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Abstract. We show that  computing the most significant bits of the 
secret key in a Diffie-Hellman key-exchange protocol from the public 
keys of the participants is as hard as computing the secret key itself. 
This is done by studying the following hzdden number problem: Given 
an oracle O a ( z )  that  on input 2 computes the k most significant bits 
of (Y . g5 mod p, find (Y modulo p. Our solution can be used to  show the 
hardness of MSB’S in other schemes such s ElGamal’s public key system, 
Shamir’s message passing scheme and Okamoto’s conference key sharing 
scheme. Our results lead us to suggest a new variant of Diffie-IIellman key 
exchange (and other systems), for which we prove the most significant 
bit is hard t o  compute. 

1 Introduction 

The  discrete logarithm problem (DLP)  relative to a base g in “1: is t o  find 2 
given y = 9” .  Assuming this problem t,o he hard,  Diffie and Hellman [DH76] 
proposed a public key system. Here two participants, Alice and Bob, with private 
keys a and 6 respectively, compute g a  and g b  and send each other these values. 
Then  they compute a secret key g a b .  Many believe that computing the  function 
D H s ( g a ,  g b )  = g a b  is as hard as DLP. 

After the secret key agreement, Alice and Bob can secure the  session using 
encryption with a block cipher. A natural way to derive the key for the cipher 
would be to use a block of bits from g a b .  For example, if p is a 1024 bit prime, 
one may use the 64 most significant bits of g a b .  An attacker, who may not be 
able to compute the  whole g a b  ~ may nevertheless succeed in computing t.his part 
of the bits of g a b  and crack the session. Hence i t  is important to know if the  most 
significant bits (MSB) of g a b  are secure from an adversary who knows both g a  
and 9’. Despite their long history, the security of the MSB’s has not been shown 
for Diffie-Hellman keys. 

N. Koblitz (Ed.): Advances in Cryptology - CRYPT0 ’96, LNCS 1109, pp. 129-142, 1996. 
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A number of cryptographic schemes proposed are related to or based on the 
Diffie-Hellman function D H g ( g a ,  g b )  = g a * .  These schemes depend on the “hid- 
den” nature of gab. For examples, we refer to ElGamal’s public key cryptosys- 
tem [EG85], Shamir’s message passing scheme [Kob87, pp. 96-97], Bellare-Midi 
non-interactive oblivious transfer [MB89] and Okamoto conference key sharing 
scheme [Oka88]. 

In this paper, we study the security of the MSB’S of the Diffie-Hellman key 
exchange scheme and the related schemes mentioned above. We show that the 

(or more) MSB’S of the Diffie-Hellman secret are as hard to  compute as 
the entire secret. For a 1024 bit prime, our  result implies that 32 or more MSB’S 

are hard to compute. Our results are based on rounding in lattices using basis 
reduction algorithms[LLL82]. Asymptotically this can be improved to EM for 
any fixed E > 0 by combining the results of Babai[Bab86] and Schnorr [Schnorr, 
Schn941 

Furthermore, our results lead us to suggest a new variant of the Diffie- 
Hellman key exchange protocol for which the single most significant bit is as 
hard to compute as the entire secret. These schemes assume that the function 
D H g ( g Y ,  2) is hard to  compute from g ,  g y .  It is unknown if this is equivalent to 
the DH function, but it is equivalent to computing the “base change” function 

An expanded and updated version of the paper is available from the authors. 
g, gy t-+ 2 y .  

2 Discovering a number given an MSB oracle 

Let p be a prime number and n = rlogpl be its length in binary. We use x mod p 
to denote the unique integer a in the range [ O , p  - 13 satisfying z a (mod p ) .  
Given a prime p ,  we define M S B ~ ( X )  as the integer t such that (t - 1) .p/2‘“ 5 
2 < t . p / 2 ‘ “ .  For example, M S B ~ ( ~ )  is either 0 or 1 depending on whether x 
is smaller than or greater than p / 2 .  For convenience we will sometimes assume 
that M S B ~ ( Z )  is an integer z satisfying 12 - zI < ~ / 2 ~ + ’ .  To study the security 
of parts of the Diffie-Hellman secret we suggest studying the following abstract 
problem: 

