
Automatic Abstraction Techniques for
Propositional p-calculus Model Checking*

Abelardo Pardo and Gary D. Hachtel

University of Colorado
ECEN Campus Box 425, Boulder, CO, 80309, USA

{abel ,hacht el}@vls i. colorado, edu

A b s t r a c t . An abstraction/refinement paradigm for the full proposi-
tional p-calculus is presented. No distinction is made between universal
or existential fragments. Necessary conditions for conservative verifica-
tion are provided, along with a fully automatic symbolic model checking
abstraction algorithm. The algorithm begins with conservative verifica-
tion of an initial abstraction. If the conclusion is negative, it derives a
"goal set" of states which require further resolution. It then successively
refines, with respect to this goal set, the approximations made in the sub-
formulas, until the given formula is verified or computational resources
are exhausted.

1 I n t r o d u c t i o n

The success of formal verification in detecting incorrect designs has been proven over
the last decade. However, limitations on the size of verifiable problems continue to be a
serious drawback. Typically, a sequential system is modeled as a collection of interacting
subsystems. As new subsystems are added the number of states may grow exponentially.
This is known as the state explosion problem. This problem has become the focus of
intense research in the last few years. Symbolic techniques based on BDDs (Reduced
Ordered Binary Decision Diagrams [3]), such as symbolic model checking [5, 16] have
significantly increased the size of the systems which can be verified. However, there are
numerous examples for which additional techniques are required.

Abstract interpretation [7] is one approach to alleviate the state explosion problem.
An abstracted system is obtained from a given concrete system by modeling groups of
states as a single state. In contrast, BDD-based techniques tend to stay in the given
state space, while providing a more compact representation. In [15] Long proposed a
conservative abstraction paradigm that preserved the validity of the logic VCTL. This
method was one-sided, in that it considered only upper bound approximations of the
underlying Kripke structure. In [6], a procedure for approximate traversal of large sys-
tems was presented, based on automatic state space decomposition. This technique was
similarly one-sided, and applied only to reachahility analysis. Neither of these methods
provided a procedure for automatically refuting the approximation until verification
was conclusive.

In [13], Kurshan described an abstraction paradigm called "localization reduction"
in the context of w-regular language containment based on reducing the parts of a sys-
tem that are irrelevant with respect to the task being verified. A systematic procedure

* Work supported by NSF/DARPA grant MIP-94-22268 and SRC contract 95-DJ-560.

13

was sketched which refined the approximations based on error trace analysis. A related
iterative approach to abstraction in language containment verification was presented
in [1]. In contrast to Kurshan's method, this was BDD-based, and the refinement con-
sidered sets of error traces. However, the details of i terat ing their method to a definite
conclusion were omitted. These methods used only upper bound approximations of the
underlying Kripke structure.

In [14], a method was given for conservative CTL model checking. Although this
approach used both upper and lower bounds, and included a complete procedure for
refining the initial approximation, it was limited to VCTL. In [11] Kelb et al. pro-
posed an abstract ion mechanism for p-calculus model checking based on two novel
approximations, which were called universal and existential. The process required the
intervention of the user. Although this approach applied to the full p-calculus, and
used both upper and lower bounds, only one (very interesting) type of approximation
was used, and no automatic refinement procedure was given.

In this paper, novel techniques are presented for generic, BDD-based, fully auto-
mated abstraction for p-calculus model checking. A complete procedure for automat-
ically refining the approximations is included. This procedure is "lazy", in the sense,
that it refines approximations in sub-formulas only where necessary. The "goal set"
refinement method differs from the error trace refinement methods of [13] and [1] in
that it is uniformly applicable to upper and lower bounds and to all p-calculus formu-
las, whereas error traces are available only for upper bounds applied to universal CTL
formulas or language containment. However, a superficial resemblance between the two
can be discerned for some sub-formulas.

