but it is questionable if in this way anything substantial can 
bc achieved against the full 8.5-rounds version of IDEA. 
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