
Efficient Model Checking Using
Tabled Resolution*

Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan,
Scott A. Smolka, Terrance Swift, David S. Warren

Department of Computer Science
SUNY at Stony Brook

Stony Brook, NY 11794-4400, USA

Abstract. We demonstrate the feasibility of using the XSB tabled logic
programming system as a programmable fixed-point engine for implement-
ing efficient local model checkers. In particular, we present XMC, an XSB-
based local model checker for a CCS-like value-passing language and the
alternation-free fragment of the modal mu-calculus. XMC is written in un-
der 200 lines of XSB code, which constitute a declarative specification of
CCS and the modal mu-calculus at the level of semantic equations.
In order to gauge the performance of XMC as an algorithmic model checker,
we conducted a series of benchmarking experiments designed to compare
the performance of XMC with the local model checkers implemented in
C/C++ in the Concurrency Factory and SPIN specification and verification
environments. After applying certain newly developed logic-programming-
based optimizations (along with some standard ones), XMC's performance
became extremely competitive with that of the Factory and shows promise
in its comparison with SPIN.

1 Introduct ion

Model checking ICE81, QS82, CES86] is a verification technique aimed at determin-
ing whether a system specification possesses a property expressed as a temporal
logic formula. Model checking has enjoyed wide success in verifying, or finding de-
sign errors in, real-life systems. An interesting account of a number of these success
stories can be found in [CW96b].

Model checking is the main verification technique deployed by the Concurrency
Factory [CLSS96], NCSU Concurrency Workbench [CS96], SMV [CMCHG96], SPIN
[HP96], and TempEst [JPO95] specification and verification environments. These
tools use similar, but slightly different, system specification languages and prop-
erty specification logics: the Concurrency Factory supports local model checking
with partial order reductions in the alternation-depth-2 fragment of the modal mu-
calculus for processes specified in a CCS-like value passing language; the NCSU
Concurrency Workbench offers global model checking in the alternation-free modal
mu-calculus for processes specified in pure CCS; SMV supports BDD-based symbolic
model checking in CTL (with fairness) for a state-machine specification language;

* Research supported in part by NSF grants CDA-9303181, CCR-9404921, CCR-9505562,
CDA-9504275, and AFOSR grants F49620-95-1-0508 and F49620-96-1-0087. Emall
correspondence: sas~cs, sunysb.edu

144

SPIN implements on-the-fly LTL model checking with partial order reductions for
processes specified in Promela, a guarded-command language with buffered com-
munication; and TempEst provides model checking of LTL with past operators for
the Esterel synchronous language.

As is clear from this short list, there is a plethora of temporal logics and spec-
ification languages currently in use, and building a model checker for a particular
combination involves having to confront the low-level computational details of the
underlying model checking algorithm. One thing, however, these logics and pro-
cess languages typically have in common is that their semantics are specified via
structural recursion as fixed points of certain types of functionals.

To deal with the complexity of implementing model checkers, we would like ide-
ally to focus only on declaratively specifying the semantics of the temporal logic
and process language, while leaving the computational details to an efficient under-
lying engine. Such an ideal can be realized by the availability of engines that (i)
compute fixed points, since from a computational viewpoint, model checking can
be formulated in terms of computing fixed points, and (ii) are efficient enough to
generate systems competitive with hand-crafted model checkers. One way to attain
the second goal is for the fixed-point engine to provide programmability, so that
optimizing program transformations can be made directly to the model checker
specifications. Programmability also allows direct encoding of traditional model
checking optimizations such as partial order reduction [HPP96].

Recent advances in tabled resolution [TS86, CW96a] offer significant promise to-
wards achieving the above objective. At a high-level, tabled resolution augments
Prolog-style SLDNF resolution for evaluating normal logic programs (with de-
fault negation). Tabled evaluation overcomes the three major limitations of Prolog,
namely, weak termination, redundancy of computations, and weak semantics for
negation. The XSB tabled logic programming system developed at SUNY Stony
Brook is a practical embodiment of the power and enhanced functionality of tabled
resolution.