The plan of the paper is as follows. In Section 2 an overview of the propositional
p-calculns is given, and a labeled operational graph is defined. Section 3 lays the
foundation for conservative p-calculus symbolic model checking. A condition is given,
in terms of the operational graph labels, to determine whether an over-approximation
or under-approximation is required at the level of any sub-formula. In Section 4, a
fully automatic BDD based model checking procedure is presented. The algorithm has
two phases. First, it is shown how the given formula is tentatively verified with an
initial abstraction. Then, it is shown how the algorithm recursively traverses every
sub-formula and checks if the current approximation can be refined to achieve exact
verification.

2 P r o p o s i t i o n a l / z - c a l c u l u s a n d S y m b o l i c M o d e l C h e c k i n g

The propositional p-calculus was introduced in [12]. It consists of propositional modal
logic with a least fixed point operator. This calculus has been shown to be strictly more
expressive than conventional temporal logics such as CTL, LTL and CTL* [8,9]. Also, it
can express the language containment relation between two deterministic w-automata.

2 .1 S y n t a x a n d S e m a n t i c s o f the Propositional I t - c a l c u l u s

Let us denote by A a set of atomic propositions with p E A and let X denote a set of
variables with x E X. The syntax of a formula r is defined by

r ::= r A r 9r] EXr I px.r Iv I x. (1)

14

In order to insure well-defmedness of the semantics, each occurrence of the variable
x in the formula px.r must be within the scope of an even number of negations. This
restriction ensures monotonicity and therefore existence of the fixed point.

A state satisfies the formula EXr if r is satisfied in one of its immediate successors.
We will denote by Lp the set of closed formulas obtained with the sets A and X and
the grammar in Equation 1.

D e f i n i t i o n 1. A Kripke structure is a tuple M = (S, R, A, A) in which S is a set
of states, R _ S x S is a transition relation, A is a set of atomic propositions, and
X : A -:~ 2 x is a labeling function that returns the set of states in S labeled with a
given atomic proposition.

D e f i n i t i o n 2. Given a Kripke structure M = (S, R, A, ~) and a set of states $1 C S,
we define the image function Img(R, S~) as the set of states $1 such that Ys E $1,3s ~ E
$2 ~ (s', s) E R. We also define the reverse image function Pre(R, $1) as the set of
states $2 such that Ys E $2,3s I E $1 9 (s,s') E R.

Note that both Img and Pre are monotonic functions, that is, if we replace either
operand by a subset or a superset, we obtain a subset or a superset of the exact result.

Given the set of variables X and a state space S, we define an environment as a
function e : X -4 2 S. Given a Kripke structure M the semantics of r E L are defined as
the function Sat that given a formula and an environment, it returns the set of states
satisfying the formula. When necessary, we will write SatM to make the intended Kripke
structure explicit. Figure I shows the algorithm to compute this function. Emerson et
al. proved that model checking problem for this calculus is exponential in the alterna-
tion depth of the formula [9]. However, the depth of most useful temporal formulas is
two or less.

f u n c t Sat(v, e) =_
case TypeOf(v) d o

and(v1, v~): r e t u r n EvalAnd(vl, v~, e);
not(v1): r e t u r n EvalNot(vl, e);
EX(vl) : r e t u r n EvalEX(vl, e);
px.vl : r e t u r n Evalpx(vl , e);
Atom(p) : r e t u r n)~(p);
Var lab le(x) : r e t u r n e(x);

e n d ca se
e n d
f u n c t EvalAnd(vl, v2, e) =_

r e t u r n Sat(vl~ e) n Sat(v~, e);
e n d

f u n c t EvalNot(vl, e) =-
r e t u r n Sat(vl, e);

e n d
f u n c t EvalEX(vt , e) =_

r e t u r n Pre(R, Sat(v1, e));
e n d
f u n c t Evalpx(v, e) =-

x :-- ReadVariable(v);
result := 0;
d__p_o

e(x) := result;
result := Sat(v1, e);

w h i l e (result ~ e(x)) od;
r e t u r n result;

e n d

Fig. 1. p-Calculus Model Checking Algorithm.

