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Abstract 

A leak test procedure for a combustion system which is used in the chemical industry was verified. 
This procedure is important since it reduces the probability of explosions. Both government and 
internal company standards where employed in creating the initial leak test procedure. Several major 
faults were discovered by the verification of a logic model of the procedure and equipment using 
SMV. This paper describes the leak test procedure with its corresponding combustion system pipe 
network, the approach employed in modeling the process, failure modes included in the process 
model, computational challenges, and verification results. This study indicates that the formal 
method, SMV, is an appropriate tool for verification of industrial processes of modest complexity 

1. Introduction 

The synthesis of high integrity industrial processes is becoming a more significant goal of 
companies. A small industrial process may contain 50 to 100 binary variables in its model. 
The total combinatorial space of a process model with 50 binary variables has 1015 states. 
Analysis of even a modest size system is difficult with current industrial practices, such as 
simulation and field testing. Automated formal methods can exhaustively verify large state 
spaces, typically, on the order of 1020 states [2], for a given property of the system. 

Originally, formal methods, in particular symbolic model verification (SMV) [11], were 
developed for the verification of integrated circuits and communication protocols [5,6]. 
The power of verification using SMV is its ability to find faults in very large, sequential and 
finite state spaces. This ability comes from symbolically representing the set of states and 
state transitions. SMV internally converts a process model into a symbolic representation, 
an ordered binary decision diagram, which implicitly describes the state space. Recently, 
several industrial processes including a batch reactor, a solids transport system and a 
furnace standard, have been represented in a logic model and verified by SMV [1.9,  12, 
13, 14, 15, 16, 17]. One problem of verification that has laid dormant is the efficient 
modeling of a complete and compact representation for an industrial process. This paper 
describes the modeling and verification of a part of a chemical process that involves a leak 
test procedure and is intended to test the ability of SMV to effectively verify industrial 
processes. This example illustrates the importance of selecting an appropriate modeling 
framework to capture necessary process behavior while controlling computational 
difficulties. 
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2. Process Verification 

Process flowsheets, operating procedures, control logic, human operators, and failure 
modes are needed to describe the behavior of a chemical process. The compactness and 
completeness of a model significantly influences the quality of the analysis and the 
computational time required for the verification. Excessively complicated models can often 
described a state space that is too large for efficient verification. For process verification, 
an appropriate level of complexity and behavior must be captured by the logic model. 

The process specifications and key process properties are used as guides in identifying the 
behavior and complexity necessary to represent the process. These behaviors are 
appropriately modeled with the aid of several comprehensive strategies. The strategies 
involve: 

�9 Exclusion of process behavior that does not effect the specifications being verified. 
�9 Discretization of the continuous and dynamic process behavior into a set of finite 

transition relations. 
�9 Representation of different time domains implicitly in order to reduce model 

complexity. 
�9 Minimization of the number of state variables required to represent the system. 
�9 Application of symmetry [7] and modularity in order to reduce the model complexity. 
�9 Application of non-determinism selectively in modeling uncertain properties of the 

process. 
�9 Combination of similar failure events into macro failure modes. 

The union of these strategies is an attempt to tame combinatorial explosion by efficiently 
building logic models while remaining true to the underlying physics, chemistry, control 
logic, and operating goals of the process. An understanding of the physical phenomena 
found in the process must be developed in order to identify the behavior that may have been 
omitted or spuriously included. 