When tabled resolution is used in XSB (by declaring particular predicates to be
tabled), the system automatically maintains a table of predicate invocations and
answers, using the table for all equivalent invocations after the first one. Many pro-
grams that would loop infinitely in Prolog will terminate in XSB because XSB calls
a tabled predicate with the same arguments only once, whereas Prolog may call
such a predicate infinitely often. For these terminating programs XSB efficiently
computes the least model, which is the least fixed point of the program rules un-
derstood as "equations" over sets of atoms. More precisely, XSB is based on SLG
resolution [CW96a], which computes queries to normal logic programs (containing
default negation) according to the well-founded semantics.

This paper shows that by using XSB as a programmable fixed-point engine, one
can construct an efficient model checker in under 200 lines of code. In particular,
we have specified the syntax and semantics of a CCS-like value passing language
similar to one supported by the Concurrency Factory, along with the syntax and
semantics of the alternation-free fragment of the modal mu-calculus. The specifica-
tion is based on a parallel constant-time reduction from the alternation-free modal
mu-calculus to Datalog with negation presented in [ZSS94]. Not surprisingly~ the
XSB specification directly reflects the structural operational semantics of CCS and

145

the fixed-point semantics of the modal mu-calcutus. The direct execution of these
declarative specifications yields a local (on-the-fly) model checker," which we refer
to as XMC.

In order to gauge the performance of XMC as an algorithmic model checker,
we conducted a number of benchmarking experiments designed to compare the
performance of XMC with the local model checkers implemented in the Concur-
rency Factory and SPIN. The model checking benchmarks we considered include
Milner's "scheduler of cyclers" [Mii89] and the leader election and sieve algorithms
from the SPIN benchmark suite. 2 After applying certain newly develoPed logic-
programming-based optimizations (along with some standard ones--see Section 3),
XMC's performance became extremely competitive with that of the Factory and
shows promise in its comparison with SPIN.

These results, discussed further in Section 4, are somewhat surprising since the
Factory's and SPIN's model checkers are written in low-level languages (C/C++)
with the express purpose of temporal logic model checking, while XSB is a general
purpose logic programming system. Our experimental results provide evidence that
writing efficient model checkers for various process languages and logics in XSB can
be a viable idea.

Concerning related work, XMC can be viewed as an algorithmic model checker
in a deductive setting (XSB, after all, is a system to deduce theorems from normal
logic programs). The recent literature contains a number of proposals for combining
deductive methods with algorithmic model checking techniques in order to prove
temporal properties of concurrent systems. For example, the STeP system [BBC+96]
combines the deductive methods of IMP95] with decision procedures for automat-
ically checking the walidity of a large class of first-order and temporal formulas.
[PS96] uses deduction to establish an invariant that is then used to constrain the
state space exploration performed in model checking. [RSS95] embeds a symbolic
model checking decision procedure into the PVS higher-order prover, and [SUM96]
employs first-order linear temporal-logic formulas to construct an abstract repre-
sentation of the state space to be explored, and deductive methods to successively
refine this representation until an answer to the model checking problem can be
ascertained.

In other related work, [SHIR96] also uses Horn logic to specify model check-
ing (for a basic, non-value-passing process specification language) but reports no
effort to implement or evaluate this approach. Toupie [Ran95] is a mu-calculus in-
terpreter that utilizes a combination of constraint logic programming (over finite
domains) and BDDs to perform model checking. Constraint logic programming is
also used in [Ost91] for semi-automatic verification of possibly infinite-state systems.
In [SCK+95], an efficient '~xpoint-analysis machine" (FAM) is presented which can
be used on a variety of fixed point computation problems, including model checking.

The structure of the rest of this paper is as follows. Section 2 describes our
encoding in XSB of a value-passing language and the alternation-free modal mu-
calculus. The logic-based optimizations we performed on the XMC model checker
are the subject of Section 3, and our expermental results are discussed in Section 4.
Section 5 concludes and presents directions for future work.

