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Abstract. We present threshold DSS (Digital Signature Standard) signatures 
where the power to sign is shared by n players such that for a given parameter 
t < n / 2  any subset of 2 t  + 1 signers can collaborate to produce a valid DSS 
signature on any given message, but no subset o f t  corrupted players can forge a 
signature (in particular, cannot learn the signature key). In addition, we present 
a robust threshold DSS scheme that can also tolerate n / 3  players who refuse 
to participate in the signature protocol. We can also endure n/4 maliciously 
faulty players that generate incorrect partial signatures at the time of signature 
computation. This results in a highly secure and resilient DSS signature system 
applicable to the protection of the secret signature key, the prevention of forgery, 
and increased system availability. 
Our results significantly improve over a recent result by Langford from CRYP- 
T0'95 that presents threshold DSS signatures which can stand much smaller 
subsets of corrupted players, namely, t % 6, and do not enjoy the robustness 
property. As in thc case of Langford's result, our schemes require no trusted 
party. Our techniques apply to other threshold Elcarnal-like signatures as well. 
We prove thc security of our schemes solely based on the hardness of forging a 
regular DSS signature. 

1 Introduction 

Using a threshold signature scheme, digital signatures can be produced by a group of 
players rather than by one party. In contrast to the regular signature schemes where the 
signer is a single entity which holds the secret key, in threshold signature schemes the 
secret key is shared by a group of n players. In order to produce a valid signature on a 
given message m, individual players produce their partial signatures on that message, 
and then combine them into a full signature on m. A distributed signature scheme 
achieves threshold t < n, if no coalition o f t  (or less) players can produce a new valid 
signature, even after the system has produced many signatures on different messages. A 
signature resulting from a threshold signature scheme is the same as if it was produced 
by a single signer possessing the full secret signature key. In particular, the validity 
of this signature can be verified by anyone who has the corresponding unique public 
verification key. In other words, the fact that the signature was produced in a distributed 
fashion is transparent to the recipient of the signature. 
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Threshold signatures are motivated both by the need that arises in some organizations to 
have a group of employees agree on a given message (or a document) before signing it, 
as well as by the need to protect signature keys from the attack of internal and external 
adversaries. The latter becomes increasingly important with the actual deployment of 
public key systems in practice. The signing power of some entities, (e.g., a government 
agency, a bank, a certification authority) inevitablyinvites attackers to try and “steal” this 
power. The goal of a threshold signature scheme is twofold: To increase the availability 
of the signing agency, and at the same time to increase the protection against forgcry 
by making it harder for the adversary to learn the secret signature key. Notice that 
in particular, the threshold approach rules out the naive solution based on traditional 
secret sharing, where the secret key is shared in a group but reconstructed by a .single 
player each time that a signature is to be produced. Such protocol would contradict 
the requirement that no t (or less) players can ever produce a new valid signature. In 
threshold schemes, multiple signatures are produced without an exposure or an explicit 
reconstruction of the secret kcy. 

Threshold signatures are part of a general approach known as threshold cyptography 
which was introduced by the works of Boyd [Boy86], Desmedt [DcsSS], and Desmedt 
and Frankel [DF90]. This approach has received considerable attention in the literature; 
we refer the reader to [Des94] for a survey of the work in this area. Particular examples 
of solutions to threshold signatures can be found in [DF92, DDFY941 for the ease of 
RSA signatures, and [Har94, Lan951 for EIGamal-type of signatures. 

In this work we present a threshold signaturc system for DSS, the Digital Signa- 
ture Standard [BT9 l]. The importance of providing threshold solutions for signatures 
schemes used in practice, is that those systems are the ones that will be deployed in 
the real world and hence they are the ones that require real protection. Threshold DSS 
signatures schemes were recently studied by Langford [Lan95]. DSS signatures turn 
out to be less amenable to sharing techniques than RSA or even other ElGamal-type of 
signatures, c.g., see [Har94]. Langford has overcome some of these difficulties in the 
case of DSS, exhibiting a solution which requires a group of n = t 2  - t + 1 players in 
order to tolerate up tot  players that might refuse to participate in the signature protocol. 

In general, one would like to have higher thresholds, because they achieve increased 
security at a given system cost ( i c ,  a given number of servers). In our work we present 
threshold DSS signature schemes, where in order to achieve a security threshold t we 
need 2t  + 1 active signers during signature computation; hence, achieving thresholds 
of up to q. In addition, we improve on [Lan95] by providing a robust threshold 
signature scheme for DSS which can withstand the participation of dishonest signers 
during the signature computation operation. Namely, we providc a mechanism that 
succeeds in constructing a valid signature even if the partial signatures contributed by 
some of the signers are incorrect. The solution in [Lan95] for DSS does not enjoy 
this property. In fact, without a “correction” capability as in our solution, or at least a 

Thus, for n given servers this solution can resist up to fi corrupted parties. 

Langford presents some additional schemes but of more limited applicability: a 2-out-of-n 
scheme that withstands up to one faulty party, and a general t-out-of-n scheme that uses pre- 
computed tables of one-time shares and that requires a higher level of trust for the generation 
of these tables. See [Lan95] for details. 
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detection mechanism for wrong partial signatures, one may need to try an (exponential 
in t )  numbcr (,,”,,) of subsets of signers before finding a subset that generates a valid 
DSS signature. In our case, wc achieve a robust threshold solution to DSS signatures 
tolerating t faults: that is, t or less corrupted players will not be able to forge signatures, 
and neither will they be able to prevent the system from computing correct signatures 
by cither refusing to cooperate (t 5 n/3  in this case) or by behaving in any arbitrary 
malicious way (in this case t 5 n/4.), 

Moreover, our schemes do not require trusting any particular party at any time, 
including the initial secret key generation. This is an important property achieved by 
some other ElGamal based threshold signature schemes (including the DSS solution in 
[Lan95]), but not known for threshold RSA signatures. In the complete version of the 
paper we will present some additional results, including the applicationof our techniques 
to solving threshold signatures for other discret+log based signatures [EIGXS, NR94, 
HPM941. 