15

Given a Kripke structure M, a state s satisfies the formula r denoted by (M, s)
r if and only if s E Sat(r e• where e• is the environment that maps every variable
to the empty set.

2 .2 G r a p h R e p r e s e n t a t i o n o f a F o r m u l a

The verification algorithm of Figure 1 uses a graph representation based on the parse
graph.

D e f i n i t i o n 3. We define the labeled operational graph of the formula r E Lp as
G = (V, E, P). V is a set of vertices. Each vertex is of the type {and, not , EX, px} U
{Atom(p) 9 p E A} U {Variable(x) 9 x E X} and represents a sub-formula of r We
will refer to a vertex or the sub-formula it represents interchangeably. (vl, v2) E E if
v2 is a direct sub-formula of vl. We will denote by tope E V the vertex representing
r Every vertex v is labeled with a polarity which is the number of vertices of type
not that are traversed in the path from v to tope excluding v itself. P is a function
P : Y --+ { + , - } such that P(v) = + if v has odd polarity and P(v) = - if v has even
polarity.

Identical sub-graphs with identical polarity labeling represent common sub-formulas
and therefore are shared.

2.3 B D D s a n d S y m b o l i c M o d e l C h e c k i n g

BDDs [3] provide a canonical and efficient representation of boolean functions. Fur-
thermore, although BDD size is exponential in its worse case, practical cases have been
shown to present very compact representations. By a symbolic model checking algorithm
we refer to an algorithm in which boolean functions are represented by BDDs [5].

In order to manipulate BDDs it is necessary to encode the state space with boolean
variables. Let us denote by u the array of boolean variables required to encode the state
space S of a given Kripke structure. Following this notation, we will represent a set
in the state space S as a boolean function S(u) such that, if s E S then S(fl(s)) = 1
where/3(s) is the binary encoding of s. Analogously, a relation R will be represented
as a boolean function R(u, w). Henceforth, whenever a set or a relation is mentioned
we will be referring to its symbolic representation.

3 Conservative Abstract ion

Abstract interpretation is a paradigm first introduced by Cousot et hi. [7] in the context
of static analysis of programs. The main idea is to interpret the behavior of a system in
a different abstracted (and therefore simplified) system with fewer states. In the context
of symbolic model checking, the complexity of the algorithms depends no longer on the
number of states but on its representation as BDDs. An abstracted system therefore
must be simplified so as to provide more compact BDD representations of the sets
appearing in the verification algorithm.

The abstraction techniques presented in this paper assume that the state space in
the concrete and abstract systems are the same. The simplification is based on taking
supersets and subsets of a given set with a more compact representation.

16

3.1 C o n s e r v a t i v e t ~ - c a l c u l u s M o d e l C h e c k i n g

In our abstraction, the concrete and abstract system share the same state space. Thus,
we state the conservativeness property in terms of an approximation Sat of the function
Sat.

A

D e f i n i t i o n 4. Given a Kripke structure M, we say the function Sat provides a con-

servative interpretation if and only if Vr E Lit, Sat(C, eL) C_ Sat(r , eL).

If the conservative verification algorithm proves the formula true, we can conclude that
the formula is true in the concrete system. However, if the formula is proved false, no
conclusion can be drawn in the concrete system. This definition can be reversed to
provide conclusive verification when a formula is false, providing a refiable false result.
"Reliable positive" conservativeness is assumed in the sequel. However, the techniques
presented apply dually for both cases.

Let us denote by I the set of initial states of the system represented by the Kripke
structure M. The system satisfies the formula r if and only if [C Sat(e, eL). Due to

the conservativeness property I C_ Sat(r177 ~ I C Sat(r , eL).

L e m m a 5. Let us consider an operational graph G = (V, E, P) and two vertices Vl, V2

such that (vl, v2) E E. Let us assume that in the computation of Sat(v1, e) the evalua-
A

tion of v2 has been approximated by Sat(v2, e). If vl is of type no t and Sat(v2, e) is a
superset (subset), then the computed Sat(v1, e) is a subset (superset) of the exact result.
If Vl is of type and , EX, or px and Sat(v2, e) is a superset (subset), then Sat(vt , e)
also is a superset (subset) of the exact result.

