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Abstract. With the advent of the Pentium processor parallelization 
finally bccarne available to Intel based computer systems. One of the de- 
sign principles of the MD4-family of hash functions (MD4, MD5, SHA-1, 
FLIPEMD-160) is to  be fast on the 32-bit Intel processors. This paper 
shows that carefully coded implementations of these hash functions are 
able to exploit the Pentium's superscalar architecture to its maximum 
effect: the performance with respect to execution on a non-parallel ar- 
chitecture increases by about 60%. This is an important result in view of 
the recent claims on the limited data bandwidth of these hash functions. 
Moreover, it is conjectured that these implementations are very close to 
optimal. It will also be shown that t,he performance penalty incurred by 
non-cached data and endianness conversion is limited, and in the order 
of 10% of running time. 

Key words. Cryptographic hash functions, Parallel implementation, 
Software performance, Pentium processor. 

1 Introduction 

A cryptographic hash function h maps bitstrings of arbitrary finite length into 
strings of fixed length. Given h and an input z, computing h(z)  must be easy. A 
one-way hash function must provide both preimage resistance and second preim- 
age resistance, i.e., it  must be computationally infeasible to find, respectively, 
any input which hashes t o  any pre-specified output, and any secorid input which 
has the same output as any specified input. For an ideal one-way hash function 
with m-bit result, finding a preimage or a second preimage requires about 2" 
operations. A collision resistant hash function is a one-way hash function that  
provides the additional property of collision resistance, i.e., it must be compu- 
tationally infeasible to  find two distinct inputs that  hash to  the same result. For 
an ideal collision resistant hash function with m-bit result, no attack finding a 
collision requires less work than a birthday or square root attack of about 2 m / 2  
operations [Pre94]. 

The most popular hash functions, currently used in a wide variety of appli- 
cations, are the custom designed iterative hash functions from the MDCfamily. 
MD4 was introduced in 1990 by R. Rivest [Riv92a]. One of the design principles 
was to  be fast on 32-bit machines in general, and on the Intel x86 family in 
particular. The latter is more or less a must, because of the pervasiveness of the 
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x86 processor family. Or, as P. Rogaway and D. Coppersmith put it, by doing 
well on these ‘difficult-to-optimize-for vehicles’ [R,oCo94], one expects to  do well 
on any modern 32-bit processor. 

Since the introduction of MD4, and as a result of developments in crypt- 
analysis (see [Rob951 for an overview, and [Dob96a, Dob96bl for the most recent, 
results) a whole family of MD4-like hash functions has been developed. All these 
descendants aim a t  strengthening their ancestors, taking into account the exist- 
ing attacks at the moment of their introduction: MD5 (’91, [Riv92b]), SHA-1 
(’94, [FIPS180-l]), RIPEMD (’92, [RIPE95]), RIPEMD-128 and RIPEMD-160 
(’96, [DBP96]). Their common MD4-ancestry resulted in still fairly fast imple- 
mentations on 32-bit architectures, but their increased complexity nevertheless 
degraded their performance. 

All these hash functions have been designed with the first gcncration of 32- 
bit Intel processors in mind: thc i386, introduced in October 1985, and the i486, 
introduced in August 1989. As expected, these hash functions could, without 
too much difficulty, be implemented efficiently on t,hese processors. The advent 
of the Pentium processor marks the beginning of a new generation of 32-bit Intel 
processors. More RISC (Reduced Instruction Set Computer) aspects than ever 
before have been incorporated in this from origin CISC (Complex Instruction 
Set Computer) processor. From the outside the Pentium might look like a CISC, 
inside it is definitely more RISC than CISC. The processor’s crucial architectural 
innovation is the ability to issue, under certain conditions, two instructions a t  
once, thanks to its twin superscalar pipelines. It turns out that, although this 
was certainly not one of the design principles, the MD4-family fits the Pentiurn’s 
superscalar architecture very nicely, boosting the performance of these hash 
functions to  unprecedented levels. It is conjectured that our implementations are 
vcry close to optimal, and that on a Pcntium architecture it will be very hard to 
improve on the presented performance figures. This is a significant result taking 
into account the importance of performant hash functions in many cryptographic 
applications, and the fact that somc of the MD4-like hash functions will be 
around for some ycars to come. 

The next section gives a comparative overview of the MD4-family members 
from a performance point of view. Sect,ion 3 gives an overview of the Pentium 
architecture, and concentrates on its superscalar features. In Section 4 it is shown 
how the latter can be used to improve performance of MD4-like hash functions 
considerably. The actual performance figures for the 6 hash functions discussed 
in this paper are given in Section 5. Section 6 discusses two data related topics: 
cacheing and string-integer transformation, and their impact on perforInance. 
Finally, Section 7 formulates the conclusions. 

