
Part II: 

Regular Papers 





Induction of Feature Terms With INDIE 

Eva Armengol and Enric Plaza 

I I IA-  Institut d'Investigaci6 en Intel.lig~ncia Artificial 
CSIC - Spanish Council for Scientific Research 

Campus UAB, 08193 Bellaterra, Catalonia, Spain. 
Vox: +34-3-5809570, Fax: +34-3-5809661 

{eva, enric}@iiia, cs ic. es 

http ://www. ilia. csic. es 

Abs t rac t .  The aim of relational learning is to develop methods for the 
induction of descriptions in representation formalisms that are more ex- 
pressive than attribute-value representation. Feature terms have been 
studied to formalize object-centered representation in declarative lan- 
guages and can be seen as a subset of first-order logic. We present a 
representation formalism based on feature terms and we show how in- 
duction can be performed in a natural way using a notion of subsumption 
based on an informational ordering. Moreover feature terms also allow to 
specify incomplete information in a natural way. An example of such in- 
ductive methods, INDIE, is presented. INDIE performs bottom-up heuristic 
search on the subsumption lattice of the feature term space. Results of 
this method on several domains are explained. 

1 Introduction 

The aim of relational learning is to develop methods for the induction of descrip- 
tions in representation formalisms that  are more expressive than at tr ibute-value 
representation. Relational learning research is thus biased by the representation 
formalism used. Most work on ILP (inductive logic programming)  has been fo- 
cused on induction in subsets of first order logic like Horn or Datalog clauses. 
We think ML research can also profit f rom exploring other representation for- 
malisms that  allow the expressive power of relations but are different subsets of 
fist order logic. 

In this paper  we present a representatioh formalism based on feature terms 
and INDIE, a bo t tom up learning method that  induces class descriptions in the 
form of feature term from positive and negative examples. Feature terms (also 
called feature structures or e-terms) are a generalization of first-order terms 
that  have been introduced in theoretical computer  science in order to formalize 
object-oriented capabilities into declarative languages. Feature term formalisms 
have a family resemblance w i th - -bu t  are different f rom--unif icat ion g rammars  
and description logics (KL-One-like languages) [1, 5]. 

An advantage of feature terms is that  they allow a natural  way to describe 
incomplete information [1]. Incomplete information arises the so-called problem 
of "unknown values" in ML and, specially in attr ibute-value representation, the 



34 

problem of irrelevant attributes. For instance, in w 4 we present the induction of 
class descriptions for the identification of marine sponges using INDIE.  It turns 
out that  depending on the kind of skeleton a sponge may have (fiber or spiculate) 
a collection of attributes is irrelevant to the description of the sponge. Sorts 
(types) in feature terms solve this problem by relating each predicate (attribute) 
to the sort to which it is relevant. Following our example, the spicarch predicate 
is relevant to skeletons of sort spiculate but not to skeletons of sort fiber. 

Feature terms form a lattice by means of the subsumption relationship. From 
subsumption (equivalent to the more general than relation in ML) it is natural  to 
define the operations of unification and anti-unification (AU) in which INDIE is 
based (see w While the generalization relation is the natural one for induction, 
and has been used extensively in classical ML methods, most relational learners 
based on Horn clauses are based on some notions of inversion deduction (resolu- 
tion, entailment, etc). In these ILP approaches the generalization relation has to 
be derived from deduction and, since there are several ways in which this can be 
done, the generalization relation has been a focus of research and debate--see 
[4] for a thorough summary of the different proposals. 

The structure of the paper is the following. First, feature terms are for- 
mally described and then subsumption and AU operations are defined. Then w 
presents an inductive method for feature terms INDIE, based on the subsumption 
and AU operations. w 4 shows the results of INDIE in several domains--including 
standard ML data sets. Finally, related work and our final conclusions are dis- 
cussed. 

2 F e a t u r e  T e r m s  

Feature terms are a way to construct terms. The difference between feature terms 
and first order terms is the following: a first order term, e. g. f (x ,g(x ,  y), z), can 
be formally described as a tree and a fixed tree traversal order-- in  other words, 
variables are identified by position. The intuition behind a feature term is that  it 
can be described as a labeled graph-- in  other words, variables are identified by 
name (regardless of order or position). This difference allows to represent partial 
knowledge. 

