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Abstract .  Most of the current constructive induction algorithms de- 
grade performance as the target concept becomes larger and more com- 
plex in terms of Boolean combinations. Most are only capable of con- 
structing relatively smaller new attributes. Though it is impossible to 
build a learner to learn any arbitrarily large and complex concept, there 
are some large and complex concepts that could be represented in a sim- 
ple relation such as prototypical concepts, e.g., m-of-n, majority, etc. In 
this paper, we propose a new approach that combines the neural net 
and iterative attribute construction to learn relatively short but com- 
plex Boolean combinations and prototypical structures. We also carried 
a series of systematic experiments to characterize our approach. 
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1 Introduction 

Poor representation limits the performance of concept learners. One approach 
to mitigate the limitation is to construct new features. The need for useful new 
features has been suggested by many researchers (Matheus, 1991; Aha, 1991; 
Kadie, 1991; Ragavan et. al., 1993). Constructing new features by hand is often 
difficult (Quinlan, 1983). The goal of constructive induction is to automatically 
transform the original representation space into a new one where the regularity is 
more apparent (Dietterich & Michalski, 1981; Mehra et. al., 1989), thus yielding 
improved classification accuracy. 

There are currently many constructive induction algorithms based on the 
strategy of constructing new attributes, including FRINGE (Pagallo, 1989), 
GREEDY3 (Pagallo ~ Haussler, 1990), DCFringe (Yang et  al., 1991), CITRE 
(Matheus ~ Rendell, 1989), LFC (Ragavan & Rendell, 1993; Ragavan et. al., 
1993), MRP (Perez & Rendell, 1995), GALA (Hu & Kibler, 1996), etc. Unfor- 
tunately, most of the current constructive induction algorithms degrade per- 
formance as the target concept becomes larger and more complex in terms of 
Boolean combinations such as prototypical concepts (Perez ~ Rendell, 1996). 
Though MRP is demonstrated to learn several complex relations, the meaning 
of its extensional representation is implicit in the data, and usually difficult to 
interpret. 
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Most of the efforts of constructive induction have been directed to improved 
classification accuracy. However, in addition to accuracy the comprehensibility 
of new attributes could also be important,  especially when the new attributes 
represent intermediate concepts, which may further understanding of the do- 
main of interest. Without understandable new attributes, the contribution of 
constructive induction is limited. Because the new attributes that  reflect the 
intermediate concepts are likely to be useful, we currently concentrate on two 
types of intermediate concepts, i.e., (1) complex but relatively short Boolean 
combinations and (2) prototypical structures. Combinations of these intermedi- 
ate concepts into one target concept can easily produce DNF expressions with 
tens or hundreds of terms, which are difficult to learn. Our goal is to construct 
these two types of new attributes that  represent the intermediate concepts, but 
unlike MRP's extensional representation, we describe our new attributes in a 
human-understandable form. 

In this paper, we introduce a multi-strategy approach that  combines the neu- 
ral network with GALA. It successfully constructs Boolean combinations and 
prototypical structures. The Boolean combinations are explicitly represented, 
and the prototypical structures are clearly described by the weights and thresh- 
olds of the neural network. This combination approach, like GALA, is a prepro- 
cessor approach. It could be applied to other standard learning algorithms. 

2 Combining Neural Network with Iterative Attribute 
Construction 

2.1 Motivation 

One important issue in constructive induction is the types of new attributes 
constructed (Ha ~ Kibler, 1996). If we represent the new attributes in disjunctive 
normal form, we could build a spectrum of the attributes based on the number 
of terms involved. At one end are the ones with relatively smaller numbers of 
terms; at the other, those with many terms. There is no uniform correlation 
between the number of terms and the capability of the algorithms, and there is 
no universal algorithm to cover the whole spectrum. One possible approach to 
covering more of the spectrum is to combine different construction strategies. 