2 Comparative description of the MD4-family 

The six members of the MD4-family are iterative hash functions operating on 
32-bit words. For a full description of these hash functions we refer to  the ref- 
erences given in the introduction. This scction will only describe them as far as 
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Algorithm 
MD4 
MD5 
SHA-1 

performance is concerned. The different compression functions take as input a 
4 or 5-word chaining variable and a 64-byte message block, and map this to  a 
new chaining variable. All operations are defined on 32-bit words. First, the 64- 
byte message block is converted to a block of 16 words using one of two possible 
string-integer conversions. Next and depending on the algorithm, 3 to 5, possi- 
bly parallel, rounds are applied. Each of these rounds consists of 16 individual 
steps, except for SHA-1, where rounds of 20 steps are used. Finally, the previous 
value of the chaining variable is added to the newly obtained value by means 
of a feedforward. Every round uses a particular non-linear function, and every 
step modifies one word of the chaining variable and possibly rotates another. 
Table 1 summarizes the definitions of a step function for the 6 hash functions 
considered. 

Step function 
A := ( A  + f ( B ,  C,  D )  + X, + K)"" 
A := B + ( A  + f ( B ,  C, D )  + X, + K)'"' 
from step 17 onwards: X, := (X, G3 Xz+z CH X1+8 ~EI X,+I~)<<<' 
A := A + B<<<5 + f ( C , D , E )  + X, + K c := c<<<30 

A := ( A  + f (B ,  C, D )  + X, + K )  < RIPEMD 
RIPEMD-128 A := ( A  + f(B, C, D )  + X, + K )  
RIPEMD-160 A := E + ( A  + f ( B ,  C, D )  + Xi + K )  f C := C<<<lO 

Table 1. Definition of a step for the MD4-family of hash functions. All additions are 
modulo 232, and <<< s indicates a rotation over s bits to the left. A , B ,  C , D , E  are 
chaining variable words, K and s are constants, and f ( )  is a non-linear function of 
three variables. X, is a message word or, in c a e  of SHA-1 and from step 17 onwards, 
an cxor combination of message words. 

Each step in a round uses a different message word X , ,  and in each round 
the order in which they are used is different. SHA-1 differs in this respect from 
the other hash functions in that starting from step 17 (i.e., once every message 
word has been used once) a linear recursion is applied to the array of 16 message 
words: every element of the array is computed as the exor of four other elements. 
Any message bit is now input to at least 28 and at  most 36 steps [Pre93]. The 
additive constants K are different per round, except for MD5, where each step 
has a different K .  The rotation constants s are different per round and per 
rhaining variable for MD4 and MD5, are fixed for SHA-1, and are different per 
round and per message word for the RIPEMD-sisters. The Boolean functions f() 
are different for each round, but are chosen from a limited set of four, summarized 
in Table 2. 

These descriptions lead to  a number of important observations from an im- 
plerrientation point, of view. 
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Multiplexer 
Majority 
Exor 
Or-Exor 

(z A y) V ( F A  z )  ,211 
(z A y) V (x A z )  V (y A z )  MD4, RIPEMD, SHA-1 
z f B y @ z  all 
(.: V F) @3 11 MD5, RIPEMD-128, RIPEMD-160 

Table 2. Boolean functions of the MD4-family. Thc last column indicates whcre they 
are used. 

Simple instructions The compression function can be implemented with a 
limited number of simple instruct,ions on 32-bit words: assignment of one 
word to another (mov), addition modulo 232 of two words (add, lea), unary 
or binary logical operations (not, and, or ,  xor),  and rotation of a word over 
a number of bits to the left (rol). 

Small buffer size The chaining variable consists of 4 or 5 words only. There- 
fore, it can constantly be kept in registers during an iteration of the com- 
pression function. Performance benefits in a significant way from being able 
to keep intensively used words in registers d l  the timc. 

Few memory references The algorithms use no tables, and memory refer- 
ences are limited to message word act s. In the assumption that a message 
block of 16 words cannot be kept, in registers, less than 15% of all instruc- 
tions are referring to memory for all comprcssion functions except SHA-1. 
For SHA-1 this figure rises to 33%, due to the linear recursion on the array of 
message words. These figures do not, take into account the possible additional 
memory references needed in case an explicit coding of the string-integer 
conversion is required, the impact of which will be discussed in Section 6 .  