Proof. The first part of the lemma is trivial by set complementation. If vl is of type
a n d the lemma is true by monotonicity of boolean conjunction. If vl is of type EX
then by monotonicity of the Pre function the lemma holds. If vl is of type px the
lemma is proved by induction over the number of symbols in the formula represented
by v2. If the length is 1 the lemma is trivially true. Let us assume the lemma is true for
formulas of length up to n. The approximation is reflected in the value of the variable
x. By definition this variable must be within the scope of an even number of negations.
By the induction hypothesis, approximation of the vertex v2 is consistently of the same
type throughout the fixed point iteration, thus the lemma holds. D

T h e o r e m 6. Let us consider a Kripke structure M, a formula r E Lp, and its labeled
A

operational graph G = (V, E, P). Any function Sat such that for every vertex v E V

A

Sat(v, e) C_ Sat(v, e) if P(v) == +

Sat(v, e) ~ Sat(v, e) if P(v) = -

(2)

provides a conservative interpretation of r in M.

Proof. By Lemma 5, all the vertices propagate the direction of the approximation
except those of type no t which switch the direction. By Defmition 4, the set Sat(tope, e)
must be under-approximated. The approximation taken at any sub-formula must be
such that when propagated to the top vertex it translates into a subset of Sat(tope, e).
This condition is guaranteed by the function P. []

17

This result is advantageous in the verification process. For example, there is no need
to distinguish between universal and existential sub-formulas. Also, the approximations
can be produced at the level of any sub-formula.

An approximation may be created not only on the transition relation of the system
inside the function EvalEX but on any type of vertex. For example, in a vertex v of
type a n d such that P(v) = +, we may evaluate only one of the operands and return it
as the result since it is a valid superset of the exact Sat function. Further, this paradigm
allows for an incremental approach to verification. First, an initial approximation of all
the vertices is obtained. Second, a set of vertices is chosen in which the approximations
are to be refined. This is the essence of the algorithm presented in Section 4.

Theorem 6 also provides a condition that is local for every vertex. Two vertices
of the same type representing different sub-formulas need not have the same kind of
approximation. For example, we may provide different estimations of the transit ion
relation R in the evaluation of different E X vertices. This property may be considered
an advantage if we have a local measure of how the approximation must be refined
locally to increase its exactness globally.

4 An Automatic Abstraction and Refinement Algorithm

In this section a novel verification algorithm is presented that exploits the advantages
of the above paradigm. The conservativeness property is preserved by the local approx-
imations made at relevant vertices. The automatic procedure successively refines these
approximations until the formula is decided or resources are exhausted.

The proposed algorithm has as one of its parameters, a limit on the size of the
BDD representation of the intermediate results. At the end of the computat ion either
the formula is proved true, the formula is proved false or the memory limit is reached
and therefore no conclusion can be drawn.

The algorithm has two phases: Creation of the initial approximation, and successive
refinement. In the first step, the algorithm traverses tile labeled operational graph and
obtains an approximation for every evaluation of the function Sat at every vertex. To
guarantee conservativeness, the type of approximation is determined by the condition
in Theorem 6. Once the first abstract ion is obtained, if the formula is proved false, the
graph is traversed by depth first search to detect vertices whose approximation can be
refined. At a given vertex, the algorithm a t tempts to improve the approximation with
respect to a given "goal set". This set is obtained by propagating to other vertices in
the graph the condition to achieve verification in the top vertex.

4 .1 I n c r e m e n t a l A p p r o x i m a t i o n s

The elementary units of the algorithm are the evaluation functions shown in Figure 1. If
they satisfy the following two properties, we will call them incremental approximations.
First , they must return a superset or subset of the exact result according to the polarity.
Second, note that the BDD size limit may be reached at any point in the computation.
Thus, we require that all par t ia l results constitute valid approximations.

