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Abstract.  We demonstrate the feasibility of using the XSB tabled logic 
programming system as a programmable fixed-point engine for implement- 
ing efficient local model checkers. In particular, we present XMC, an XSB- 
based local model checker for a CCS-like value-passing language and the 
alternation-free fragment of the modal mu-calculus. XMC is written in un- 
der 200 lines of XSB code, which constitute a declarative specification of 
CCS and the modal mu-calculus at the level of semantic equations. 
In order to gauge the performance of XMC as an algorithmic model checker, 
we conducted a series of benchmarking experiments designed to compare 
the performance of XMC with the local model checkers implemented in 
C/C++ in the Concurrency Factory and SPIN specification and verification 
environments. After applying certain newly developed logic-programming- 
based optimizations (along with some standard ones), XMC's performance 
became extremely competitive with that of the Factory and shows promise 
in its comparison with SPIN. 

1 Introduct ion  

Model checking ICE81, QS82, CES86] is a verification technique aimed at determin- 
ing whether a system specification possesses a property expressed as a temporal 
logic formula. Model checking has enjoyed wide success in verifying, or finding de- 
sign errors in, real-life systems. An interesting account of a number of these success 
stories can be found in [CW96b]. 

Model checking is the main verification technique deployed by the Concurrency 
Factory [CLSS96], NCSU Concurrency Workbench [CS96], SMV [CMCHG96], SPIN 
[HP96], and TempEst [JPO95] specification and verification environments. These 
tools use similar, but slightly different, system specification languages and prop- 
erty specification logics: the Concurrency Factory supports local model checking 
with partial order reductions in the alternation-depth-2 fragment of the modal mu- 
calculus for processes specified in a CCS-like value passing language; the NCSU 
Concurrency Workbench offers global model checking in the alternation-free modal 
mu-calculus for processes specified in pure CCS; SMV supports BDD-based symbolic 
model checking in CTL (with fairness) for a state-machine specification language; 
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CDA-9504275, and AFOSR grants F49620-95-1-0508 and F49620-96-1-0087. Emall 
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SPIN implements on-the-fly LTL model checking with partial order reductions for 
processes specified in Promela, a guarded-command language with buffered com- 
munication; and TempEst provides model checking of LTL with past operators for 
the Esterel synchronous language. 

As is clear from this short list, there is a plethora of temporal logics and spec- 
ification languages currently in use, and building a model checker for a particular 
combination involves having to confront the low-level computational details of the 
underlying model checking algorithm. One thing, however, these logics and pro- 
cess languages typically have in common is that their semantics are specified via 
structural recursion as fixed points of certain types of functionals. 

To deal with the complexity of implementing model checkers, we would like ide- 
ally to focus only on declaratively specifying the semantics of the temporal logic 
and process language, while leaving the computational details to an efficient under- 
lying engine. Such an ideal can be realized by the availability of engines that (i) 
compute fixed points, since from a computational viewpoint, model checking can 
be formulated in terms of computing fixed points, and (ii) are efficient enough to 
generate systems competitive with hand-crafted model checkers. One way to attain 
the second goal is for the fixed-point engine to provide programmability, so that 
optimizing program transformations can be made directly to the model checker 
specifications. Programmability also allows direct encoding of traditional model 
checking optimizations such as partial order reduction [HPP96]. 

Recent advances in tabled resolution [TS86, CW96a] offer significant promise to- 
wards achieving the above objective. At a high-level, tabled resolution augments 
Prolog-style SLDNF resolution for evaluating normal logic programs (with de- 
fault negation). Tabled evaluation overcomes the three major limitations of Prolog, 
namely, weak termination, redundancy of computations, and weak semantics for 
negation. The XSB tabled logic programming system developed at SUNY Stony 
Brook is a practical embodiment of the power and enhanced functionality of tabled 
resolution. 