Remarkably, our solutions for robust threshold DSS signatures can be proactiuized 
using the recent techniqucs of [HJJ+95] (based on proactive secret sharing of thc 
signature key [HJKY95]). In this way, one can kcep the DSS signature key fixed for a 
long time while its shares can be refreshed periodically. An adversary that tries to break 
the threshold signature scheme needs then to corrupt t servers in one singleperiod of 
time (which may be as short as one day. one week, etc.), as opposed to having the whole 
lifetime of thc key (e.g., 2 years) to do so. 

Technical Overview. The threshold DSS signatures schemes need to deal with two 
technical difficulties. Combining sharcs of two secrets, a and b, into shares of the 
product of these secrets, ab; and producing shares for a secret a given the shares 
of its reciprocal (computations are over a field Zq). Langford [Lan95] solves 
both problems by presenting a multiplicative version of secret sharing that results in 
polynomials of degree O(t2) ) ;  this requires a high number of active signers for signature 
computation and allows for only a small threshold. In our case, we solve the first 
problem (sharing of a product of secrets) using a single product of polynomials (with 
combined degree 2t resulting in the need for only 2t + 1 active signers). For the second 
problem, the sharing of a reciprocal, we introduce a simple and novel solution, which 
does not incur any additional increase in the number of signers. The solution to this 
problem is of independent interest and has applications to other threshold ElGamal-likc 
signaturcs. In addition to these techniques we use many tools from other works, such 
as verifiable secret sharing (both computational and information-theoretic versions), 
shared generatioddistribution of secrets, re-randomization of secret shares, and more. 
For achieving the robustness of our schemes we apply error correcting techniques due 
to Berlekamp and Welch [BW] that achieve a vcry high rate of error correction, which 
in our scenario translates into supporting higher thresholds. We prove the security of 
our schemes assuming the infcasibility of forging a regular DSS signature. That is, our 
schemes are secure if and only if DSS is unforgeable. 

The robustness property has been known for some other shared signature schemes, e.g., Ham’s 
solution [Har94] for threshold AMV-signatures enjoys this property. As for threshold RSA, 
robust solutions have been only recently found (see [FGY96, GJKR961). 
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2 The Digital Signature Standard (DSS) 

The Digital Signature Standard (DSS) [fST91] is a signature scheme based on the El- 
Gamal [EIG85] and Schnorr's [Sch91] signature schemes, which was adopted as the 
US standard digital signature algorithm. In our description of the DSS protocol we 
follow thc notation introduced in [Lan95], which differs from the original presentation 
of [fST91] by switching k and k - l .  This change will allow a clearer presentation of our 
threshold DSS signature protocols. 

Key Generation. A DSS key is composed of public informationp, q ,  g,  a public key y 
and a secret key x, where: 
1 .  p is a prime number of length 1 where 1 is a multiple of 64 and 512 5 I 5 1024. 
2. q is a 160-bit prime divisor of p - 1. 
3. g is an element of order q in 2;- The triple (p, q ,  g)  is public. 
4. z is the secret key of the signer, a random number 1 5 x < q.  
5 .  y = g" mod p is the public verification key. 

Signature Algorithm. Let rn be a hash of the message to be signed. The signer picks a 
random number Ic such that 1 5 k < q, calculates k-' mod q ,  and sets 

T = (g"l mod p )  mod q 

s = k(m + Z T )  mod q 

The pair ( T ,  s) is a signature of m. 

Verification Algorithm. A signature (T ,  s) of a messagc m can be publicly verified by 
checking that T = ( g m s  

-1 
y r S - l  mod p) mod q whcrc s-l is computed modulo q. 

3 Model and Definitions 

In this section we introduce our communication model and provide definitions of secure 
threshold signature schemes. 

Communication Model. We assume that our computation model is composed of a set 
of npluyers { P I ,  . . . , P,} who can be modeled by polynomial-timc randomized Turing 
machines. They are connected by a complete network ofprivate (i.e. untappable) point- 
to-point channels. In addition, the players have access to a dedicated broadcast channel; 
by dedicated we mean that if player P, broadcasts a message, it will be recognized by 
the other players as coming from P, . These assumptions (privacy of the communication 
channels and dedication of the broadcast channel) allow us to focus on a high-level 
description of the protocols. However. it is worth noting that these abstractions can 
be substituted with standard cryptographic techniques for privacy, commitment and 
authentication. 

The Adversary. We assume that an adversary, A, can corrupt up to t of the n players in 
the network. We distinguish between three kinds of (increasingly powerful) adversaries: 

- An Eavesdropping Adversuty learns all the information stored at the corrupted 
nodes and hears all the broadcasted messages. 
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- A Halting Adversary is an eavesdropping adversary that may also cause corrupted 
players to stop sending messages during the execution of the protocol (e.g., by 
crashing or disconnecting a machine). 

- A Malicious Adversary is an eavesdropping adversary that may also cause corrupted 
players to divert from the specified protocol in any (possibly malicious) way. 

We assume that the computational power of the adversary is adequately modeled by 
a probabilistic polynomial time Turing machine. (In fact, it suffices for our results to 
assume that the adversary cannot forge regular DSS signatures, which, in turn, implies 
the infeasibility of computing discrete logarithms.) 

