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A b s t r a c t .  In this paper, we study orthogonal graph drawings from a 
practical point of view. Most previously existing algorithms restricted 
the attention to graphs of maximum degree four. Here we study or- 
thogonal drawing algorithms that work for any input graph, and discuss 
different models for such drawings. Then we introduce the three-phase 
method, a generic technique to create high-degree orthogonal drawings. 
This approach simplifies the description and implementation of orthog- 
onal graph drawing, and can be applied to global as well as interactive 
and incremental settings. 

1 Background 

In recent years, graph drawing has created intense interest due to its numerous 
applications. In networking and database applications, graph drawings serve as a 
tool to help display large diagrams efficiently. Different drawing styles have been 
investigated (see [4, 5, 12, 211 for overviews). One drawing technique, called 
orthogonal drawing, routes edges along the rows and columns of an underly- 
ing rectangular grid. Specific uses of orthogonal graph drawings include Entity 
Relationship (ER) Diagrams and large industrial schematics. The goal is to ob- 
tain aesthetically pleasing drawings. Common objectives include small area, few 
bends, and few crossings. 

A drawing cannot be understood clearly if two edges overlap. Therefore, 
a feasible orthogonal drawing, with nodes drawn as points, is possible only if 
the maximum degree of the graph is at most four. Many orthogonal drawing 
heuristics have been developed for such graphs, see for example [2, 16, 18]. 

* This work was performed while the first author was working at, and the third author 
was consulting with Tom Sawyer Software. It was, in part, funded by the NIST under 
grant number 70NANB5Hl162. This paper is part of a series about the orthogonal 
library of the Graph Layout Toolkit produced by Tom Sawyer Software. Patent on 
these and related results is pending. 
These results are part of a Ph.D thesis of the first author at Rutgers University 
under the supervision of Prof. Endre Boros. 
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If the degree of a node v is larger than four, then more than one grid-point 
must be assigned to v. To maintain the semblance to a point, one uses a box which 
should not be too large. We discuss different models of high-degree drawings in 
Section 2. 

There are different approaches to orthogonal graph drawing with high degree. 
One approach is to modify the input graph until it has maximum degree 4, by 
splitting nodes into chains or cycles of nodes. Then an algorithm for 4-graphs is 
applied, possibly with some modification to ensure that split nodes are drawn 
as boxes. This approach was taken in the GIOTTO-system [19] based on the 
algorithm by Tamassia [18], and in the algorithm by Biedl and Kant [2]. Its 
main disadvantage is that we have to decide on the ordering of the edges around 
the node to split it, which imposes unwanted structure. Additionally, the boxes 
are often rather large relative to the degree of a node. 

Another approach is to directly assign boxes to nodes. Again there arises 
the difficulty to determine which edge should attach where along a side of the 
box. Also~ to increase space for adding a box, previously existing boxes may be 
stretched, so control over the dimensions of the boxes is hard to achieve. Most 
algorithms for visibility representations, i.e., orthogonal drawings in which all 
edges are drawn as straight lines, work in this fashion, see for example [17, 20]. 
Not every graph has a visibility representation. 

Only recently have there appeared algorithms for orthogonal drawings of 
any input-graph [7, 15]. These papers present algorithms where each edge has 
at most one bend. The first paper achieves a minimum number of bends (under 
the assumption that each edge may bend at most once) for planar graphs in a 
specialized model. The second paper presents an algorithm for general graphs 
with area guarantees of at most m x m/2. 

We present a third approach to create high-degree drawings, called the three- 
phase method. The main difference from the other approaches is that it first 
creates an infeasible drawing, called a sketch: we draw nodes as points and route 
edges with overlaps. Once all nodes and edges have been placed, we increase the 
nodes to boxes and determine the assignment of edges to particular port loca- 
tions. This choice can now be made while avoiding crossings, since the routing 
of edges is known. We study this method in Section 3. 

The three-phase method enables us to easily create an interactive framework, 
i.e., we allow the user to change the resulting drawing by adding or deleting 
nodes or edges, such that these changes result in only a small distortion of the 
picture. We study interactive drawings in Section 4, and end in Section 5 with 
conclusions and open problems. 

We have implemented the three-phase method as part of the Graph Layout 
Toolkit, a family of general-purpose graph visualization libraries developed by 
Tom Sawyer Software. This toolkit is available with a license agreement for use in 
commercial applications, and may be obtained for a very small fee by academic 
institutions. 4 

4 For information, see h~p://wu~.~omsa~yer.com or contact info@tomsa~yer.corn. 
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2 Different models for high-degree drawings 

In an orthogonal drawing, nodes should resemble points, hence it is undesirable 
that node dimensions are arbitrarily large. We present here three different models 
of orthogonal drawings, and discuss their advantages and disadvantages. 