When tabled resolution is used in XSB (by declaring particular predicates to be 
tabled), the system automatically maintains a table of predicate invocations and 
answers, using the table for all equivalent invocations after the first one. Many pro- 
grams that would loop infinitely in Prolog will terminate in XSB because XSB calls 
a tabled predicate with the same arguments only once, whereas Prolog may call 
such a predicate infinitely often. For these terminating programs XSB efficiently 
computes the least model, which is the least fixed point of the program rules un- 
derstood as "equations" over sets of atoms. More precisely, XSB is based on SLG 
resolution [CW96a], which computes queries to normal logic programs (containing 
default negation) according to the well-founded semantics. 

This paper shows that by using XSB as a programmable fixed-point engine, one 
can construct an efficient model checker in under 200 lines of code. In particular, 
we have specified the syntax and semantics of a CCS-like value passing language 
similar to one supported by the Concurrency Factory, along with the syntax and 
semantics of the alternation-free fragment of the modal mu-calculus. The specifica- 
tion is based on a parallel constant-time reduction from the alternation-free modal 
mu-calculus to Datalog with negation presented in [ZSS94]. Not surprisingly~ the 
XSB specification directly reflects the structural operational semantics of CCS and 
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the fixed-point semantics of the modal mu-calcutus. The direct execution of these 
declarative specifications yields a local (on-the-fly) model checker," which we refer 
to as XMC. 

In order to gauge the performance of XMC as an algorithmic model checker, 
we conducted a number of benchmarking experiments designed to compare the 
performance of XMC with the local model checkers implemented in the Concur- 
rency Factory and SPIN. The model checking benchmarks we considered include 
Milner's "scheduler of cyclers" [Mii89] and the leader election and sieve algorithms 
from the SPIN benchmark suite. 2 After applying certain newly develoPed logic- 
programming-based optimizations (along with some standard ones--see Section 3), 
XMC's performance became extremely competitive with that of the Factory and 
shows promise in its comparison with SPIN. 

These results, discussed further in Section 4, are somewhat surprising since the 
Factory's and SPIN's model checkers are written in low-level languages (C/C++)  
with the express purpose of temporal logic model checking, while XSB is a general 
purpose logic programming system. Our experimental results provide evidence that  
writing efficient model checkers for various process languages and logics in XSB can 
be a viable idea. 

Concerning related work, XMC can be viewed as an algorithmic model checker 
in a deductive setting (XSB, after all, is a system to deduce theorems from normal 
logic programs). The recent literature contains a number of proposals for combining 
deductive methods with algorithmic model checking techniques in order to prove 
temporal properties of concurrent systems. For example, the STeP system [BBC+96] 
combines the deductive methods of IMP95] with decision procedures for automat- 
ically checking the walidity of a large class of first-order and temporal formulas. 
[PS96] uses deduction to establish an invariant that is then used to constrain the 
state space exploration performed in model checking. [RSS95] embeds a symbolic 
model checking decision procedure into the PVS higher-order prover, and [SUM96] 
employs first-order linear temporal-logic formulas to construct an abstract repre- 
sentation of the state space to be explored, and deductive methods to successively 
refine this representation until an answer to the model checking problem can be 
ascertained. 

In other related work, [SHIR96] also uses Horn logic to specify model check- 
ing (for a basic, non-value-passing process specification language) but reports no 
effort to implement or evaluate this approach. Toupie [Ran95] is a mu-calculus in- 
terpreter that utilizes a combination of constraint logic programming (over finite 
domains) and BDDs to perform model checking. Constraint logic programming is 
also used in [Ost91] for semi-automatic verification of possibly infinite-state systems. 
In [SCK+95], an efficient '~xpoint-analysis machine" (FAM) is presented which can 
be used on a variety of fixed point computation problems, including model checking. 