Given a prolocol P the view of the adversary, denoted by VZEWA(P) ,  is defined 
as thc probability distribution (induced by the random coins of the players) on the 
knowledge of the adversary, namely, the computational history of all the corrupted 
players, and the public communications and output of thc protocol. 

Signature Scheme. A signature scheme S is a triple of efficient randomized algorithms 
(Key-Gen, Sig, Ver). Key-Gen is the key generator algorithm. It outputs a pair (y,  z), 
such that y is the public key and x is the secret key of the signature scheme. Sig is the 
signing algorithm: on input a message m and thc secret key 2, it outputs sig, a signature 
of the message m. Ver is the veiification algorithm. On input a message m, the public 
key y. and a string sig, it checks whether sig is a proper signature of rn. 

Threshold secret sharing. Given a secret value s we say that the values [ s1, . . . , s,) 
constitute a ( t ,  n)-threshold secret sharing of s if t (or less) of these values reveal no 
information about s, and if there is an cfficicnt algorithm that outputs s having t + 1 of 
the values si as inputs. 

Threshold signature schemes. Let S=(Key-Gen, Sig, Ver) be a signature scheme. A 
( t ,  n)-threshold signature scheme IS for S is a pair of protocols (Thresh-Key-Gen, 
Thresh-Sig) for the set of players { P I , .  . . , P,}. 

Thresh-Key-Gen is a distributed key generation protocol used by the players to 
jointly generate a pair ( y, z) of publiciprivate keys. At the end of the protocol the private 
output of player P; is a value z; such that the values ( z1 , . . . , z,) form a ( t ,  n)-threshold 
secret sharing of 2. The public output of the protocol contains the public key y. The 
pairs (y, z) of public/secret key pairs are produced by Thresh-Key-Gen with the same 
probability distribution as if they were generated by Key-Gen protocol of the regular 
signature scheme S. 

Thresh-Sig is the distributedsignature protocol. The private input of Pi is the value 
xi. The public inputs consist of a message rn and the public key y. The output of the 
protocol is the value sig = S i g ( m ,  z). (The verification algorithm is, therefore, the 
same as in the regular signature scheme S.) 

Secure Threshold Signature Schemes. Our definition of security includes both un- 
forgeability and robustness. 

Definition 1. We say that a (t, n)-threshold signature scheme 7s =(Thresh-Key- 
Gen,Thresh-Sig) is uqforgeable, if no malicious adversary who corrupts at most t 
players can produce the signature on any new (i.e., previously unsigned) message rn, 
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given the view of the protocol Thresh-Key-Gen and of the protocol Thresh-Sig on 
input messages ml, . . . , mk which the adversary adaptively chose. 

This is the analogous to the notion of existential unforgeability under chosen message 
attack as defined by Goldwasser, Micali. and Rivest [GMRXg]. Following [GMR88] 
one can also define weaker notions of unforgeability. 

In order to prove unforgeability we use the concept of sirnulatable adversaty view 
[GMR89, MR921. Intuitively, this means that the adversary who sees all the information 
of the corrupted players and the signature of m, could generate by itself all the other 
public information produced by the protocol Thresh-Sig. In other words, the run of the 
protocol provides no useful information to the adversary other than the final signature 
on m. 

Definition 2. A threshold signature scheme IS =(Thresh-Key-Gen,Thresh-Sig) is 
sirnulatable if the following properties hold: 

1. The protocol Thresh-Key-Gen is simulatable. That is, there exists a simulator 
S I M I  that, on input the public key y and the public output generated by an execution 
of Thresh-Key-Gen, can simulate the view of the adversary on that execution. 

2. The protocol Thresh-Sig is simulatable. That is, there exists a simulator SIM2 
that, on input the public input of Thresh-Sig (in particular y and m), t shares 
zil ,  . . . , z;, and the signature s of m, can simulate the view of the adversary on an 
execution of Thresh-Sig that generates s as an output. 

This is actually a stronger property than what we need. Indeed it would be enough for 
us to say that the executions of the protocols Thresh-Key-Gen and Thresh-Sig give 
the adversary no advantage in forging signatures for the scheme S. In other words, we 
could allow the adversary to gain knowledge provided that such knowledge is useless 
for forging. However our stronger definition subsumes this specific goal and provides 
a proof of security for any of the “flavors” of signature security as listed in [GMR88]. 
Indeed one can prove that if the underlying signature scheme S is unforgeable (in any 
of the flavors of [GMR88]) and I S  is simulatable then I S  is unforgeable (with the 
same flavor of S) 

Robustness means that the protocol will compute a correct output even in the presence 
of halting or malicious faults. We will talk about (h ,  c, n)-robustness to indicate that 
the adversary is allowed to halt up to h players and corrupt maliciously up to c players 
( h  + c 5 t where t is total number of corrupted players). 

Definition 3. A threshold signature scheme I S  =(Thresh-Key-Gen,Thresh-Sig) is 
(h ,  c ,  n)-robust if even in the presence of an adversary who halts h players and corrupts 
c players ( h  + c 5 t ) ,  both Thresh-Key-Gen and Thresh-Sig complete successhlly. 

A complete formalization of the definition of secure threshold signature schemes can 
be found in [Gen96]. 
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4 Existing Tools 

Here we briefly recall a few known techniques that we use in our solutions. 

Shamir’s Secret Sharing. [Sha79] 
Given a secret 0, choose at random a polynomial f(z) of degree t ,  such that f(0) = u. 