2.1 The Unllmited-growth model 

In the first model, which we call the unlimited-growth model, no restrictions 
are placed on the dimensions of the boxes of the nodes. The GIOTTO system 
works in the unlimited-growth model [19], and so do all algorithms for visibility 
representations [17, 20]. The main advantage of the unlimited-growth model is 
that frequently we can stretch a node to cover the bend of an incident edge (see 
e.g. in [6]). In particular, planar graphs can be drawn without bends [17, 20]. The 
main disadvantage of this model is that nodes are not recognizable as points, 
and that we have no means of influencing the width and the height of the nodes. 

2.2 The Kandinsky model  

FSflmeier and Kaufmann introduced a model called the Kandinsky model [7]. In 
such a drawing, there are two different types of grid-lines. The grid-lines of a 
coarse grid are used to place the nodes. The grid-lines of a finer grid serve to 
allow edges to attach on each side of a node. 

The Kandinsky model has many appealing features. It is possible to draw the 
nodes such that the boxes are aligned and have the same size, thus the concept 
of points has been generalized. The Kandinsky model is probably the best choice 
for drawings with uniform node dimensions. A disadvantage of the Kandinsky 
model is that it is somewhat wasteful in terms of bends and grid-size. There 
exists a graph that must be drawn with m - 4 bends in the Kandinsky model, 
but that can be drawn without bends in another model. 

2.3 The Proportional-growth model 

The unlimited-growth model permits drawings with few bends, but may result 
in large node dimensions. The Kandinsky model permits control over the node 
dimensions, but may do so at the cost of introducing bends. Therefore we de- 
veloped a third model for high degree orthogonal drawings, which we refer to 
as the proportional-growth model. In this model, we allow nodes to grow in size, 
but the growth must be reasonable. 

Precisely, assume that we are given a drawing F. For each node, let r(v) be 
the number of edges that attach on the right side of the box of v in F. Similarly, 
we define l(v), t(v), b(v) for the other three sides. Our condition can then be 
formulated as follows: 

Definition 1. A two-dimensional drawing is said to be in the proportional- 
growth model, if for each node v, the width of the box of v is max{l, t(v), b(v)}, 
and the height of the box of v is max{l, r(v),l(v)}. 
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We have found the proportional-growth model to be a good model for prac- 
tical purposes. The growth of a node is related to its degree, and therefore nodes 
are not too distorted. In fact, some users have remarked on the degree-related 
node-growth as a positive feature of a graph visualization library~ since it imme- 
diately displays influential nodes in diagrams. 

3 The three-phase method 

In this section, we introduce the three-phase method. Besides the three main 
phases, which are illustrated in Fig. 1, there are pre~processing and post-processing 
steps. In Fig. 5 on Page 10, we show a flow chart of the process of creating an 
orthogonal drawing. 

Fig. 1. A drawing after the three main phases. 

The three-phase method is not an algorithm in itself, but it is a framework 
that unifies different approaches. It can be used for either of the three models. It 
is easily changeable, since an algorithm for a phase can be replaced by a better 
algorithm, if one becomes available in the future. 

3.1 Pre-processing steps 

Before starting the layout process, we apply the transformations needed to con- 
vert the graph into a normalized graph, Le. a connected graph without reflexive 
edges and without nodes of degree 1. If the input graph is not connected, then 
we draw each connected component separately. Each reflexive edge is removed 
and added into the finished drawing close to the node. Each node of degree 1 is 
removed, and added into the finished drawing close to its neighbor. 

3.2 Node placement 

The first main phase of the algorithm is called node placement. In this and the 
following phase, we draw the nodes as points, not as boxes. During the node 
placement phase, we assign each node to a point in an n x n-grid such that no 
two nodes are placed at the same point. 
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Any node placement is feasible, even though some can be achieved only by 
allowing more than one bend per edge. A node placement is said to be in general 
position if no two nodes are placed on the same grid-line. If G is a normalized 
graph, then for any node placement in general position, we can achieve an m × m- 
grid and one bend per edge (see Section 3.6). 

A node placement is an assignment of nodes to an n x n-grid. Thus, it can 
be formulated as a 0-1 integer program with n 3 variables, and adapted to a 
number of objectives, such as for example the edge length. Solving this problem 
to optimality is prohibitively slow, therefore one has to develop heuristics. 

M e d i a n  p lacemen t  We present here one heuristic for node placement, called 
the median placement strategy. To add a node v into a given drawing, let 
w l , . . . ,  w~ be the embedded neighbors of v. A natural place for v is "in the 
center of its neighborhood", that is, roughly equidistant from w l , . . .  ,wr. 