HIDDEN NUMBER PROBLEM (HNP ): Fix p and k. Let O,,g(x) be an oracle that 
on input x computes the k most significant bits of cug“ modp: 

C73,,g(z) = MSB,(O . g2 mod p )  

The task is to compute the hidden number cy modulo p ,  in expected polynomial 
(in logp) time, given access to the oracle C73,,g(x). One could consider the oracle 
c),,~,~(z) = M S B ~ ( ~ .  g” + p  mod p > ,  but as we shall see, it is not hard to  handle 
non-zero p. Unless otherwise stated, we take p = 0. Clearly, we wish to solve 
this problem with as small k as possible. 

We assume that the oracle always gives the correct answer. Our methods can 
handle oracles that produce correct answers with probability (under uniform 
distribution over its inputs) at  least 1 - i. Note that the way the oracle C7a,g 
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is queried imposes a severe restriction. Namely, the multiplier for the hidden 
is an element of Zi for which the querying party knows the discrete logarithm 
to the base g .  This restriction is quite crucial for the applications at hand. SO, 
we work with the following oracle, using t = g" from Z;, where z is randomly 
chosen from [O, p - 13: 

~ , ( t )  = M S B ~ ( C Y  . t  modp).  

This gives rise to the randomized or samplang version of the HNP : given U,(t) 
where t are chosen uniformly and independently at random in Z;, find a.  We 
study only this version, except in section 5 where we use non-random queries. 

If one is allowed to query the oracle 0,( t )  at chosen values o f t ,  then re- 
covering a is much simpler. The study of this unrestricted problem is closely 
related to proving the bit security of the RSA cryptosystem as in [ACGS88], 
whose methods can be used to completely solve this problem. Namely, with cho- 
sen queries, the H N P  can be solved when k = 1 even when the oracle is noisy; i.e. 
the oracle computes the MSB only on 1/2 + E ,  E > 0 fraction of z correctly. But 
it is important for this method that the queries be correlated. A related topic of 
interest is that of predicting truncated pseudo-random number sequences. (See 
the remark after the Theorem 3) .  

This scenario is typical in learning theory, where some learning problems are 
easy if oracle queries can be arbitrarily chosen, and harder if only random queries 
are allowed. We here present some algorithms for solving the HNP using random 
queries. 

3 Main Results 

Solutions to  the HNP can be used to prove that computing a part of the Diffie- 
Hellman secret is as hard as computing the entire secret. We state our first 
result regarding the HNP and show how it applies to the problems at hand. 
Below we show that the sampling version of the HNP can be solved using k = a + log logp bits, but this can be asymptotically improved to  EM for 
any fixed E > 0 (See the paragraph on improvements below). The proofs of the 
results claimed in this section can be found in the next section. 

Theoreml. Let a be some integer in the range [ l , p -  11. Let 0 be a function 
defined b y  0 ( t )  = M S B k ( f f t  modp) with k = [fi 1 + [lognl. There exists a 
deterministic polynomial time algorithm A such that 

r 1 ,  

where d = 2 f i  and t l ,  . . . , t d  are chosen uniformly and independently at random 
from ZB. 
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One may replace l / 2  by & and reduce the number of bits obtained from 
the oracle by log logp. Then, the expected run time goes up by a factor fi. One 
can alternately run fi copies of the algorithm in parallel. Our first application 
of the theorem is regarding the hardness of MSR'S of a. Diffie-Hellman secret: 

Theorem2. Set k = [m + [lognl. Gwen an eficient algorithm to compute 
MSBk(gab)  from anputs g a , g b ,  there as an algorithm t o  eficiently (in expected 
polynornaal tzme) compute g a b  i t se l f .  

This theorem remains true even if one can compute the MSB'S on all but l / n  
fraction of the random inputs gnl g b  . This issue is addressed immediately after 
the proof of the theorem. 

