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Abs t rac t .  Although routing is a well-studied problem in various con- 
texts, there remain unsolved problems in routing edges for graph layouts. 
In contrast with techniques from other domains such as VLSI CAD and 
robotics, where physical constraints play a major role, aesthetics play the 
more important role in graph layout. For graphs, we seek paths that are 
easy to follow and add meaning to the layout. We describe a collection of 
aesthetic attributes appficable to drawing edges in graphs, and present a 
general approach for routing individual edges subject to these principles. 
We also give implementation details and survey difficulties that arise in 
an implementation. 

1 I n t r o d u c t i o n  

Edge placement is an important  problem in graph drawing. Once nodes are 
positioned, edges must be added in a way that clearly exhibits the relation 
between nodes, without adding clutter or deceptive artifacts. For example, it is 
usually desirable that  an edge between two nodes does not pass through a third 
node. When nodes are not drawn as points but are represented by symbols or 
shapes that  have area, the difficulties of edge placement increase. Layouts need 
to employ edges that  bend significantly to avoid touching non-incident nodes. 
Bent edges can be drawn as polylines, or as curves such as Bezier sptines. Though 
polylines are often easier to compute, their sharp corners create unwanted visual 
discontinuities that  smooth curves do not have. 

Curves have been employed previously in drawing edges in layered graphs. 
In these layouts, nodes are assigned to discrete layers and edges between nodes 
that  are more than one layer apart are replaced by chains of virtual nodes. 
Virtual node chains provide a useful framework for spline fitting. In VCG [18] 
and dag [7], splines are computed by straightening virtual node chains, then 
connecting the virtuM nodes with line segments and replacing the sharp corners 
with bends that  fit within individual virtual node boxes. Though the results are 
usually acceptable, it is not unusual for edges to curve abruptly because turns 
are constrained to fit inside virtual node boxes. 

* Portions of the work of this author done while visiting AT~T Laboratories. This 
work supported in part by NSF Grant CCR-9643913 and by the US Army Research 
Office under Grant DAAH04-96-1-0181 
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The method used in dot [6] incorporates a more general heuristic with two 
phases. For a given edge to be drawn, the first phase computes the "white space" 
or constraint polygon where the edge may be drawn so as not to touch any 
other nodes or create unwanted edge crossings. The second phase fits a smooth 
spline connecting the edge's endpoints and staying within the constraint polygon. 
The endpoints can have optional slope constraints. The spline fitting heuristic 
computes a trial spline between the endpoints. If the spline goes outside the 
constraint polygon, and it cannot easily be repaired by slight re-aiming, then 
the spline fitter subdivides the polygon near the broken constraint and draws 
the top and bottom halves recursively. 

We simplified dot's spline fitter by assuming that the input constraint poly- 
gon is represented by a list of connected isothetic rectangles, and that the output 
spline passes through these sequentially. The list of rectangles is easy to com- 
pute from virtual node coordinates and spacing between layers. Its structure also 
makes it straightforward to test if a Bezier curve 3 stays inside the polygon, and 
to subdivide it for recursion. 

We would naturally like good edge placement not only in layered graphs 
but in other types of layouts as well, e.g., layouts based on virtual physical 
models, but the rectangular technique is limited to edges in layered graphs. 
Even in layered graphs, this technique is not always satisfactory. Problems arise 
in representing the region for an edge that is constrained by another edge shm'ing 
the same endpoint if the angle between the 2 edges is small. In such cases, 
it takes many "steps" in the boundary rectangles to keep them apart. Other 
complications arise when drawing self-edge loops, or flat edges between nodes 
in the same layer, particularly if endpoint "ports" or other path constraints are 
allowed. These problems suggest re-examining the edge drawing problem in a 
more general setting. 

As an initial simplification, we consider drawing edges independently, i.e., we 
draw an edge without regard to how any other edges may be drawn. We recognize 
that this ignores any consideration of the global properties of edge layouts, such 
as reducing edge crossings or emphasizing edges running in parallel. 

In this reduced formulation, edge placement is essentially a routing problem. 
Routing paths around obstacles has been studied extensively in VLSI layout, 
computational geometry, and robotics path planning. Dubins' classic result [4] 
shows how to find shortest paths of bounded curvature between two points in 
the plane with defined tangents at the endpoints. This result has been extended 
in various ways [1, 10, 17]. 

Many path planning problems address limitations of robot carts or manipu- 
lators, where physical constraints must be accommodated. Schwartz and Sharir 
[20] studied planning collision-free paths for obstacles. Fortune and Wilfong [5], 
Kanayama and Hartman [11], Nelson [14], Laumond [13] and others have stud- 
ied reaehabitity and path planning problems for a point or object subject to a 

3 dot uses piecewise cubic Bezier curves because this family of spline curves is imple- 
mented in the PostScript graphics language and in public domain graphics code, and 
so is convenient to work with. 