The structure of the rest of this paper is as follows. Section 2 describes our 
encoding in XSB of a value-passing language and the alternation-free modal mu- 
calculus. The logic-based optimizations we performed on the XMC model checker 
are the subject of Section 3, and our expermental results are discussed in Section 4. 
Section 5 concludes and presents directions for future work. 

2 The XMC and benchmark sources can be found at http://~r~, cs. sunysb, edu/ 'ysr /  
x m c .  
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2 Value-Passing Language and Modal Mu-Calculus 
Encoding 

As described in the Introduction, we encoded in XSB a model checker for a CCS-like 
value-passing language and the alternation-free modal mu-calculus. The syntax of 
processes in our value-passing language is the following: 3 

P ::= X I a?Y ] a!Y I P o P I if X then P else P 
I P # P ) P II P I P\L ( P�9 I C(Zl ..... Zn) 

In the above, X is a Prolog formula. Thus, for example, the formula l e n g t h ( B u f ,  
Len) is the process that binds Len to the length of list Bur. Note that  this process 
performs no actual transitions. Process a?Y inputs a value over port a into Y, where 
Y is a Prolog term. Similarly, a!Y outputs the value of Y over port a. Operator o 
is generalized prefixing. The remaining operators are like their CCS counterparts 
(modulo occasional changes in syntax to avoid clashes with Prolog lexicon). E.g., 
process i f  X then  P e l s e  Q behaves like P if X succeeds and otherwise like Q; # is 
nondeterministic choice; P I I Q is the parallel composition of P and Q; �9 is relabeling, 
where f is a list of substitutions represented as Prolog terms; and C (Z 1 . . . . .  Zn) is 
a process constant C, parameterized by Zl . . . . .  Zn (C and the Zi are Prolog atoms). 
Recursion is provided by defining equations of the form C(Z1 . . . . .  Zn) :== P. 

The formal semantics of our language is given using structural operational se- 
mantics. Due to space limitations, we present here the axioms and inference rules 
for a few key constructs. In order to emphasize the highly declarative nature of our 
encoding, these are presented exactly as they are encoded in the Prolog syntax of 
XSB.  

trams(a?Y, a?Y, nil). 
trans(a!Y, a!'Y, nil). 
trans(X, nil, nil) :- call(X). 

trans(Pl o P2, Act_a, Q) :- trans(Pl, Act b, QI), 
(Act_b == nil -> trans(P2, Act_a, Q); 
(Act_a = Act_b, (Q1 == nil -> Q = P2 ; Q = Q1 o P2))). 

trams(if X then P1 else P2, Act_a, Q) :- 
call(X) -> trans(P1, Act_a, Q) ; trans(P2, Act_a, Q). 

trams( P I) Q, Act_a, P1 If Q ) :-  trams(P, Act_a, PI). 
trans( P II Q, Act_a, P [I {~i) :- trams(Q, Act_a, ql). 
trams( P II Q, tau, P1 II Q1) :- trams(P, Act a, PI), 

trams(Q, Act_b, QI), comp(Act_a, Act_b). 

In the above, A -> B ; C is Prologsyntax for if A then B else C. The trams 
predicate is of the form trams(P, Act_a, Q) meaning that process P performs an 

3 To increase readability, we use here a slightly sugared version of the syntax actually 
interpreted by XMC. 
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Act_a transition to become process Q. The axiom for input says that  a?Y can execute 
an a?Y transition and then terminate; similarly for the output axiom. The axiom 
for internal computation forces the evaluation of X and then terminates (without 
exercising any transition). The rule for generalized prefix states that P1 o P2 be- 
haves like P1 until P1 terminates; at that point it behaves as P2. The conditional 
process i f  X then  Vl e l s e  P2 behaves like P1 if evaluation of X succeeds, and like 
P2 otherwise. Finally, the rules for parallel composition state that P I [ q can perform 
an autonomous Act_a transition if either P or Q can (the first two rules), and P[ [Q 
can perform a synchronizing t au  transition if P and q can perform "complementary" 
actions (the last rule); i.e., actions of the form a?Y and a!Y. 