Fairly compact code The code of all compression funct,ions is fairly compact 
(see e.g., Table 5), and will never be larger than 8K. This means that it can 
be kept in thc on-chip cache of most processors, leading to  faster execution 
of the code from the second itcration onwards. 

Endianness Before it can be processed the message block is converted from a 
64-byte string to  a 16-word block. However, two convcntions are in use for 
this string-integer uxiversion: the byte with the lowest address in memory is 
either the first word’s least significant byte (little-endian conversion) or its 
most significant byte (big-endian conversion). Loading data from memory 
into a register the processor uses onc of t,hese conversions, and the other 
has to be coded explicitly, causing a performance degradation. SHA-1 uses 
big-endian conversion, all other hash functions use little-endian conversion. 

3 Pentium architecture overview 

The Pentium processor is a member of the Intel x86 processor family offering 
several architectural improvements over its predecessors, and, at the same time, 
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remaining fully compatible with them: code written for the i386/i486 processors 
will without any problem run on the Pentium, and, due to the new architectural 
features, faster than one would expect from the ratio of their clock frequencies. 
However, for maximum performance, the i386/i486 code will have to be rewrit- 
ten, and in order to  do so, a thorough knowledge of the Pentium’s architecture 
and its new features is indispensable. 

The Intel x86 processor family belongs to the CISC community of proces- 
sors, known for their large instruction set, consisting of more than 300 machine 
instructions, their complex addressing schemes, and the micro-encoding of the 
processor instructions. The latter refers to the fact that a single processor instruc- 
tion is encoded as a sequence of more elementary instructions to  the instruction 
and execution unit in the processor. The reduction of the extensive and com- 
plex instruction set to  fewer and more efficicnt instructions, with the ability to 
execute most of the instructions in one clock cycle, resulted in the RISC architec- 
ture. Other features of RISC processors are: a large number of hardware storage 
registers, instruction pipelining, and, more recently, a superscalar architecture, 
allowing parallel execution of more than one instruction in separate pipelines. 

The Pentium is a typical CISC processor in that it inherited the large instruc- 
tion set and the small register set of its predecessors. In this context it suffices to 
know that. the Pentium has 7 general-purpose registers eax, ebx, ecx, edx, e s i ,  
ed i ,  ebp, each 32 bits wide. But it also shares a number of characteristics with 
modern RISC designs, such as a pipelined approach to instruction execution, 
and a superscalar architecture. New Pentium features of interest to us are: 

- a superscalar dual-integer execution unit; 
- a split cache: two 8-Kbyte on-chip caches for data and code; 
- an advanced branch prediction mechanism; 
- a 64-bit external data bus interface; and 
- an integrated performance-monitoring module. 

Of these, the first two are the main tools for improving the performance of the 
hash functions in the MD4-family, and will be treated in more detail below. 
The third feature won’t influence performance by much in our case, as our code 
contains only one branch (i.e., looping over 64-byte message blocks). It will 
nevertheless ensure that, except for the first and last iteration, the branch will 
be correctly prcdictcd, and will cxccutc in (at most) a single clock cyclc. The 
fourth item will only concern us as far as it allows for faster cache line fills of the 
Pentiurn’s two internal caches. The last, largely undocumented feature [Mat941 
will allow us to monitor the extent of our improvements. 

The Pentium processor allows to execute two instructions in parallel through 
two five-stage pipelines, called the U pipe and the V pipe. The processor always 
issues the first instruction of the pair to thc U pipe. The second instruction of 
the pair is issued to the V pipe only if the instruction satisfies a number of con- 
straints, called the pairing rules. An important feature of the Pentium is that  
this instruction pairing is carried out automatically and independently. Neither 
software control instructions nor specific dual instructions are required in order 
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to use the superscalar architecture. Instruction pairing and parallel execution is 
completely transparent to the programmer. However, it is obvious that the se- 
quence of the instructions plays a significant part in improving the performance. 
Slight changes in the code sequence, e.g., tjo avoid dependency between consec- 
utive instructions, can produce substantial improvements in performance. That 
is where the pairing rules come into play, an understanding of which is crucial 
for optimization purposes. 

Pairing Rules 

Rule 1 Both instructions in the pair must be simple. Simple instructions are 
entirely hardwired, and therefore require no microcode support. In this way, 
they can normally execute in a single clock cyclc. These instructions include 
register-to-register and immediate-to-register ALU operations (any arith- 
metic: or logical instruction, such as add, and, o r ,  xor, rol); movs, inc, dec, 
push, pop, l e a ,  and nop. The near conditional arid unconditional branchcs 
jcc,  jmp, and c a l l  can only be paired if they occur as the second instruc- 
tion in a pair. In addition, all the ALU memory-to-register and register-to- 
memory instructions are considered simple, even though they require re- 
spectively two and three clock cycles. From the shift and rotate family only 
a shiftfrotate by 1 position and a shift by an immediate value are pairable, 
and even then only as the first instruction in a pair. 

