
Verification of a Chemical Process Leak Test Procedure

Adam L. Turk, Scott T. Probst and Gary J. Powers
Department of Chemical Engineering

Carnegie Mellon University

Abstract

A leak test procedure for a combustion system which is used in the chemical industry was verified.
This procedure is important since it reduces the probability of explosions. Both government and
internal company standards where employed in creating the initial leak test procedure. Several major
faults were discovered by the verification of a logic model of the procedure and equipment using
SMV. This paper describes the leak test procedure with its corresponding combustion system pipe
network, the approach employed in modeling the process, failure modes included in the process
model, computational challenges, and verification results. This study indicates that the formal
method, SMV, is an appropriate tool for verification of industrial processes of modest complexity

1. Introduction

The synthesis of high integrity industrial processes is becoming a more significant goal of
companies. A small industrial process may contain 50 to 100 binary variables in its model.
The total combinatorial space of a process model with 50 binary variables has 1015 states.
Analysis of even a modest size system is difficult with current industrial practices, such as
simulation and field testing. Automated formal methods can exhaustively verify large state
spaces, typically, on the order of 1020 states [2], for a given property of the system.

Originally, formal methods, in particular symbolic model verification (SMV) [11], were
developed for the verification of integrated circuits and communication protocols [5,6].
The power of verification using SMV is its ability to find faults in very large, sequential and
finite state spaces. This ability comes from symbolically representing the set of states and
state transitions. SMV internally converts a process model into a symbolic representation,
an ordered binary decision diagram, which implicitly describes the state space. Recently,
several industrial processes including a batch reactor, a solids transport system and a
furnace standard, have been represented in a logic model and verified by SMV [1.9, 12,
13, 14, 15, 16, 17]. One problem of verification that has laid dormant is the efficient
modeling of a complete and compact representation for an industrial process. This paper
describes the modeling and verification of a part of a chemical process that involves a leak
test procedure and is intended to test the ability of SMV to effectively verify industrial
processes. This example illustrates the importance of selecting an appropriate modeling
framework to capture necessary process behavior while controlling computational
difficulties.

85

2. Process Verification

Process flowsheets, operating procedures, control logic, human operators, and failure
modes are needed to describe the behavior of a chemical process. The compactness and
completeness of a model significantly influences the quality of the analysis and the
computational time required for the verification. Excessively complicated models can often
described a state space that is too large for efficient verification. For process verification,
an appropriate level of complexity and behavior must be captured by the logic model.

The process specifications and key process properties are used as guides in identifying the
behavior and complexity necessary to represent the process. These behaviors are
appropriately modeled with the aid of several comprehensive strategies. The strategies
involve:

�9 Exclusion of process behavior that does not effect the specifications being verified.
�9 Discretization of the continuous and dynamic process behavior into a set of finite

transition relations.
�9 Representation of different time domains implicitly in order to reduce model

complexity.
�9 Minimization of the number of state variables required to represent the system.
�9 Application of symmetry [7] and modularity in order to reduce the model complexity.
�9 Application of non-determinism selectively in modeling uncertain properties of the

process.
�9 Combination of similar failure events into macro failure modes.

The union of these strategies is an attempt to tame combinatorial explosion by efficiently
building logic models while remaining true to the underlying physics, chemistry, control
logic, and operating goals of the process. An understanding of the physical phenomena
found in the process must be developed in order to identify the behavior that may have been
omitted or spuriously included.

3. L e a k T e s t Procedure Description

The correct detection and replacement of leaking valves in a combustion system can lead to
the reduction in the number of explosions from methane escaping into a shutdown furnace.
The leak test procedure is a series of steps that check for leaks across shut off valves. The
valve diagram for a combustion system is shown in figure 1. The original procedure (base
case) pressurizes the system by igniting the pilot and main burner. Once the burners have
been ignited then the hand valves bv7 and bvl5 are closed which extinguishes the burners.
The blocking valves, 114, b13, ls12, and bs11 automatically close since they are linked to a
safety interlock which is triggered when the burners are extinguished. The closure of these
valves creates a series of pressurized pipe segments between the valves. Pressure in each of
these segments is assumed by the test procedure to leak down stream to a lower pressure
location. The system is allowed to reach equilibrium by waiting 5 minutes before
proceeding with testing of the system. The main line is checked first by opening the tap
valves tp3 and then tp2. Each section is checked for bubbling, which indicates no leaking
downstream, or for bubbling to stop, which indicates no leaking upstream. The pipe
segments in-between the locking valves, 114, b13, ls12, and b s l l , are tested for both
conditions. If at any time, a leak is detected then the apparently leaking valve is replaced
and the test procedure is started over. Once the main line has been completed the pilot line
is opened allowing this section of the valve train to be re-pressurized before continuing with
the procedure. The test steps outlined for the main line are repeated for the pilot line.