To illustrate the syntax and semantics of our value-passing language, consider 
the following specification of a channel chan (with input port in  and output port 
out) implemented as a bounded buffer of size N. 

chan(N, Bur) :== length(Bur, Len) o 
if (Len == 0) then receive_only(N, Bur) 
else if (Len == N) then send_only(N, Bur) 
else receive_only(N, Bur) # send_only(N, Bur). 

receive_only(N, Bur) :== in?Msg o chart(N, [Msg[Buf]). 
send_only(N,Buf) :== rm_last(Buf,Msg,RBuf) o out!Msg o chan(N,RBuf). 

Our encoding of the modal mu-calculus uses the following syntax for formulas: 

F : := Z [ t t  [ f f  [ F \ /  F I F / \  F [ diam(Act_a,F) [ box(Act_a,F)  

In the above, z, which is a Protog atom, is a mu-calcutus logical variable; t t  and 
f f  are propositional constants; V and / \  are standard logical connectives; and 
diam(Act_a,F) (possibly after action Act_a formula F holds) and box(Act_a,F) 
(necessarily after action Act_a formula F holds) are dual modal operators. Ad- 
ditionally, logical variables can be given defining equations of the form X :== 
mu(F) (least fixed point) or X : = =  nu(F) (greatest fixed point). For example, a 
basic property, the absence of deadlock, is expressed in this logic by the formula 
Z :== nu(box( - ,Z)  / \  d i a m ( - , t t ) ) ,  where ' - '  stands for any action. The for- 
mula states, essentially, that from every reachable state (box(- ,  Z)) a transition is 
possible ( d i a m ( - , t t ) ) .  

As in the case of our value-passing language, the semantics of the modal mu- 
calculus is specified dectaratively ifi XSB by providing a set of rules for each of the 
operators of the logic. For example, the semantics of V ,  diam, and mu are encoded 
as follows: 

State_s I= F_I V _ 
State_s [= _ \/ F_2 

:- State_s I= F_I. 
:- State_s [= F_2. 

State_s [= diam(Act_a, F) :- trans(State_s, Act_a, State_t), 
State_t 1 = F. 

State_s I= Z :- Z :== mu(F), State_s I= F. 
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Consider the rule for diam. It  states that a state Sta te_s  (of a process) satisfies 
a formula of the form diam(Act_a,F) if S ta te_s  has an Act_a transition to some 
state S ta te_ t  and S ta t e_ t  satisfies F. As for mu, the semantics of logic programs 
are based on minimal models, and accordingly XSB directly computes least fixed 
points. Thus, the encoding of mu is straightforward as shown above. 

To compute greatest fixed points in XSB, we exploit its capability to handle 
normal logic programs: programs with rules whose right-hand side literals may be 
negated using XSB's tno t ,  which performs negation by failure in a tabled envi- 
ronment. In particular, we make use of the duality nu(F) = -~ mu(-~F). The "not 
models" predicate I/= performs this negation, and appears below for the same 
sampling of operators as given above. 

State_s I~ = F_I \/ F_2 :- State_s I/= F_I, State_s ]/= F_2. 

State_s ]/= diam(Act_a, F) :- 
tfindall(State_t, trans(State_s, Act_a, State_t), State_ts), 
lnotModels(State_ts, F). 

inotModels([],_). 
inotModels([State]LState], F) :- State I/= F, inotModels(LState, F). 