GALA, a preprocessor approach to constructive induction, which applies rel- 
ative measures and iterative attribute combination techniques is capable of gen- 
erating complex but relatively smaller Boolean combinations as new attributes 
(Ha & Kibler, 1996), thus it could be used to construct those new attributes 
that  belong to one end of the spectrum. The general control flow of GALA is 
described in fig 1. 

However, as any iterative attribute construction algorithm, it has an inherent 
drawback, i.e., as the concept becomes larger in the number of terms in disjunc- 
tive normal form, they fail to find useful new attributes. Larger numbers of 
attribute combinations incur more attribute interaction that  hinders the perfor- 
mance of the algorithms (Hu & Kibler, 1996; Perez & Rendell, 1996). Therefore, 
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Given: a set of attributes P, training examples E, threshold and 

new attributes NEW 

(NEW is empty when GALA invoked the first time) 

Return: a set of new attributes NEW 

Procedure GALA(P,E,threshold,NEW) 

If (size(E) > threshold) and (E is not all of same class) 

Then Set Bool to Boolean attributes from Booleanize(P,E) 

Set Pool to attributes from Generate(Bool,E) 

Set Best to attribute in Pool with highest gain ratio 

(if more than one, pick one of smallest size) 

Add Best to NEW 

Split on Best 

N = {} 

For each outcome, Si, of Split on Best 

Ei = examples with outcome Si on split 

NEWi = GALA(P,Ei,threshold,NEW) 

N = N + NEWi 

NEW = NEW + N 

Return NEW 

Else Return {} 

Fig. 1. GALA 

we need another construction strategy to cover the other end of the spectrum. 
Because it is impossible to build a learner to learn any arbitrarily long and com- 
plex concept, we currently concentrate on the prototypical structures, such as 
the m-of-n rules, majority, etc, which often exist in the real domains like medical 
diagnoses (Spackman, 1988). 

Given a target concept containing prototypical structures and other complex 
but relatively shorter Boolean combinations, our strategy is to first extract the 
prototypical structure and represent it as a single new attribute. Second, with 
the new prototypical attributes added to the primitives, we then apply GALA to 
extract the remaining Boolean combinations in the target concept. Since the new 
attributes generated encapsulates the complexity of the prototypical structures, 
GALA is able to learn the remaining Boolean combinations. The question left is 
how we extract the prototypical structures. 

The multilayer perceptron is probably the most studied neural network tech- 
nique (Hertz et. al., 1991; Kung, 1993). Each hidden unit draws a simple decision 
surface in the input space, and then the output units combine these individual 
regions to form a final region corresponding to the target concept. As the deci- 
sion region of each hidden unit is formulated in a linear function, some of the 
hidden units are likely to converge to meaningful linear threshold functions, and 
could be used as the basis of prototypical structures such as the m-of-n rules, 
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majority, etc. The linear threshold functions could then be transformed into new 
attributes to represent prototypical structures. Therefore, the neural network is 
our answer to the question left above. The generM framework of our approach 
is described in fig 2. 

Given : a set of training examples E 

a set of primitive attributes P 

Return: a set of new attributes NEW 

Procedure ANN-GALA(E,P) 
H = hidden units from ANN(E) 

Transform H to a set of new attributes N 

Represent E in P+N as E' 

NEW={} 
NEW = N + GALA(P+N,E',threshold,NEW) 

Return (NEW) 

Fig. 2. General Framework of Combining ANN with GALA 

2.2 H o w  to  A p p l y  N e u r a l  N e t w o r k  

Since GALA generates new attributes in terms of Boolean combinations, the new 
attributes generated are human-understandable. However, the new attributes 
directly derived from the hidden units of the neural network are difficult to 
interpret. 

