
Real-Time Vision Process ing for a Soccer 
Playing Mobile Robot  

Gordon Cheng and Alexander Zelinsky 

Department of Systems Engineering 
Research School of Information Sciences and Engineering 

The Australian National University 
Canberra, ACT 0200. Australia 

http: / / wwwsyseng.anu.edu.au/rsl/ 

Abs t r ac t .  This paper describes vision-based behaviours for an Autonomous 
Mobile Robot. These behaviours form a set of primitives that are used 
in the development of basic soccer skills. These skills will eventually be 
utilised in an effect to tackle the challenge that has been put forward 
by the "The Robot World Cup" initiative. The focus of the discussion 
will be on the vision processing associated with these behaviours. Exper- 
imental results and analysis of the visual processing techniques are also 
presented. 

1 I n t r o d u c t i o n  

In this paper we will discuss the basic soccer skills we have developed for a mobile 
robot. A self-contained autonomous mobile robot in a physical game of soccer 
provides an excellent challenge for robotics research. Under the initiative of the 
"The Robot World Cup" (RoboCup) [Kitano et al., 1997] the challenge was to 
construct robots to play a game of soccer. The system is our preparation for the 
up and coming RoboCup events (e.g. RoboCup'98).  Our current focus is on the 
pr imary sensing capabilities of the robot with emphasis on high and robust per- 
formances for the overall system. We believe providing a robot with specialised 
skills must come first, and must not be ignored before moving onto the design 
of higher level skills. We have commenced work on the construction of visual 
based behaviours for this challenge. We have commit ted to the development of 
loealised vision sensing for our robot. 

In order for a robot to play soccer it must be able to react to its changing ex- 
ternal environment quickly. It  must  also be able to navigate freely on the playing 
field while avoiding any obstacles in its way. A Behaviour-based [Brooks, 1986] 
approach for the construction of our system have been chosen. Our system are 
built from individual competence modules; which involve a strong coupling of 
the robot 's  sensors to its actuators. The end-effect of the collective interaction 
of the individual modules with the external environment produces a competent 
and coherent control system for the entire robot. 
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Fig. 1. System Configuration: a) Yalnabico Mobile Robot b) System Overview 

2 Our Sys tem 

The configuration of our experimentM system is shown in Figure 1 consists of 
three components, an Off-board vision processing unit, a Radio communication 
unit, and a Mobile Robot. The vision processor is a Fujitsu MEP vision system. 
It  comes with two processing modules, a video module and a tracking module. 
The system is designed to support  five tracking module simultaneously. These 
modules are connected via a VME-bus backplane to a Motorola MVMEo162 
Embedded Controller running the VxWorks operating system. The VxWorks 
operating system handles all program executions. A tracking module can track 
up to 100 templates in each video frame in a 30 Hz video stream. Currently 
we are using one tracking module. The video module provides two selectable 
input channels and one output  channel. All signals are NTSC video format.  A 
NTSC video receiver is connected to one of the input channels on the video 
module. This receiver is used to accept video signals from the mobile robot. 
The communications system is a SUN-workstation (running Solaris OS) with a 
radio modem attached. The communication system manages all network traffic 
between the vision system and our mobile robot(s).  For example,  once a image 
frame is processed, a command from the vision system is send back to the robot, 
guiding it on its way. 

The Yamabico mobile robot shown in Figure l a  [Yuta et al., 1991]. It  has a 
multi-processor based architecture that  houses a number of  processor modules. 
All of these modules communicate through the Yamabico-bus, using a Dual-Port-  
Memory mechanism. The robot has a MC68000-CPU master  module,  running 
the Morsa OS [Yuta et M., 1991]. A T-805 locomotion module,  that  provides 
all of the motor  feedback and control of the robot [Iida and Ynta, 1991]. An 
ultrasonic module is also provided on the robot, it is not used in our experiments.  
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In addition, a radio modem, a small size CCD camera and a video transmitter 
has been included in our system. The modem is used to communicate with the 
communication system. The video transmit ter  and camera provide video input 
to the vision system. 