Feature terms are just terms and require to be integrated into a represen- 
tation formalism to be used in representation, reasoning and learning. We will 
presently introduce the role of feature terms in the reflective object-centered rep- 
resentation language Noos [2]. Noos was designed to support the integration of 
learning methods into knowledge modeling frameworks and here we will merely 
present the subset needed to explain induction of descriptions from examples. 
Intuitively, Noos extends the formalisms of [1, 5] allowing the values of features 
to be sets of values. 

2.1 F e a t u r e  T e r m s  in  Noos 

Our approach to formalize Noos is related to the research based on e-terms [1, 5], 
and extensible records [7] that  propose formalisms to model object-oriented pro- 



35 

gramming constructs. Noos is an object-centered representation language based 
on feature terms.  Feature terms are record-like da ta  structures embodying a 
collection of features.  

We describe the Noos signature Z as the tuple (S, ~', <)  such that:  

- S is a set of sort  symbols including •  T; 
- 5 is a set of feature symbols; 
- < is a decidable partial  order on S such tha t  • is the least element and 7_ 

is the greatest element. 

We define an interpretation Z over the signature (S, ~c, <) as the structure 

z = (D (f) es, 

such that:  

- Z )z is a non-empty set, called domain of / ;  (or, universe); 
- for each symbol s in S,  s z is a subset of the domain; in particular, T z = 7? z 

and _1_ z = ~; 
- for each feature ~ in .T, ~z is a total  unary function ~z : :Dz ~ 7)(T)z). When 

the mapping  is not defined it is assumed to have value T. 

Given the signature S and a set V of variables, we define feature terms as: 

D e f i n i t i o n  1. A feature term r is an expression of the form: 

r ::= X : s [ / 1 - - e l . . - A - e , d  

where X is a variable in V, s is a sort in S,  f l , ' "  " , fn  are features in f ' ,  n _> O, 
and each gi~ is either a feature term or a set of feature terms. We also identify a 
feature term with the singleton set of that  feature term. 

Note that  when n = 0 we are defining only a sorted variable (X : s). We call 
the variable X in the above feature term the root of r and say that  X is sorted 
by the sort s (noted Sort (C))  and has features f l , ' " ,  fn. 

Using this syntax for feature terms, the following expression (named r 

r = X : P e r s o n  
" l a s t - n a m e - S m i t h  [ ~  ] ]  

dr ives  - Y : C a r  [model  - Z �9 Ib iza  

is an example of a feature term denoting persons whose last_name is Smith, who 
drive an Ibiza-model car of which she/he is also the owner. 

A feature term is a syntactic expression that denotes sets of elements in 
some appropriate domain of interpretation (lie]ix C :Pz). Thus, given the previ- 
ously definedinterpretation Z, the denotation [[r of a feature term r under 
a valuation (~ : ]2 ~4 7:) z is given inductively by: 



36 

= I x :  s [ / 1  --- r  - '  = n s  z 

l < i K n  

where F - I ( S ) ,  when F is a function and S is a set, stands for {xl3S' D S such 
that  F(x)  = S~}; i.e., denotes the set of all elements whose images by F contains 
at least S. 

Using this semantical interpretation of feature terms, it is legitimate to es- 
tablish a relation order between terms. Given two terms r and r we will be 
interested in determine when [[r C ~r 

2.2 S u b s u m p t i o n  

The semantical interpretation of feature terms brings an ordering relation among 
feature terms (also called descriptions in Noos). We call this ordering relation 
subsumption. The intuitive meaning of subsumption is that  of informational 
ordering. We say that  a feature term r subsumes another feature term r (r E 
Ct) when all information in r is also contained in r e. corresponds to the 
semantical relation of [[•']]z C [r 

D e f i n i t i o n  2. (Subsumption) 
Given two feature terms r and r #~ subsumes r r [ r when : 