From the point of view as a prototypical structure, there are two causes of 
the incomprehensibility. The first is the irrelevant primitive attributes. In the 
feed-forward neural netwrok architecture, each hidden unit is fully connected to 
all the input units (i.e., primitive attributes). After the network converges, the 
links between the hidden units and the irrelevant input units may still carry non- 
zero weights. These irrelevant non-zero weights, though usually small, make the 
representation difficult to interpret. It would be more human-interpretable if all 
the irrelevant weights are zero. The other cause is the weights themselves. The 
weights are unlikely to be integers after the network converges. It is difficult to 
infer the prototypical structures from a set of non-integer weights. For example, 
a 3-of-5 rule is better represented by X1 + X2 + X3 + X4 + X5 > 3 than 1.02X1 + 
0.98X2 + 1.05X3 + 0.97X4 + 0.98X5 >_ 2.93. 

To overcome the above problems, we propose a two-stage weight normaliza- 
tion method. The irrelevant weights are usually significantly smaller than others 
in magnitude and often with opposite sign. In the first stage, we use the mean 
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of the weight magnitude as the criterion. The weights below the mean and of 
the opposite sign are set to zero. The reason why we consider the sign is that  in 
case all input units are relevant and of the same sign, we will not discard any 
relevant weight simply because it is below the mean. Along with the change of 
weights, we use the difference between the hidden unit value before and after the 
weight change to adjust the threshold of the hidden unit. In the second stage, 
we normMize the weights with the mean of the remaining non-zero weights and 
apply the round-off function to suppress other insignificant weights to zero. More 
details could be found in fig 3. 

Given : a set of weights and thresholds W, 

a set of training examples E 

Return: a set of normalized weights and thresholds 

Procedure normalize(W,E) 

Let W' be W 

Let m be the mean of the absolute values 

of the weights in W' 

Let s be the sign (i.e., + or -) of the weight with 

max absolute value 

For each weight g~ in ~ 

if (abs(w') < m) and (g' with opposite sign to s) 

w ~ = 0 

sumdiff = 0 

For each training example e in E 

sumdiff = sumdiff+(eW-eW') 

diff= sumdiff/IEl 

Let m be the mean of the absolute values 

of the non-zero weights in W ~ 

For each weight w' and threshold t' in W' 

w ~ = round(w/m); 

t' = rou/id((t'+diff)/m); 

Return (W') 

Fig. 3. Weights and Thresholds No~maJization 

The set of weights and thresholds are difficult to interpret, but after we nor- 

realize them the concept represented by these weights and thresholds is easier to 
s understand. We use (~ i=1 x~ _> 5) + xl~aS:sx7 + ~2~4~Xs, a Boolean function 

with total 12 attributes, as an example to illustrate the idea. Using 5% of the 
total 4096 examples as the traing set, we trained a neural net with the back- 
propagation algorithm. The neural net has 12 input units, 6 hidden units and 
one output  unit. 
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The weights and thresholds before and after normalization are shown in fig. 
4. In fig. 4, each hidden unit is described by 12 weights followed by a threshold. 
Before normalization, the weights and thresholds we learned are not understand- 
able even though the fifth hidden unit approximately converged to ~ s = i  xi  > 5. 

However, after the normalization, the fifth hidden unit is easily interpreted as a 
5-of-8 rule. 

The weights of the hidden units before normalization : 
Hidden Unit I: 4.43948,-0.90867,-1.85273,-0.09461,-2.56182, 

0.44131, 3.80673, 0.88315, 1.21998,-0.02205, 

0.03032,-1.60084, threshold = -7.18849 

Hidden Unit 2: -3.00333, 2.49571, 3.30566, 1.22784, 3.31664, 
1.30544,-2.78767, 0.28106,-0.92781, 0.50652, 
0.62082, 1.21651, threshold = 2.36028 

Hidden Unit 3: 1.49163,-0.95159,-0.32819,-0.27491, 1.43506, 
-0.56259, 1.37591, 0.87493, 0.52599,-0.69051, 