2.1 I n f o r m a t i o n  f low 

The basic information flow of the system is the robot transmits video signals 
taken by the on-board CCD camera. A vision system connected to a video re- 
ceiver receives the signMs for processing and then sends the results to a SUN 
workstation. The workstation transmits the results back to the robot via the 
radio modem. An overview of this organisation is shown in Figure lb. 

_~ Adjust 
templates 

a) b) 

Fig. 2. Vision Processing: a) Processing flow, b) Template Matching 

3 Visual Processing 

One of the great challenges in robotics is to provide robots with appropriate sens- 
ing capabilities, that  can supply sufficient information to allow the accomplish- 
ment of a task within a reasonable response time. Many sensors such as sonar or 
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infra-red can only provide low-level range information, and cannot provide any 
kind of goal information. We believe vision cart accommodate this deficiency and 
provide a robot with the wealth of information its needs to accomplish tasks more 
effectively. By using efficient techniques, real-time performance can be achieved. 
The vision processing methods we are using are based on cross-correlation tem- 
plate matching. Template matching is a simple and effective method for image 
processing that allows us to achieve real-time performance. The free space de- 
tection process can be summarised as follows. Each image is segmented into a 
grid of 8 columns and 7 rows, producing 56 individual cells, each cell is 64x64 
pixels in size. Each of these cells in the live video is correlated against a stored 
image of the floor taken at the beginning of each experiment. Due to the lens 
distortion on the CCD camera that we are using, normalisatiou is performed on 
the correlation values. After normalising we perform adaptive thresholding of the 
correlation values, the result of this process determines the amount  of free space 
available to the robot. The goal-detection process utilises the values produced by 
the normalisation stage of the free-space detection process. An interest operator 
is applied to the normalised values, this operator highlights any features for the 
goal seeking behaviour to focus its attention on that could be interesting. To 
verify that the correct goal has been found a simple reassurance scheme is used. 
Each of these operations is explained later in the paper. The flow of processing 
for lighting adaptation is shown in Figure 2a. 

D = ~ ~-~ ] g ( x -  rn, y -  n) - f (x ,y)  ] (1) 
x y 

3.1 T e m p l a t e  M a t c h i n g  

For each template match, a correlation value Is produced ranging from 0 to 
65536. This value determines how well matching occurred (the lower the value the 
better the match). Figure 2b shows the correlation values using white squares, 
the better the template match the smaller the squares. These correlation values 
are calculated by using Equation (l) .  The basic assumption of this technique 
is that the floor the robot is to travel is of constant texture. As with template 
matching a set of stored templates are needed. % reduced storage space, one 
grid cell of the floor is stored for each row of templates to be matched. This cell 
is taken from the center of the image of a cleared floor. The correlation between 
the center and the outer edge of the image can vary due to the distortion of 
the lens. The normalisation stage of the visual processing combats this problem. 
Figure 3a shows a clear floor image taken from the CCD camera mounted on top 
of the robot. Figure 3b shows a plot of correlation values of this image. Figure 3c 
shows a plot after normalis~tion. 
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a) b) c) 

Fig. 3. a) Floor, b) Correlation plot of a floor, c) Normalised correlated values 

E(x, u) = 

e(o,o) e(0,1) . . .  e(0,,-1) 
- - . .  : 
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(2) 

3.2 N o r m a l i s a t i o n  

Empirically it was determined that  a polynomial relationship for the correlated 
values existed, due to the distortion of the camera lens. In Figure 3a, we can 
see the confidences of each template match plotted by the correlated values for 
each location of the image. The lower the value, the higher the confidences. To 
overcome this problem, a polynomial curve was fitted to the plot. For implemen- 
tation purposes the discrete form shown in Equation (2) was used to perform 
the normalisation. At each location of the template match, an associated error 
value is computed. 