2 The XMC and benchmark sources can be found at http://~r~, cs. sunysb, edu/ 'ysr /
x m c .

146

2 Value-Passing Language and Modal Mu-Calculus
Encoding

As described in the Introduction, we encoded in XSB a model checker for a CCS-like
value-passing language and the alternation-free modal mu-calculus. The syntax of
processes in our value-passing language is the following: 3

P ::= X I a?Y] a!Y I P o P I if X then P else P
I P # P) P II P I P\L (P�9 I C(Zl Zn)

In the above, X is a Prolog formula. Thus, for example, the formula l e n g t h (B u f ,
Len) is the process that binds Len to the length of list Bur. Note that this process
performs no actual transitions. Process a?Y inputs a value over port a into Y, where
Y is a Prolog term. Similarly, a!Y outputs the value of Y over port a. Operator o
is generalized prefixing. The remaining operators are like their CCS counterparts
(modulo occasional changes in syntax to avoid clashes with Prolog lexicon). E.g.,
process i f X then P e l s e Q behaves like P if X succeeds and otherwise like Q; # is
nondeterministic choice; P I I Q is the parallel composition of P and Q; �9 is relabeling,
where f is a list of substitutions represented as Prolog terms; and C (Z 1 Zn) is
a process constant C, parameterized by Zl Zn (C and the Zi are Prolog atoms).
Recursion is provided by defining equations of the form C(Z1 Zn) :== P.

The formal semantics of our language is given using structural operational se-
mantics. Due to space limitations, we present here the axioms and inference rules
for a few key constructs. In order to emphasize the highly declarative nature of our
encoding, these are presented exactly as they are encoded in the Prolog syntax of
XSB.

trams(a?Y, a?Y, nil).
trans(a!Y, a!'Y, nil).
trans(X, nil, nil) :- call(X).

trans(Pl o P2, Act_a, Q) :- trans(Pl, Act b, QI),
(Act_b == nil -> trans(P2, Act_a, Q);
(Act_a = Act_b, (Q1 == nil -> Q = P2 ; Q = Q1 o P2))).

trams(if X then P1 else P2, Act_a, Q) :-
call(X) -> trans(P1, Act_a, Q) ; trans(P2, Act_a, Q).

trams(P I) Q, Act_a, P1 If Q) :- trams(P, Act_a, PI).
trans(P II Q, Act_a, P [I {~i) :- trams(Q, Act_a, ql).
trams(P II Q, tau, P1 II Q1) :- trams(P, Act a, PI),

trams(Q, Act_b, QI), comp(Act_a, Act_b).

In the above, A -> B ; C is Prologsyntax for if A then B else C. The trams
predicate is of the form trams(P, Act_a, Q) meaning that process P performs an

3 To increase readability, we use here a slightly sugared version of the syntax actually
interpreted by XMC.

147

Act_a transition to become process Q. The axiom for input says that a?Y can execute
an a?Y transition and then terminate; similarly for the output axiom. The axiom
for internal computation forces the evaluation of X and then terminates (without
exercising any transition). The rule for generalized prefix states that P1 o P2 be-
haves like P1 until P1 terminates; at that point it behaves as P2. The conditional
process i f X then Vl e l s e P2 behaves like P1 if evaluation of X succeeds, and like
P2 otherwise. Finally, the rules for parallel composition state that P I [q can perform
an autonomous Act_a transition if either P or Q can (the first two rules), and P[[Q
can perform a synchronizing t au transition if P and q can perform "complementary"
actions (the last rule); i.e., actions of the form a?Y and a!Y.

To illustrate the syntax and semantics of our value-passing language, consider
the following specification of a channel chan (with input port in and output port
out) implemented as a bounded buffer of size N.

chan(N, Bur) :== length(Bur, Len) o
if (Len == 0) then receive_only(N, Bur)
else if (Len == N) then send_only(N, Bur)
else receive_only(N, Bur) # send_only(N, Bur).

receive_only(N, Bur) :== in?Msg o chart(N, [Msg[Buf]).
send_only(N,Buf) :== rm_last(Buf,Msg,RBuf) o out!Msg o chan(N,RBuf).