Natural
Gas
Supply

86

v9 lbv8 114 b13 bv7

bvl0 Is12 bs l l bvl5

tp4

Pilot
Burner

Figure 1: Piping and Valve Diagram for Combustion System

4. Properties

The properties for the process were created from quality, operability, and safety issues that
concern process engineers [8,10]. General specifications developed from these issues are
given below:

�9 Are leaking valves detected?
�9 Are non-leaking valves being replaced needlessly?
�9 Does the procedure terminate?

Specifications which represent process concerns were used as guides in abstracting and
constructing process logic models.

5. Modeling of the Leak Test Procedure

5.1 Modeling Continuous Behavior

In order for the model to be comprehensive, the underlying physical phenomena of a leak
must be understood either from experimentation or theory. The theory for the dynamics of
a compressible fluid, such as methane gas, is well established and is based upon the
following equations of continuity (eqn. 2), motion (eqn. 3), and energy (eqn. 4).

lDn
- r = -p(V. v) (2)
Dt

Dv
0-=7. = -Vp - IV �9 z] + pg (3)

191

p---D (l J+~v2 = - (V , q) + p (v * g) - (V � 9 pv) ~(V -['~ �9 v])
Dt 2

(4)

87

where p is the density, g is the gravitational constant,

v is the velocity, q is the heat flux vector,

p is the pressure, l~l is the internal energy, and

17 is the shear forces.

A leak between two pipe sections can be simplified into two pressure vessels connected
with a valve or nozzle. The effects of the nozzle on velocity and pressure in the radial
direction can be removed by taking a macroscopic view of the system. It can also be
assumed that no work is being performed on or by the system. Based upon these
assumptions, the partial differential equation for motion can be simplified further by
assuming that the variables in the z-axis do not change in the other axis directions.

.Ov~ av, ap .1 a . . l ~ o z a x e .

This system of equations still can not be solved analytically for the leak rate of the methane
gas. However, the leak procedure does not examine the leak rate of a valve directly, but
checks for bubbling and/or the bubbling to have stopped from the pipe section being tested
which in turn confirms the tightness of the valves isolating that pipe segment.. The rate of
the gas escaping and therefore the bubbling is continuous in behavior and not discrete as the
written procedure perceives it. Based upon the procedure, the system was modeled to
reflect this discrete observation of bubbling and bubbling stopped. The model assumes that
the operator checks for bubbling almost instantaneously after opening the tap valves and for
bubbling to have stopped after a suitable time period which is not explicitly defined by the
procedure. Both of these assumptions limit the behavior captured by the logic model and
by the procedure. Faults caused by leak rates slower then the time period set for bubbling
to stop can not be verified with the base case model. Modifications discovered during
SMV verification of the procedure were added to the model which allowed this behavior to
be captured.

The leak rate of a valve affects the amount of pressure remaining in a pipe segment. The
altered pressure causes the time period necessary for the pipe segment to bleed to
atmospheric pressure to be shorter or longer. The model of the process assumes that the
leak will not decrease or increase the time needed to normally bleed a pipe segment.
However, this assumption raises the questions of how much delay time is required for
detecting bubbling t6 stop and how small of a test time interval is needed to isolate these
leaks. Both the temperature of the environment and the current pressure of the methane
source will affect the delay time. These interactions makes the selection of an explicit
delay time difficult. This problem can be solved by allowing the transitions to the bubbling
and bubble stopped states to represent different time periods.

The time period between states was allowed to vary according to the task being performed
during the transition. The only time requirements were a five minute delay, the
instantaneous checking for bubbles, and the suitable delay for bubbles to stop. The
verification of this leak test procedure benefits from the flexible transition time periods
since it represents any leak test procedure that specifies the time necessary for an operator
to wait before he can assume that the bubbling has not stopped. Time was also implicitly
included in the model through the variable step which indicates the current step an operator
is performing in the leak test procedure.

88

5.2 Modeling Pressure

Pressure was declared as a Boolean variable as it is treated in the leak test procedure. This
variable as described in the procedure only needed values for atmospheric pressure at
which no bubbling would occur, and a higher pressure at which bubbling would occur. A
local pressure variable was created for each segment of pipe. These local variables were
connected through a series of definition variables. The transition relation of these
definition variables would link the pressure in the pipe segments together if they shared a
common leaking or open valve. The value of the definition variable for local pressure in a
pipe segment would then be mapped into the correct local pressure variable. This modeling
strategy assumes the pressure to quickly equalize through the pipe network due to leaks in
the connecting valves. These modeling assumptions can be traced back to the defining
equations 2, 3, and 4 for validation.