3. L e a k  T e s t  Procedure Description 

The correct detection and replacement of leaking valves in a combustion system can lead to 
the reduction in the number of explosions from methane escaping into a shutdown furnace. 
The leak test procedure is a series of steps that check for leaks across shut off valves. The 
valve diagram for a combustion system is shown in figure 1. The original procedure (base 
case) pressurizes the system by igniting the pilot and main burner. Once the burners have 
been ignited then the hand valves bv7 and bvl5 are closed which extinguishes the burners. 
The blocking valves, 114, b13, ls12, and bs11 automatically close since they are linked to a 
safety interlock which is triggered when the burners are extinguished. The closure of these 
valves creates a series of pressurized pipe segments between the valves. Pressure in each of 
these segments is assumed by the test procedure to leak down stream to a lower pressure 
location. The system is allowed to reach equilibrium by waiting 5 minutes before 
proceeding with testing of the system. The main line is checked first by opening the tap 
valves tp3 and then tp2. Each section is checked for bubbling, which indicates no leaking 
downstream, or for bubbling to stop, which indicates no leaking upstream. The pipe 
segments in-between the locking valves, 114, b13, ls12, and b s l l ,  are tested for both 
conditions. If at any time, a leak is detected then the apparently leaking valve is replaced 
and the test procedure is started over. Once the main line has been completed the pilot line 
is opened allowing this section of the valve train to be re-pressurized before continuing with 
the procedure. The test steps outlined for the main line are repeated for the pilot line. 
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Figure 1: Piping and Valve Diagram for Combustion System 

4. Properties 

The properties for the process were created from quality, operability, and safety issues that 
concern process engineers [8,10]. General specifications developed from these issues are 
given below: 

�9 Are leaking valves detected? 
�9 Are non-leaking valves being replaced needlessly? 
�9 Does the procedure terminate? 

Specifications which represent process concerns were used as guides in abstracting and 
constructing process logic models. 

5. Modeling of  the Leak Test Procedure 

5.1 Modeling Continuous Behavior 

In order for the model to be comprehensive, the underlying physical phenomena of a leak 
must be understood either from experimentation or theory. The theory for the dynamics of 
a compressible fluid, such as methane gas, is well established and is based upon the 
following equations of continuity (eqn. 2), motion (eqn. 3), and energy (eqn. 4). 

lDn 
- r  = -p(V. v) (2) 
Dt 

Dv 
0-=7. = -Vp  - IV �9 z] + pg (3) 

191 

p---D ( l J+~v2  = - ( V , q ) + p ( v *  g ) - ( V � 9  pv) ~(V -['~ �9 v] ) 
Dt 2 

(4) 
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where p is the density, g is the gravitational constant, 

v is the velocity, q is the heat flux vector, 

p is the pressure, l~l is the internal energy, and 

17 is the shear forces. 

A leak between two pipe sections can be simplified into two pressure vessels connected 
with a valve or nozzle. The effects of the nozzle on velocity and pressure in the radial 
direction can be removed by taking a macroscopic view of the system. It can also be 
assumed that no work is being performed on or by the system. Based upon these 
assumptions, the partial differential equation for motion can be simplified further by 
assuming that the variables in the z-axis do not change in the other axis directions. 

.Ov~ av, ap .1 a .  . l ~ o z  a x e .  

This system of equations still can not be solved analytically for the leak rate of the methane 
gas. However, the leak procedure does not examine the leak rate of a valve directly, but 
checks for bubbling and/or the bubbling to have stopped from the pipe section being tested 
which in turn confirms the tightness of the valves isolating that pipe segment.. The rate of 
the gas escaping and therefore the bubbling is continuous in behavior and not discrete as the 
written procedure perceives it. Based upon the procedure, the system was modeled to 
reflect this discrete observation of bubbling and bubbling stopped. The model assumes that 
the operator checks for bubbling almost instantaneously after opening the tap valves and for 
bubbling to have stopped after a suitable time period which is not explicitly defined by the 
procedure. Both of these assumptions limit the behavior captured by the logic model and 
by the procedure. Faults caused by leak rates slower then the time period set for bubbling 
to stop can not be verified with the base case model. Modifications discovered during 
SMV verification of the procedure were added to the model which allowed this behavior to 
be captured. 

The leak rate of a valve affects the amount of pressure remaining in a pipe segment. The 
altered pressure causes the time period necessary for the pipe segment to bleed to 
atmospheric pressure to be shorter or longer. The model of the process assumes that the 
leak will not decrease or increase the time needed to normally bleed a pipe segment. 
However, this assumption raises the questions of how much delay time is required for 
detecting bubbling t6 stop and how small of a test time interval is needed to isolate these 
leaks. Both the temperature of the environment and the current pressure of the methane 
source will affect the delay time. These interactions makes the selection of an explicit 
delay time difficult. This problem can be solved by allowing the transitions to the bubbling 
and bubble stopped states to represent different time periods. 