Improvements: With a proper choice of constants in the basis reduction 
algorithm, one can decrease k to TJ.? for large enough n. In the case of a 1024 
bit prime, the first 32 (or more) bits of the secret key are hard to compute from 
the public keys. This i s  of practical interest as it shows that the 128 MSB'S of 
the Diffie-Hellman secret may be securely used as the session key for the block 
cipher. A version of our implementation tested with smaller primes produced 
right answers (i.e. hidden numbers) even €or k = l-bit case. Note that as long as 
the primes are a few thousand bits long, the dimensions of the lattices involved 
are manageable, making our reductions practical. 

Asymptotically one can take k = ~\/rogp, for every fixed E > 0. We achieve 
this result by combining the results of Babai's lattice rounding [Bab86] and 
Schnorr's semi reduced basis [Schnorr] to solve the following problem: given any 
vector, one can find a closest lattice vector having Euclidean norm within 2'd 
factor of the optimum. This may be of interest on its own and a solution is given 
in [Schn94]. 

Reducing k t o  loglogp bits : Recently, results from [BV96] show that there 
exist polynomial number of advice bits depending only on p and g which enable 
one to solve the HNP in polynomial time using an oracle which returns only 
log logp bits. This improves the a bound of Theorem 1 and can be applied 
to  the Okamato conferencing scheme below (but not yet to other schemes in this 
paper). The proof relies on a new analysis of a lattice rounding technique with 
respect to a natural norm over matrices. 

3.1 Related schemes 

Theorem 1 is general enough to apply to many other DH-related cryptographic 
schemes, three of which we define next. For convenience, we assume that the 
generator g and the prime p have been agreed upon by Bob and Alice and all 
the required inverses exist. 

ElGamal public key encryption: Bob picks a random z and publishes y = 
g" as his public key. To send a message m to Bob, Alice picks a random r 
and sends g', my'. Bob can decode the message by computing myr/(gr)x.  To 
break the scheme one has to compute the function EL,(g",g', mg"') = m. 
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Shamir message passing scheme: To send a message rn Alice picks a ran- 
dom r ,  and sends y = mr to Bob. Bob picks a random s and sends ," = ys 
back to Alice. Alice sends w = z"-' to Bob who computes m = 20'- . Here 
r - ' ,  s-l denote inverses modulo p - 1. Breaking this scheme requires com- 
puting SH(9"" g", g s )  = g. 

Okamato conference key sharing: Bob picks r at random and sends to  Al- 
ice = g".  Alice picks a random s and sends y = xs back. Bob computes 
y"- = gs which is the conference key they use. Since the conference key is 
determined by Alice's bits alone she can distribute the same key to all mem- 
bers of the conference. Cracking this scheme needs computing the function 
oIi-g(g'"g9') = gJ.  

The equivalence of the above functions to Diffie-Hellman was studied in [SS95] 

Theorem3. Set k = [fl + [log n1. Given an eficient algorithm t o  compute 
M S B ~ ( . )  for any one of the functions EL,(g",g',rng"") = 771, O K g ( g r 8 , g r )  = 9' 
or S H ( g r 3 ,  g", g ' )  = g ,  there is a n  algorithm t o  eflciently (in expected polynomial 
time) compute the corresponding function in its entirety. 

Hence, the k MSB'S of messages in the ElGamal public-key system and Shamir 
message passing, as well as the MSB'S of secret keys in Okamato's scheme are as 
hard to  compute as the whole from their corresponding public values. To apply 
Theorem 1 to t8hese sc.hemes one must derive several relations satisfied by the 
associated functions, which we do in Section 4.2.  

When the generator g in the HNP is small, Theorem 1 can be improved. In 
Section 5 we show that for a generator g one can solve the HNP using an oracle 
returning only k = logg bits. For instance, when g = 2,  an oracle returning the 
single most significant bit suffices. This result leads us to suggest a new variant 
of the Diffie-Hellman protocol for which computing the most significant bit is as 
hard as computing the entire secret. This variant is described in Section 5.1. 