3

4

step' =. 5

6

7

17

0

step

5.3 Modeling the Procedure

The leak test procedure, itself, was modeled using two state variables, step and status. The
variable step was declared as an integer range between 0 and 17 while status was declared
as four discrete values; conducting the leak test (test), repairing a valve (repairing), valve
repair done (repair_done), start pilot burner (pilot_start), start main burner (main_start),
and combustion system operational (burn).

step = {0..17} (6)

status = {testing, repair, repair_ done, pilot_ start, m a i n start, burn} (7)

The transition relation of the variable, step, defines the various tasks of the test procedure
and their ordering in the model (fig. 2). At each step n, several logic constraints need to be
satisfied before step can progress to the next interval, n+l. Step one allows the pressure in
the pipe network to come to equilibrium before the tap valve, tp3, is opened at the next
step. Step 4 checks for the process condition of bubbling at tp3. Step 4 opens tp2 and
checks for bubbling at the next pipe segment. The condition of the bubbles stopping is
tested in step 5. The tasks, performed in these steps are repeated for each pipe segment in
the network. If no bubbles were seen by the human operator performing the test procedure
at step 3, then the variable, status, initiates the repair sequence for valve by7.

0 if status = repair_ done

step if status = repair

1 if step = 0 A status = test

2 if step 1

if step = 2

if step = 3 A bubbling @ tp3

if step = 4 A bubbling@ tp4

if step = 4 A bubbles_ stop @ tp4

if step = 6

if step = 16 A bubbles_ stop @ tpl

if step = 17

Figure 2: Logical Abstraction of the Transition Relation for Variable Step

89

The status variable defines the transition of the process from the test procedure to other
conditions such as repairing a valve or igniting the combustion system (fig. 3).

5.4 Modeling Failure Events

Failure Events for leaking valves were included in the logic model. State variables for
valve leaks were defined for each valve that could leak. The initial conditions of these
variables were made non-deterministic in order to capture the possible random failures of
one or more values.

leak @ by7 = {0,1} (8)

�9 f0 if status = repairing ^ step = 3
leak @ by7 = llea k @ by7 (9)

Variables retained their selected value until they were repaired at the correct point in the
test procedure. Intermittent leaks were not included in these failure modes.

s tatus '=

[tr~tai r

repair
repair

repair if step= 16^~bubble_stop@ tpl

r epa i r done if status = repair

pilot__ start' if step = 17 v (step = 0 ~- ,p i lo t_ flame) v step = 5

main_ start if status = pilot_ start ^ p i l o t flame

burn if--,status = test A pilot_ flame A m a i n flame

if status = burn v step = 6

if step = 3 ̂ ~bubbling@ tp3

if step = 4 ^ ~bubbling @ tp4

if step = 5 A ~bubble_ stop@ tp4

status

Figure 3: Logical Abstraction of the Transition Relation for Variable status

6. Results

Table 1 gives the number of Boolean variables, reachable states, nodes in the transition
relation, and the CPU time for the base case leak test models developed by Probst [16].
The time for verification and counterexamples generation is included in the values reported
for the CPU time. These models revealed the general fault that leaks in the tap valves are
not accounted for in the procedure and could cause non leaking valves, bv7 and b13, to be
replaced needlessly. In order to avoid this error, the tap valves in the pipe network must be
tested prior to conducting the leak test procedure. The authors of the procedure modified
the leak test method to include this additional test.

90

6.1 New Failure Modes

The subsequent models of the leak procedure were amended in order to captures both fast
and slow valve leaks. The time scale of fast leaks was assumed to be seconds while the
scale for slow leaks was assumed to be on the order of several minutes. The logic model
does not need modifications in order to verify the procedure for fast leaks since the time

Table 1 Information on Verified Leak Test Procedure Models

Model Name Boolean Reachable Transition CPU Time
Variables States Relations (sec) a

(OBDD Nodes)
Base Case 24 5,944 11,221 5
Leak_tp 1 25 11,859 14,804 2
Leak_tp 1,tp2 26 22,263 18,734 4

Leak_tp 1,tp2, 27 42,154 22,961 5
tp3

Leak_tpl,tp2, 28 84,313 28,215 26
tp3,tp4

Leak__tpl,tp2, 29 169,049 33,701 39
tp3,tp4,tp5

Leak_tp 1,tp2, 30 340,193 39,087 52
tp3,tp4,tp5,tp6

aComputations were performed on a Hewlett-Packard 715/75 workstation

required for the leak to reduce the pressure in a particular pipe segment to atmospheric is
assumed to be fast when compared with the other time constants of the system. The slow
leaks are modeled by allowing the transition relation of step to skip testing pipe sections
and their corresponding valves. It was assumed that the human operator could not observe
the slowly leaking valves and this phenomena was treated as if there was no leaking valve
(or equivalently that the pipe section was skipped). The pressure in the skipped pipe
segment was still affected by the leaking valve and adjusted accordingly.