Our encoding of the modal mu-calculus uses the following syntax for formulas:

F : := Z [t t [f f [F \ / F I F / \ F [diam(Act_a,F) [box(Act_a,F)

In the above, z, which is a Protog atom, is a mu-calcutus logical variable; t t and
f f are propositional constants; V and / \ are standard logical connectives; and
diam(Act_a,F) (possibly after action Act_a formula F holds) and box(Act_a,F)
(necessarily after action Act_a formula F holds) are dual modal operators. Ad-
ditionally, logical variables can be given defining equations of the form X :==
mu(F) (least fixed point) or X : = = nu(F) (greatest fixed point). For example, a
basic property, the absence of deadlock, is expressed in this logic by the formula
Z :== nu(box(- ,Z) / \ d i a m (- , t t)) , where ' - ' stands for any action. The for-
mula states, essentially, that from every reachable state (box(- , Z)) a transition is
possible (d i a m (- , t t)) .

As in the case of our value-passing language, the semantics of the modal mu-
calculus is specified dectaratively ifi XSB by providing a set of rules for each of the
operators of the logic. For example, the semantics of V , diam, and mu are encoded
as follows:

State_s I= F_I V _
State_s [= _ \/ F_2

:- State_s I= F_I.
:- State_s [= F_2.

State_s [= diam(Act_a, F) :- trans(State_s, Act_a, State_t),
State_t 1 = F.

State_s I= Z :- Z :== mu(F), State_s I= F.

148

Consider the rule for diam. It states that a state Sta te_s (of a process) satisfies
a formula of the form diam(Act_a,F) if S ta te_s has an Act_a transition to some
state S ta te_ t and S ta t e_ t satisfies F. As for mu, the semantics of logic programs
are based on minimal models, and accordingly XSB directly computes least fixed
points. Thus, the encoding of mu is straightforward as shown above.

To compute greatest fixed points in XSB, we exploit its capability to handle
normal logic programs: programs with rules whose right-hand side literals may be
negated using XSB's tno t , which performs negation by failure in a tabled envi-
ronment. In particular, we make use of the duality nu(F) = -~ mu(-~F). The "not
models" predicate I/= performs this negation, and appears below for the same
sampling of operators as given above.

State_s I~ = F_I \/ F_2 :- State_s I/= F_I, State_s]/= F_2.

State_s]/= diam(Act_a, F) :-
tfindall(State_t, trans(State_s, Act_a, State_t), State_ts),
lnotModels(State_ts, F).

inotModels([],_).
inotModels([State]LState], F) :- State I/= F, inotModels(LState, F).

Sta t e_s I/= Z "- Z :== mu(F), t n o t (S t a t e _ s I = F) .

where t f i n d a l l finds all solutions of a predicate in a tabled environment. The
semantics o fnu is then defined by:

State_s I= Z :- Z :== nu(F), tnot(State_s I/= F). Z Nu -- models

State_s I/= Z :- Z :== nu(F), State_s I/= F. Y. Nu -- not models

This encoding provides a sound method for model checking any modal mu-
calculus formula that is alternation free [EL86]. In the alternation-free case, fixed
points are computed "inside out," with an inner fixed point computed before an
outer fixed point in whose scope it lies. The proof of correctness rests on showing
that the XSB program for model checking an alternation-free formula is dynami-
cally stratified with respect to negation and to t f i n d a l l / 3 , and has a two-valued
minima/model. Dynamic stratification ensures that the program's dynamic depen-
dency graph can be evaluated without loops through negation. In [SSW96] it was
shown that the evaluation method underlying XSB correctly computes this class of
programs.

Tabling ensures that each explored system state is visited only once in the eval-
uation of a modal mu-calculus formula. Consequently, the XSB program will termi-
nate under XSB's tabling method when there are a finite number of states in the
transition system.

3 Logic-Based Optimization Techniques

XMC benefits from optimization techniques developed for deductive-database-style
applications, such as literal reordering and clause resolution factoring, as well as

from source-code representational changes of process terms.