Remark: (Predicting nuncated Random Number Sequences) Here an it- 
erative pseudo-random generator computes a sequence xi, i > 1, and outputs 
M S B ~ ( Q ) .  The task is to observe the outputs for a short period and break the 
generator by inferring the whole sequence. See [FHK*88] for discussion and ref- 
erences. One equation they study is z is l  = a q  mod A4 and they show how to 
break the generator when k is constant times logM/(loglogM) (Theorem 3.1 
page 273 and its accompanying remark 3) .  This corresponds to restricting oracle 
queries to a ,  a', u3,  . . . whereas in our case the queries can be chosen randomly 
and independently, resulting in our bound d l .  

A brief discussion on unpredictable bits and constructing pseudo-random 
generators is given in the Appendix. 

4 Proofs 

We now turn to  the proof of Theorem 1. For notational convenience we assume 
that the prime p and the generator g of Z l  are fixed. Throughout this section 
we let R = logp. 
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The proof relies on rounding techniques in lattices. We review briefly some 
relevant definitions and results. A (full rank) lattice L is defined to be the set of 
points 

where the bi are linearly independent vectors in IRd. The set (bj}fTl is called 
the basis of the lattice and d is the dimension of the lattice. We denote the L Z  
norm of a vector 'u E IRd by 1 1  'u 1 1 .  

Using the lattice basis reduction algorithm of Lenstra, Lenstra and LO- 
vasz [LLL82], Babai [Bab86] shows how given a lattice L and a point v ,  one 
can find a lattice point which is approximately the closest to 'u. 

Theorem4. [Bab86] Let L be a laitice of dimension d .  Gwen a point ti E Rd, 
there exists a polynomial time algorithm which finds a lattice point w E L such 
that 

1 1  ZI - w (15 2% inin(I1 v - b 1 1  : b E L } .  

Usually, the accounts of LLL algorithm use 2 d / 3  as the fudge factor rather 
than 2* as stated above. By adjusting the constants in the definition of an 
LLL-reduced basis, one can improve this to  2d/4.6.  

Proof of Theorem 1. We show a polynomial time algorithm for recovering the 
hidden number a ,  Recall that d = 2 [ f l ,  k = [z/;;l + [log n1 and we are given 
randomly chosen integers tl , . . . , t d  and corresponding integers al, . . . , a d  such 
that for all i = 1,. . . ~ d:  

l(ati modp) - ail < p / 2 k  (1) 
To find the hidden a ,  we construct the d + 1 dimensional lattice L spanned by 
the rows of the matrix [;!::::: 

0 0 o . . . p  0 
t l  k ?  t 3  . . . td l / p  

We refer to the first d vectors in the basis as pvectors. Notice by multiplying 
the bottom vector by (Y and subtracting the appropriate multiples of pvectors 
we obtain a lattice vector 

'ua = (Tl,...rrd~ a l p )  

where  IT^ - ail < for all i 5 d ,  Define u to be the vector u = ( a l l . .  . , ad, 0). 
Then v, is a lattice point whose distance from u is at most m ~ / 2 ~ .  In other 
words, 

mini11 u - w I /  : w E L }  5 ~ % T i p / 2 ~  
The following theorem shows that with high probability all lattice points which 
are this close to u have a special structure. Here the probability is over the 
random choice of t l ,  . . . , t d .  
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Theorem5 (Uniqueness Theorem). Set d = 2 [ 4  and p = + f i + 3 .  Let (Y 

be a fixed anteger zn the range [ l , p -  11. Choose zntegers t l ,  . . . , t d  unzformly and 
d e p e n d e n t l y  a t  random zn the range [ l , p -  11. Let L be the lattzce constructed 
as above and u = ( a l l  . , a d ,  0 )  be a vector satzsfyzng 

I(at, mod P )  - at I < ~ / 2 '  

Then wzth probabzlzty a t  least $ al l  v E L wzth 1 1  u - v I I <  6 are of the form:  

w = (tip mod p ,  . . , t d j 3  mod p ,  p / p )  where (Y p (mod p )  