'0 if status = repa i r done

step if status = repair

1 if step = 0 ^ status = test

2 if step = 1

{3,4} if step = 2

{4,6} if step = 3 ^ bubbling @ tp3

s tep '= 5 i f s t e p = 4 ^ b u b b l i n g @ t p 4

6 i f s t e p = 4 ^ b u b b l e s _ s t o p @ t p 4

7 if step = 6

7 if step = 1 6 ^ b u b b l e s stop@ tpl

if step = 17

].step

Figure 4: Logical Abstraction of the Transition Relation for Variable step with Skipping

91

Table 2 Information on Verified Leak Test Procedure Models

Model Name Boolean Reachable Transition CPU Time
Variables States Relations (sec) ~

(OBDD Nodes)
B ase_C ase 24 5,944 11,495 2.80
Press_Skip 1 24 14,611 14,205 7.86
Valves_Tap 30 14,611 28,102 25.65
Valves_All 38 14,611 95, 100 323.49
Valves_Two 32 14,611 54,064 128.31
Remove_Press 32 14,552 37,632 71.48
Expand_Proc 32 5,153 44,688 6.45
Press_Skip2 32 15,984 49601 18.3

~Computations were performed on a Hewlett-Packard 812/70 workstation

Failure events for slowly leaking valves and for the human operator skipping pipe segments
and not testing them for leaks were added to the logic model through a macro failure mode
Both of these failure events lead to the result of a leaking valve not being detected. This
failure mode was included in the model by adding non-determinism to the transition
relation of the variable, step (fig. 4). Before testing for pressure in each pipe segment, the
procedure was allowed either to continue checEng the current pipe section or to skip over
it.

The Press__Skipl model added the step skipping failure mode to the base case model (table
2). The models Valves_tap through Expand_Proc contain a series of sequential
refinements to the base case model which added resolution for capturing the combined
failure event. The Valves_Tap model redefined the tap valves as state variables instead of
definition variables to see if sequential behavior of these variables was important.
Valves_AU includes all the connecting and tap valves as state variables. In table 2, the data
indicates that the size, complexity level, and CPU time of the models was increasing in an
exponential manner. Strategic reduction in the model was used to control complexity. The
Valve_Two model kept all connecting valves as definition variables except for Ibv8 and
bvlO, which were changed to state variables. These valves were left as state variables since
they are explicitly closed in the test procedure. Remove_Press simplified the pressurization
and segmenting of the pipe network to one macro step (fig. 5) instead of several
complicated steps since the leak test procedure did not check for faults in both the ignition
and extinguish sequence of the furnace. The skipping step model uncovered that the
original modeling of the leak test procedure added invalid process behavior. The
representation was incrementally refined in order to eliminate this added behavior until its
size and complexity began to have a negative effect on verification. A series of reductions
in the representation of the model were incorporated into the leak test model. These models
illustrates the struggle to balance the completeness of the model with its compactness.
Through the expansion and reduction of the original model, it was discovered that some of
the procedure steps overlapped and could not be distinguished from each other. The
amendments to the representation allowed the user to distinctly perceive the individual
steps of the procedure. The Expand_Proc model expanded the test procedure so that only
one task was performed at every step which increased the number of steps from 17 to 24
(fig. 6). The Expand_Proc model increased verification time by a factor of 2 compared to

92

status" =

'test if status = pressurize

repair_ done if status = repair

repair if step = 3 A ~bubbling @ tp3

repair if step = 4 A ~bubble stop@ tp3

repair if step = 23 ̂ ~bubble stop@ tpl

presurize if step = 0 v step = 8

status

Figure 5: Logical Abstraction of the Transition Relation for Variable status with a Macro
Pressurization step

the base case. However, a factor of 10 increase in the verification time was observed for
Valve_All model before the model size and complexity was reduced. Overall, the new
representation from the one in the base case model increased verification time but not as
dramatically as the trend indicated by the ValveAll model due to reduction and modeling
strategies.