Give to player P, a share C T ~  = f ( z )  mod q where q is a prime (We use the interpolation 
values i = 1,2, . . n for simplicity; any values in Z, can be used as well.) We will write 

( t  n) (u1, . . . , C T ~ )  - u mod q to denote such a sharing. This protocol generates no public 
output. It can tolerate t eavesdropping faults if n 2 t + 1 and, additionally, t halting 
faults if n 2 2t 1- 1. By using error-correcting techniques (as first suggested in [MS8 11) 
the protocol can also tolerate f malicious faults (among the players, excluding the 
dealer) if n 2 t + 2 f + 1. In the following we will refer to this protocol by Shamir-SS. 

Feldman’s Verifiable Secret Sharing. [Fe187]. 
This protocol can tolerate up to malicious faults includingthedealer. Like Shamir’s 

scheme, it generates for each playcr P, a share 02, such that (01, . . . , on) - o mod Q .  

If f (z) = c, a3 xJ then the dealer broadcasts the values cuj = g a l  mod p .  This will 
allow the players to check that the values o,, really define a secret by chccking that 
gux = n 0 4 ’ .  It will also allow detection of incorrect shares a: at reconstruction 
time. Notice that the value of the secret is only computationally secure, e.g., the value 

A 

( t  nJ 

- 
g a ~  - ~ g‘ mod p is leaked. In the following we will refer to this protocol by Feldman- 
vss. 
Unconditionally Secure Verifiable Secret Sharing. [FM88, Ped9 1 b]. 
In contrast to Feldman’s VSS protocol, this protocol provides information theoretic 
secrecy for the shared secret. This is required by some of our techniques in order to 
achieve provable security. There are two possible implementation of this primitive. 
One is by Feldman and Micali [FM88] and is based on a bivariate polynomial sharing. 
Each player receives a share as in Shamir’s case plus some extra information that will 
allow him to check (by exchanging messages with the other players) that the shares 
do define a polynomial. This implementation tolerates n+ malicious faults. Another 
possible implementation is the one by Pedersen [Pedglb]. In this implementation the 
private information of player P, is the value v7a such that (u l ,  . . . , mn) - u mod p .  
The dealer then commits to each share using an unconditionally secure commitment 
scheme based on the hardness of discrete log (that is the secrecy of the committed 
value is unconditional, but it is possible to open the commitment in a different way if 
one is able to solve discrete log.) The commitment has homomorphic properties that 
allow the players to check that the shares define a secret as in Feldman’s VSS. If one 
assumes that players are not able to open the commitment in different ways, then at 
reconstruction time bad shares are detected. The scheme tolerates malicious faults. 
Both implementations can be used in our main protocol. In the following we will refer 
to this protocol as Uncond-Secure-VSS. 

Joint Random Secret Sharing. [Ped9 1 a, Ped9 1 b]. 
In a Joint Random Secret Sharing scheme the players collectively choose shares corre- 
sponding to a ( t ,  n)-secret sharing of a random value. At the end of such a protocol each 

( t  n) 
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( t  n) player P, has a share u,, where (ul, . . . , un) - u, and u is uniformly distributed 
over the interpolation field. As with a regular ( t ,  n)-secret sharing scheme the value u is 
kept secret from every player, and even from any coalition o f t  players. To realize such 
a protocol, all players act as dealers of a random local secret that they choose. The final 
share 0; (i = 1, . . . , n)  is computed as the sum of the shares dealt to Pi by each player 
(consequently, the joint secret equals the sum of all dealt secrets). It can be shown that as 
long as all players correctly share their local secrets and (at least) one of these secrets is 
chosen randomly then the resultant shares interpolate to a random secret 0. In the cases 
where activc corrupted players, that may deviate from the protocol, are considered, one 
necds to perform the dealing by each player using a verifiable secret sharing protocol. 
The basic properties of this protocol, namely, the kind of public information it generates, 
and its fault tolerance are inherited from thc underlying secret sharing scheme. In the 
following wc will refer to these protocols as Joint-Shamir-RSS, Joint-Feldman-RSS 
or Joint-Uncond-Secure-RSS depending which of the secret sharing schemes is used. 

Joint Zero Secret Sharing. [BGW88] 
This protocol generates a collective sharing of a “secret” whose value is zero. Such 
a protocol is similar to the above joint random secret sharing protocol but instead of 
local random secrets each player deals a sharing of the value zero. When verifiability is 
required each player deals its shares using Feldman-VSS. The correct dealing of the 
value zero is verified by checking that the free coefficient po of each dealing polynomials 
is 0 (i,e., by checking that g*o = 1). We will refer to this protocol as Joint-Zero-SS. 
Notice that by adding such “zero-shares’’ to existent shares of a secret u, one obtains a 
randomization of the shares o f a  without changing the secret. This is the way we will 
typically use the Joint-Zero-SS protocol. 

5 DSS Threshold Key-generation without a Trusted Party 

An instance ( p ,  q ,  g) ofDSS can be generated using a public procedure (e.g., as specified 
in [ST9 l]), or using randomness which is jointly provided by the trustees. To gencrate 
a pair of public and private keys in a distributed setting without a trustedparty, we use 
a joint verijiable secret sharing protocol, following the protocol of Pedersen [Ped9 1 a]. 
That is the players run an execution of Joint-Feldman-RSS (Section 4). The output 

of such a protocol is a secret sharing (zl, . . . , 2,) +L ;z: mod q of a random value z 
which in addition reveals y = g” mod p .  The pair ( y, 2) is taken to be the publiciprivate 
key pair. 

( t  n) 

6 Basic Modules of our Solution 

We start by introducing two building blocks which are central to our solution for 
threshold DSS signatures. The first is an elegant and simple procedure for the shared 
computation of reciprocals. This procedure is used in our protocols in the following way: 
the players first produce a joint sharing of a random k, and then compute from these 
shares a sharing of the reciprocal k - l ;  the latter in turn are used to compute T = gk-’ 
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(it is essential for the security of our application that information on k is not revealed 
during this process). 