Proof. Let p, y be two integers. Define the modular dastance between p and 7 as 

dist,(P, 7 )  = min I@ - y - bpi b€n 
For example, dist,(l, p )  = 1. Suppose p # -y 
in the range [ l , p  - 11. Defirie 

(mod p )  and they are both integers 

A = Pr [dist,(Pt, y t )  > 2 ~ / 2 ~ ' ]  
t 

where t is an integer chosen uniformly at random in [l,  p - 11. Then 

5 2 1 - -  
2 p  

1P- $1 - El - 2' 

This follows since for every z E [g,  p -  g] there exists a t such that ( ,B-y) t  = 2 
(mod p ) .  In general, a lattice point w has the form 

v = ( @ I  - blp,  Pt2 - b2P, . . . I Ptd - bdp, P / d  
for some integers p, b l ,  . . . , bd. Suppose 1 1  v - u ( )< p / Y .  We show that with 
probability at least 3 the vector w satisfies j3 (mod p )  and Pti - bap E [O,p] 
for all i. Observe that if /3 = a (mod p ) )  then Pti - bip E [O,p] for all i. 
Otherwise at least one of the components of v - u is bigger in absolute value 
than p / 2 p .  

cy 

Now, suppose @ # a (mod p ) .  Then 

Pr [I1 w - u II> ~ / 2 ~ ]  2 Pr [3i  : dist,(ti@, u i )  > ~ / 2 ~ ]  >_ 

Since /3 # a (mod p )  there are exactly p - 1 values of P mod p to consider. 
Hence, the probability there exists a lattice point contradicting the statement of 
the theorem is at most 

( p - l ) . -  ( ; J d  < -  1 
The last inequality follows from the fact that d ( p  - logz 5 )  > logp + 1. This 
completes the proof of the theorem. m 
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By applying Theorem 4 to the lattice L and the vector u, we now can find 
in polynomial time a lattice vector w E C such that 

where p = ffi + 3 as in the uniqueness theorem. The last inequality follows 
since p < k - - $log(d + 1) for large n.  Since p < k Theorem 5 shows that 
with probability 2 1/2  we have w = II,= ( T I , .  . . , ~ d )  a l p ) ,  from which one can 
recover the hidden element cx easily. This completes the proof of Theorem 1. I 

The technique above can be used to solve a inore general problem. Let n , p  
be two integers in the range [ l , p  - 11 Let O ( t )  be the function defined by 

~ ( t )  = M s B k ( n t  + mod P) 

where k = fi. Then one can recover N , P  in expected polynomial time from 
random samples of the function O(t ) .  Given random integers t l  , . .  . in the 
range [0, p - 11 construct a d + 2 dimensional lattice I, spanned by the rows of 
the matrix 

0 0 0  . . . p  0 0 
t l  t 2  t 3  . . . t d  l / p  
1 1 1 1 1 0 1 / p  

0 

Let b d + l  be the second to last vector in the lattice and bd+2 bc the last vector. 
The vector a . b d + l  + ,O . bd+2 minus an appropriate number of p-vectors will be 
very close to the vector constructed from the oracle’s answers. With larger values 
of Ic and p ,  the uniqueness theorem (Theorem 5) can be generalized and then 
Theorem 4 can be applied to recover a ,  p. 

4.1 Proof of hardness of Diffie-Hellman MSB’s 

Proof of Theorem 2. Let A be an efficient algorithm computing MSBk(gab) given 
g a l  gb.  We show that given g a ,  gb  one can use the algorithm A to compute gaB 
and thus break the Diffie-Hellman protocol. Set a = g a b  mod p and h = 9’. Let 
U ( z )  be the function O ( x )  = M S B ~ ( ~  h” modp) Then 

Hence, the algorithm A can be used to evaluate the function O(z) for arbitrary z. 
We obtain a hidden number problem which can be solved in expected polynomial 
time according to Theorem 1. This shows that a = gab can be found if the 
algorithm A exists. m 
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We now sketch how to handle the case of A t,hat, has low error rate. More 
precisely, we assume tha t  A has success probability of > 1 - 1/n when its inputs 
are random. In this case A answers all O(fi) queries correctly with a high 
probability. 