1.22448, 2.60315, threshold = -2.63325 

Hidden Unit 4: -I .09608,-3.30526,-1.54907,-2.02781, 0.96142, 
-1.87570,-0.97085, 1.95589,-2.10087, 0.95469, 
0.62773, 1.00338, threshold = -2.89914 

Hidden Unit 5: 3.13984, 3.82628, 3.94562, 3.75279, 3.37203, 
3.75229, 3.07394, 3.34460,-0.24504, 0.06971, 

-0.26181,-0.70992, threshold = -15.6727 

Hidden Unit 6: 0.48870, 1.04775, 0.81234, 0.72570,-0.11177, 
0.78070, 0.52246,-0.42331, 0.66164,-0.36449, 

-0.41729,-0.08977, threshold = 0.41798 

The weights of the hidden units after normalization 

Hidden Unit I: 2, 0,-1, 0,-I, O, I, O, 0, 0, 0,-1, 
Hidden Unit 2: -1, I, 1, 1, I, 1,-I, O, 0, 0, 0, 1, 

Hidden Unit 3: I, 0, 0, 0, I, 0, I, 0, 0, O, I, 2, 

Hidden Unit 4: -I,-2,-1,-1, 0,-1, 0, I,-I, O, O, O, 
Hidden Unit 5: 1, I, i, I, I, 1, I, I, 0, 0, 0, O, 

Hidden Unit 6: 0, I, I, 1, O, I, O, O, I, 0, 0, 0, 

threshold = -2 
threshold = 1 

threshold = -3 

threshold = 0 
threshold = -5 

threshold = 0 

Fig. 4. Results of Normalization 
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3 E x p e r i m e n t a l  R e s u l t s  

There are three purposes of our experiments. One is to demonstrate that the 
new attributes generated could improve the predictive accuracy of the standard 
learning algorithms. Another is to verify that combining the neural network and 
GALA covers more of the attribute spectrum that we introduced earlier. The 
third is the characterization of the conditions under which our approach is likely 
to perform better. 

We examined our approach across a variety of Boolean functions. This at- 
lows us full control of the experiments, and we could exactly verify whether our 
approach could extract all the intermediate concepts. For example, given a tar- 

( 8 get concept ~i=1 xi ~_ 5) + xlS~s~sx7 + ~2~4~6x8, to determine whether the 
Boolean combination attributes generated are correct we compare them with 
the Boolean combinations (i.e., xl~3~sx7 + x254~6xs) in the target concept. As 
for prototypical structures, the weights and thresholds of the hidden units are 
compared to the prototypical structure (i.e.,)-]8=1 xl > 5) in the target concept, 
and checked if they are exactly presented as the following. Note that irrelevant 
weights are set to zero. 

Hidden Unit  : 1, 1, 1, 1, 1, 1, 1, 1, O, O, O, O, threshold = -5  

Each function is defined on 12 Boolean attributes that produce total 4096 
examples. We used 5% and 10% of the total 4096 examples as the training set 
respectively, and the rest as the testing set. 

3.1 P u r e  P ro to typ i ca l  Concepts  

The first part of the experiments is to verify if our neural network strategy is 
able to extract the prototypical structures when they are the only intermediate 
concepts in the target concept. We tested several prototypical concepts, including 
m-of-n, majority (a special case of m-of-n), exact-m-of-n, etc. The summary of 
the functions are described in table 1. The results are averaged over 20 runs, 
and reported in table 2. 

The second (and sixth) column of table 2 denotes the percentage averaged 
over 20 runs that the neural network successfully extracted the prototypical 
structures. The third and fourth (also seventh and eighth) columns denote the 
accuracy of the neural net and C4.5 (Quinlan 1993) respectively. The new ac- 
curacy of C4.5 after adding the new attributes derived from the hidden units is 
presented in column 5 and 9. Significant difference between the C4.5's accuracy 
before and after adding the new attributes is marked with " , ' .  