1. Sort(C) <_ Sort(r  and 
2. for every fi =" k~i defined in r then fl has to be defined in r as fl - '  ~[ and 

exists a total injective function h :gri -+ k~[ such that  VCk C ~i Ck _ h(r 

For instance, consider the previous presented example of a feature term (r 
and the following one (r denoting persons driving a car with an owner and 
any car model: 

r = X : Person drives "=- Y : Car [model - Z Car_model 

Clearly r _ r i. e. this term subsumes the previous one. Notice here that  
owner in r has variable V different from X - - a n  equality that was enforced in 
r since both had the same variable X. In other words, r has more constraints 
(more information) than r but also all information in r  the subsumption 
holds. 

Finally, we introduce the notion of equivalence among feature terms: 

D e f i n i t i o n 3 .  (Equivalence) Given two feature terms r and r we say that  they 
are syntactic variants if and only if r ___ r and r _ r 

Anti-unification (AU) in feature terms is defined in the classical way (as the 
"least common subsumer" or "most specific generalization") over the subsump- 
tion lattice as follows. 



37 

Def in i t ion  4. (Anti-unification) The anti-unification of two terms r • r  is an 
upper  lower bound with respect to the subsumption (_E) ordering. 

Notice that  the upper lower bound of two terms need not be unique-- i ,  e. 
there may  be several terms that  are an upper lower bound and are not equivalent. 
An algorithmic definition of AU is given in w 3. Moreover AU can also be used 
in Case-based Reasoning for establishing a symbolic representation of similitude 
and reasoning about  similitudes [11]. 

2.3 U n d e r s t a n d i n g  Feature Terms as Clauses 

There a several syntaxes amenable to represent feature terms. We have used up 
to now a record-like syntax, but graphs and clausal syntaxes can also be used. 
Using labeled graphs (1) arcs are labeled with predicates symbols, (2) nodes 
stand for sorted variables where the sort symbol is the node label, and (3) pa th  1 
equality is t an tamount  to variable symbol equality. An example is the induced 
description of a class of marine sponges as shown at Figure 5 (notice that  feature 
size has a set value with two elements Megas and Micros but no pa th  equality 
appears).  

Feature terms can be also understood as conjunctions of clauses 2 . This clausal 
representation is useful and more usual for ML methods. There are two kinds 
of atomic clauses: sort clauses (X : s) and feature clauses ( f ( X , Y ) ) .  A given 
feature te rm can be represented also as a conjunction of these two kind of atomic 
clauses. Thus, for a term r = X :  s[fl - r  fn - r a clausal form r162 is 
built as follows r162 = X :  s A f l  (X, Y1) A r162 A . . .  A f~ (X, Y~) A r162 where 
}I1, �9 �9 ", Yn are roots of r �9 ', Ca respectively. 

For instance, the first example of feature term (r is represented in clausal 
form as follows: 

X :  Person A lastname(X, Smith) A drives(X,Y) 
A Y :  Car A owner (Y ,X )  A model (Y ,Z)  A Z :  Ibiza 

2.4 The  Induct ive  Se t t ing  

The process of induction over feature terms with the goal of finding a discrimi- 
nant description can be specified as follows: 

Given  
1. a set of positive E + and negative E -  examples. 
2. a notion of subsumption 
3. Background knowledge B in the form of domain methods 

1 A path is a sequence of arcs. 
2 The reader interested in the precise mapping among the different representations 

(and the semantic consistency of the subsumption lattice across these mappings) is 
referred to [1]. 



38 

F i n d  a feature term (description) r such that  Ye + E E + : r E_ e + and 
g e -  E E - : r  ~_e - .  

Notice that  AU of positive examples provides a way for achieving the first 
condition e+u = e + n e+ . . .  n e + ~ e+AU C_ e + :  V e + ~ E +, namely the least 
general generalization of E + subsumes all positive examples but it may also sub- 
sume some negative example. Next section describes the heuristic strategy used 
by INDIE for exploiting the AU operation to search for a discriminant description 
in the subsumption lattice of feature terms. 