Let z, y be random and y = ay + bz -t- zy, We need not compute y but we 
can compute gy and O(-/)  (short hand for a multivariate oracle with respect to 
gerierators g ,  gBgb and inputs z, y,  zy) :  

By using the algorithm A as the oracle, and solving a HNP (Theorem 1). we get 
the required result. 

4.2 Proofs for DH-Related Schemes 

We first derive some relations for the functions EL,(u, b ,  c ) ,  S H ( a ,  b ,  c) and  
OKg(al b )  defined in Section 3.  We note tha t  our queries are restricted to ran- 
dom points in tJhe reductions. For simplicity, we first consider relations useful 
for randomizing one of the inputs t o  the algorithms used to simulate the  hidden 
number oracles. 

Lemma6. The functzons EL,(a,  6 .  c), S H ( a ,  b .  c )  and OK,(a,  b )  satzsfy the for- 
lowang relataons: 

Proof. These relations are derived as follows: 

EL,(g"+',gY, mg"Y) = El,(g"+f, gy,  (mg-y') ' gy("+')) = m ' (g-Y)' 

To prove the second relation define h = gyr t1 .  Then 

The  middle equality follows since 9 . & = $& and hence h must be the 
value of the  Shamir function on those three inputs. The third relation follows 
since 

o&(gYw'j, g Y )  = gr+' = g" I g' 

I 
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Proof of Theorem 9. Let us  consider the Shamir function. The case of the other 
two functions is similar. Let A be an efficient algorithm computing M S B ~  (m) 
given m” ~ my, m”Y. Set 3 = m y  mod p and define U ( r )  to be the function O ( r )  = 
M S R , ( ~  .g r  modp).  Then, 

O ( r )  = M S B ~ ( M .  (my)‘) = 

= M S B ~  ( S H ( m ” y ,  mz+roy ~ my)) = A(mzY ~ mx+rzy mY) 

The second equality follows by Lemma 6. Notice that mr+‘+y can be computed 
as m“ . (m”y)“. It follows that given mx, my, mzY the algorithm A can be used 
to  simulate the oracle O(T).  Hence, we obtain a HNP which can be solved in 
expected polynomial time according to Theorem 1. This shows that the secret 

I mess‘age m can be found if the algorithm A exists. 

The same argument which appears after the proof of Theorem 2 can be used 
to show that Theorem 3 holds even when the oracle is allowed to make mistakes 
on a fraction of the inputs. This is done by randomizing the inputs to the 
oracle A .  For the Shamir scheme one can randomize the inputs to the oracle by 
using the relation SH(3”Y1”, g‘”(l+‘Y), 3 t y ( 1 + s r ) )  = g(l+yr)(l+zs).  We pick T ,  s, t 
at random, set y = yr + x s  + xyrs  and use 

The value my can be easily computed given m” , my, mxY 

5 The case of a small generator 

The original formulation of the H N P  asks one to discover a hidden number a 
from an oracle which out,puts the k most significant bits of a g‘ modp.  In the 
previous section we proved that setting k = O(-) suffices. In this section 
we show that when the generator g is small this result can be improved. For 
instance, when g = 2 only the most significant bit is needed; i.e., k = 1 suffices. 
This result leads us to suggest a new variant of the Diffie-Hellman protocol. 

For a generator g of Z l  we define the significant bit function SB, (x mod p) 
to be an integer t such that ( t  - l )p/g 5 z < t p / g .  Clearly t E [O,g  - 11 and 
therefore the function SB,  returns at most log,g bits of information. Notice 
that when g = 2 the function SB:,(z) is the same as the M S B ~ ( X )  function used 
in Section 2.  