3.2 Concepts  composed of p ro to typ ica l  s t ruc tu res  and  Boolean 
Combina t ions  

Besides the concepts which contain prototypical structures only, there exist other 
concepts that are composed of prototypical structures and Boolean combinations 
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Table 1. Summary of Pure Prototypical Concepts 

Concept Description 
12 

P1 ~ i = l  xi _> 5 
P2 )-~4=1 xi _> 4) + (~i=7 xi > 4) 

~ 1~ 

P3 (~[=1 xi _> 4) + lu > 4) 
lt] 

P4 ~ i = t  xi  = 3 

P6 ~ 
lt] 

P7 E i = a  xi  = ~ i = r  xi  
5 ~-~ lU .~ '  

P8 ~ = a  xi > e.-,i=r , 

Table 2. Results of Pure Prototypical Concepts 

5% 10% 
Concept % NN C4.5 +NN % NN C4.5 +NN 

P1 100 99.9 82.2 100.0" 100 100.0 82.7 100.0" 
P2 95 98.8 73.4 98.9* 100 99.9 77.5 100.0" 
P3 65 97.5 79.2 96.1" 95 99.9 84.7 99.7* 
P4 15 93.4 83.2 94.3* 85 98.6 83.9 99.2* 
P5 100 100.0 76.4 100.0' 100 100.0 79.9 100.0" 
P6 100 99.4 72.1 100.0" 100 100.0 77.3 100.0" 
P7 100 99.5 63.8 100.0" 100 99.9 64.9 100.0" 
P8 100 100.0 79.9 100.0" 100 100.0 84.3 100.0' 

together, e.g., (Es=l xi > 5) + x t ~ 3 ~ s x 7  + X2X4X6XS, where 8 Y~4=1 xi > 5 is the 
prototypical structure, and XlX3~5x 7 --~ ~ 2 ~ 4 . ~ 6 X S  is the Boolean combinations. 

The second part of the experiments is to verify if the multi-strategy ap- 
proach could extract the prototypical structures and Boolean combinations re- 
spectively, given a target concept that is composed of prototypical structures 
and Boolean combinations. Thus, in addition to the percentage that the neu- 
ral network successfully extracted the prototypical structures, we also examined 
how many terms in the Boolean combinations GALA successfully generated. 

These concepts are further categorized into two categories by comparing the 
example space covered, i.e., whether the prototypical structure significantly cov- 
ers more example space than any term in the Boolean combinations. If this 
condition is true, we call this category of concepts "dominant prototypical con- 
cepts"; otherwise, "nondominant prototypical concepts". 
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D o m i n a n t  P ro to typ i ca l  Concepts  In this category, we tested 9 Boolean con- 
cepts summarized in table 3. The literals in the Boolean combinations could be 
included in, separated from, or overlapped with the prototypical structure. 

Table 3. Summary of Dominant Prototypical Concepts 

Concept 

D1 
D2 
D3 
D4 

D5 

D6 

D7 
D8 

D9 

Description 

(E~=I ~ > 5) + xl=3xsx7 + ~2~4~xs 
( E I = I  Xi ---~ 5) "~- X9Xll.TlX 3 -~ ~'10~g12X2;~4 Jr X11;~lX3X5 

(Ei----1 Xi .~ 5) "~ Z9~10XllX12 ~- ;~9X10~'11212 "~- Xg~'10X11;~12 
( ~ = 1  x~ > 3) + xl~2~3x4 + ~:x3x4x~ + x3~4xs~6 
( ~ = 1  xi > 3) + xi232Txs + 23x42sx9 + x~2sxgxlo 

(~i,=1 =i _> 3) ~- xTxsxgzlo + xgx lox l l z l~  + xTxgxloxll 
S . . . . . .  (~i=a xi >_ 5) + xlx~x3 + xaxsxs + x4x6x7 + xTxsx4 

(~i----1 Xi ~ 5) -~ XgXlOXll -~- X9XltX12 Jr- XlOXllX12 "~- X9XllX12 

Table 4. Results of Dominant Prototypical Concepts (5%) 