Rule 2 There must be no data dependencies between the two instructions. A 
destination of the U pipe instruction cannot be used as a source or destina- 
tion of the V pipe instruction. 

Rule 3 Neither instruction in a pair may contain both a displacement and an 
immediate value. 

Rule 4 Instructions with prefixes can only occur in the U pipe. 

These pairing rules are summarized in Algorithm 1. For a detailed explanation 
of these pairing rules we refer to [Int93a]. 

The last rule is important for our purposes as it implies that 32-bit instruc- 
tions can only be paired in native protected mode. In real, virtual 8086, and 
80286-compatible mode the default size of operands and addresses is 16-bit, 
while in native protected mode the default is 32-bit. A prefix is used to change 
the default value, i.e., to  execute a 16-bit instruction in native protected mode, 
or a 32-bit instruction in real, virtual 8086, or 80286-compatible mode. This 
is important, as under DOS or Windows still many (most?) applications run 
in 16-bit mode, and hence pairing of 32-bit instructions is not possible. More- 
over, each prefix incurs a penalty of an additional clock cycle. The MDClike 
hash functions consist nearly exclusively of 32-bit operations, nearly all of which 
can be implemented by means of 32-bit instructions executing in a single clock 
cycle. Running such an implementation in l6-bitJ mode will result in serious per- 
formance degradation: pairing is impossible, and nearly every instruction takes 
twice as long due to the additional prefix cyc:le. A 32-bit implementation of e.g., 
SHA-1 runs three times slower in real mode than in native protected mode. A 
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if ( (11 = simple) 

and (I1 # jump) 
and (11 3 displacement-immediate) 
and ( I 2  = simple) 

and ( 1 2  # shift/rotate) 
and ( 1 2  3 displacement-immediate) 
and ( 1 2  9 prefix) 
and (destination of I1 # source of 1 2 )  
and (destination of I1 # destination of 1 2 )  

) then { 
issue I1 to U pipe 
issue I2 to V pipe 

} else 
issue I1 to U pipe 

Algorithm 1. Pentiurn’s algorithm to determine whether the consecutive instructions 
I1 and I 2  can be paired. 

16-bit implementation probably won’t do much better due to the increase of 
instructions to more than twice the amount of a 32-bit implementation. 

The meaning of the instructions mentioned in Rule 1 is straightforward, ex- 
cept perhaps for lea, which performs rriemory addressing calculations and has 
the interesting feature that it can be used as a super-add instruction (see e.g., 
[Abr94]). The intended use of l e a  is to calculate the offset of a particular mem- 
ory location by adding a base address, an index value, and a fixed displacement 
and storing the result in a specificd register. Base address, index, and result can 
be any general-purpose 32-bit register, and the displacement can be any 32-bit 
constant. This means that l e a  can be used to add any two general-purpose reg- 
isters and any constant and store the result in any register, all in one instruction 
taking, in principle, no more time than adding just 2 of them by means of add. 
However, there is one important difference with add: the two general-purpose 
registers to be added by means of lea must have received their value at least 
one cycle in advance of the l e a  instruction. This is a consequence of the fact 
that the value of a register needed in memory addressing c:alculations has to be 
set far enough ahead for the Pentium to perform the addressing calculations be- 
fore the instruction needs the address. Otherwise a so-called address generation 
interlock (AGI) is generated causing the pipcline to stall unt,il the value becomes 
available and the addressing calculations have been performed. 

Another source of pipeline stalls are references to (slow) memory. Their im- 
pact on performance can be reduced hy thc use of cache memory. The Pentium 
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has split instruction and data caches (a  Harvard architecture), in contrast to 
the i486, that had a unified cache for both code and data (a Princeton archi- 
tecture). This eliminates interference between data and instruction references, 
and allows for simultaneous data and instruction fctches. Each is an 8-Kbyte, 
so-called two-way set-associative cache with 32-byte lines. In such a cache data 
is moved to and from cache in units of 32 bytes (a line), lines are grouped in sets 
of 2 lines each (two-way), and a block of data can be placed in either of the 2 
lines within a set (set-associative). The advantage of a two-way set-associative 
cache over a direct-mapped cache of the same size (in which data can be placed 
in one location only) is that it decreases the miss rate by a, factor of 2, and 
therefore increases system performance. Cache lines are filled or written back 
in burst mode, a special bus mode in which a complete 32-byte cache line is 
transferred in 4 bus cycles (1 for each 64-bit quad word, benefiting from the 
Pentium’s 64-bit external data bus). 