Sta t e_s  I/= Z "- Z :== mu(F), t n o t ( S t a t e _ s  I = F) .  

where t f i n d a l l  finds all solutions of a predicate in a tabled environment. The 
semantics o fnu  is then defined by: 

State_s I= Z :- Z :== nu(F), tnot(State_s I/= F). Z Nu -- models 

State_s I/= Z :- Z :== nu(F), State_s I/= F. Y. Nu -- not models 

This encoding provides a sound method for model checking any modal mu- 
calculus formula that  is alternation free [EL86]. In the alternation-free case, fixed 
points are computed "inside out," with an inner fixed point computed before an 
outer fixed point in whose scope it lies. The proof of correctness rests on showing 
that the XSB program for model checking an alternation-free formula is dynami- 
cally stratified with respect to negation and to t f i n d a l l / 3 ,  and has a two-valued 
minima/model.  Dynamic stratification ensures that the program's dynamic depen- 
dency graph can be evaluated without loops through negation. In [SSW96] it was 
shown that  the evaluation method underlying XSB correctly computes this class of 
programs. 

Tabling ensures that  each explored system state is visited only once in the eval- 
uation of a modal mu-calculus formula. Consequently, the XSB program will termi- 
nate under XSB's tabling method when there are a finite number of states in the 
transition system. 

3 Logic-Based Optimization Techniques 

XMC benefits from optimization techniques developed for deductive-database-style 
applications, such as literal reordering and clause resolution factoring, as well as 

from source-code representational changes of process terms. 
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Literal Reorderin9 Literal reordering (see, for example, [Ul188]) is a common tech- 
nique for optimizing computation by changing the order in which literals on the 
right hand sides of clauses are selected for resolution. The selection strategy con- 
trols the search space needed to evaluate the rule regardless of whether the rule 
is evaluated top-down or bottom-up. Consider the computation of t au  transitions 
using trams: 

trans(par(P, Q), tau, par(P1, QI)) :- trans(P, Act_a, PI), 
trans(Q, Act b, QI), compAct(Act_a, Act_b). 

In general, the number of solutions to the predicate compAct (Act_a, Act_b) is 
much smaller than the number of solutions to trams (Q, Act_b, QI), and hence it 
pays to rewrite the rule as: 

trams(par(P, Q), tau, par(Pl, QI)) :- trans(P, Act_a, PI), 
compAct(Act_a, Act b), trans(Q, Act_b, QI). 

Clause Resolution Factoring Clause resolution factoring, introduced in [DRRS95], 
is a newer optimization that is geared specifically to deductive databases having 
a tightly linked top-down and bottom-up evaluation strategy. Clause resolution 
factoring shares elementary match and unification operations across program and 
answer clause resolution steps. An important aspect of this optimization is that it 
enables individual clauses (instead of whole predicates) to be tabled, improving the 
space and time efficiency of programs. Consider the following fragment of the trams 
relation: 

:- table trans/3. 
trams(C, Act_a, Q) :- C :== P, trans(P, Act_a, Q). 
trans(Act_a o P, Act_a, P). 
trans(P1 # P2, Act_a, Q) :- trams(P1,Act_a,Q) ; trans(P2,Act_a,Q). 

Observe that the rules for t r a n s  have structural recursion, and to ensure ter- 
mination, only the recursive case (i.e., the first rule) needs to be tabled. Applying 
clause resolution factoring with this information results in the following fragment: 

:- table trans_rec/3. 
trans_rec(P, Act_a, Q) :- trans(P, Act_a, Q). 

trans(C, Act_a, Q) :- C :== P, trans_rec(P, Act_a, Q). 
trans(Act_a o P, Act a, P). 
trans(Pl # P2, Act_a, O) :- trans(Pi,Act_a,Q) ; trans(PR,Act_a,Q). 

In the above fragment, only t rans_rec  is tabled; this results in considerable 
savings in table space as well as computation time because terms which do not need 
to be tabled do not incur the overhead of tabling. The model checking predicate 
models, which also has structural recursion, is also subject to this optimization. 
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Optimizing Representation of Process States As mentioned in Section 2, processes 
are represented in XMC using a CCS-like value passing language. For instance in the 
six-agent sieve benchmark, a generator process and six tester processes communicate 
along a linear chain. As an XSB term, the sieve process might be specified in source 
code as: 

sieve :== 
(gen il chanO il test1 II chanl ]~ test2 il chan2 il test3 ~I than3 

II test4 ]I chan4 II tests il chan5 II test6 I} chart6 l~ cons) \ 
{gen_out(X), inl(X), in2(X), in3(X), in4(X), in4(X), inS(X), in6(X), inT(X), 
con_in(X), outl(X), out2(X), out3(X)~ out4(X), outS(X), out6(X), outT(X)}. 