The time period between states was allowed to vary according to the task being performed 
during the transition. The only time requirements were a five minute delay, the 
instantaneous checking for bubbles, and the suitable delay for bubbles to stop. The 
verification of this leak test procedure benefits from the flexible transition time periods 
since it represents any leak test procedure that specifies the time necessary for an operator 
to wait before he can assume that the bubbling has not stopped. Time was also implicitly 
included in the model through the variable step which indicates the current step an operator 
is performing in the leak test procedure. 
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5.2 Modeling Pressure 

Pressure was declared as a Boolean variable as it is treated in the leak test procedure. This 
variable as described in the procedure only needed values for atmospheric pressure at 
which no bubbling would occur, and a higher pressure at which bubbling would occur. A 
local pressure variable was created for each segment of pipe. These local variables were 
connected through a series of definition variables. The transition relation of these 
definition variables would link the pressure in the pipe segments together if they shared a 
common leaking or open valve. The value of the definition variable for local pressure in a 
pipe segment would then be mapped into the correct local pressure variable. This modeling 
strategy assumes the pressure to quickly equalize through the pipe network due to leaks in 
the connecting valves. These modeling assumptions can be traced back to the defining 
equations 2, 3, and 4 for validation. 

3 

4 

step' =. 5 

6 

7 

17 

0 

step 

5.3 Modeling the Procedure 

The leak test procedure, itself, was modeled using two state variables, step and status. The 
variable step was declared as an integer range between 0 and 17 while status was declared 
as four discrete values; conducting the leak test (test), repairing a valve (repairing), valve 
repair done (repair_done), start pilot burner (pilot_start), start main burner (main_start), 
and combustion system operational (burn). 

step = {0..17} (6) 

status = {testing, repair, repair_ done, pilot_ start, m a i n  start, burn} (7) 

The transition relation of the variable, step, defines the various tasks of the test procedure 
and their ordering in the model (fig. 2). At each step n, several logic constraints need to be 
satisfied before step can progress to the next interval, n+l. Step one allows the pressure in 
the pipe network to come to equilibrium before the tap valve, tp3, is opened at the next 
step. Step 4 checks for the process condition of bubbling at tp3. Step 4 opens tp2 and 
checks for bubbling at the next pipe segment. The condition of  the bubbles stopping is 
tested in step 5. The tasks, performed in these steps are repeated for each pipe segment in 
the network. If  no bubbles were seen by the human operator performing the test procedure 
at step 3, then the variable, status, initiates the repair sequence for valve by7. 

0 if status = repair_ done 

step if status = repair 

1 if step = 0 A status = test 

2 if step 1 

if step = 2 

if step = 3 A bubbling @ tp3 

if step = 4 A bubbling@ tp4 

if step = 4 A bubbles_ stop @ tp4 

if step = 6 

if step = 16 A bubbles_ stop @ tpl 

if step = 17 

Figure 2: Logical Abstraction of the Transition Relation for Variable Step 
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The status variable defines the transition of the process from the test procedure to other 
conditions such as repairing a valve or igniting the combustion system (fig. 3). 

5.4 Modeling Failure Events 

Failure Events for leaking valves were included in the logic model. State variables for 
valve leaks were defined for each valve that could leak. The initial conditions of these 
variables were made non-deterministic in order to capture the possible random failures of 
one or more values. 

leak @ by7 = {0,1} (8) 

�9 f0 if status = repairing ^ step = 3 
leak @ by7 = llea k @ by7 (9) 

Variables retained their selected value until they were repaired at the correct point in the 
test procedure. Intermittent leaks were not included in these failure modes. 