5% 
Concept % DNF NN C4.5 +NN +NN+GALA 

D1 85 1.1,0.0 )4.4 78.4 94.7* 95.5 # 
D2 55 0.8,0.3 90.5 77.7 87.3* 91.0 # 
D3 50 1.0,0.3 92.7 68.6 86.2* 91.8 # 
D4 50 0.0,1.1 96.9 91.5 97.2* 97.4# 
D5 70 0.1,0.6 94.5 85.1 93.1" 93.8 # 
D6 100 0.0,1.0 )7.1 84.3 96.1" 97.3 # 
D7 15 0.4,0.1 88.8 82.2 86.1" 89.3 # 
D8 15 0.3,0.3 35.1 75.1 82.2* 84.0 # 
D9 80 0.1,0.8 95.5 78.8 95.9* 97.5 # 

The results are reported in table 4 and 5. The second column has the same 
meaning as column 2 (and column 6) in table 2. The first number in the third 
column presents the average number of terms constructed by GALA that exactly 
correspond to those in the Boolean combinations in the target concept, and 
the second number denotes the average number of terms that approximate. By 
approximate we mean that the term is part of the Boolean conjuncts (i.e., overly 
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general). For example, given a target concept (~8=1 x~ > 5)q-xlx2x3+x3x4xs-t- 
xlxsxT, we may have the following terms such as xlx2 and x3x4 that approximate 
XlX2X 3 and X3X4X 5 respectively. 

The fourth and fifth columns denotes the accuracy of the neural net and 
C4.5 respectively. The new accuracy of C4.5 after adding the new attributes 
generated by the neural net alone is presented in column 6. Column 7 denotes 
the new accuracy of C4.5 after adding all the new attributes constructed by 
the neural net and GALA together. Significant difference between the C4.5's 
accuracy before and after adding the new attributes is marked with %" and 
"=//:" respectively. 

Table  5. Results of Dominant Prototypical Concepts (10%) 

10% 
Concept % DNF NN C4.51q-NN +NN+GALA 

D1 100 1.2,0.2 99.3 82.2 99.5* 99.7 # 
D2 90 2.0,0.4 96.3i 80.7 ~96.1' 98.2 # 
D3 85 1.0,0.8 99.7 72.7 97.3* 97.9 # 
D4 40 0.0,12 99.6 97.1 99.1' 99.2 # 
D5 85 0.7,0.6 96.5 91.5195.8" 97.8 # 
D6 100 0.0,1.7 98.5 89.7 98.1" 99.2 # 
D7 35 0.9,0.1 95.7 88.6 93.8* 94.2 # 
D8 70 1.8,0.2 92.9 81.1 93.4* 95.5 # 
D9 1000.4,0.799.882.2199.9"i 99.9# 

Nondominant Prototyplcal Concepts For the second category, we tested 3 
concepts. These concepts are summarized in table 6, and table 7 and 8 present 
these results. Note that in the first test concept (i.e., ND1), the percentage 
(i.e., column 2) is 0, and the average number of terms generated by GALA that 
correspond to the Boolean combinations is also low (i.e., column 3). The reason is 
that the neural net strategy failed to extract the prototypical structure, and the 
literals of the Boolean combinations (i.e., xl..x~) are included in the prototypical 
structure; therefore, most of the new attributes generated by GALA are part of 
the prototypical structure instead of the Boolean combinations. 