XMC runtime states directly refiectthis specification. For instance, a runtime 
state might have the form: 

( g e n e r a t o r l ( 4 , 3 1 )  ~ 1 I ]  char t_ l ( [ ] )  @ 10 I] t e s t e r 2 ( 2 , 4 )  ~ 2 
I I  char t_ l ( [3] )  @ 11 I ]  t e s t 2  I I  chan2 )1 t e s t 3  ] l  chart3 ] l  t e s t 4  
I I  chart4 I I  tests I I  chan5 I I  test6 I I  chart6 I I  cons) \ 1 

Taken as Prolog terms, these runtime states are relatively large. This s~uation 
is inefficient not only in terms of memory, but also in terms of time, since each state 
encountered must be checked against the table and inserted if it is not there. To 
reduce state size source code representation can be "folded" as below: 

s i e v e  :== (gen IJ chart0 II s i e v e l )  \ {gen_out(X) . . . . .  out7(X)}.  

s i e v e l  :== ( t e s t l  I[ s i eve2)  . . . .  s i ev e6  :== ( t e s t 6  [[ chart6). 

This representation leads to smaller runtime terms such as 

(generatorl(4,31) @ 1 I I  than_l([]) % I0 [[ tester2(2,4) ~ 2 
I I  cha~_ l ( [3 ] )  �9 11 I I  s ieve2) \ 1 

Optimizing process states leads to a 50% reduction in memory required to rep- 
resent states in the leader and sieve examples of Section 4. 

4 E x p e r i m e n t a l  R e s u l t s  

In this section, we compare the performance of XMC with that  of the Concur- 
rency Factory and SPIN in terms of time and memory. Figure 1 shows the space 
and time used by XMC and the Factory on Milner's scheduler for the formula 
Z :== nu(box( - ,Z)  / \  d i a m ( - , t t ) ) ,  for a scheduler of n cyclers, 4 < n < 10. 
The formula, which asserts the absence of deadlock, forces exploration of the entire 
state-space of the system, thus allowing us to assess the scalability of the two im- 
plementations. As is clear from the figure, XMC performs better  than the Factory 
in terms of speed, and is quite competitive in terms of space. 

The example of Milner's scheduler does not involve value-passing. For examples 
involving value-passing, we compared the performance of XMC with SPIN, rather 
than with the Factory, since the latter does not yet have efficient support  for value- 
passing processes. (This problem is expected to be remedied in the next release of 
the Factory, slated for Fall '97.) 
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Fig. 1. Performance comparison with the Concurrency Factory on Milner's scheduler of 
cyclers. 

To assess XMC's ability to model chec~ in a value-passing language, and to 
assess the effects of the optimizations described in the previous section, we used 
the leader election example from the SPIN benchmark suite. As in the case of the 
scheduler, we benchmarked the system for several different ring sizes. The "leader5" 
system corresponds to the system used in the SPIN suite. Table 1 gives the space 
and time figures for two different formulas, F1 being a least fixed point formula 
stating that in every run of the system a leader is eventually elected, and F2 being 
a nested fixed point formula stating that in every run of the system at most one 
leader is elected. In this table, for a system of given size, the first line indicates the 
space and time figures with the naive encoding without any of the optimizations 
of the previous section, and the second line gives the corresponding figures with all 
the optimizations in place. 