The generality of this paradigm leaves the choice of the type of approximation
techniques open. A candidate set of techniques are provided which meet the require-
ments of our paradigm. In principle, any other technique that complies with the above
conditions can be used.

48

We now show how to generate the two types of approximations. Since the negation
of a function represented by a BDD is a constant time operation that has no effect on
its size, the function EvaINot is computed exactly.

C o n j u n c t i o n O p e r a t i o n : The function EvalAnd takes the conjunction of the
result of evaluating its two sub-formulas. We rely on the monotonicity property of
this function to provide the required approximations. A superset is obtained by over-
approximating either of its operands. A BDD representing the characteristic function
of a set may be reduced in size by either adding or subtracting elements to that set.
In the case of an over-approximation the operands are simplified by adding elements
to the sets. In a vertex of type a n d the algorithm checks if the size of either of the
operands exceeds its limit. If so, the operand(s) are simplified before the conjunction
is taken.

If an under-approximation is required we rely on the following decomposition

a(u) A b(u) = (~ A (a(u) A b(u))~,) v (~ A (a(u) A b(u))~ ,) (s)

where the subscript symbolizes the cofactor operation with respect to a variable. This
decomposition is applied recursively. At each recursive step, both operands are cofac-
tored with respect to a variable, thus reducing the size of the candidate conjunction.
When enough reduction has been achieved, the conjunction is returned as a valid subset
of the exact result.

F i x e d P o i n t C o m p u t a t i o n : The part ia l results /~i obtained while i terat ing the
least fixed point satisfy 0 = p0 C_ . . . C_ p~o. If an under-approximation is required, any
set p~ constitutes a valid result. In this case, the algorithm iterates for an arbi trary
number of steps and returns the result without reaching convergence. This scheme also
provides a natural way to refine the approximation. If the approximation previously
computed needs to be refined, it is enough to apply several additional iterations, since
each of them creates a superset of the previous result.

The other possible scenario is that the fixed point vertex has P(v) = + and therefore
an over-approximation is required. In this case the fixed point i teration has to reach
convergence before returning a correct approximation. At each i teration of the fixed
point, the algorithm monitors the size of the representation of p~. Whenever this size
reaches a certain limit, it applies a BDD simplification procedure that reduces its size
while creating a superset. When convergence is reached, the result is guaranteed to be
an over-approximation of the real result.

P r e C o m p u t a t i o n : The Pre operation is often responsible for the increase in size
during the verification process. Even though both the operands and the final result
may have a compact representation, the intermediate results may go beyond the com-
putat ional limit. One method that significantly minimizes this effect is to manipulate
the transition relation as a conjunction of relational blocks [4]. The reverse image is
now obtained by successive steps of conjunction and variable existential abstraction.
Several heuristics have been develop to compute the way the relation is broken into
blocks and the order of the blocks so to minimize the size of the intermediate results
(i.e. [10]).

The proposed EvalEX function modifies such reverse image computat ion in two
different ways. The first method takes the conjunction and existential abstract ion of the

19

relational blocks until a certain limit in the size of the intermediate result is reached.
At that point, no more conjunctions are taken and all the remaining variables are
quantified, yielding a superset. The second method amounts to sub-setting or super-
setting C in Pre(R, C).

If a vertex of type E X has P(v) = - then the algorithm must provide an under-
estimation. The algorithm builds its result incrementally, and it is a modification of
the one proposed in [17]. With this scheme, the algorithm builds the reverse image by
recursive cofactoring the set C. If at any point during this recursion, the intermediate
results grow too large, the algorithm returns the current part ial result.

4 .2 R e f i n i n g t h e A b s t r a c t i o n

We assume that for every vertex v an initial approximation denoted by Satv has been
obtained, and the verification of the formula is false. We describe the approximation
of a vertex with respect to a set f . . If the vertex has been over-approximated, the
refinement amounts to producing a new result such that f . is not included in it. If the
vertex has been raider-approximated, the refinement amounts to computing a new set
which includes f . .