4 Pairing in MD4-like hash functions 

The pairing rules that concern us most arc rulcs 1 and 2. Rule 1 tells us which 
instructions can be paired, while rule 2 states under which conditions this can 
happen. A comparison of the simple instructions of rule 1 with the simple 
instructions used in the MDCfamily of hash functions and listed in Section 2 
learns us that both sets of ‘simple’ instructions overlap nearly completely, but 
for two exceptions: one’s complement and rotation ovcr more than 1 bit position. 

The former exception is not such a problem. The not instruction only appears 
in the boolean functions (x A y )  V (CAz)  and ( z V F )  @y. An implementation will 
substitute the first expression by the equivalent, but more efficient expression 
( (y@z)Az)@z [NMVR95, Appendix 31. The second expression is already optimal 
from a performance point of view, and here 2 can be substituted by the pairable 
expression z @ FFFFFFFF,. However, the fact that a rotation over more than 
1 bit position cannot be paired with another instruction is very unfortunate. 
Table 1 indicates that the step function of each MD4-family member contains 
a t  least one such rotation, SHA-1 and RIPEMD-160 contain even two of them. 
Of course, a rotation over n bit positions could be replaced by n rotations over 
1 bit. However, both instructions last 1 cycle, so that it only pays off for 71 = 2, 
and even then only if they can be paired with other instructions: a rotation over 
1 bit can only be the first instruction of a pair. This strategy is only applicable 
in case of the SHA-1 instruction C<<(30, that c:ould be replaced by two rotations 
over 1 bit position in the opposite direction. 

Except for these rotations all instructions of the MD4-like compression func- 
tions can in principle be paired. However, rule 2 tells us that for it to be possible 
in practise there should be no data dependencies between two consecutive in- 
structions. A straightforward irnplemcntation of a step will result in practically 
no pairing due t,o data dependency between each instruction and the next, as 
illustrated in Table 3. Here a step of MD5’s first round is implemented in thrcc 
ways: straightforward, optimized for maximal pairing, arid optimized using lea  
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as super-add. The problem with the first approach is that for 7 out of the 9 pos- 
sible pairs the destination of both instructions in the pair is the same, for 1 pair 
the destination of the first instruction is the source of the second, and only the 
last instruction of a step can be paired with the first instruction of the next step. 
Or, without recoding, only 1 out of 9 instructions is executed in the V pipe. And 
this example is by no means specially selected, but it is the illustration of the 
typical situation for all straightforward implemented step expressions. By rear- 
ranging the instructions it turns out that all simple instructions can be paired, 
resulting in a gain of 50% (from 9 cycles for the straightforward implementa- 
tion to 6 cycles for the optimized case). The V pipe iise increased to 4 out of 
9 instructions, or 44%. Once again, these figures are typical for every round of 
each MD4-family member: all their simple instructions can be paired, except for 
those rounds that use the multiplexer (x A z )  V ('y A 2). Tho latter is the case for 
the second round of MD5, and the fourth left line round of RIPEMD-128 and 
RIPEMD-160, as well as in the corresponding right, line rounds of the latter two 
hash functions. 

The l e a  instruction can, with reference to Table 1, be used to  add the con- 
stant K and two out of A ,  f(), and X i  (and in the case of SHA-1 also 
The case A + f ( )  + K is illustrated in t,he right column of Table 3. The fact 
that lea  eax,  [eax+edi+K] replaces add eax,K and add eax , ed i  means that 
the resulting code is potentially faster, provided both AGIs and data dependen- 
cies can be avoided. In order to avoid an AGI both A and f ( )  have to be ready 
1 cycle in advance of lea. This 1-cycle gap (or 2 paired instructions) can only 
be filled with instructions of the next step, as instructions of the current step 
involve as a destination either the register for A or for f ( ) .  But bringing instruc- 
tions forwards from the next step introduces data dependencies in that step. 
Therefore, in general the use of lea  does not result in faster code, in case of the 
example even in slower one (7 cycles compared to 6 cycles using adds). There is, 
however, one exception: SHA-1. The rotations in SHA-1 are, in contrast to the 

This allows for greater flexibility in moving instructions between steps, so that 
both AGIs and data dependencies can be avoided. 

This discussion of the pairing rules allows us to forrnulate a number of general 
guidelines that help iis pairing as many instructions in a step as possible: 

other hash functions, confined to individual chaining variables (B<<<5, C<<<30 1. 