Problem 1: Computing reciprocals 
Given a secret k: mod q which is shared among players PI . . . Pn, generate a sharing of 
the value k-’ mod g ,  without revealing information on k and k - l .  

Each player Pi holds a share ki  corresponding to a ( t ,  n )  secret sharing of k ,  namely, 

( k l l  . . . k n )  +-L k. The computation of shares for Ic-l is accomplished as follows. ( t  n )  

1. The players jointly generate a ( t  n )  sharing of a random element a E 2, using any 
Joint-RSS protocol (Section 4). We dcnote the resulting shares by all a2,.  . . la,, 
i.e., ( a l , .  . . l a n )  A a .  

2. The players execute a (2t, n )  Joint-Zero-SS protocol (Section 4) after which each 
player Pi holds a share b; of the “secret” 0. (The implicit interpolation polynomial 
is of degree at.) 

3. The players reconstruct the value p = k a  by broadcasting the values k;ai + bi,  and 
interpolating the corresponding %-degree polynomial. 

4. Each player computes his share ud of k-’ by setting ui = p-lai mod g .  

(1 n) 

A 

We refer to the above protocol as the Reciprocal Protocol. The following lemmas can 
be proven concerning this protocol. 

Lemma4. It holds that ( u l 1 . .  . un) k-’ 

Intuitively, the value p revealed in thc protocol gives no information on k since p 
is the product of k: with a random element a. This property is stated in the following 
1 emma. 

Lemma 5. (Informal) There exists a simulator SZM such that for  any adversary A 
with access t o t  shares k i 1 , .  . k,, of k ,  VZEW~(Reciprocal-Protocol(k1, ...) k n ) )  is 
computationally indistinguishable from SZ.M( k,, k t t ) .  

The proofs of the above lemmas are omitted here as they are implicit in the proofs of 
our protocols. 

Problem 2: Multiplication of two secrets. 
Given two secrets u and v, which are both shared among the players, compute the 
product uv, while maintaining both of the original values secret (aside from the obvious 
information which is revealed from the result). 

Given that u and v are each shared by a polynomial of degree t ,  each player can 
locally multiply his shares of u and v, and the result will be a share of uv on a polynomial 
of degree 2t. Consequently, the value uv can still be reconstructed from a set of 2t + 1 
correct shares. An additional re-randomization procedure (using the Joint-zero-SS 
protocol of Section 4) is required to protect the secrecy of the multiplied secret; this 
randomization is essential because a polynomial of degree 2t  which is the product of 
two polynomials of degree t is not a random polynomial, and would expose information 
about u and v. 
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We note that this solution to the problem of secret multiplication is a simplified 
version of the the protocols for the same problem presented in [BGWSS, CCDSS]. (In 
contrast to those works, in our case secrets are multiplied only once, thus saving most of 
the complexity of the solutions in the above works which mainly deal with the problem 
of repetitive multiplication. Even the simplified version of Rabin LRab951 for repetitive 
multiplication involves non-trivial zero-knowledge proofs for verifiability.) 

7 DSS-Thresh-Sig-1: Eavesdropping & Halting Adversary 

In this section we present our basic protocol for generating a distributed DSS signature. 

- It is a secure DSS threshold signature scheme in the presence of an Eavcsdropping 
Adversary (Section 3) when the number of players is n 2 2t + 1 where t is the 
numbcr of faults. 

- It is a secure DSS threshold signature scheme in the presence of a Halting Adversary 
(Section 3) when the number of players is n 2 3t + 1 where t is the number of 
faults. 

In other words, this protocol preserves security (secrecy and unforgeability) in the 
presencc of less than a half eavesdropping faults. On other hand, this protocol is robust 
in the presence of an adversary that in addition to eavesdropping can halt the operation 
of up to a third of the players by, for example, crashing servers, or disconnecting them 
from the communication lines. 

Outline. Initially every player P, has a share z, of the secret key z, shared through a 

polynomial F ( . )  of degree t ,  i.c. (zl, . . . , z,) +L z mod q.  First the players generate 
distributively a random Ic (through a random t-degree polynomial G(.)) by running 
the Joint Random Secret Sharing protocol Joint-Shamir-RSS (Section 4). To compute 
T = gk-' modp  without revealing Ic, the playcrs use a variation of the Reciprocal 
Protocol (Section 6) where the value 9"' is reconstructed rather than the value I c - ' .  
For the generation of the signature's value 5 ,  we note that s = k(m + ZC.) mod q 
corresponds to the constant term of the multiplication polynomial G(.)(m + rF( . ) ) .  
Since the players have shares of both G(.) and m + r F ( . ) ,  they can compute s by 
performing the Multiplication Protocol (Section 6 ) .  The full description of protocol 
DSS-Thresh-Sig-1 is presented in Figurc 1. It incorporates the multiplication and 
reciprocal protocols from Section 6.  

Notation. In the description of DSS-Thresh-Sig-1 we use the following notation for 
two share interpolation operations: 

( t  n) 

- u = Interpolate(vl, . . . , v,). If {q, . . . , vn} (n 3 2t + 1) is a set of values, such 
that at most t are null and all the remaining ones lie on some t-degree polynomial 
F ( . ) ,  then v = F ( 0 ) .  The polynomial can be computed by standard polynomial 
interpolation. 

- ,B = Exp-lnterpolate(wl,. . . , wn). If { w ~ ,  . . . , w,} (n 2 2t + 1) is a set ofvalues 
such that at most t are null and the remaining ones are of the form gaz mod p 

A 
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A where the a ; ’ ~  lie on some t-degree polynomial G(.), then ,B = gG(’). This can 

subset of the correct WI’S and X~,VI’s are the corresponding Lagrange interpolation 
coefficients. 