3.3 C a l c u l a t i n g  Free-space  

Free-space is determine using a threshold value, this is calculated by using the 
new correlated values produced from the normalisation stage. The threshold 
value is determined using the variances between all the normalised correlated 
values, refer to Equation (3). This threshold is then applied to the normalised 
correlated values, the results are shown in Figure 3b. 

v) - / (3) (y 
n - 1  

3.4 D e t e r m i n i n g  ve loc i ty  

The velocity of the robot is calculated using the amount of free space that is 
available. The size of free space is determined by the Free-Space behaviour, and 
is calculated from the ratio of the maximum horizontal and vertical free space 
available in its view. The calculation is shown in Equations (4) and (5). 
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t O p s p e e d  == ~ T t a X s p e e  d X - -  
v (4) 

maxy 

ve loc i t y  = topspeed-- I tOpspeed × X 
~TtaX x 

I (5) 

3.5 I n t e r e s t - O p e r a t o r  

The Goal detection scheme in the original system searches the complete im- 
ages for a given goal, it was noticeably inefficient [Cheng and Zelinsky, 1996]. 
An interest operator was introduced to increase the efficiency of the goal seeking 
behaviour by reducing the search space. This interest-operator can also be used 
as a feature detector that doesn't use an explicit model, and leads to landmark 
acquisitions. The goal detection processing is as follows. An image from the 
video camera is shown in Figure 4a. This image is then processed through the 
correlation step describe previously. 'I'his produces the correlation values shown 
in Figure 4b. Normalisation is then performed on the values, as shown in Fig- 
ure 4c. The final step involves applying the Interest-operator, its effect is shown 
in Figure 4d. The Interest-operator produces a single peak that easily identifies 
a feature of interest in the robot's view, using Equation (6). This calculation has 
the effect of producing a second derivative of the correlated values. 

1:i] R(0 = 8 
- 1  

(6) 

b) c) d) 

Fig. 4. Interest Operator: a) Soccer ball, b) Correlated Ball, c) Normalised Ball, d) 
Segmented Ball 

3.6 S c r e e n  t o  f l oor  t r a n s f o r m a t i o n  

After determinating where in the video image we would like to move toward, we 
will need to transpose this location in the image to real world coordinates. Due 
to the fix configuration of the current camera system, minimum visual coverage 
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is provide to the robot, as shown in Figure 5a. By exploiting this constraint we 
have derived a simple pixel to floor transformation. 

The coordinate transformation is calculated by measuring four distances of 
the floor, as illustrated in Figure 5b and Figure 5c. The first distance is the height 
of the camera to the floor, heighty. The second distance is the nearest view point 
of the camera, blind u. The third distance is the furthest visible point to the top 
view of the camera, blind v plus lengthy. The third distance is the furthest point 
to the left/right of the camera view, lengthx. With these measurements we can 
calculate the three angles required, using Equations (7), (8) and (9). From the 
angles we can determine the angular ratio in both the x and the y directions. 
Figure 5b shows the side view of the robot. Figure 5c shows the top view of the 
robot. 

heighty =tan-' ] 

heighty 
0 = t a n - '  \b l in~y-+~engthy)  

(b in  + Z  g,hy 
/3 = tan -1 \ length~ ] 

(7) 

(s) 

(9) 

The following equation calculates the transformation of the yth pixel to the 
vertical distance on the floor. 

heighty roboty 
y = + ~ + blindy (10) 

......... Y tan 0 + ~cr~n~ 

where pixely is the yth pixel of the screen, roboty is the length of the robot 
in the y direction. 

The following equation calculates the transformation of the Z th  pixel to the 
horizontal distance on the floor. 

(Z (1-- (11) 
x = tan \ screen~ ] × y 

where p ixe4  the x th pixel of tile screen. 
From the Equations (10) and (11). we can calculate the floor space (x, y, 0) 

for the robot to travel towards from the corresponding point in the image space. 