3.3 Analysis 

In the first part of the experiments, all the Boolean functions are either the 
combination of linearly separable concepts or simply linearly separable concepts 
themselves. As expected, the neural network strategy successfully extracted the 
prototypical structures in almost every Boolean function. This demonstrates 



134 

Table  6. Summary of Nondominant Prototypical Concepts 

Concept Description 
5 

ND1 (~i=1 xi >_ 4) + xlxa24 + x223x~ + x122x4 + x2x4,~5 
ND2 ( ~ = 1  xi >_ 4) + XlX9Xl0 --]- ~'3X11~'12 "-]-" ~5X7~9 + X6~'10Xll 

ND3 ( ~ = 1  xi > 4) + x6~8~9 + xs~loxll + xz~29x12 + xTx11~12 

Table 7. Results of Nondominant Prototypical Concepts (5%) 

5% 
Concept % DNF NN C4.5 +NN +NN+GALA 

ND1 0 0.3,1.2 97.3 98.4 97.8 99.1 
ND2 15 2.1,0.2 84.3 80.2 82.6* 90.5  # 
ND3 0 2.8,0.0 82.3 82.5 81.1 92.7 # 

that when the target concept is a pure prototypical concept, the hidden units 
are likely to converge to the prototypical structures. After the normalization of 
the weights and thresholds, the prototypical structures are explicitly represented 
by the hidden units. By adding the prototypical structures as new attributes, 
we significantly improve the accuracy of C4.5. 

When the target concept is composed of prototypical structures and Boolean 
combinations, our multi-strategy approach performed differently on the two cat- 
egories of the concepts (i.e., dominant and nondominant). If the prototypical 
structures in the target concept significantly cover more example space (i.e., the 
dominant prototypical concepts as defined earlier), the neural net strategy is 
able to separate the prototypical structures from the Boolean combinations, and 
consequently the hidden units could converge to the prototypical structures as 
in the pure prototypical concepts. After we transform the prototypical struc- 
tures into new attributes, GALA could avoid the complexity of the prototypical 
structures that has been encapsulated in the new prototypical attributes, and 
thus extract the remaining Boolean combinations. 

Table  8. Results of Nondominant Prototypical Concepts (t0%) 

10% 
Concept % DNF iNN C4.5 +NN 

ND1 0 0.0,0.199.7 99.5 99.8 
ND2 45 2.5,0.194.2186.6 94.8* 
ND3 25 2.0,0.5 92.5 88.5 93.2* 

+NN+GALA 
100.0 
98.5 # 
96.1 # 
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As for the nondominant prototypical concepts, the neural network has dif- 
ficulties distinguishing the prototypical structures from the Boolean combina- 
tions. Therefore, the hidden units are unable to converge to any meaningful 
prototypical structure. GALA, in this case, treats the whole target concept as 
a big Boolean combination concept, and extracts as many terms as possible. 
These terms may be either part of the prototypical structures or of the Boolean 
combinations. 

4 C o n c l u s i o n  

When describing constructed attributes in disjunctive normal form, we have an 
attribute spectrum based on the number of terms involved. Unfortunately, there 
is no universal learning algorithm that could learn the whole spectrum. 

We currently concentrate on relatively short but complex Boolean combina- 
tions and prototypical structures. The objective of this paper is to learn these two 
types of attributes and represent the new attributes in a human-understandable 
form, unlike other systems that adopt extensional representation. We proposed a 
new approach that combines the neural network and iterative attribute construc- 
tion. With different characteristics and advantages, the neural network strategy 
is used to learn the prototypical structures; the iterative attribute construc- 
tion algorithm, to learn the complex Boolean combinations. The new attributes 
generated are either explicitly represented in terms of Boolean combinations or 
human-understandably described by the weights and thresholds of the hidden 
units (Section 2.2). 

Besides introducing the new approach, we also carried a series of systematic 
experiments to characterize our approach. We tested and analyzed our multi- 
strategy approach on different categories of concepts, and conclude that example 
space coverage plays an important role in the characterization (Section 3.3). 

Though there exist more complex concepts than those we studied in this 
paper, we argue that our test concepts are inspired by the real domains such as 
medical diagnoses. Those simplifications do not prevent us from analyzing the 
essential information. Our results illustrate other directions for future research 
in multi-strategy learning and constructive induction. 
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