In the inductive setting presented here we have included a given (3), namely 
background knowledge B, that  will be now summarily explained. Background 
knowledge is expressed in Noos by means of methods that  infer the values of 
features. A feature term is closed when all methods had inferred values for the 
features. The AU of two feature terms requires them to be closed, so the Noos 
AU method forces the domain methods to be applied in a lazy on-demand way. 
Method definition has not been included in the syntax introduced in this section 
for reasons of space and because it is not needed for the domains shown in w 
(but see [2]). A recension of feature term induction with background knowledge 
is to wait for another article. 

3 T h e  I n d u c t i v e  M e t h o d  INDIE 

INDIE is a heuristic bottom-up inductive learning method that obtains a most 
specific generalization subsuming a set of positive examples. The main contribu- 
tion of INDIE is handling objects represented as feature terms. INDIE can work 
either on positive examples only or on positive and negative examples. Working 
on positive examples only requires AU and it allows to solve the characteri- 
zation task (also called discovery or description problem), useful in KDD and 
Data-Mining. Working on positive and negative examples allows to perform the 
discrimination task (also called prediction problem or concept learning) that  is 
the usual in most ML applications. In the following we describe INDIE in the 
discrimination task. 

3.1 D e s c r i p t i o n  of  t h e  M e t h o d  

Given a set of training examples E = {el, ..., era} and a set of solution classes 
C = {C1, ..., C,~}, the goal of INDIE is to  obtain a discriminant description Dk 
for each solution class Ck. Each example ei is a feature term having a subset 
of features Ai = {All, ..., AiklAij E 5c}. Training examples can have a different 
subset of legal features in 5 ~. Each feature Ai has as values a set of objects Oi 
where each Oij COi is a feature term that can have, in turn, a set of features. 

A description Dk = {djk} represents a disjunction of feature term descrip- 
tions for the current solution class Ck. Each djk subsumes a subset of positive 
examples of Ck and does not subsume negative examples. In a discriminant task, 
negative examples of a solution class Ck are all those training examples that  do 
not belong to Ck. 



39 

Function INDIE (E +, E - )  
D = 0  
Dk = Anti-unif icat ion (E +) ; most specific generalization 
if Dk _E e for some e E E -  

then Al ={Ai] features in Dk chosen according to leaf bias} 
PN = Discr iminant -par t i t ion  (Az,E +,E-) 
fo__z each set Si E PN d__qo 

D~ = INDIE(S~, E - )  
Add D~ to D 

end-for 
else Add Dk to D 

end-if 
Eliminate any d E D such that d _E d' E D 
return D 

end-function 

Fig.  1. INDIE obtains a disjunction of descriptions Dk that do not subsume negative 
examples for the current class. 

Given a set of positive examples E + for a solution class Ck the INDIE algo- 
r i thm (Fig. 1) obtains, using the AU operation, a most specific generalization 
Dk subsuming all the examples in E +. If the description Dk does not subsume 
negative examples then Dk is a correct description for Ck. Because the value of 
a feature can be a set, several most specific generalizations subsuming all the 
positive examples can be built. This means that  if one of the most specific gener- 
alizations Dk subsumes some negative example there is two options to solve this 
situation: 1) to search for another most specific generalization Dj that does not 
subsume negative examples, or 2) to specialize Dk until no negative examples are 
subsumed. Using the first option all the possible most specific generalizations are 
tested searching for a description Dk that does not subsume negative examples. 
If all the descriptions Dk subsume negative examples, the second option has to 
be taken. The second option assumes that  the only way to describe the current 
solution class Ck is using a disjunction of descriptions. 