1. Sometimes it pays off to substitute non-pairable instructions by 1 or more 
simple instructions with the same effect. Examples are one's complement 
and rotation over more than 1 bit position. 

2. It, might be ncccssary to move instructions from one step to the previous or 
next one. An example is the mov e d i  , ebx instruction in Table 3, which is 
the first instruction of the next step, and has been moved forwards by t,wo 
instructions for pairing purposes. In this respect it is important to mention 
that Pentium instructions can never be executed out of order, and therefore 
it, is lip t,o the programmer to properly change the order of execution by 
rearranging the instructions. 



307 

add ebx,ecx 1 add ebx,ecx 
paired xor edi,edx paired xor edi , edx 

add eax,X[esi] 2 add eax,X[esi] 
and edi,ebx paired and edi,ebx 
add eax,K 1 xor edi,edx 
xor edi,edx paired lea eax, 
add eax,edi 1 [eax+edi+K] 
mov edi,ebx paired mov edi,ebx 
rol eax,s 1 rol eax,s 
add eax,ebx 1 add eax,ebx 

paired xor edi,ecx paired xor edi,ecx 

A := B + (A + ( ( B  A C )  V (B A D ) )  + X ,  + K)"" 

1 
paired 
2 
paired 
1 

1-kAGI 
paired 
1 
1 
paired 

IInstructions ICyclesl IInstructions JCycles) (Instructions I Cycles 

I: 
ladd ebx,ecx 
mov edi,ecx 
xor edi,edx 
and edi,ebx 
xor edi,edx 
add eax,edi 
add eax,X[esil 
add eax,K 
rol eax,s 

Cycles per instr. 
V pipe use V pipe use 

Table 3. Implementation of a round 1 step of MD5 on a Pentium processor. The 
chaining variable A, B, C, D is stored in registers eax through edx. The optimized 
expression ((C fX? D )  A B) @ D for the multiplexer is used. The left column shows the 
straightforward implementation. In the middle column the instructions are rearranged 
in such a way that all pairable instructions arc paired. The right column illustrates the 
use of the super-add instriiction lea. Memory read access is limited to 2 cycles if the 
data resides in the on-chip cache. 

3. Pairing of two instructions where the source of the first instruction is the 
destination of the second instruction, is no problem. An example is the pair 
add eax, edi  and rnov edi  , ebx of Table 3, that  is executed in a single clock 
cycle. 

4. Sometimes it is useful to use two different auxiliary registers in two consecu- 
tive steps. This crcates more data-independent instructions, and by moving 
them from one step to  another, more room for pairing simple instructions. 
Of course, the fact that  the Pentiurn has only 7 general purpose registers, 
up to 5 of which are used for storing the chaining variable, restricts the 
options available to us t o  a bare minimum. Putting some register contents 
temporarily on stack sometimes pays off. 

5. Pairing a 1-cycle instruction with a 2 or 3-cycle instruction saves only 1 out 
of 3 or 4 cycles. However, most of the time it is the only possibility. Only 
the feedforward of the chaining variable offers us the opportunity to  pair 
2 or 3-cycle instructions with each other. But even here the gain is only 
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partial: pairing two simple 3-cycle instructions (so-called read-modify-write 
instructions) results in a 2-cycle penalty, since the write accesses of both 
instructions must be completed one after the other (the read-modify part is 
executed in parallel). 

6. The use of lea as a super-add instruction only pays off if AGIs and/or 
additional data dependencies can be avoided. 

5 Performance figures 

The entire MD4-family has been implemented on the Pentium in Assembly ac- 
cording to the guidelines of the previous section. Analysis of the code, ici well as 
the use of the biiilt-in monitoring capabilities of the Pentium resulted in the fig- 
ures of Tables 4 and 5 .  These figures refer to performance of the hash function’s 
h3 ic  building block: the compression function. The figures for hashing a message 
of any length can bc easily derived from these figures by taken into account the 
additional iteration due t,o the padding block. All cycle and speed related data 
are in the assumption that both code and data reside in the Pentiurn’s on-chip 
caches. For the code and local data this is true after the first iteration. In the 
next, section we will argue that also for the message block being hashed this is 
a realistic assumption in many applications. Moreover, t,he overhead for reading 
from secondary cache or mairi Iilwriory is relatively small, and does not depend 
on the number of memory references, but on the message block size (determining 
the number of data cache line fills; 2 for all hash functions concerned) and on 
the tinie between the first two references to data located in the same cache line 
(different for each hash function). Of course, it is also assumed that the data is 
aligned on a 4-byte boundary. Every misaligned access in the data cache costs 
an extra 3 cycles. 