Let wj be placed at (xj,yj), and sort the neighbors of v such that xi~ _< 
. . .  _< x~i,, and yj~ < . . .  < y$,. Let k be the median of {1, . . . ,  s} and define the 
median center as (x~, yj~). Place vi+l in a newly added row and column next to 
the median center. To compute the median center we need the relative order of 
xj and yj, but not the absolute values, and it can be found in O(deg(v)) time. 

The median-placement should be used in an interactive setting if we want 
to add a new node into an existing drawing. A similar technique is one of the 
options used in the interactive technique described in [13]. 

3.3 Edge  routing 
The second phase of the algorithm is called edge routing. Assume that the node 
placement has been chosen. Now we want to decide on a route for each edge. 
During this phase, edge routes may intersect nodes or overlap each other, such 
conflicts will be removed during port assignment. For each edge, there are at 
most two possible routes with one bend. 

Computing an edge routing with at most one bend per edge corresponds to 
a 0-1 integer program with at most m + 2n variables, which can be adapted to 
objectives such as the desired dimensions of the nodes and the hail-perimeter of 
the drawing. Solving this problem to optimality is prohibitively slow. A simple 
heuristic, using a Eulerian circuit, yields the following result. Details are omitted. 

L e m m a  2. For any node placement in general position, there is an edge routing 
with one bend per edge such that at most r ~  edges attach on each side of a 
node v. It can be found in O(m) time. 

Another heuristic, based on randomized rounding of the optimal fractional 
solution of the 0-1 program yields the following result. Details are omitted. 

L e m m a  3. For any normalized graph and any node placement in general posi- 
tion, if HPxp is the optimal halfperimeter (among the edge foulings with one 
bend per edge), and HPRR is the randomized rounded halfperimeter, then 

" ( '> , ,  > " , , 0  + < 
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Routes  wi th  more  than one bend Sometimes we want to route edges with 
more than one bend. In this case, we triple the grid before edge routing, i.e., 
in both orientations, we add one new grid-line before and after each used grid- 
line. Define the off-grid-lines of a node v as the grid-lines before and after the 
grid-line of v. To route an edge e = (v, w) with more than one bend, we use the 
off-grid-lines at v and w, see Fig. 2. An off-grid-line may be used by more than 
one edge route, such overlap will be removed during port assignment. 
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Fig. 2. An edge route with three bends. Grid-lines 
dashed. 

are dotted, off-grid-lines are 

With three bends per edge, we can achieve the minimal possible node dimen- 
sions, again using a Eulerian circuit. Details are omitted. 

L e m m a 4 .  For any node placement there exists an edge muting with three bends 
per edge such that at most [de~4~ ] edges attach on each side of a node v. It can 
be found in O(m) time. 

3.4 Port  ass ignment  

In the third phase, called port assignment, we increase node dimensions, adding 
new rows and columns if needed. Afterwards, each node v has a number of 
intersections with grid-fines, these places are called the ports of v. We assign a 
port to each endpoint of an edge such that no two edges overlap. 

Such an assignment is not always possible without adding bends to edges. We 
will study in the following sufficient conditions for the existence of a port assign- 
ment without additional bends. Then we study how to achieve these conditions 
by adding bends and changing the node placement. Port assignment is done for 
one grid-line at a time, after the feasibility of port assignment has been assured 
for all grid-lines. Thus, during port assignment for a row, the port assignments 
in the columns stay unchanged, and vice versa. 

One node  per gridoHne Assume row r contains only one node v. We add 
max{1,r(v),l(v)} - 1 new rows after r, and extend v to cover these rows. We 
assign the edges to ports of v in such a way that no two incident edges on one 
side intersect. The resulting drawing is in the Kandinsky model. 
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H a m U t o n i a n  pa ths  If the graph induced by the nodes in one row contains 
a hamiltonian path, then port assignment is possible such that the resulting 
drawing is in the proportional-growth model. Details are omitted, see Fig. 3. 

Fig.  3. Port assignment g the row graph has a hamiltonian path (shown in thick 
lines). 

Non-overlapplng trees If the graph of the nodes and bends in one row con- 
tains a rooted spanning tree such that for any two siblings ~ and ~, the column- 
intervals spanned by the descendants of ~ respectively ~ are disjoint, then port 
assignment is possible such that the resulting drawing is in the proportional- 
growth model. Details are omitted, see Fig. 4. 

Fig. 4. Port assignment if the row graph contains a non-overlapping tree. 