The next question is, how many descriptions are necessary to describe Ck? To 
answer this question a heuristic approach is taken. INDIE selects the most relevant 
feature Ad (using the discriminant -partition function explained later) that  
generates a partit ion PN of E + in N classes, where N is the number of different 
values that  Ad takes in E +. Thus, if Dk subsumes some negative examples there 
is at most a disjunct of N descriptions for Ck, i.e., Dk = {djk} for j = 1 to N. 
The new specialized description is a disjunction Dk = {djk} recursively obtained 
by applying the INDIE algorithm to each set of the parti t ion PN. This process is 
repeated until Dk does not subsume negative examples or all the features have 
been used. If there are two descriptions dik and d2k in Dk such that  dik E d2k 



40 

Function AU2 (El, E2, D) 
Let D be a new term with Sort(D) = So f t (E l )  N Sort(E2) 
A = {A,[ common attributes to E1 and E2} 
for each A~ E A do 

V~ = (v~l, v~2) where v~l --- E1 .Ai and v~2 -- E2.Ai 
i f  v~l = vi2 

then add-feature (D, Ai, V~l) 
else if there is a p E *paths* such that p = (F~, di) 

then add-feature (D, A,, di) 
else Let d~ be a new term with Sort(d~) = Sort(v,1) [7 Sort(v~2) 

add (~ ,  di) to *paths* 
i f  vii and v~2 have zero features 

then add-feature (D, A~, d~) 
else add-feature (D, A~, AU2 (v~l, v;2)) 

endif endif endif 
end for 

end function 

Fig .  2. Anti-unification operation that constructs the most specific generalization cov- 
ering a given set of positive examples. Add - feature(d,  a, v) is a function that adds 
the feature a with value v to the description d. 

then d2k can be eliminated and the disjunct is simplified. 
In the next sections, we explain the main steps of INDIE, i.e. how to construct 

a most specific generalization (AU operation), which bias is used to select the set 
of features that  allow the to define a part i t ion over the positive examples and how 
the most  discriminant parti t ion is selected (discriminant-parti t ion operation). 

3.2 A n t i - u n i f i c a t i o n  

The goal of the anti-unification (AU) operation is to construct a most  specific 
generalization D from a set of positive examples E + of the current solution 
class Ck. Figure 2 shows the algorithm AU2 used to obtain a most  specific gen- 
eralization of two examples E1 and E2. The first step is to obtain the set of 
features that  are common to both E1 and E2. We will explain AU2 assuming 
the attr ibutes have only one value, and later we will explain the case when the 
values of an at t r ibute are sets. For each common at t r ibute Ai, let us consider 
the pair Vi = (vii, vi2), where vii = E1.Ai  (the value taken by the Ai in the 
example El)  and v~2 = E2.Ai.  Each pair Vi has associated an object di tha t  is 
the description obtained from the AU of the values contained in ~ .  All the pairs 
( ~ ,  d~) are stored in the *paths* variable (see Figure 2) in order to detect if a 
particular combination of values has already been anti-unified. Whenever the 
algorithm founds a pair (Vil,V~2) already contained in *paths*, its associated 
object di is the value for D.AI.  This process assures pa th  equality. When the 



41 

pair V~ = (vii, vi2) has not previously appeared, the values vii and vi2 have to 
be anti-unified. 

Feature terms in Noos, as we saw, are set-valued. Let us suppose that Sil = 
E1.AI and S~2 = E2.Ai are sets of values. The AU of $1 and S~ has to find a set 
of values S such that: 1) Card(S)  = min{Card(S~l) ,  Card(S~2)}, and 2) each 
si E S is obtained from the AU of two different values vj E $1 and vk E $2. 
The AU2 algorithm is applied to each possible pair (vj, vk) where vj E $1 and 
vk E $2, obtaining a set {gv} containing Card(S~) • Card(S2) descriptions. 
From this set, a most specific combination 3 of Card(S)  elements has to be taken 
as the value set of the attribute Ai. Note that can exist several incomparable 
combinations that  are maximally specific. AU2 randomly chooses one of them. 
The AU of n examples El ,  ..., E~ consists of applying the AU2 algorithm n-1 
times, starting by computing D1 = AU2(E1, E2) and iterating AU2(Di_2, E~) 
over i = 3 . . . n .  