3.7 Light ing A d a p t a t i o n  

A scheme for combating the problem of subtle lighting changes have been in- 
corporated into our system. Others researchers have also experienced problems 
using vision sensors, Lorigo [Lorigo, 1996] Horswill [Horswill, 1994]. Problems 
such as the shadow of an obstacle being mis-interpreted as being part of the ob- 
stacle. In our implementation, we use the correlation processor to determine the 
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Fig. 5. Camera configuration: a) Coverage, b) Side view, c) Top view 

b 

average intensity of an given region in the video steam. This allows the system 
to dynamically adapt to various lighting condition in real-time. 

?,,o,~ = E : ' E ~  I f (x ,y )  - Zt(x,Y) I (12) 
~¢tXn 

where f(x, y) is the greyvalue of the pixel 
in the last frame 
Zt (x, y) is a zero template 

io.,, I<_ So. } (13) 
= Ig~d L,o~ I> Sensitivity [,,o~ 

v(m, ~) : g( . , ,  n) = a(~, v ) +  ([o~ - s..~,~) (14) 
The adaptation process are as follow: 

calculate current irnage intensity, using Equation (12); 
- determine the differences between the old intensity of the initial template in 

comparison to the new intensity of the current image frame; 
- check if these differences are within a sensitivity range, using Equation (13); 

finally adjust each pixel of the template according to this differences, using 
Equation (14). 

Figure 6 shows our system adapting to subtle light changes in the environ- 
ment. The size of the black squares indicate the level of correlation, after adap- 
tation the correlation improves markedly. 

3.8 R e c o g n i t i o n / R e a s s u r a n c e  

The final stage of the goal detection process, reassures the goal detector that 
it is looking at the visual cue that it is seeking. Prior to the execution of an 
experiment a set of templates of the goal (e.g. Ball) are stored. All templates 
are recorded from various positions from the goal. 
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a) b) 

Fig. 6. Adapting to lighting changes: a) before, b) after 

3.9 Noise  f i l t e r ing  

Filtering is also performed to overcome the problems caused by noisy transmis- 
sion of the video signals to the vision system. The filter also performs sanity 
checking on all the commands that  are sent to the robot, this checking is done 
by a voting scheme. This ensures the robot does not get into states such as 
start-stop motion between consecutive video frames. 

3.10 S p e e d  o f  p r o c e s s i n g  

We deliberately slowed down the processing of video frames, this allowed us 
to analysis the performance of our overall system. It serves as an indication of 
the minimum amount processing that is required without a substantial loss in 
performance and functionality. In normal operation the system runs at 30 Hz (i.e. 
30 video frames a second), at 2 Hz the system's performance begins to degrades 
to the point that  it becomes unreliable. 

4 V i s u a l  B e h a v i o u r s  

We have based our system on three basic visual behaviours, Collision Avoidance, 
Obstacle Avoidance, and Goal Seeking. The focus of the discussion will be on the 
vision processing associated with these behaviours. The modular computational 
structure of a Collision Avoidance behaviour can be simplified into Detection 
and Avoidance. The detection stage involves determining the availability of free- 
space in front of the robot for unrestrained motion. If insufficient, free space is 
available the robot suppresses its other behaviours and activates the collision 
avoidance scheme (e.g. looking for a ball). A situation in which this behaviour 
can be activated is when the robot is not ab]e to move away from an obstacle, 
such as a dynamically moving obstacle (such as other robots). Therefore this 
behaviour acts as a safeguard for the obstacle avoidance behaviour. The Obstacle 
Avoidance behaviour works by searching for free space within the robot 's view 
of its environment. The robot 's  basic strategy is to move to where there is free 
space. The visual processing of the free space search for both of these behaviours 
will be discussed later. One of the problems with other vision-based avoidance 
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methods (such as optical flow Kr6se et al. [KrSse et al., 1997]) is their inability 
to integrate with goal based navigation and the inability to distinguish between a 
goal and obstacles. The Goal Seeking behaviour exploits the free space searching 
ability of the vision system. This behaviour allows the robot to focus its attention 
on searching for a given goal. Once a goal is detected, the robot will perform the 
associated action for that goal, (e.g. Soccer ball servoing). 