Reso lv ing  conflicts Port assignment is not always possible, and we also may 
not want to spend the time to find out, since testing some of the conditions 
is JV'P-complete. Hence, we proceed as follows: Pick a condition that we would 
like to satisfy. Apply a simple heuristic to determine whether the condition is 
satisfied (it may erroneously report that it is not). If the condition is not satisfied, 
determine edges and nodes that prevent the condition, these are the conflicts. 

Conflicts can be resolved in two possible ways. One simple solution is to re- 
route a conflicting edge with two or three bends. Alternatively, we can split the 
nodes in one grid-lhle into two groups, and move one of the groups to a newly 
added grid-line. This maintains the property that every edge is routed with at 
most one bend. Dets~is are omitted. 

3.5 Post-processlng steps 

There are two types of post-processing steps. First, we have to undo the changes 
of the pre-processing step, i.e., add previously removed trees and reflexive edges 
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and combine the drawings of connected components. Secondly, we improve the 
drawing, by applying compaction techniques from VLSI-design, see the book by 
Lengauer [9]. 

3.6 Bounds 

Let h(v) and w(v) be the height and width of v, so in the proportional-growth 
model, h(v) = max{1,r(v),l(v)} and w(v) = max{1,t(v),b(v)}. We use the 
values as updated after the port assignment (they might change if we re-route 
an edge or re-locate nodes). In a drawing with at most one bend per edge, each 
used grid-line contains a node, therefore the total height cannot be more than 
~']~ev h(v). If (v, w) is an edge drawn without bend, then its row is used for 
both v and w. So if th is the number of horizontal straight edges, then the height 
is ~ e v  h(v) - th. Similarly one shows a bound for the width. 

L e m m a  5. If  F is a drawing with at most one bend per edge, and with th and 
t~ straight horizontal and vertical edges, respectively, then the height is at most 
Y']~veV h(v) - th, and the width is at most ~ e v  w(v) - t~. 

Two important results follow from this lemma and Lemmas 2 and 4. 

T h e o r e m  6. For any normalized graph G and any node placement in general 
position, we can find an edge routing and port assignment such that the resulting 
grid-size is m x m and each edge has one bend. 

T h e o r e m  7. For any normalized graph G and any node placement, we can find 
an edge routing and port assignment such that the resulting side-length of the 
grid is at most ~m + ¼n, the halfperimeter is at most 3m + n, and each edge 
has at most three bends. 

4 Interactive drawings 

In this section we show that the three-phase scheme is helpful for developing 
efficient interactive high-degree orthogonal drawing algorithms. In an interactive 
setting we are given a legal orthogonal drawing, and an operation such as insert 
a node, insert an edge, delete a node, delete an edge, or move a node. The 
objective is to perform the desired change without major disturbance to the 
existing drawing, in order to preserve the "mental map" [11]. Algorithms for 
interactive orthogonal drawing were presented in [10, 13, 14]. 

The main problem in interactive drawing is to detect sufficient existing space 
or increase the space for adding edges and nodes, and to delete superfluous 
space. We attack this problem by uncompressing and then again compressing 
the drawing with every interactive change. Also~ to find a suitable place to add 
grid-lines, if needed, we revert the valid drawing back into the sketch-status with 
every change. See Fig. 5 for a flow-chart of the interactive process. 

Thus, we need only describe the changes to the sketch in the five possible 
interactive operations. For each, there are only a few affected grid-lines of the 
sketch, and only for these grid-lines do we undo the port assignment. 
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Fig.  5. The flow-chart of the three-phase method. 

D e l e t e  an edge  If we delete an edge e = (v, w), the affected grid-lines are the 
ones that  contain a segment of e. We delete all segments of e, and test for each 
affected grid-line whether it still contains elements; if not, we delete it. Then 
we try to join each affected grid-line with another grid-line, if this is feasible for 
port assignment. 

D e l e t e  a n o d e  If we delete a node v with incident edges e l , . . .  ,ed, the affected 
grid-lines are those that  contain some segment of some edge e l , . . . ,  ed, and both 
grid-lines of v. We delete the edges el, .. •, ed as described above. Then we delete 
v, and check whether the grid-lines containing v are now empty; if so, we delete 
them. Then we merge each affected grid-line with another grid-line, if this is 
feasible for port assignment. 

I n s e r t  a n  edge  If we insert an edge e = (v, w), the affected grid-lines are both 
grid-lines of both v and w. We test whether we need a bend for e, and if so, 
where to place it. 