3.3 Bias  a n d  P a r t i t i o n i n g  t h e  Set  o f  P o s i t i v e  E x a m p l e s  

The discriminant-partition function (see Figure 3) determines the most discrim- 
inant feature Ad (among those features belonging to 2").We consider as can- 
didates to be the most discriminant feature only those features appearing in 
Dk. This bias reduces the set of candidates to those features appearing in all 
the positive examples. In a structured representation two kinds of features can 
be distinguished: leaf features and intermediate features (those belonging to in- 
termediate levels of the structured representation). For example, in the sponge 
shown in Figure 4, some leaf features are axis or grow and some intermediate 
features are size or micros. Usually, existing inductive learning methods select 
one predicate at t ime to specialize a clause. If we select an intermediate feature as 
the most discriminant, its value is a subterm and this means that  the description 
Dk is specialized according the type of that  subterm. This situation is equivalent 
to specialize a clause introducing several predicates at time. The selection of only 
one predicate is achieved in feature terms by selecting a leaf feature. Therefore, 
our bias is to consider as candidates to be the most discriminant feature the 
set of leaf features of Dk. In practice, the selection of an intermediate feature 
to specialize the description Dk tends to produce descriptions too specific (in 
the sense that  it quickly reaches a disjunction of M descriptions, where M is the 
number of positive examples). In principle, we are interested in a description of 
a solution class using the least number of descriptions. 

To select the most discriminant feature we take the minimum distance be- 
tween part i t ions--using the L6pez de Ms distance [8]. Given two partitions 
PA and PB of a set S, the distance among them is computed as follows: 

dN(PA, PB) = 2 - I(PA) + I(PB) 
I(PA n PB) 

3 A most specific combination is such that is not subsumed (in the sense of definition 
2) by any other combination. 



42 

Function DISCRIMINANT-PARTITION (At, E +, E - )  
Dist = 0 
while A l r  O d_oo 

PC = ( (E+)(E-) )  ;; the correct partition 
for Ai E Al d__o_o 

Pi = {Si C E IV,~, e s, and Vvj E Sj : Sort(vi) 7t Sort(vj)} 
opez de M D~ = D(Pc, Pi) ;; L 

Add Di to Dist 
end-for 

end-while 
useful-attribute = false 
while Dist r 0 and !useful-attribute = false) do 

drain = min{Di E Dist} 
Let Arnin and Pmln the attribute and the partition associated to drain 

if Pd has only one non-empty S~ 
then Remove drain from Dist 
else useful-attribute ---- true 

end-if 
end-while 
if Dist = 0 then return E + 

else return Pd 
end-if 

end-function 

Fig .  3. Discriminant-partition function selects the most useful attribute in a descrip- 
tion leaf using the Ldpez de Ms distance. The set of relevant attributes is given 
in At by algorithm in Fig. 1 

where I(P) is the information of a part i t ion P and I(PA N PB) is the mutual  
information of two partitions. 

In our case, the distance measure is applied to compute the distance among a 
part i t ion generated by a feature and the correct partit ion. The correct part i t ion 
Pc has two classes, one containing the positive examples (examples in Ck) and 
the other containing the negative examples (those not in Ck). Thus, for each 
feature Ai E At in a description leaf of the current description, the set of train- 
ing examples E = E + U E -  is parti t ioned according the sorts of the values of Ai 
generating a part i t ion Pi. Each parti t ion Pi is compared with the correct par- 
tition Pc using the Ldpez de Ms distance. The most  discriminant feature 
Aa is that  producing a parti t ion Pa having the min imum distance Da(Pa, Pc) to 
the correct parti t ion Pc. 

G e n e r a l i z a t i o n  P o s t - p r o c e s s  After applying INDIE, an optional post- 
processing step can be used. Since Dk is a most  specific generalization for a 



43 

solution class Ck, it can be generalized (in principle) without subsuming any 
negative example. The post-process consists of eliminating features as far as no 
negative examples are subsumed For each description djk E Dk, the algorithm 
for post-processing uses the L6pez de Ms distance to rank all the features 
belonging to djk. The features are considered from the least discriminant to the 
most diseriminant. 

4 E x p e r i m e n t s  w i t h  INDIE 

In this section we show the results of applying INDIE to several domains: robots, 
drugs, marine sponges, and lymphographies. We have chosen these datasets to 
show and evaluate different aspects of this feature term induction method. In 
the following subsections the results of these experiments are explained. 