264 

curvature constraint. Latombe [12] (who also presents a thorough survey of the 
field) studied potential field methods for path planning. This is an interesting 
approach, though simulating electrostatic fields created by polygonal antennae 
seems complicated. Suri [21] showed how to find minimum link paths in simple 
polygons. These paths are interesting because they have a minimal number of 
corners. Consequently, they can take extreme routes that deviate significantly 
from shortest paths. 

Physical constraints such as robot size, mass, acceleration, or turning radius 
do not have a clear relationship to natural-looking curves in graph drawings. 
In general, the bulk of work on route planning does not seem to capture the 
properties we feel are desirable in drawing edges in graphs. We turn next to a 
discussion of these properties, and our approach to achieving them. 

2 Problem Definit ion 

Though we cannot formally define what it means for an edge connecting two 
vertices to appear natural, we believe good solutions avoid other vertices in the 
graph, stay close to a shortest path between the endpoints, do not turn too 
sharply, and avoid unnecessary inflections. 

Taking one approach to satisfying these criteria, we restate our edge routing 
problem. As a model for the problem, we consider a graph layout to consist of 
a polygon 7' consisting of a simple polygon containing a collection of disjoint 
simple polygonal holes, corresponding to the node obstacles. Given two points p 
and q on or in the interior of P, possibly with tangents vp and Vq, respectively, 
we want to find a smooth piecewise cubic Bezier curve from p to q, satisfying vp 
and vq, that stays on or within 7". 

As a first attempt at solving this problem, we considered constructing a 
simple path L between p and q (typically a shortest path) within the interior of 
P. We could then compute some simple polygon Q that surrounded L and did 
not contain any holes. Finally, we could apply some procedure for fitting Bezier 
curves within the simple polygon Q. 

One question was how to define "good" choices of Q. We speculated that good 
choices might be ones that are as wide as possible at the bisectors of bends of L, 
so that the output curve has as much room as possible to turn. We experimented 
with a heuristic that constructs a route constraint polygon on each side of L. On 
each side, the polygon is calculated by taking each segment of L and building 
a polygon with the segment as a base. For a segment s = (pi,P~+l) of L, let bi 
and bi+l be the bisectors of the corners at Pi and Pi+t.  Find the set of obstacles 
between bl and b~+l on the given side of s. If there are no obstacles, then the 
polygon formed by s, bi and bi+l is added. Otherwise, the convex hull of the 
obstacles is removed from the polygon first. 

We found this heuristic complicated to implement because of degeneracies, 
and because if L is allowed to be any simple path (e.g. one entered interactively), 
ensuring that Q does not intersect itself involved many cases. Because of these 
difficulties, we abandoned this approach and evolved the following heuristic. 
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3 Spline Fitting Heuristic 

Let 7 ) be a polygon and S a set of forbidden segments. (Typically, these segments 
will be the edges of the polygonal holes and the bounding polygon.) Let p and 
q be points in 7). The spline fitter is divided into two algorithms. The first finds 
a shortest path L within 7), connecting p to q, that  intersects no edge in S 
except possibly at an endpoint. There is a choice of algorithms here depending 
on whether 7) can contain holes. The second algorithm fits a Bezier curve along 
L that  intersects no edge in S except at an endpoint. 

3.1 Path Finding 

If io does not contain holes (e.g., when emulating the spline router for layered 
graphs used in dot), we can apply a standard "funnel" algorithm [2, 9] for finding 
Euclidean shortest paths in a simple polygon. To find a shortest path from point 
p to point q in a simple polygon, we first triangulate the polygon, using only 
vertices of the polygon. We then find the triangles that  contain points p and q, 
say tp and tq. We then find the sequence of triangles that  connect tp and tq by 
doing a depth-first search starting from tp and searching for tq. This induces a list 
of triangle sides (a~., bi) interior to 7 ) and crossed by the shortest path from p to 
q. We then iteratively build a funnel composed, at each step, of the two shortest 
paths from p to a/ and hi. Once q is added to the funnel, we have the shortest 
path from p to q. Given the requisite triangulation, the funnel construction phase 
runs in linear time. 

If 7) may contain holes, then we compute the visibility graph of its points 
plus the two endpoints, and apply Dijkstra's algorithm to find a shortest path 
between the endpoints. The details of this algorithm are omitted. 

3.2 Spline Fitting 

Using the shortest path L as a guide, we recursively at tempt to fit a curve 
to it that  avoids the obstacles. We use an approach based on the curve-fitting 
method introduced by Schneider [19]. As input, we start with a collection of 
points po,pl, ...,p~ that  we wish to fit, initially using the vertices of L, plus 
tangents to and t~ specified at P0 and p,~. Applying Schneider's method once, 
we compute a single cubic Bezier segment corresponding to four control points 
w0, Wl, w2, w3, where P0 = wo, p,~ = w3, and the segments [wo, wl] and [w~, W3] 
are parallel to the given tangents at P0 and Pn, respectively. 4 If this curve does 
not intersect any of the obstacles, we are done. 