Theorem 7. Let cy be some znteger rn the range [ l , p  - 11. Let (3 be a functaon 
defined b y  U ( x )  = SB,(agx mod p )  for  some generator g of Zi. Then there 
exzsts an algorathm whzch, gaven access t o  an oracle computzng the functaon 0, 
can find a an polynomzal tzme zn logp. 
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Proof. Let U and L be upper and lower bounds on a ,  i.e. L 5 a < U .  Initially 
we set L = 0 and 11 = p.  The algorithm will iteratively decrease the gap between 
U and L until U - L < 1 in which case a is found. Throughout the algorithm 
we maintain that at the r’th iteration L = (t - 1) . -$ and U = t .  -$ for some 
integer t E [I, gr]. Initially T = 0. 

and L = (t - 1) . 5 for some 
integer t .  Since L 5 ct < 1T we have 

Consider the r’th iteration. Then U = t . 

0 5 ag‘ - pt < p 

The algorithm will now query the oracle at the point 2 = T .  By definition, the 
oracle returns a number z such that 

P P ( z  - 1)- 5 crg‘ modp < 2 -  
9 Y 

Since ag‘ mod p = crg‘ - pt we can rewrite the above inequality as: 

PZ + Ptg < a < -  P(Z - 1) +Pi9 
g‘+l g r t l  

We now take these lower and upper bounds to be the L and U used in the next 
iteration. Observe that U - L = p/yPt1. This shows that the gap between U and 

I L decreased as expected completing the proof of the theorem. 

Theorem 7 shows that the HNP can be solved using k = logg most significant 
bits when the generator g is used. For small values of g this improves on the 
result of the previous section. Unlike the algorithm described in the previous 
section, this algorithm relies on the ability to query the oracle at chosen inputs. 

5.1 

Theorem 7 suggests a new variant of the Diffie-Hellman protocol. This new vari- 
ant is motivated by the following corollary which stmates that the most significant 
bit of DHs(g“ ,  2) is as hard to computc as all of DHs(gZ , 2).  For clarity we observe 
that 

A variant of Diffie-Hellman and its bit security 

DHg ( g ” ,  2) = DHg (9” , glog, ’) = y”  log, - 2 ”  - (modp) 

Corollary8. Given an efficient dgorilhm A l o  compute MsB1(DHg(g5 ,  2))  from 
g ,  g” there is an algorithm to eficzently (in polynomial tame) compute DHs(g”,  2) 
atself. 

Proof. Set a = D H s ( g ” , 2 )  = 2“. We have already seen (Theorem 2) that the 
algorithm A can be used to  define a hidden number oracle 

o(r) = M S B I ( D H ~ ( ~ ” + ‘ , ~ ) )  = M S B l ( a  .2‘ modp) 

Hence, by Theorem 7,  a can be found in polynomial time. I 
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The corollary suggests a Diffie-Hellman protocol where Alice always sends the 
value 2 to  Bob. The idea is for Alice to  pick a random generator g for which she 
knows a value 2 satisfying g" = 2 mod p .  More precisely suppose Alice and Bob 
have already agreed on a prime p .  To perform secret key exchange they use the 
following protocol which we call the MODIFIED DIFFIE-HELLMAN PROTOCOL: 

1. Alice picks a random number z E [ l , p  - 11 with gcd(x,p - 1) = 1. She 

2.  Bob picks a random number y in the range [ l , p  - I] and sends gY to Alice. 

(mod p ) .  Clearly Bob 

computes g = 2" (mod p )  and sends g to Bob. 

The secret they both agree on is CY = D H g ( g Y  ~ 2) = 2 Y  
can compute this value. Alice can compute this value since 

2Y = gYx-' (rrlod P) 

where 2-l is the inverse of z modulo p - 1. 
An adversary who wishes to discover the secret shared by Alice acd Bob 

observes g,gY and must compute the value D H g ( g Y ,  2) .  Corollary 8 shows that 
computing the MSB of the secret shared by Alice and Bob is as hard as computing 
the entire secret. The next corollary summarizes this. 

Corollary9. G i v e n  a n  oracle tha t  compu tes  the single m o s t  Significant bit of 
t he  modified D i f i e - H e l l m a n  secret, there exists a polynomial  t i m e  algori thm tha t  
compu tes  the  entire secret.  