The irriplerrieIitat,ions pair nearly all available simple instructions, except 
for a few instructions in the already mentioned multiplexer (x A z )  V (y A Z) of 
MD5, RIPEMD-128, and RIPEMD-160. This results in a high percentage usage 
of the V pipe. In case of SHA-1 the higher percentage of pairable instructions 
in the linear recursion is compensated for by the lower percentage in the rest 
of t,he code: 2 non-pairable rotates per step, conipared to 1 rotate for all other 
hash functions cxcept RIPEMD-160. In addition to a higher percentage of non- 
pairable rotates, RIPEMD-160 suffers from the above mentioned multiplexer. 
An important criterion for judging the quality and speed of an implementation 
is the number of cycles per instruction (CPI), i t . ,  the number of cycles it takes, 
on average, for an inst,riict,ion to execute. The minimal CPI is 1 for a non-paired 
iristriiction and 0.5 for a paired one. For all hash functions the average CPI is 
about 0.70. Without dual-integer execlitmion this would be about 1.13, or a gain 
of a factor 1.6. The reason that a dual-pipeline superscalar architecture docs not 
result in a speed-up of a factor 2 is twofold: not all instructions can be executed in 
parallel (e.g., rotates), and some 1-cycle instructions are paired with 2 or 3-cycle 
instructions. To gauge the impact of the lat,ter on the overall perforniance, we 
calculated the theoretical minimum CPJ for our code of each hash function, i.e., 
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Algorithm 
Instructions 
% V pipe use 
O/b Paired simple instr. 
% Memory ref.’s 
Cycles 
Cycles per iristr. 
Speed-up factor 

the CPI in case each pairable instructions of our iriiplementation was paired, and 
all 2 arid 3-cycle instructions were paired with each other. This is no minimum in 
absolute sense, but only with respect to our code (another implementation could 
have a lower minimum). It turns oiit, that the actual CPIs of Table 4 arc within 
90% of this theoretical minimum for all hash functions concerned. This figure also 
relates to the number of memory references, as it are precisely those references 
that tjake 2 or 3 cycles (in our c:ase mostly 2 ) .  SHA-1’s linear recursion is in 
this respect both a curse and a blessing: it involves mainly memory references, 
but t,hey can be paired with each other. That is why SHA-1, despite its 36% of 
instructions t,ha.t, refer t,o memory, can kccp lip wit,li the rest. 

MD4 MD5 SHA-1 RMD R . ~ n - 1 2 8  R M D - ~ ~ O  
397 573 1247 795 985 1566 

43.32 41.19 42.82 43.65 41.73 37.55 
98.57 92.73 99.72 99.57 95.92 94.38 
14.61 12.91 35.85 14.72 15.13 11.88 

275 403 ‘343 556 718 1153 
0.69 0.70 0.76 0.70 0.73 0.74 
1.63 1.59 1.64 1.62 1.57 1.51 

Table 4. Performance figures on a Pentium for our ixripleinentation of the compression 
function of the 6 members of the MD4 hash function family. Both code and dat,a are 
assumed to reside in the on-chip caches. All figures are independent of the processor’s 
clock speed. The speed-up factor is with respect to a (hypothetical) execution of the 
same code on a non-parallel architecture under othcrwise unchanged conditions. 

The bandwidth figures of Table 5, obt,;tined from actual timings, correspond 
exactly with the cycle figures of Table 4, if one allows for a few cycles overhead. 
A portable C irriplementation is, on average, twice as slow. The first iteration of 
it compression function takes longer because of code and data cache fills, and has 
been excluded from the timings. Compared to the MD5 figures in [‘rou95], our 
C version is 28% faster, and our Assenhly implementation is faster by almost a 
factor 2.5. 

6 Effects of data cacheing and representation 

The data to be hashed will in niany applications reside in the on-chip cache. An 
example is file hashing, where multiples of the hlock size are read in a buffer, 
and hashed buffer by buffcr. If the buffer size is smaller t#han the ori-chip cache 
(8 Kbyte in our case), the reading from disk will already put the data in cache. 
AnotheI example is when a piece of data is subjected to more operations than 
just hashing, such as compression or encrypt,ion. Only one of these operations 
will have to bear the overhead of reading t,he data from main memory. 
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Algorithm Size Speed (Mbit/s) Factor 
(bytes) Portable C x86 Assembly Assembly-C 

Table 5 .  Code size and hashing speeds of the differeiit compression functions on a 90 
MHz Pentium both for our Assembly implementations and a corresponding portable 
C implementation (Watcom C 10.0). The code size only refers to the Assembly imple- 
mentations. Again both code and data are assumed to reside in the on-chip caches. The 
figiires are independent of the buffer size as long as i t ,  together with the local data, fits 
in the 8-Kbyte on-chip cache. 