s tatus '= 

[ tr~tai r 

repair 
repair 

repair if step= 16^~bubble_stop@ tpl 

r epa i r  done if status = repair 

pilot__ start' if step = 17 v (step = 0 ~- ,p i lo t_  flame) v step = 5 

main_ start if status = pilot_ start ^ p i l o t  flame 

burn if--,status = test A pilot_ flame A m a i n  flame 

if status = burn v step = 6 

if step = 3 ̂  ~bubbling@ tp3 

if step = 4 ^ ~bubbling @ tp4 

if step = 5 A ~bubble_ stop@ tp4 

status 

Figure 3: Logical Abstraction of the Transition Relation for Variable status 

6. Results 

Table 1 gives the number of Boolean variables, reachable states, nodes in the transition 
relation, and the CPU time for the base case leak test models developed by Probst [16]. 
The time for verification and counterexamples generation is included in the values reported 
for the CPU time. These models revealed the general fault that leaks in the tap valves are 
not accounted for in the procedure and could cause non leaking valves, bv7 and b13, to be 
replaced needlessly. In order to avoid this error, the tap valves in the pipe network must be 
tested prior to conducting the leak test procedure. The authors of  the procedure modified 
the leak test method to include this additional test. 
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6.1 New Failure Modes 

The subsequent models of the leak procedure were amended in order to captures both fast 
and slow valve leaks. The time scale of fast leaks was assumed to be seconds while the 
scale for slow leaks was assumed to be on the order of several minutes. The logic model 
does not need modifications in order to verify the procedure for fast leaks since the time 

Table 1 Information on Verified Leak Test Procedure Models 

Model Name Boolean Reachable Transition CPU Time 
Variables States Relations (sec) a 

(OBDD Nodes) 
Base Case 24 5,944 11,221 5 
Leak_tp 1 25 11,859 14,804 2 
Leak_tp 1,tp2 26 22,263 18,734 4 

Leak_tp 1,tp2, 27 42,154 22,961 5 
tp3 

Leak_tpl,tp2, 28 84,313 28,215 26 
tp3,tp4 

Leak__tpl,tp2, 29 169,049 33,701 39 
tp3,tp4,tp5 

Leak_tp 1,tp2, 30 340,193 39,087 52 
tp3,tp4,tp5,tp6 

aComputations were performed on a Hewlett-Packard 715/75 workstation 

required for the leak to reduce the pressure in a particular pipe segment to atmospheric is 
assumed to be fast when compared with the other time constants of the system. The slow 
leaks are modeled by allowing the transition relation of step to skip testing pipe sections 
and their corresponding valves. It was assumed that the human operator could not observe 
the slowly leaking valves and this phenomena was treated as if there was no leaking valve 
(or equivalently that the pipe section was skipped). The pressure in the skipped pipe 
segment was still affected by the leaking valve and adjusted accordingly. 

'0 if status = repa i r  done 

step if status = repair 

1 if step = 0 ^ status = test 

2 if step = 1 

{3,4} if step = 2 

{4,6} if step = 3 ^ bubbling @ tp3 

s tep '=  5 i f s t e p = 4 ^ b u b b l i n g @ t p 4  

6 i f s t e p = 4 ^ b u b b l e s _ s t o p @ t p 4  

7 if step = 6 

7 if  step = 1 6 ^ b u b b l e s  stop@ tpl 

if step = 17 

].step 

Figure 4: Logical Abstraction of the Transition Relation for Variable step with Skipping 
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Table 2 Information on Verified Leak Test Procedure Models 

Model Name Boolean Reachable Transition CPU Time 
Variables States Relations (sec) ~ 

(OBDD Nodes) 
B ase_C ase 24 5,944 11,495 2.80 
Press_Skip 1 24 14,611 14,205 7.86 
Valves_Tap 30 14,611 28,102 25.65 
Valves_All 38 14,611 95, 100 323.49 
Valves_Two 32 14,611 54,064 128.31 
Remove_Press 32 14,552 37,632 71.48 
Expand_Proc 32 5,153 44,688 6.45 
Press_Skip2 32 15,984 49601 18.3 

~Computations were performed on a Hewlett-Packard 812/70 workstation 

Failure events for slowly leaking valves and for the human operator skipping pipe segments 
and not testing them for leaks were added to the logic model through a macro failure mode 
Both of these failure events lead to the result of a leaking valve not being detected. This 
failure mode was included in the model by adding non-determinism to the transition 
relation of the variable, step (fig. 4). Before testing for pressure in each pipe segment, the 
procedure was allowed either to continue checEng the current pipe section or to skip over 
it. 