Figure 2 shows the pseudo code for the generic procedure to refine the approxima-
tion in a given vertex. The specifics depend on the type of vertex and are explained
subsequently. This procedure is preliminary and may be substantially improved, so
only the main ideas behind it are presented.

f u n c t Refine Vertex(v, fv):boolean --
i_f (fv = 0) t h e n r e t u r n TRUE;
i f (Sat~ is an approximation) t h e n

:(Sat,,] ~) := Refine A pproximation(Sat~ , f~);
i__f (f~ = O) r e t u r n TRUE;

fv : = f ~ ;
e n d i f
Sort Sub-formulas;
f o r e a c h (Sub-formula vi) d__o_o

fvi := PropagateGoalSet(v, vi);
resulti = Refine Vertex(v i , fvl);

od
i__f (RefinementInSubFormulas(result)) t h e n

Sat" := ReEvaluate(v);
i f ((P(v) = +) A (f , n Sat~ = 0)) r e t u r n TRUE;
i__f ((P(v) = -) A (fv C Sat,)) r e t u r n TRUE;

e n d i f
r e t u r n FALSE;

e n d

F ig . 2. Algorithm to Refine the Approximation in a Vertex.

20

D e f i n i t i o n 7. Let us assume that an evaluation of the function Sat at a vertex v has
been approximated. For a given set of states f~ the refinement of Sat~ with respect to
f~ computed in the procedure of Figure 2 is successful if the new approximation Sat"
satisfies

Sat'~ C Sat~ \ f~ i f P (v) = +

Satv U f~ C_ Sat'~ i f P (v) = - .

(4)

In other words, if Satv has been over-approximated, the refinement attempts to
exclude the elements of fv from the approximation. Conversely~ if Sat~ has been under-
approximated, the refinement attempts to increase the set to include the elements in
Iv. Note that since the algorithm works with memory limits, it is possible that in the
attempt to refine the approximation, a limit is reached and the refinement fails. The
procedure in Figure 2 returns TRUE if the new refinement satisfies Equation 4 and
FALSE otherwise.

When the procedure is applied to a generic vertex v, there are two possible scenarios.
The initial approximation Sat~ has been either computed in the vertex itself, or it has
been propagated from the approximation of any of its sub-formulas.

If the approximation has been produced in the vertex itself, the proper incremental
approximation procedure described in Section 4.1 is re-execnted. However, this time the
approximation process is modified so as to include or exclude the set f~ from the result.
For example, in a vertex of type EX the initial result has been over-approximated by
considering a subset of relational blocks. The refinement algorithm computes a new
approximation but this time considering the relational blocks that exclude the set f~
from the result.

If the new approximation succeeds with respect to the whole set f~, the procedure
returns TRUE. If not, the set fv ~ contains the elements of fo that were not refined from
Satv. If no further approximation has been produced in v the whole set f~ is recursively
propagated to the sub-formulas.

The sub-formulas of v are scheduled for refinement with criteria based on the size of
the BDDs and the depth. The depth of a formula is defined as the length of the longest
path to a leaf vertex. The propagation of the set f~ to the sub-formulas is different
depending on the type of v.

- N e g a t i o n Ver tex: The vertex of type no t has a single sub-formula vl and the
set f~ is propagated such that fvl = fv-

- C o n j u n c t i o n Vertex: Let us assume that v has sub-formulas vl and v2 already
sorted by increasing depth. If P(v) = + then fv~ = f~ and fv2 = Sate1 n fv. If
P(v) = - then fvl = f~ and f ~ = f~.

- EX Vertex: In this vertex, Sat~ = Pre(R, Sate1). The set f~l is propagated such
that f~i = Img(R, f ,) .

- Fixed P o i n t Vertex: For this type of vertex the algorithm has stored the sequence
of intermediate results p l , . . . , t~-~. The refinement process is applied at first to the
set pro. If the approximations cannot be improved, the refinement keeps propagat-
ing to the sub-formula and eventually the refinement is applied to the set t~n-1.
The propagation of the set f~ is f.~ = f~.