4.1 Concept Learning using INDIE 

The robots domain [10] consists of a description of six robots that belongs to 
two solution classes: friendly and unfriendly. The robots are described using 
an attribute-value representation. However, using the feature term formalism 
obtains a relational definition for the friendly class: 

[body_shape -=- Y : shape ] 
Friendly = X : robot [head_shape - Y shape J 

i. e. the robots that  have the same shape of body and of head belong to the 
friendly class. 

The drugs domain consists in a description of several drugs and is used by 
the KLUSTER system [9] . From these descriptions KLUSTER can obtain sev- 
eral classifications, i.e. what is an active substance, what is a monodrug, when 
a substance is sedative, etc. To represent the domain objects KLUSTER uses 
a representation language based on KL-ONE. In INDIE we have represented the 
domain objects as feature terms and the goal is to obtain a description for the 
solution classes monodrug, combidrug and placebo. The obtained descriptions for 
these classes are similar to those obtained by the KLUSTER system. The fol- 
lowing are descriptions obtained by INDIE for the monodrug, combidrug classes. 

[effects - Y :drug_effect ] 
Monodrug = X : drug [contains - Z active_substance [affects - W : symptom ] 

Combidrug = X : drug [contains - Y : active_substance 1 
J Z : active_substance 

The differences are due to the different representation (see w for a comparison of 
it with INDIE). Notice that  the main difference between both classes is using one 
active substance (monodrug) and more than one active substance (combidrug). 
This fact derives from the definition of subsumption, namely that  any example 



44 

Sponge 

~$_~Lf--~Four 
] a-~One 
[ act/ne r--~More-than-two 

[---~Megas ~ T w o  
skel ~ize ~ [megas-type~Orthotriaena 

�9 Spleulate-skeleton ] ~ Strongyle 
chem j, Silica 
bod3,?size~_ Medium | micros-type [---~Spherule 

'----~Micros I J, Oxyaster 
I co.s t___~Sterraste r sterr ~Globular 

form r- Globular 
I grow ~ Massive 
macro. None 

I pach ~ No 
Ose-type numosc One-osc 

I eeo -~ AtLantic 

Fig. 4. A graph description of a feature term for a specimen of marine sponge (of the 
Erylus discophorus species). 

subsumed by the Combidrug description above, needs to have (at least) two 
active substances for feature contains. These examples would also be subsumed 
by Monodrug description (they also have one active substance) except that they 
do not satisfy the other two features (effects and affects) . 

We have employed INDIE in the multistrategy learning system for marine 
sponge identification SPIN.  Marine sponges offer a good test bed for the capability 
of feature terms for dealing with incomplete descriptions, since marine sponges 
variability involves that certain properties are relevant only for certain types 
and/or certain subcomponents of them. Given a set of sponges correctly classified 
INDIE has been capable to obtain a description for the different taxa. Sponges 
are represented as feature terms. See an example of a marine sponge in Figure 4 
using the graph syntax for feature terms. Marine sponges can be described by 
a great variety of features and they form a domain where partial descriptions 
("incomplete information") are commonplace. For example, a marine sponge of 
the Erylus discophorus species may be described by the skeleton, the geographic 
localization, the form and the color whereas other sponge only may be described 
by the skeleton. Figure 5 shows the descriptions obtained by INDIE for the Erylus 
taxon. 

Also of interest are the results of INDIE in the family relations domain. Notice 
that INDIE infers descriptions (e. g. of persons that are uncles or mothers) and 
not rules to compute the relations uncle or mother. For this concepts, INDIE finds 
a correct and discriminating description with AU only, and the discriminating 
stage is not used. In this situation, INDIE's anti-unification (AU) stage is closer 
to the characterization task--discovering regularities as found in data mining 
or in the so-called description problem--indeed AU finds by definition all those 
common to a set of (positive) examples. Let us consider those persons that are 
mothers and those that are uncles in the family relations dataset. In the both 
c a s e s  INDIE finds using AU a description that subsumes only positive examples 