We first try to route e without bend. Thus, if v and w share a grid-line, then 
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we draw e as a straight line, if this is feasible for port assignment. Otherwise, 
we try whether v and w are in neighboring grid-lines. If so, we test whether it 
is feasible for port assignment if we join these two grid-lines and add edge e to 
it. If not, then we try whether v and w are in neighboring grid-lines in the other 
direction and proceed similarly. If neither of these options is successful, then we 
conclude that  e must be drawn with a bend. 

If e must be drawn with a bend, then we have two possibilities to route e. 
Possibly a preference for the routing has been indicated (see later in "Moving 
a node"). Otherwise, we determine a route with the chosen heuristic for edge 
routing. 

I n s e r t  a n o d e  If we insert a node v with incident edges e l , . . . , ed ,  where 
ei = (v, wi), the affected grid-lines are the horizontal and vertical grid-lines of 
wi, i = 1 , . . . , d .  

We first need to find a good placement for node v. This could have been indi- 
cated already (see "Moving a node") by listing the closest neighbors ws, WN~ WE 

and ww in either direction. We add a new row between the rows of ws and WN, 
and a new column between the columns of wE and ww, and place v in it. If 
no placement was indicated, then we choose one, for example using the median 
placement discussed in Section 3.2, and add a new row and column there. We 
route e l , . . . ,  ed as described in the previous subsection. 

M o v i n g  a node  Moving a node is probably the most important interactive 
change, and it builds on top on the previous operations. In order to move a node 
v, we determine the nodes WN, wS,WE and ww that  are closest to the desired 
new place of v in the four directions. We also store for each incident edge of v 
whether it attached to v horizontally or vertically. 

We delete v and all its incident edges, and then re-iusert v, using the infor- 
mation about the four closest neighbors. Then we insert the incident edges of v 
with the same bend placement as before, if possible. 

Worst-case  b o u n d s  At any time, every edge has at most one bend, so we use 
at most one row and one column for each edge. For some nodes, all incident 
edges may attach in one orientation, say horizontally, thus one column is not 
accounted for by any edge. Consequently, the total grid-size may be at  most 
m + n in either orientation. 

T h e o r e m  8. Let G be a graph that is changed interactively, through insertions, 
deletions, and move operations. Under any sequence of operations, we can main- 
tain a drawing of G with only local changes. At any time, the grid-size is at most 
(m + n) x (m + n), and there is at most one bend per edge, where n and m are 
the current number of nodes and edges. 
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5 Conclusion 

In this paper, we introduced the three-phase method for creating orthogonal 
drawings of graphs with high degrees. This method breaks the layout problem 
into three separate phases, and thus permits detailed study of each. With this 
method, we can create drawings in a newly defined model, ca~ed proportional- 
growth model, which allows us to save bends and at the same time maintains 
box dimensions of nodes within reasonable bounds. 

The three-phase method is general and flexible, and has numerous applica- 
tions, including the following results for normalized graphs: 

- Any simple graph can be embedded in an ~ x ~ - ~  ~-grid with at most 1 
bend per edge [3]. 

- Any simple graph can be embedded with half-perimeter 2 m - n  with r a - n + l  
bends and at most one bend per edge [1]. 

- Any simple triconnected planar graph can be embedded without crossings 
771 in an (m - n + 1) x min{m - n, T}-gnd with m - n bends and at most 1 

bend per edge [3]. 

- For any given node order {v l , . . . ,  vn }, we can build a drawing incrementally 
by adding nodes in this order, such that with any addition there are only 
local changes. At any point in time, the grid-size is at most ( ~ + n )  x (2re+n) 
and there is one bend per edge [3]. 

- Relative node placement constraints: For any pair of nodes v, w, we can spec- 
ify whether v should be below w, or whether v should be to the left of w, or 
both, as long as these constraints are not contradictory in themselves. The 
drawing has grid-size m x m and at most 1 bend per edge [1]. 

- Port specifications: We can specify constraints of the form "edge (v, w) should 
attach at the top side of node v, and it should be the kth of the edges 
attaching there" [1]. 

One other advantage of the three-phase method is its adaptability: the al- 
gorithm for a phase can be replaced by a better algorithm, when one becomes 
available in the future. We expect further improvements on the area bounds and 
number of bends, based on this method. 

As for open problems, we plan to develop improved node placement schemes. 
In theory, a node placement in general position gives the best known worst-case 
bounds (compare Theorem 6 with Theorem 7). But if we place more than one 
node into a grid-line, and if this does not create a conflict for port assignment, 
then we save one bend and therefore also one grid-line (Lemma 5). So a node 
placement scheme is best in terms of area if it permits many nodes in one grid- 
line, while satisfying a necessary condition for port assignment. How can such 
a node placement be found? How can node placements be found that ensure a 
small number of crossings? 
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