The Press__Skipl model added the step skipping failure mode to the base case model (table 
2). The models Valves_tap through Expand_Proc contain a series of sequential 
refinements to the base case model which added resolution for capturing the combined 
failure event. The Valves_Tap model redefined the tap valves as state variables instead of 
definition variables to see if sequential behavior of these variables was important. 
Valves_AU includes all the connecting and tap valves as state variables. In table 2, the data 
indicates that the size, complexity level, and CPU time of the models was increasing in an 
exponential manner. Strategic reduction in the model was used to control complexity. The 
Valve_Two model kept all connecting valves as definition variables except for Ibv8 and 
bvlO, which were changed to state variables. These valves were left as state variables since 
they are explicitly closed in the test procedure. Remove_Press simplified the pressurization 
and segmenting of the pipe network to one macro step (fig. 5) instead of several 
complicated steps since the leak test procedure did not check for faults in both the ignition 
and extinguish sequence of the furnace. The skipping step model uncovered that the 
original modeling of the leak test procedure added invalid process behavior. The 
representation was incrementally refined in order to eliminate this added behavior until its 
size and complexity began to have a negative effect on verification. A series of reductions 
in the representation of the model were incorporated into the leak test model. These models 
illustrates the struggle to balance the completeness of the model with its compactness. 
Through the expansion and reduction of the original model, it was discovered that some of 
the procedure steps overlapped and could not be distinguished from each other. The 
amendments to the representation allowed the user to distinctly perceive the individual 
steps of the procedure. The Expand_Proc model expanded the test procedure so that only 
one task was performed at every step which increased the number of steps from 17 to 24 
(fig. 6). The Expand_Proc model increased verification time by a factor of 2 compared to 
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status" = 

'test if status = pressurize 

repair_ done if status = repair 

repair if step = 3 A ~bubbling @ tp3 

repair if  step = 4 A ~bubble stop@ tp3 

repair if step = 23 ̂  ~bubble stop@ tpl 

presurize if step = 0 v step = 8 

status 

Figure 5: Logical Abstraction of the Transition Relation for Variable status with a Macro 
Pressurization step 

the base case. However, a factor of 10 increase in the verification time was observed for 
Valve_All model before the model size and complexity was reduced. Overall, the new 
representation from the one in the base case model increased verification time but not as 
dramatically as the trend indicated by the ValveAll  model due to reduction and modeling 
strategies. 

The final model, Press_Skip2, added the combined failure mode event to the Expand Proc 
model. The Press..Skip2 model revealed that slow leaks in the valves bv7, bv15, and lbv8 
were neglected by the test procedure. A correction to the base case test procedure ensured 
that all other connecting valves were double tested by the pipe segment downstream and 
upstream from them. This double checking by the test procedure detected when these 
valves had slow leaks. The procedure was revised by explicitly checking for the starting 
and stopping of bubbling at each tap. These changes effectively detect slowly leaking 
valves, 

0 if status = repai r  done 

step if status = repair 

1 if step = 0 

2 if step = 1 

3 

4 

step'= 5 

6 

7 

li 24 

l step 

if step = 2 

i f  step = 3^bubbling@ tp3 

if step = 4 AbubbIes stop@ tp3 

if s tep=5 

if step = 6 A bubbling @ tp4 

Figure 6: Logical Abstraction of the Transition Relation for Variable step with Expanded 
Pipe Segment Testing 
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7. Conclusions 

The formal verification of the leak test procedure, a modestly complex chemical process, 
discovered several significant faults that were repaired by revising the procedure. A 
modeling strategy that controlled the state space size while retaining process physics, 
procedures, and failure modes was necessary for efficient and reasonably complete 
verification. The original process model was refined in order to capture appropriate 
behavior caused by increasingly detailed failure events. Process verification using SMV 
has demonstrated its potential for aiding in the synthesis of high integrity industrial 
processes. Modeling time and completeness remain as challenges to wider application. 

Model Source 

The base case model by Probst is available at: 

http://www.cheme.cmu.edu/who/faculty/powers/probst/html/research.html 
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