The final model, Press_Skip2, added the combined failure mode event to the Expand Proc
model. The Press..Skip2 model revealed that slow leaks in the valves bv7, bv15, and lbv8
were neglected by the test procedure. A correction to the base case test procedure ensured
that all other connecting valves were double tested by the pipe segment downstream and
upstream from them. This double checking by the test procedure detected when these
valves had slow leaks. The procedure was revised by explicitly checking for the starting
and stopping of bubbling at each tap. These changes effectively detect slowly leaking
valves,

0 if status = repai r done

step if status = repair

1 if step = 0

2 if step = 1

3

4

step'= 5

6

7

li 24

l step

if step = 2

i f step = 3^bubbling@ tp3

if step = 4 AbubbIes stop@ tp3

if s tep=5

if step = 6 A bubbling @ tp4

Figure 6: Logical Abstraction of the Transition Relation for Variable step with Expanded
Pipe Segment Testing

93

7. Conclusions

The formal verification of the leak test procedure, a modestly complex chemical process,
discovered several significant faults that were repaired by revising the procedure. A
modeling strategy that controlled the state space size while retaining process physics,
procedures, and failure modes was necessary for efficient and reasonably complete
verification. The original process model was refined in order to capture appropriate
behavior caused by increasingly detailed failure events. Process verification using SMV
has demonstrated its potential for aiding in the synthesis of high integrity industrial
processes. Modeling time and completeness remain as challenges to wider application.

Model Source

The base case model by Probst is available at:

http://www.cheme.cmu.edu/who/faculty/powers/probst/html/research.html

References

[1] R. Anderson, P. Beame, S. Burns, W. Chan, F. Modugno, D Notkin, and J. Reese,
Model Checking Large Software Specifications. Proceedings of the Fourth ACM
Symposium on the Foundation of Software Engineering: 156, 166, October, 1996.

[2] Bryant, R. E., "Graph-Based Algorithms for Boolean Function Manipulation", IEEE
Tans. on Computers, 35(8), 677-691, 1986.

[3] Bryant, R. E., "Symbolic Boolean Manipulation with Ordered Binary Decision
Diagrams", Computing Surveys, 24(3), 298-318, 1992.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hawng, Symbolic
Model Checking: 1020 states and Beyond. Information and Computation, 98(2): 142-
170, June 1992.

[5] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan and D. L. Dill, Symbolic
Model Checking for Sequential Circuit Verification. IEEE Transactions on Computer-
Aided Design of lntegraied Circuits and Systems, 13, 401- 424, 1994.

[6] E. M. Clarke, A. Emerson and A. P. Sistla, Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems, 8 (2), 244-263, 1986.

[7] E. M. Clarke, T. Filkorn, and S. Jha, Exploiting Symmetry in Temporal Logic Model
Checking. Proceedings of the Fifth Workshop on Computer-Aided Verification, Ed. C.
Courcoubetis. June/July 1993.

[8] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao, Effective Generation of
Counterexamples and Witnesses in Symbolic Model Checking. Technical Report No.
CMU-CS-94-204, Carnegie Mellon University, PA, 1994.

[9] V. Hartonas-Garmhausen, T. Kurfess, E. M. Clarke, and D. E. Long, Automatic
Verification of Industrial Designs. Proceedings of the 1995 IEEE Workshop on
Industrial -Strength Formal Specification Techniques. 88-96. IEEE Comput. Soc.
Press, April 1995.

94

[10]M. Jackson, Software Requirements and Specifications, ACM and Addison-Wesley,
New York, 1995,

[l l]K. L. McMiUan, Symbolic Model Checking - An Approach to the State Explosion
Problem, Ph.D. Thesis, Carnegie Mellon University, 1992.

[12] I. Moon, Automatic Verification of Discrete Chemical Process Control Systems, Ph.D.
Thesis, Carnegie Mellon University, 1992.

[13]S. T. Probst, G. J. Powers, D. E. Long, and I. Moon, Verification of a Logically
Controlled Solids Transport System using Symbolic Model Checking. Submitted for
publication in Computers and Chemical Engineering, 1994.

[14]S. T. Probst, and G. J. Powers, Automatic Verification of Control Logic in the
Presence of Process Faults. Presented at the Annual AIChE Conference, San
Francisco, CA, November 1994.

[15]S. T. Probst, A. L. Turk, and G. J. Powers, Formal Verification of a Furnace System
Standard. Presented at the Annual AIChE Conference, Miami Beach, FL, November
1995.

[16] S. T. Probst, Chemical Process Safety and Operability Analys~s using Symbolic Model
Checking, Ph.D. Thesis, Carnegie Mellon University, 1996.

[17IT. Sreemani and J. Atlee, Feasibility of Model Checking Software Requirements: A
Case Study. Technical Report CS96-05, Department of Computer Science, University
of Waterloo, January, 1996.