149

Literal Reorderin9 Literal reordering (see, for example, [Ul188]) is a common tech-
nique for optimizing computation by changing the order in which literals on the
right hand sides of clauses are selected for resolution. The selection strategy con-
trols the search space needed to evaluate the rule regardless of whether the rule
is evaluated top-down or bottom-up. Consider the computation of t au transitions
using trams:

trans(par(P, Q), tau, par(P1, QI)) :- trans(P, Act_a, PI),
trans(Q, Act b, QI), compAct(Act_a, Act_b).

In general, the number of solutions to the predicate compAct (Act_a, Act_b) is
much smaller than the number of solutions to trams (Q, Act_b, QI), and hence it
pays to rewrite the rule as:

trams(par(P, Q), tau, par(Pl, QI)) :- trans(P, Act_a, PI),
compAct(Act_a, Act b), trans(Q, Act_b, QI).

Clause Resolution Factoring Clause resolution factoring, introduced in [DRRS95],
is a newer optimization that is geared specifically to deductive databases having
a tightly linked top-down and bottom-up evaluation strategy. Clause resolution
factoring shares elementary match and unification operations across program and
answer clause resolution steps. An important aspect of this optimization is that it
enables individual clauses (instead of whole predicates) to be tabled, improving the
space and time efficiency of programs. Consider the following fragment of the trams
relation:

:- table trans/3.
trams(C, Act_a, Q) :- C :== P, trans(P, Act_a, Q).
trans(Act_a o P, Act_a, P).
trans(P1 # P2, Act_a, Q) :- trams(P1,Act_a,Q) ; trans(P2,Act_a,Q).

Observe that the rules for t r a n s have structural recursion, and to ensure ter-
mination, only the recursive case (i.e., the first rule) needs to be tabled. Applying
clause resolution factoring with this information results in the following fragment:

:- table trans_rec/3.
trans_rec(P, Act_a, Q) :- trans(P, Act_a, Q).

trans(C, Act_a, Q) :- C :== P, trans_rec(P, Act_a, Q).
trans(Act_a o P, Act a, P).
trans(Pl # P2, Act_a, O) :- trans(Pi,Act_a,Q) ; trans(PR,Act_a,Q).

In the above fragment, only t rans_rec is tabled; this results in considerable
savings in table space as well as computation time because terms which do not need
to be tabled do not incur the overhead of tabling. The model checking predicate
models, which also has structural recursion, is also subject to this optimization.

150

Optimizing Representation of Process States As mentioned in Section 2, processes
are represented in XMC using a CCS-like value passing language. For instance in the
six-agent sieve benchmark, a generator process and six tester processes communicate
along a linear chain. As an XSB term, the sieve process might be specified in source
code as:

sieve :==
(gen il chanO il test1 II chanl]~ test2 il chan2 il test3 ~I than3

II test4]I chan4 II tests il chan5 II test6 I} chart6 l~ cons) \
{gen_out(X), inl(X), in2(X), in3(X), in4(X), in4(X), inS(X), in6(X), inT(X),
con_in(X), outl(X), out2(X), out3(X)~ out4(X), outS(X), out6(X), outT(X)}.

XMC runtime states directly refiectthis specification. For instance, a runtime
state might have the form:

(g e n e r a t o r l (4 , 3 1) ~ 1 I] char t_ l ([]) @ 10 I] t e s t e r 2 (2 , 4) ~ 2
I I char t_ l ([3]) @ 11 I] t e s t 2 I I chan2)1 t e s t 3] l chart3] l t e s t 4
I I chart4 I I tests I I chan5 I I test6 I I chart6 I I cons) \ 1

Taken as Prolog terms, these runtime states are relatively large. This s~uation
is inefficient not only in terms of memory, but also in terms of time, since each state
encountered must be checked against the table and inserted if it is not there. To
reduce state size source code representation can be "folded" as below:

s i e v e :== (gen IJ chart0 II s i e v e l) \ {gen_out(X) out7(X)}.

s i e v e l :== (t e s t l I[s i eve2) s i ev e6 :== (t e s t 6 [[chart6).