Lemma 6. DSS-Thresh-Sig-l is a simulatable (in particular unjorgeable) threshold 
DSS signature generation protocol in thepresence qfup to t eavesdropping ja fhults, where 
the total number ofplayers is n 2 2t + 1. 

Lemma7. DSS-Thresh-Sig-l is a ( t ,  0 ,  n = 3t i- 1)-robust threshold DSS signature 
genei-ation protocol, namely it tolerates up to t eavesdropping and halting.faults f t h e  
totalnumber ofplu.yers is n 2 3t + 1. 

The proofs of thesc lemmas follow the same lines of the proof of Theorem 9 in Section 
8. From the above lemmas we derive the following: 

Theorem 8. DSS-Thresh-Sig- I is a secure, i.e. robust and unforgL.uhle, threshold DSS 
signature in the presence o f t  eavesdropping (halting) faults i f  the total number of 
players is n 2 2t + 1 (n 2 3t + 1) 

be computed b y p  = niEV, wi A Z , V  = & v , ( g G ( i ) ) X * 8 v ’ ,  where V’ is a ( t  + 1)- 

8 Robust Threshold DSS Protocols 

In this section we present a robust version ofprotocol DSS-Thresh-Sig- 1 which remains 
secure even in the presence of a fully malicious adversury. The protocol, DSS-Thresh- 
Sig-2. relies on no assumptions beyond the unforgeability of regular DSS signatures, 
and can tolerate ?malicious faults. 

Outline. The protocol is very similar to DSS-Thresh-Sig-1. The only difference is that 
here we need verifiable sharing of secrets since we assume a Malicious Adversary. The 
randoin value k is jointly generated by the players using an unconditionallv secure VSS 
(Section 4). This guarantees that absolutely no information is leaked on the values k 
or k - l .  Then the players compute T as in DSS-Thresh-Sig-1, with the only difference 
that now the random value a is jointly generated using Feldman’s VSS protocol. As 
before s is computed from the appropriate shares. Whenever we reconstruct a secret, in 
order to detect bad shares contributed by malicious players we perform error-correcting 
using the Berlekamp and Welch decoder [BW]. As before randomization ofpolynomials 
(through the joint zero secret sharing protocols) is added in various places in order to 
hide possible partial information. The full protocol is exhibited in Figure 2 

Notation. In the protocol, we use the following notation: 

v = EC-Interpolate(q, . . . , vn) 
If {wlr . . . , w,} (n  = 4t + 1) is a set of values, such that at least 3t of the values lie on 
some 2t-degree polynomial F ( . ) ,  then u = F ( 0 ) .  The polynomial can be computed by 
using the Berlekamp-Welch decoder [BW]. 

An important technical contribution of our paper is the simulation and the proof of the 
security of this protocol. We prove the following theorem: 

A 
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DSS Signature Generation - Protocol DSS-Thresh-Sig-1 

I .  Generate k 
The trustees generate a secret random value k ,  uniformly distributed in Z,, with a polynomial 

ofdegree t ,  using Joint-Shamir-RSS (Section 4), which creates shares ( k l , .  . . , k , )  
k mod q. 

I Secret information of T; : share ki of k 1 

Execute two instances of Joint-Zero-SS with polynomials of degree 2 t .  Denote the shares 
created in these protocols as {b;}ie{l .,I and {C;} ,~CL ..,,I. 

2. Generate random polynomials with constant term 0 

Secret information ofT, : shares bi, ci 

3. Compute f = g k - '  mod p mod q 
(a) The trustees generate a random value a, uniformly distributed in Zt, with a polynomial 

of degree t ,  using Joint-Shamir-RSS, which creates shares (al, . . . , a,) tl-t a mod 
Q.  

( t  n) 

Secret information of Ti : share a; of a 

( 2 t  n) 

(b) Trustee Ti broadcasts zli = k;ai + b,  mod q and w; = g a s  mod p .  If Ti does not 

I Public information: { t ~ i } ; ~ i ~  ..,I, { g a a } i E { l  .,) I participate his values are set to nuE2. Notice that (211, . . . , v,) - k a  mod q. 

(c) Trustee T; locally computes 
A 

A 

A -1 

- p = Interpolate(vi, . . . , vn) mod q 

- 

- r = p  

[= ka mod q] 

[= (g")'-' = gk-'  mod p mod q] 

= Exp-lnterpolate(wl, . . . , w,) mod p [= g a  mod p ]  
mod p mod q 

4. Generates = k(m + m) mod q 

Public information: r 

(a) Trustee Ti broadcasts si = k,(m + Z ~ T )  + c; mod q.  If T; does not participate, his 
( 2 t  n) value s; is set to null. Notice that (31, . . . , 8 , )  - k ( m  + Z T )  mod q.  

Public information: {S.}~G{I n} 1 
A (b) Each trustee computes s = Interpolate(sl, . . . , sn) mod q.  

5. Output ( r ,  s) as the signature for m 
LPublic information: s 1 

Fig. 1. DSS-Thresh-Sig-1 -Halting (n 2 3t + 1) or Eavesdropping (n 2 2t + 1) Adversary 
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Theorem 9. Protocol DSS-Thresh-Sig-2 is usecure (unforgeableandrobiist! threshold 
signature protocol for DSS resistant to t faults against a Malicious Adversary, when the 
number ofplayers is n 2 4t + 1. 

It is important to note that unforgeability is obtained for n 2 2t + 1 (see Lemma 1 l), 
while n 2 4t + 1 is needed only for robustness (see Lemma 10.) 