Avoidance 

Free 
Detection 

~alt 

Got Ball 
~ Precondition ) '  

Inhibit o 
~) b) 

Fig. 7. System Architecture: a) General Architecture, b) Simplified network of soccer 
behaviours 

4.1 S y s t e m  A r c h i t e c t u r e  

The general system control architecture is illustrated in Figure 7. Detection mod- 
ules are depicted as diagonal boxes, actual behaviour modules by rectangular 
boxes arid the diamonds are an indication of the associated actions. The arrows 
indicate preconditions to a behaviour, and lines with the small circle indicate in- 
hibitation. Figure 7 shows that the Collision Avoidance has the highest priority 
over all the other behaviours. The Free-Space-Move needs to be active when the 
Goal Seeking behaviour is activated. By adapting the goat seeking behaviour we 
can perform the appropriate actions. 

4.2  S o c c e r  ski l l s  

By exploiting the opportunistic property of the Goal Seeking behaviour we have 
developed basic soccer playing skills for our robot. A simplified network of be- 
haviours is shown in Figure 7b. In this version of the network of behaviours has 
multiple instances of the Goal Seeking behaviours, i.e. Kick Ball, Toward Goal 
and Goto Ball exist. 

G o t  Ball  Got Ball is determined by visually detecting if a ball is directly in 
front of the robot. 
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Goto  Ball  The Goto Bail behaviour is activated by Goal Detection, once a 'Ball' 
is detected the robot causing the robot to go towards the ball (visually servo- 
ing), as shown Figure 8a-b. The robot avoids obstacles on its way using Free- 
Space-Move. The motion of the robot is safeguarded by the Collision Avoidance 
behaviour. This behaviour is an instance of the Goal Seeking behaviour driven 
by a visual cue, i.e. "The Ball". 

Toward Goal This behaviour is triggered by a precondition from Got Ball, and 
its subsequent motion is determined by the Free-Space-Move behaviour together 
with its goal to move toward the Soccer Goal. 

Dribbl ing The effects of dribbling was achieved through the combination of 
Got Ball detection, and Free-Space-Move. 

a) b c) 

d) e) f) 

Fig. 8. Kicking 

Kick Ball This behaviour simply waits until the Soccer Goal are sufficiently 
close enough, then it activates a kick action. That is done by stopping then 
accelerating rapidly, producing a kick like action. Figure 8 shows visual servoing 
and then the kicking action by our robot. 

5 Conclusion and Further Work 

The system we have presented here demonstrated a set of basic soccer playing 
behaviours for a mobile robot. The was achieved through the use of local vision. 
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All of the behaviours exhibit real-time performance that are robust and reliable 
in both static and dynamic environments. In normal operation the current sys- 
tem can perform its task at a robot velocity of up to 0.5 m/sec.  Our aim is to 
move the robot at 1 m/sec. 

Image correlation is an efficient method for achieving real-time vision pro- 
cessing. Although our system performs visual processing using special hardware, 
we believed that the vision processing we have described is well within the reach 
of current commercial processors. This has inspired us to begin the construction 
of on-board vision processing modules for our future works. 

Presently our work has been primary focused on the development of robust 
vision based soccer skills for a mobile robot. The system in its current states does 
not conform with the rules that has been established in the present RoboCup. 
Further work will be gear toward a colour based image correlation system. This 
will allow our system to conform with the RoboCup specifications. Colour tem- 
plate matching will also enhance the reliability of our system. 
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