If there is an intersection, we at tempt a series of local adjustments, in which 
we move wl and w2 closer to w0 and w3, respectively, along the appropriate 
tangents. If, at any stage, we obtain a viable curve, we are done. Otherwise, 

4 If there are only two input points, we put wl and w2 along the appropriate tangents 
at a distance of d/3 away from p0 and pn, respectively, where d is the distance 
between p0 and p,~. 
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we pick the point pi that is furthest from the Bezier curve, compute a tangent 
ti that bisects the angle turned at Pi, and recursively apply the algorithm to 
the points po,pl, ...,p~ with tangents to and ti, and to the points pi, ...,pn with 
tangents t~ and tn. 

Note that, using this construction, there is no guarantee that the resulting 
curve is topologically equivalent to L. At some point, a Bezier segment may "leap 
over" an intervening obstacle. The approximation is good enough, however, that 
the resulting curve would still be adequate for our purposes and, in practice, this 
situation does not seem to arise. 

4 I m p l e m e n t a t i o n  

With general edge routing as a goal, we have implemented the path planner as 
a C library. Its main primitives are: 

- shortestpath(P, p, q): finds a shortest path between p and q in a simple 
polygon P. 

- obspath(obstacles, p, Ppoty, q, qpo~y): finds a shortest path between p and 
q not intersecting the interior of any polygons in the list obstacles. When 
an endpoint is inside an obstacle (as in Figure 2), the obstacle must be 
ignored for the route. It is possible that the caller knows when this happens. 
For example, a graph layout algorithm may know the endpoint nodes, or 
an interactive diagram editor may perform hit detection on canvas objects. 
When an endpoint is known to be inside an obstacle, the obstacle may be 
passed as an argument, viz. Ppoly or qpoly. 

- splinefit(barriers, L, vp, vq): returns a piecewise cubic Bezier that fits around 
the input path L and avoids the list of segments in barriers. The arguments 
vp and vq provide tangent vectors for the first and last points of L. Generally, 
L was obtained from one of the two previous primitives. Note that barriers 
can be any collection of segments, not necessarily forming closed polygons. 

The current implementations provide room for increased efficiency. The ob- 
spath routine uses a naive O(n 3) visibility graph algorithm. We intend to re- 
place this with a more efficient algorithm [8, 16]. For interactive or incremental 
layout, incremental visibility computation would obviously be desirable. The 
current version of splinefit tests each spline against all barrier edges separately 
for intersections. This is a quadratic algorithm. When this becomes too stow, a 
bucketing technique can be implemented to get near-linear behavior. Finally, we 
use an O(nlogn) triangulation algorithm in shortestpath. 

5 Observat ions  and Conclusions 

Figures 1 - 4 are screen dumps from sample runs of the edge router. Although the 
obstacles in these examples are different from what would be expected in graph 
drawing, they exhibit the wide applicability of our technique and the quality of 
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the resulting paths. With each figure we give the time in milliseconds needed 
to compute the route, measured on a Silicon Graphics Indigo2 computer with a 
250MHz MIPS R4400 processor and R40t0 floating point unit. The measurement 
is divided into the time to compute the visibility graph (which may be amortized) 
plus the time to find a shortest path and fit a spline. 

Figures 5 a.nd 6 show the router in a graph editor, its intended domain. 
Figure 5 was made with manual node placement, and figure 6 with the dynadag 
hierarchical layout manager [15]. 

We are not aware of any formal studies about what kind of edge routes 
are most effective for information visualization. Without a formal definition of 
what it means for a spline to be "good," an evaluation of our results must 
be subjective. We speculate that when drawing edges manually, humans try to 
interpolate between a shortest path and a path of minimum curvature while 
avoiding obstacles. 

We have ignored the problem of routing multiple edges. Instead, we route 
individual edges independently. Further work is needed to understand how edge 
routes interact. One simple approach, foreshadowed by the edge layout in dot, 
is to route edges consecutively, determining the "territory" available to an edge 
based on neighboring edges already routed. Clearly, the order of edge drawing 
becomes significant, as an edge route can affect others drawn afterward. How 
should the order be planned? Should previously drawn edges ever be moved? 
Would a more global approach to routing multiple edges offer better results? 

Polygons only approximate regions bounded by curved edges and nodes 
with curved boundaries (such as ellipses or boxes with rounded corners). Re- 
implementation of the router with splinegons [3] is worth consideration. 
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Figure 1 (28.1+7.8 ms.) 

Figure 2 (31+38 ms.) 
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Figure 3 (46.8+15.0 ms.) 

Figure 4 (742.0+123.0 ms.) 
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Figure 5 

Figure 6 