But even if the data  is read from the much larger (e .g . ,  256 Kbyte) secondary 
cache or from main memory, the overhead is limited, due to  the architecture of 
the on-chip (L l )  cache (see Section 3). Data is read into the L1 cache 32 bytes 
at a time, so that, a memory reference t,o a message word causes 7 other message 
words t,o be read as well. This is a perfect example of the spatial locality principle: 
chances are high that in the near future a word will be accessed close to  the one 
just, accessed. Hence, only two 32-byte cache line fills are needed to read a 64- 
byte message block into the on-chip cache. One such read causes the pipeline to  
stall for 7 cycles if rcad from secondary (L2) cache, arid 20 cycles if read from 
main memory. A second rcference to data residing in the same cache line will 
riot resiilt in additional delays, provided the eritire cache line has been filled at 
the moment of the second reference (program execution and cache line filling are 
partially running in parallel). IJnfnrtunately, this is not the case for our code, 
but one can rrialte sure that the first t,wo references are as far apart as possible. 
The resulting additional delays are for all irnplemcntations on average 5 cycles 

, and 10 cycles for an access to main memory. For SHA-1 these 
figures are slightly higher due to  the explicit big-endian conversion, in which 
rneniory referenccs are closely packed together: 8 cycles (L2) and 15 cycles (main 
memory), respectively. The cycle figures related to caclieing effects apply strictly 
speaking only to  the particular configuration used for these measurements (90 
MHz Pentiurn), and might be different for configurations using a Pentium wit,h 
a different clock speed or different lypes o f  L2 and main memory. In particular 
it is expected that for faster Pent,iiims the access times to memory will increase, 
as it is a well known fact, that inerrlory performance has a hard time keeping up 
with that, of processors. 

A final issue is the conversion from lit,t,le-endian to big-endian representation. 
This conversion can be efficiently implemented using the bswap instruction. This 
inst,ruction is listed to take 1 cycle [IntS3b], but always has the OF,-prefix. Each 
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Algor i t kin 
Data from L2 cache 
Data from main memory 
Eridianness conversion 

prefix requires 1 additional cycle, so that bswap takes in effect always 2 cycles 
[Gu195]. Using bswap the penalty incurred by endianness conversion is limited 
to  48 cycles, including data copying. On a Pentium only SHA-1 is affected by 
this conversion, but Table 6 lists the effect on all hash functions. The figure 
of 11% for MD5 should be cornpared to  the 33% figure reported in [Tou95]. 
Cacheing effects hardly influence t tie time spent, or1 endianness conversion: the 
local data buffer storing the converted data will, after the first iteration, reside 
in the on-chip cache, and the extra t h e  needed for reading from secondary 
cache or main memory will be alrnost the sitme, whether an explicit conversion 
is required or not. Only t,he location of these time consuming memory references 
in the code will be different; during rourid 1 of the compression function in case 
no conversion is required, and during the conversion itself otherwise. However, 
as such the extra reading time is no part of the  conversion. 

MD4 MD5 SHA-1 R.MD R M D - 5 8  R.MD-160 
8.7 5.5 3.3 4.3 3.7 2.1 

21.8 14.4 7.5 10.8 8.7 5.3 
14.9 10.6 5.1 7.9 6.3 4.0 

AIL 
Data from L2 cache 

11 MD4 
I 8.7 

Data from main mernoryll 
Eridianness conversion 

__ 
MD5 

5.5 
__ 

21.8 
11 14.9 

14.4 
10.6 

__ 
- 

SHA-1 
3.3 
7.5 
5.1 

~- 

R.MD R M D - 5 8  R.MD-160 
4.3 3.7 2.1 

10.8 8.7 5.3 
7.9 6.3 4.0 

Table 6. Percentage of performance degradation when data is read from secondary 
cache or from main memory, as well as the percentage of time spent on (hypothetical) 
endianness conversion. Only SHA-1 actually executes the latt,er. 

7 Conclusion 

Efficient and optimal implementations of all MD4-likc hash functions on a Pen- 
tium processor l1ax7e been presented. The increase in performance with respect 
to  an equally fast non-parallel arcliitecturc is in the order of 60%. It has also 
been shown that the impact on performance from processing non-cached data 
as well as from endianness conversion is relatively small. In addition, a num- 
ber of implementation guidelines have bccn derived, that are also applicable to 
implementations of other cryptographic: primitives. 
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