- Var iab le (x) Vertex: Although this vertex does not have any sub-formulas, the
refinement process may be propagated through it. Intuitively, if a vertex of this
type needs to be refined, that refinement refers in fact to the temporary result
produced by the fixed point that binds the variable x. Therefore, the refinement

21

process is propagated to the vertex representing the fixed point sub-formula. The
refinement of the fixed point vertex refers now to the set/~i-1 where #i is the set
that has been considered for refinement the last. Independently of the value of
P(v), the propagation is such that fV 1 ~ fV'

The vertex of type Atom(p) constitutes the trivial case of the recursive procedure,
and since no approximations are computed, the procedure returns FALSE with no
further computation.

After the algorithm recursively refined the approximations in the sub-formulas, it
checks if v needs to be re-evaluated again. For example, in a vertex of type px with
P(v) --= q- if the last set computed in the fixed point has been refined, the fixed point
has to be iterated until it reaches convergence again. In the case of a vertex of type
a n d it simply re-computes the conjunction.

To guarantee the correctness of the procedure in Figure 2 we need to prove that
the refinement process succeeds in v if the propagated refinement succeeds in the sub-
formulas.

P r o p o s i t i o n 8. Given a vertex v with sub-formulas vl (and v2 when applicable), for
every sub-formula vi , Refine Vertex(vi, f , i) = TRUE ~ Refine Vertex(v, f ,) =- TRUE.

Proof. If v is of type not , since no approximation is made, SaG = -~Sat, 1 and Sat~ =
~Sat~. For P(v) = +, the polarity of Vl is P(vl) = - and therefore Satvl U f,~ C_
Sat~ ~ Sat" C Sat, \ f , . If P(v) = - then P(vl) = + and since Sat~ C Sat,~ \ f ,
then Satv U fv C Sat'.

If v is of type a n d and P(v) -- - , then the proposition holds because if the
refinement process succeeds in both sub-formulas, then f~ C_ Sat~ and f~ C_ Sate2.
Since Sat" = Sat~ NSat~2 then f~ C Sate. If P(v) = q- the refinement of f~ propagates
to both formulas. If the process succeeds in both sub-formulas then fv ~ Sat~ 1 and
f~ ~= Sate: and therefore f~ ~ Sate.

If v is of type EX then Sat, -= Pre(R, Sat,~). If P(v) = + the success of the
refinement at the sub-formula vl implies Sat~ C Satv~ \ f~ . Since fvl = ling(R, f~)
there is no pair of states s~, s2 such that Sl E f~, s2 ff Sat~ and (81, s2) ~ R. Therefore
Pre(R, Sat'~) C_ SaU \ f~. The proof when P(v) = - is analogous.

When v is of type t~x the theorem holds independently of the polarity. The fixed
point does not perform any type of computation over the result obtained from its
sub-formula. Thus the refinement of Vl propagates to v.

Ifv is of type Var iab le(x) it is true that Sa t ,= Satv~ then Sat" = Sat~. Therefore
if the refinement succeeds in vl it also succeeds in v. []

T h e o r e m 9. For a given vertex v, an approximation Satv, and a set fv, the algorithm
of Figure 2 returns TRUE if Equation 4 is satisfied and FALSE otherwise.

Proof. If the approximation Sat, has been computed locally in v (independently of the
result of its sub-formulas) the first part of the algorithm guarantees that the elements
of f . are included or excluded from Sat, depending on P(v). Those elements that
could not be refined from f . are propagated to the sub-formulas of v following the
rules discussed above and the theorem holds because of Proposition 8. []

The initial refinement set f~ is obtained from the top vertex in the graph. Since
we assumed that our verification procedure is conservative and the initial approxima-
tion proved the formula false, then I ~ Sat(tope, e• Since P(topr = - , if the set
Sat(tope, e• is increased by I\Sat(topr e• the verification is successful. Therefore the
refinement process starts with the function call Refine Vertex(topr I \ Sat(tope, e•

