
P r a c t i c a l C h a l l e n g e s f o r I n d u s t r i a l F o r m a l V e r i f i c a t i o n
T o o l s

F. Erich Marschner
COMPASS Design Automation

5457 Twin Knolls Road, Suite 100
Columbia MD 21045, U.S.A.

Emaih erich@compass-da.com

Formal verification of hardware design is rapidly becoming accepted as an
alternative to the traditional strategy of verification via simulation. However,
there are still major barriers to widespread acceptance of formal verification
tools and methodologies. These barriers generally have very little to do with the
robustness of the theory underlying formal verification; instead they are much
more a function of the degree to which the formalism has been adapted to address
practical concerns.

First of all, formal verification tools must be applicable to typical design
styles. Altough simplifying assumptions may make a tool easier to build or give
it better performance, they may also restrict a tool to the point where it is not
useful enough to justify its expense. Even though synchronous design is often
the rule, asynchronicity is nonetheless a universal exception. Similarly, while
single-clock systems exist, multiple-clock systems are more and more common,
especially in certain industry segments. A successful formal verification tool must
be flexible enough to support the exceptional cases as well as the typical cases,
otherwise it will not find a place in the mainstream design flow.

Equally important is the requirement to support standard interfaces, to fit
into existing design flows. In the hardware design world today, this usually means
support for the two IEEE standard hardware description languages, VHDL and
Verilog - but it may also involve support for related standards, such as IEEE
Std 1164 (standard multi-valued logic for VHDL), and IEEE Stds 1076.3 (Syn-
thesis packages) and 1076.4 (VITAL packages for timing-accurate modeling of
primitives). Support for pseudo-standards is also an issue, such as the de-facto
standards created by the dominant vendors in the Electronic Design Automation
(EDA) industry, or the library formats of the major semiconductor manufactur-
ers. This is complicated by the fact that such languages and formats are not
always well-defined - even those that are IEEE standards! Even so, a usable
formal verification tool must be able to work with them.

Capacity and performance are always major issues in the EDA industry. The
fact that formal verification technology provides a more robust verification strat-
egy than simulation does not matter to a design manager if his designs regularly
exceed the size or complexity that such tools can handle. And the technical
challenges of handling various kinds of circuits are no excuse; the designer needs
results no matter what the situation. Multiplication may be difficult to verify
formally, but this just reinforces the need for a better solution. Use of hierarchy
may be recommended for a formal verification methodology, but it may not be

possible in a given environment. A good formal verification tool must adapt to
the designer's requirements as much as possible, and impose as few constraints
as possible on the design process.

The biggest challenge for formal verification tools is providing good diagnos-
tic information when problems are detected. Few hardware designers want ibo
become experts in formal verification; they typically want to focus on solving
the design problems instead. As a result, it is imperative that formal verification
tools require the minimum possible input other than the design itself, and gen-
erate the most insightful reports possible to highlight potential errors. The fact
that a formal verification tool cannot read the designer's mind does not lessen
the demand for such a tool, or the expectations of evatuators of such tools.

Even the best formal verification tool cannot be successful until it has been
adopted by a user community, and that involves a major barrier: fitting into
an existing "design flow", or network of inter-operating design tools that has
been shown to support the design process at. least moderately well. The bulk
of EDA tool sales involve replacement of tools already in the customer's design
flow with ostensibly better tools that perform the same functions. But formal
verification tools are not already present in most design flows, so adoption of a
formal verification tool requires a much more ambitious change, a change to the
design flow itself. While swapping individual tools within a flow involves nearly
zero risk - one can always revert to the old tool, after all - adopting a new design
flow can be much more dangerous, and design managers tend to avoid such risks
for as long as possible.

Ultimately, the major barrier to the adoption of formal verification tech-
nology for hardware design is the difficulty of conveying to potential users the
concept of formal verification as it applies to their particular needs. Every design
team has different requirements, and every team uses somewhat different termi-
nology to describe what they do. While formal verification tools are inherently
general purpose, and thus can be adapted to meet various requirements, this in
itself can make them difficult to grasp; design managers seem to feel more com-
fortable with focused tools tuned to specific applications. At the same time, it
is economically infeasible to develop different tools for each application, because
every design team has a unique application in mind.

Formal verification of hardware design has become a reality and will become
a more and more essential part of the design process as advancing technology
continues to enable more and more complex designs. It is certainly true that
there are still open problems to address in the fundamental theory underlying
formal verification methods. At the same time, there is just as much work or
more to be done in the practical application of formal techniques. And unlike
the theory, which has been under development for decades, this work is only just
beginning.