This representation leads to smaller runtime terms such as

(generatorl(4,31) @ 1 I I than_l([]) % I0 [[tester2(2,4) ~ 2
I I cha~_ l ([3]) �9 11 I I s ieve2) \ 1

Optimizing process states leads to a 50% reduction in memory required to rep-
resent states in the leader and sieve examples of Section 4.

4 E x p e r i m e n t a l R e s u l t s

In this section, we compare the performance of XMC with that of the Concur-
rency Factory and SPIN in terms of time and memory. Figure 1 shows the space
and time used by XMC and the Factory on Milner's scheduler for the formula
Z :== nu(box(- ,Z) / \ d i a m (- , t t)) , for a scheduler of n cyclers, 4 < n < 10.
The formula, which asserts the absence of deadlock, forces exploration of the entire
state-space of the system, thus allowing us to assess the scalability of the two im-
plementations. As is clear from the figure, XMC performs better than the Factory
in terms of speed, and is quite competitive in terms of space.

The example of Milner's scheduler does not involve value-passing. For examples
involving value-passing, we compared the performance of XMC with SPIN, rather
than with the Factory, since the latter does not yet have efficient support for value-
passing processes. (This problem is expected to be remedied in the next release of
the Factory, slated for Fall '97.)

151

I
.=

10

9

8

7

6

S

4

3

2

1

0
4

./"///'/
t

6 7 8 9'
Number of s

10

450

4OO

350

3OO

25O

20O

150

IO0

,SO

0
4

Cor~eurrency Factoly
XMC 4 - - 1

5 6 7 8 9 10
Number of Cyclers

Fig. 1. Performance comparison with the Concurrency Factory on Milner's scheduler of
cyclers.

To assess XMC's ability to model chec~ in a value-passing language, and to
assess the effects of the optimizations described in the previous section, we used
the leader election example from the SPIN benchmark suite. As in the case of the
scheduler, we benchmarked the system for several different ring sizes. The "leader5"
system corresponds to the system used in the SPIN suite. Table 1 gives the space
and time figures for two different formulas, F1 being a least fixed point formula
stating that in every run of the system a leader is eventually elected, and F2 being
a nested fixed point formula stating that in every run of the system at most one
leader is elected. In this table, for a system of given size, the first line indicates the
space and time figures with the naive encoding without any of the optimizations
of the previous section, and the second line gives the corresponding figures with all
the optimizations in place.

To compare XMC to SPIN we also implemented in XMC, a simple transitive
closure algorithm to search and store all the reachable states of leader5 as well
as sieve6, also from the SPIN benchmark suite. The results in Table 2 indicate
that XMC has good memory usage as compared to SPIN, but that the speed of
XMC appears uneven3 Two features account for the good memory usage of XMC.
First, tabled terms in the underlying XSB engine are stored using a trie-like data
structure that provides good structure sharing for variant subterms. Second, the
scheduling strategy of XSB allows left-linear transitive closure to be performed
using a minimum of runtime stack space.

An important feature of SPIN is that it combines on-the-fly model checking with
partial order reduction, a technique for combating the combinatorial explosion that
results from interleaving concurrent independent transitions in all possible orders.
Roughly speaking, partial order reduction partitions the state space into equiva-
lent search paths; (dis)proving a given property then requires exploring only one

4 The sieve benchmark of Table 2 was run on an SGI challenge for both XMC and SPIN;
SPIN results are from [GKPP97]. All other figures for XMC and the Concurrency Fac-
tory were performed on a sparcl0 with about 500 MB available main memory; the leader
benchmark for SPIN was also run on a sparcl0 with 128 MB main memory [HP95].

152

Program

leader2 (unopt)
(opt)

leader3 (unopt)
(opt)

leader4 (unopt)
(opt)

leader5 (unopt)

F1
Time (sec)

0.23
0.I0
1.21
0.46

8:51

Space (MB)
0,817
0.209
4.593
0.581

37.366
3,079

F2
Time (sec)

0.22
0.11
1.18
0.51
8.39
3.23

Space (MBi
0.768
0.198
4.342
0.596

35.604
3.239 2.93

..... 39.09 170.608 37.51 163.405
(opt) 11.87 11.396 12.87 12.139

Table 1. Illustrating the effect of logic-based optimizations.