In the same spirit we can design a new variant of the ElGamal public key 
scheme in which the single most significant bit of the message is as hard to 
compute as the whole message. Let p be a prime. Alice randomly chooses an 
integer 2 with gcd(z,p- 1) = 1. Her public key is g = 2" (mod p ) .  Her private 
key is y = x-' (mod p - 1). To send a message m Bob picks a random r 
and sends m . 2', gf to  Alice. Alice can compute 2' since 2' = (g')Y (mod p )  
and recover the message m. To break this scheme an adversary must compute 
El'(g, g' ,  m '2') = rn. The same arguments as above show that given an oracle 
computing the single most significant bit of m is equivalent to computing all of 
'm. We caution here that when used for ElGamal signatures, smooth generators 
are bad [B96]. 

A possible drawback of these new variants is that they rely on the hardness 
of DH.q(g3', 2) for their security which needs further study. This is a special 
case of the Diffie-Hellman function which could potentially be easier to  break. 
The standard heuristic way of arguing about the security of the Diffie-Hellman 
protocol is to  argue that the corresponding discrete log problem is hard. In our 
case the corresponding discrete log problem is that of computing discrete log of 
2 base 9.  One can easily show that computing discrete log of 2 base g is as hard 
as computing discret,e log of any z base g (observe that logg 2 = log, 2/ log, 2). 
Thus, one can argue that the standard heuristic discrete log argument supports 
the security of this variant. 

An interesting point is that breaking modified the Diffie-Hellman scheme 
modulo a composite is as hard as factoring integers. We leave the details for the 
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final version of the paper. The  modified scheme niodiilo a composite still retains 
the  property that the most significant bit of the secret is as  hard to compute a~ 
the  entire secret. 

6 Concluding Remarks 

We proved that MSB’S of the Diffie-Hellman secret keys, or the messages 
in the ElGamal public key encryption system or Shamir’s three pass protocol 
are as hard t o  compute as the entire message. T h e  same result holds for the  
secret key of the Okamoto conference scheme, for which our recent work [BV96] 
improves the result to log logp bits in the non-uniform model. 

It would be interesting to  improve these results to a single bit case, and 
also to the case of a noisy oracle that answers only f + E fraction of its queries 
correctly. The  security of the modified DH-scheme and i ts  underlying function 
g,gY +-+ 2Y(modp) definitely warrants a study. The  question analogous to the  
standard DH and DLOG equivalence (mod p )  in this case is interesting as well. 
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Appendix 

Hard core bits and Pseudo-Random Generators: While one hopes to  
show that the MSB’S are pseudo-random, one may obtain cryptographically un- 
predictable bits from DH-assumption. We very briefly outline this here and we 
rely heavily on the proofs of the Goldreich-Levin theorem. 

Let F ( g a b , g u 1 g b )  = g a l g b .  If the triple is not of the given form, we may 
assume that F outputs 00. . . O .  Inverting F is “hard”. That is, computing 
F - l ( g a ,  gb)  is at least as hard as computing DHs(ga ~ g b ) .  But F is not a one-way 
function in the usual sense, since computing gab from g a l  gb is hard as well. Then 
put x = Ay where A is a k x [y(  random Toeplitz Matrix and y = gab.  We claim 
that the distribution of x, g a l  gb ,  A can not be distinguished with significant ad- 
vantage from the distribution when z is replaced by a purely random string of 
equal length. Otherwise, using the theorems in [GL] there exists an algorithm 
that outputs a short list of candidates for g a b ,  gal  g b  that contains the right one. 
So one can randomly choose one from the list. Alternately, if additional infor- 
mation such as plain text cipher text pairs using the hash value as a key for a 
block cipher, we can pick the right value from the list. 

The results in [GL] allow us up to  k = ~ l o g s ( n ) ,  where s ( n )  is a lower 
bound on the time for inverting F on all but a negligible fraction of non-zero 
instances. Since the security of DLP is sub exponential, Ic will be at most sub 
linear. However it is conceivable that linear number of bits (without hashing) of 
gab are hard to predict. Current rounds of standards advocate hashing gab with 
a collision resistant hash function (e.g. MD6,SHA). The construction above uses 
a simpler and well understood hash function. 
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