To compare XMC to SPIN we also implemented in XMC, a simple transitive 
closure algorithm to search and store all the reachable states of leader5 as well 
as sieve6, also from the SPIN benchmark suite. The results in Table 2 indicate 
that XMC has good memory usage as compared to SPIN, but that the speed of 
XMC appears uneven3 Two features account for the good memory usage of XMC. 
First, tabled terms in the underlying XSB engine are stored using a trie-like data 
structure that provides good structure sharing for variant subterms. Second, the 
scheduling strategy of XSB allows left-linear transitive closure to be performed 
using a minimum of runtime stack space. 

An important feature of SPIN is that it combines on-the-fly model checking with 
partial order reduction, a technique for combating the combinatorial explosion that 
results from interleaving concurrent independent transitions in all possible orders. 
Roughly speaking, partial order reduction partitions the state space into equiva- 
lent search paths; (dis)proving a given property then requires exploring only one 

4 The sieve benchmark of Table 2 was run on an SGI challenge for both XMC and SPIN; 
SPIN results are from [GKPP97]. All other figures for XMC and the Concurrency Fac- 
tory were performed on a sparcl0 with about 500 MB available main memory; the leader 
benchmark for SPIN was also run on a sparcl0 with 128 MB main memory [HP95]. 
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Program 

leader2 (unopt) 
(opt) 

leader3 (unopt) 
(opt) 

leader4 (unopt) 
(opt) 

leader5 (unopt) 

F1 
Time (sec) 

0.23 
0.I0 
1.21 
0.46 

8:51 

Space (MB) 
0,817 
0.209 
4.593 
0.581 

37.366 
3,079 

F2 
Time (sec) 

0.22 
0.11 
1.18 
0.51 
8.39 
3.23 

Space (MBi 
0.768 
0.198 
4.342 
0.596 

35.604 
3.239 2.93 

..... 39.09 170.608 37.51 163.405 
(opt) 11.87 11.396 12.87 12.139 

Table 1. Illustrating the effect of logic-based optimizations. 

Programi System Time (sec) Space (M B) 
leader5 SPIN 8:1 9.60 

XMC 5:5 0.78 
sieve6 SPIN t 18 231 

XMC I 10.4 .... 1.23 

Table 2. Performance comparison with SPIN on value-passing examples. 

path in each equivalence class. The results quoted above for SPIN (and for XMC) 
were obtained without the use of partial order reduction, and the numbers go down 
appreciably (especially for sieve) with the use of this technique. The programma- 
bility of XSB should, however, allow the implementation of partial order reduction 
techniques within XMC, a topic currently under investigation. 

5 Conc lus ions  and  F u t u r e  W o r k  

We have provided experimental evidence that  writing efficient algorithmic model 
checkers in a tabled logic programming system is a viable idea. Our work on XMC 
reveals a number of directions for future work. For example, we have not con- 
sidered alternating fixed points [EL86] in this paper. The logic-programming-based 
approach to model checking, however, suggests a promising technique in which inner 
fixed points are computed symbolically, thereby avoiding their repeated computa- 
tion. 

Traditionally, model checking has been viewed as an algorithmic technique, al- 
though there is initial activity on combining model checking with deductive meth- 
ods (see our discussion of related work in Section 1). Observe that (optimized) XSB 
meta-interpreters can be used to execute arbitrary deductive systems. Hence, the 
XSB-based approach offers a unique opportunity to fully and flexibly integrate al- 
gorithmic and deductive model checking. Demonstrating the feasibility of this idea 
is another direction for future work. 
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XSB's unification mechanism handles interpreted and uninterpreted variables in 
a value-passing language as ground and non-ground logical variables, respectively. 
Moreover, XSB automatically offers lazy grounding of variables. Since grounding can 
increase the search space of a query (every possible valuation must be considered), 
lazy grounding can result in substantial savings. As future work, we plan to experi- 
mentally measure the impact of lazy grounding on performance and investigate how 
it can be used to effectively realize Wolper's data independence scheme [Wo186]. 
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