Programi System Time (sec) Space (M B)
leader5 SPIN 8:1 9.60

XMC 5:5 0.78
sieve6 SPIN t 18 231

XMC I 10.4 1.23

Table 2. Performance comparison with SPIN on value-passing examples.

path in each equivalence class. The results quoted above for SPIN (and for XMC)
were obtained without the use of partial order reduction, and the numbers go down
appreciably (especially for sieve) with the use of this technique. The programma-
bility of XSB should, however, allow the implementation of partial order reduction
techniques within XMC, a topic currently under investigation.

5 Conc lus ions and F u t u r e W o r k

We have provided experimental evidence that writing efficient algorithmic model
checkers in a tabled logic programming system is a viable idea. Our work on XMC
reveals a number of directions for future work. For example, we have not con-
sidered alternating fixed points [EL86] in this paper. The logic-programming-based
approach to model checking, however, suggests a promising technique in which inner
fixed points are computed symbolically, thereby avoiding their repeated computa-
tion.

Traditionally, model checking has been viewed as an algorithmic technique, al-
though there is initial activity on combining model checking with deductive meth-
ods (see our discussion of related work in Section 1). Observe that (optimized) XSB
meta-interpreters can be used to execute arbitrary deductive systems. Hence, the
XSB-based approach offers a unique opportunity to fully and flexibly integrate al-
gorithmic and deductive model checking. Demonstrating the feasibility of this idea
is another direction for future work.

153

XSB's unification mechanism handles interpreted and uninterpreted variables in
a value-passing language as ground and non-ground logical variables, respectively.
Moreover, XSB automatically offers lazy grounding of variables. Since grounding can
increase the search space of a query (every possible valuation must be considered),
lazy grounding can result in substantial savings. As future work, we plan to experi-
mentally measure the impact of lazy grounding on performance and investigate how
it can be used to effectively realize Wolper's data independence scheme [Wo186].

References

[AH96]

[BBC+96]

ICES1]

[CES86]

[CLSS96]

[CMCHG96]

[cs96]

[cw96a]

[CW96b]

[Dm~S95]

[EL86]

[GKPP97]

[HP95]

[HP96]

[HPP96]

R. Alur and T. A. Henzinger, editors. Computer Aided Verification (CAV
'96), volume 1102 of Lecture Notes in Computer Science, New Brunswick,
New Jersey, July 1996. Springer-Verlag.
N. Bjorner, A. Browne, E. Chang, M. ColSn, A. Kapur, Z. Manna, H. B.
Sipma, and T. E. Uribe. STEP: Deductive-algorithmic verification of reac-
tive and real-time systems. In Alur and Henzinger [AH96], pages 415-418.
E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In D. Kozen, editor, Proceed-
ings of the Workshop on Logic of Programs, Yorktown Heights, volume 131
of Lecture Notes in Computer Science, pages 52-71. Springer-Verlag, 1981.
E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
TOPLAS, 8(2), 1986.
R. Cleaveland, P. M. Lewis, S. A. Smolka, and O. Sokolsky. The Concurrency
Factory: A development environment for concurrent systems. In Alur and
Henzinger [AH96], pages 398-401.
E.M. Clarke, K. McMillan, S. Campos, and V. Hartonas-GarmHansen.
Symbolic model checking. In Alur and Henzinger [AH96], pages 419-422.
R. Cleaveland and S. Sims. The NCSU concurrency workbench. In Alur and
Henzinger [AH96], pages 394-397.
W. Chen and D.S. Warren. Tabled evaluation with delaying for general logic
programs. Journal of the ACM, 43(1):20-74, January 1996.
E. M. Clarke and J. M. Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys, 28(4), December 1996.
S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan, and T. Swift. Optimiz-
ing clause resolution: Beyond unification factoring. In International Logic
Programming Symposium, pages 194-208. MIT Press, 1995.
E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the
propositional mu-calculus. In Proceedings of the First Annual Symposium on
Logic in Computer Science, pages 267-278, 1986.
R. Gerth, R. Kuiper, W. Penczek, and D. Peled. A partial order approach to
branching time model checking. Information and Computation, 1997.
G. J. Holzmann and D. Peled. An improvement in formal verification. In
Seventh Int. Conf. on Formal Description Techniques (FORTE '9~), pages
177-194. Chapman and Hall, 1995.
G. J. Holzmann and D. Peled. The state of SPIN. In Alur and Henzinger
[AH96], pages 385-389.
G. Holzmann, D. Peled, and V. Pratt, editors. Partial-Order Methods in Ver-
ification (POMIV '96), DIMACS Series in Discrete Mathematics and Theo-