Lemma 10. DSS-Thresh-Sig-2 is a ( h ,  c, n)-robust threshold DSS signature genera- 
tion protocol, i fh  + c 5 t and n > 4t + 1, that is DSS-Thresh-Sig-2 can tolerate up 
to Fmaliciousjaul ts  

ProoJ: The correctness of the protocol is due to the error correcting capabilities of 
polynomial interpolation. Since we are interpolating a polynomial of degree deg = 2t 
and we have f a u l t s  = t possible errors, using the BerlekampWelch bound we get that 
the number of points needed in order to correctly interpolate is deg + 2 f au l t s  + 1 = 
4t + 1. Hence, we set n 2 4t + 1. 

In order to prove the unforgeability of our protocol, we shall generate a simulator S Z M -  
2 which on input the public key y = 9” .  a message m and its signature ( T ,  s). the secret 
values o f t  players (without loss of generality) zl, ..., z t ,  can generate for the adversary 
a view of the protocol which is computationally indistinguishable from the actual view 
of the execution of the protocol. Note that when we say “without loss of generality”, 
there are two issues which are addressed here: i) that we are taking the,first t shares, i i )  
that SZ,M can not do better if it receives less than t shares. Both thesc points are easily 
argued. 
The simulator SZ,U-2 is a two phase protocol. The first one computes all the necessary 
information, and in the second phase it carries out the communication with the adversary 
A in accordance with protocol DSS-Thresh-Sig. The input to the second protocol is 
the output of the first one. SZ,,M-2 is described in Figure 3 .  

Lemma 11.  FixaMalicious adversary A. wheret is thenumberofjaults. WEWA (DSS-  
Thresh-Sig-2 (21, ..., z,, (m, y)) = ( T ,  3)) is computationally indistinguishable from 

n 

SZ.M/l(m, (7, s), Y, 2 1 ,  ..., .t). 

ProoJ: We shall exhibit the proof by analyzing the information generated by the protocol 
and the simulator in each step (the numbering of steps corresponds to the procedure 
described as SZMXonversation in Figure 3 and to the steps in protocol DSS-Thresh- 
Sig-2). 

I .  Both the protocol and the simulator execute a sharing of a random secret. As the 
sharing is information theoretically secure all subsets o f t  shares have the same 
probability. Thus, the sharings of two (possibly) different secrets, generate the same 
distribution for the sets of size t .  As A sees t shares in the protocol, and receives t 
shares from the simulator, this step is secure. 

2. The reasoning is similar to the previous step, but here the sharing is of a zero value, 
and the attached verifiability procedure is computationally secure. The simulatabil- 
ity of this step follows from the simulatability of Joint-Feldman-RSS. 
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Secret information of T; : a share a; of a 
Public information: gQ, go’, 1 5 i 5 n 

DSS Signature Generation - Protocol DSS-Thresh-Sig-2 

I .  Generatek 
The trustees generate a secret value k, uniformly distributed in Z,, by running 
Joint-Uncond-Secure-RSS with a polynomial of degree t .  Notice that this generates 
( k l , .  . . , k,) H k mod q. it,-) 

I Secret information of T; : a share k; of k 

2. Generate random polynomials with constant term 0 
Execute two instances of Joint-Zero-SS with polynomials of degree 2t  as underlying 
scheme. Denote the shares created in these protocols as  {br},c{l ,,) and {c,),c{i .). 

Secret information of T, : shares b; ,  c; 
Public information: go = 1, g b x ,  go = 1, g c ’ ,  1 5 i 5 n 

Public infomiation: vl, .. . , v, where for at least n - t values 
j it holds that vj = k,a, + b, mod q 

(c) Trustee Ti computes locally 

- p 
- p mod q [= k-la-’ mod q] 

- r = (g”)”-l mod p mod q 
Note: Even though the above computations are local, as they are done on public 
information we can assume that: 

Public information: T 1 

EC-lnterpolate(vl, . . . , v,)  mod q [= ka mod q]  
-1 

A [= gk-‘ mod p mod q] 

4. Generates = k ( m  + z r )  mod q 
Trustee Ti broadcasts s, = k;(m + z , r )  + c, mod q. 

Public information: 31, ..., sn where for at least n - t values 

Sets 2 EC-lnterpolate(sl, . . . , 3,). 
5 .  Output the pair ( r ,  8 )  as the signature for m 

Fig. 2. DSS - Distributed signature generation - Malicious Adversary, n 1 41 + 1 
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Input: public key y, message m, signature ( T ,  J) ,  shares 21, ..., z t  

SZM-Computation 

1 .  Pick random value k unjformly distributed in [O..q - 13. Generate sharing using uncondi- 

2. Execute two instances of Joint-Zero-SS with polynomials of degree 2t .  Set &, ti gb, and 

3. Choose a random value ji uniformly distributed in [O..q - 13. Denote T @  by ga. 

tionally secure VSS for k, denote the output of the sharing by k 1 ,  ..., k,,. 

gc' for 1 5 a 5 n to the output of these invocations. 

(We stress that gn is only a notation for 7 @ ;  the value i is never explicitly computed in the 
simulation), 

4. Choose t random values i1, .__,it uniformly distributed in [O..q - 11. Compute gn' for 
1 5 i 5 t. From the values ga and il, .._,it, generate gat for t + 1 5 i 5 n. Note that 
ga> = gXJ,'"C:,I ' J s r a '  = (gR)',.ogC:=i x J ~ i a '  for known values A j , i .  