22

5 C o n c l u s i o n s a n d F u t u r e W o r k

We have presented a general abstraction/refinement paradigm for propositional p-
calculus. It provides general conditions to obtain conservative abstract interpretations
of a system. These conditions are local to the verification process in each sub-formula
of the given formula. Also, a fully automatic symbolic model checking abstraction
algorithm was presented. The algorithm includes a set of techniques for providing
incremental approximations for every type of sub-formula. Also included is a procedure
for gradually refining these approximations, until the formula is verified or resources
are exhausted.

The algorithm and techniques described above are being implemented inside the
framework provided by VIS [2]. The first prototype of the algorithm correctly verified
small examples, but after finishing its implementation, we plan to apply it to examples
that are known to be hard to verify with conventional techniques.

In the future, we plan to enrich the set of approximation techniques provided in the
algorithm. In particular, generic BDD sub-setting and super-setting may be enhanced
by adapting them to the context of refining a previous approximation. We are also
working on efficient techniques for computing Pre and Img when domain and co-
domain constraint sets are given.

R e f e r e n c e s

1. F. Balarin and A. L. Sangiovarmi-Vincentelli. An iterative approach to language
containment. In C. Courcoubetis, editor, Fifth Conference on Computer Aided
Verification (CAV '93). Springer-Verlag, Berlin, 1993. LNCS 697.

2. R. t(. Brayton et al. VIS: A system for verification and synthesis. In T. Henzinger
and R. Alur, editors, Eigth Conference on Computer Aided Verification (CA V'96),
pages 428-432. Springer-Verlag, Rutgers University, 1996. LNCS 1102.

3. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677-691, Aug. 1986.

4. J. R. Butch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently
in symbolic model checking. In Proceedlngs of the Design Automation Conference,
pages 403-407, San Francisco, CA, June 1991.

5. J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit ver-
ification using symbolic model checking. In Proceedings of the Design Automation
Conference, pages 46-51, June 1990.

6. H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi. Algorithms for
approximate FSM traversal based on state space decomposition. In Proceedings of
the Design Automation Conference, pages 25-30, Dallas, TX, June 1993.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by constructions or approximation of fixpoints. In
Proceedings of the A CM Symposium on the Principles of Programming Languages,
pages 238-250, 1977.

8. M. Dam. CTL* and ECTL* as fragments of the modal g-calculus. Theoretical
Computer Science, 126:77-97, 1994.

9. E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus. In Proceedings of the First Annual Symposium of Logic in
Computer Science, pages 267-278, June 1986.

23

10. D. Geist and I. Beer. Efficient model checking by automated ordering of transition
relation parititons. In D. L. Dill, editor, Sixth Conference on Computer Aided
Verification (CAV'94), pages 299-310, Berlin, 1994. Springer-Verlag. LNCS 818.

11. P. Kelb, D. Dams, and R. Gerth. Practical symbolic model checking of the full
p-calculus using compositional abstractions. Technical Report 95-31, Department
of Computing Science, Eindhoven University of Technology, 1995.

12. D. Kozen. Results on the propositional p-calculus. Theoretical Computer Science,
27:333-354, 1983.

13. R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton, N J, 1994.

14. W. Lee, A. Pardo, J. Jang, G. Hachtel, and F. Somenzi. Tearing based abstraction
for CTL model checking. In Proceedings of the IEEE International Conference on
Computer Aided Design, pages 76-81, 1996.

15. D. E. Long. Model Checking, Abstraction, and Compositional Verification. PhD
thesis, Carnegie-Mellon Universit,y, July 1993.

16. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston,
MA, 1994.

17. C. Pixley, S.-W. Jeong, and G. D. Hachtel. Exact calculation of synchronization
sequences based on binary decision diagrams. In Proceedings of the Design Au-
tomation Conference, pages 620-623, Anaheim, CA, June 1992.