154

[JPO95]

[Mil89]

[MP95]

[Ost91]

[PS96]

[QS82]

[Rau95]

[Rss95]

[SCK+95]

[SHIR96]

[ssw96]

[SUM96]

[TS86]

[Ul188]

[Wo186]

[Wo195]

[zss94]

reticai Computer Science, New Brunswick, New Jersey, July 1996. American
Mathematical Society.
L. J. Jagadeesan, C. Puchol, and J. E. Von Olnhausen. Safety property veri-
fication of ESTEREL programs and applications to telecommunications soft-
ware. In Wolper [Wo195], pages 127-140.
I~. Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.
Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, 1995.
J. S. Ostroff. Constraint logic programming for reasoning about discrete
event processes. Journal of Logic Programming, 11(2/3):243-270, Oct./Nov.
1991.
A. Pnueli and E. Shahar. A platform for combining deductive with algorith-
mic verification. In Alur and Henzinger [AH96], pages 184-195.
J .P. Queille and J. Sifakis. Specification and verification of concurrent
systems in Cesar. In Proceedings of the International Symposium in Pro-
gramming, volume 137 of Lecture Notes in Computer Science, Berlin, 1982.
Springer-Verlag.
A. Rauzy. Toupie = p-calculus + constraints. In Wolper [Wo195], pages
114-126.
S. Rajan, N. Shankar, and M. K. Srivas. An integration of model checking
with automated proof checking. In Wolper [Wo195], pages 84-97.
B. Steffen, A. Classen, M. Klein, J. Knoop, and T. Margaria. The fixpoint-
analysis machine. In i. Lee and S. A. Smolka, editors, Proceedings of the Sixth
International Conference on Concurrency Theory (CONCUR ~95), Vol. 962
of Lecture Notes in Computer Science, pages 72-87. Springer-Verlag, 1995.
S. K. Shukla, H. B. Hunt III, and D. J. Rosenkrantz. HORNSAT, model
checking, verification and games. In Alur and Henzinger [AH96], pages 99-
110.
K. Sagonas, T. Swift, and D.S. Warren. An abstract machine to compute
fixed-order dynamically stratified programs. In International Conference on
Automated Deduction (CADE), 1996.
H. B. Sipma, T. E. Uribe, and Z. Manna. Deductive model checking. In Alur
and Henzinger [AH96], pages 208-219.
H. Tamaki and T. Sato. OLDT resolution with tabulation. In Third Int'l
Conf. on Logic Programming, pages 84-98, 1986.
J. D. Ullman. Principles of Data and Knowledge-base Systems, Volume I.
Computer Science Press, Rockville, MD, 1988.
P. Wolper. Expressing interesting properties of programs in propositional
temporal logic. In Proe. 13th ACM Syrup. on Principles of Programming,
pages 184-192, St. Petersburgh, January 1986.
P. Wolper, editor. Computer Aided Verification (CAV '95), volume 939 of
Lecture Notes in Computer Science, Lifige, Belgium, July 1995. Springer-
Verlag.
S. Zhang, O. Sokolsky, and S. A. Smolka. On the parallel complexity of model
checking in the modal mu-calculus. In Proceedings of the 9th IEEE Sympo-
sium on Logic in Computer Science, London, England, July 1994.