5.  Compute 6 ,  = i,k, + b, for 1 5 i .< t. Compute share V ;  for t + 1 5 i 5 2 t ,  such that f i  

for 1 5 i 5 2 t  define a polynomial f(z) of degree 2 t ,  such that f ( 0 )  = F .  Complete the 
shares 6i for 2t  + 1 5 i 5 n so that 5, = f(i). 

kt(m + z,~) + 2i for 1 5 i 5 t. Compute share i, for t + 1 5 i 5 2 t ,  
such that Sl, ..., S z t  define a polynomial g ( + )  of degree 2t, such that g ( 0 )  = s. Complete 
the shares i, for 2t  + 1 5 i .< n so that i i  = g(i) 

A 

A 

6.  Compute i, 

A 

SZ.bf<onversation 

Comment: In each of the following steps we describe the information which SZM gives to A. 
Each of these steps relates to the same numbered step in protocol DSS-Thresh-Sig-2. 

1 .  shares k l ,  ..., kt 
2. shares b,, ii for 1 5 i 5 t 

public valuesg' = 1, g b s ,  1 5 i 5 n 
go = 1, gel, 15 i <: n 

3.  (a) shares i l ,  ..., it 
public values ga and g', for 1 5 i 5 n 

(b) public values il, ..., V n  
(c) twiddles his thumbs 

4. public values: i t ,  _ . _ , a n  

Fig. 3. Simulation Protocol for DSS-Thresh-Sig-2 
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3. (a) In the protocol A receives t shares a l l  ..., at of a proper sharing including g a  
and ga* for 1 5 i 5 n. As before ai for 1 5 i 5 t is uniformly distributed 
in [O..q - 11. The values & for 1 5 i 5 t were choosen by S Z M ,  under the 
exact same distribution (Step 4), hence the two distributions are the same. The 
value g6 was generated by choosing a random value ,ii uniformly distributed 
in [ l . . q  - 11 and computing ~ f i  which is equal to g l i - ' P .  The value k-lb is 
uniformly distributed in [ l . . q  - 11 hence the distribution of ga and gu are 
computationally indistiguishable. The rest of the values gBi fort  + 1 5 i 5 n, 
are obtained through a deterministic computation from g6 and g u z  for 1 5 i 5 t ,  
hence they too are compuationally indistinguishable from gat for 1 5 i 5 t .  

(b) The public values wl, ..., w, interpolate to some random uniformly distributed 
value in [ l . . q  - 11.Thc shares Gl, ..., Gn interpolate the value ,ii whichisrandom 
and uniformly distributed in [ l . . q  - 11. In addition, the share w;, for 1 5 i 5 t ,  
satisfies that vi = kia, + b,. The share Gi, for 1 5 i 5 t was generated in this 
manner (SZA.4-Computation Step 5) .  

4. Same argument as above noting that the shares interpolate the secret s. and that they 
were properly generated in SZJM-Computation Step h 

This completes the proof of Lemma 11 

9 Malicious Adversary, n 2 3t + 1 

We have also devised a DSS distributed signature generation protocol which is secure 
in the presence of a Malicious Adversary when n 2 3t + 1 where t is the number of 
faults. In other words, it is secure against an adversary who can corrupt at most a third 
of the players and can make them deviate arbitrarily from their prescribed instructions. 
For lack of space we present only an outline of the protocol. The details will appear in 
the complete version of the paper. 

However, this algorithm is provably secure only under the following assumption: 
let p be a prime of the form p = kq + 1 where q is another large prime and g an clement 
of order q in 2;. Let G be the subgroup generated by g. 

Conjecture 1 Choose u,  w at random, uniformly andindependently in 2,. The following 
probability distributionson G x G, (9" mod p ,  gu mod p )  and (gu mod p ,  g U - l  mod 
p )  are computationally indistinguishable. 

In other words, we assume that for random u, the value g" reveals no computational 
information on the value g" 
Outline. This protocol differs from the DSS-Thresh-Sig-2 by more extensive use 
of Feldman-type verifiability instead of using unconditioanlly secure VSS and error- 
correcting codes. This shift allows for achieving robustness in the presencc of larger 
number of malicious faults (a third instead of one fourth). The random value k is 
distributively generated using Feldman's VSS. Notice that this expose the value g k  
which is extra information that the adversary would not receive from a regular DSS 
signature. However if Conjecture 1 holds we can claim that this knowledge would not 
help an adversary in forging signatures (indeed if it did, such an adversary could be used 

- 1  

. 
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to distinguish between “reciprocals in the exponent“ - where k replaces the value u in 
the conjecture.) A difficulty arises when in the protocol we need to reveal the product 
of two secrets (i.e., when using the Multiplication Protocol of scction 6). In this case, 
the public information of Feldman’s VSS is not enough to detect faulty players who 
reveal incorrect multiplication shares. In order to overcome this difficulty we require the 
players to perfom Chaum’s zero-knowledge proof of equality of discrete-logs [Cha90] 
(originally designed in the context of undeniable signatures). The basic idea is that if two 
secrets a and b are shared with Feldman’s VSS, then each player has a share ci = ai b, 
of c = ab. However if we want to reconstruct c, we cannot sieve out bad shares as in 
Feldman, since we do not have the values gcl but only gas and g 3 * .  So we require each 
player to publish gaa3‘ and prove using Chaum’s proofthat DL,(gaz) = DL,b, ( g a t b Z ) .  
As before, randomization of polynomials is added when needed in order to protect 
partial information. 

10 Efficiency Considerations 

As in the case of the generation of regular DSS signatures the most expensive part of our 
protocols is thc computation of r ,  as it includes all the modular exponentiations and the 
interactive exchange of messages between players. However (as in the case of regular 
DSS signatures) such computation can be performed off-line. In this case the signature 
generation becomes extremely efficient and non-interactive. 
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