45 

~el s~ze 
sponge * Spiculate-skeleton 

Megas megas-type ~ Triaena 
~ Oxea 

~----adVIicrorhabd 
t---~Mieros micros-type[ ~Oxyaster 

~--~ Sterzaster 

Fig. 5. A graph description of a feature term for the description of the Erylus genus). 

and no negative examples (those persons that are not, respectively, mothers or 
uncles). In the case of the mother description, AU finds the following term: 

[ fa ther  - W ]  
son - Y : male [mother - X 

L sister - Z 
[ f a t h e r - X ]  

X �9 female d a u g h t e r -  Z : female [mother  • 
[ brother - 

F son "- Y ] 
husband - W : male |daughter "-- Z J [ w i f e  - Y 

All this regularities hold for all the involved persons in the dataset. After the 
optional generalization postprocess only one of the regularities remains, namely 

X :  female [ husband "- W :  male [son - Y :  male ] ] 

that clearly is correct--but other regularities that have very similar heuristic 
values have been eliminated, so they could have equally been chosen (like having 
a son or a daughter). 

The uncles description also induces a number of regularities by AU, for in- 
stance, the niece X has the following relation with the uncle Z: 

X :  female [mother - Y :  female [brother - Z :  male ] ] 

and also the following one, expressed in clausal form: 

X :  female  A f a t h e r ( X , Y )  A Y :  male A s i s ter (Y ,W)  A 
W :  female A husband(W,Z) A Z :  male A uncle(X,Z)  

While ILP systems are more biased to single predicate learning, this exam- 
ple shows that feature term induction is biased toward "multiple predicate 
learning"--in the example above, a description of niece has been found in rela- 
tionship to the uncle description. After the simplification postprocess the only 
following regularity remains: 

x :  maze [ wife --" Y:  femaU [ niece - Z ] ] 



46 

4.2 T h e  A c c u r a c y  o f  INDIE 

We have evaluated the accuracy of INDIE in order to assess the utility for INDIE 
of using the L6pez de Ms heuristic with respect to attribute-value learners 
of the decision tree family. The accuracy has been evaluated performing some 
experiments under the same conditions that  those described in [12], i.e. the 67% 
of the cases have been taken for learning and the remaining 33% have been taken 
for test. We will now summarize the results on the lymphographies data  set of 
the Irvine ML Repository. The accuracy for C4.5, CN2 and PIK are respectively 
76.4, 81.7/76.5 (corresponding to two parameter setting), and 77.2. 

A main difference of INDIE is that it can provide multiple solutions, situation 
that  may be useful in some domains (i.e. for the sponge classification) or not. If 
we consider that multiple solutions including the correct one is a correct solution 
then the accuracy of INDIE is 81.4. However if we consider that  a multiple solution 
is incorrect even if it contains the correct solution then the accuracy of INDIE is 
76.63. 

5 D i s c u s s i o n  

There has been relatively few work on induction on "structured representations" 
compared to the intensive research performed on Horn clause representations. 
The KLUSTER system [9] and the LCSLearn algorithm [6] work on some de- 
scription logics (a KL-One-like language). As we said of description logics, these 
formalisms are related to but different from feature terms. A main semantic 
difference is that feature terms provide a uniform representation while descrip- 
tion logics are hybrid--there are two different formalisms, one for the describing 
concepts (T-box) and another one for describing instances (A-box). 

KLUSTER searches for a most specific generalization MSG from positive ex- 
amples. If MSG covers negative examples KLUSTER follows a particular algo- 
r i thm to specialize the MSG by means of introducing new a t -m o s t  and a t - l e a s t  
predicates in the feature descriptions. INDIE uses AU to find a most specific de- 
scription that  subsumes positive examples (similarly to KLUSTER since both 
follow a bot tom-up strategy) and then to specialize the description INDIE intro- 
duces disjunction of descriptions following a distance-based heuristic. KLUSTER 
has been applied only to the drugs domain we showed in w 

The LCSLearn algorithm is a bot tom up inductive method for C-Classic, a 
subset of the Classic description logic language that has all Classic constructors 
except for the same-as constructor, that is roughly equivalent to path equality 
in feature logics. Since feature logics and INDIE depend heavily on the notion 
of path equality, both LCSLearn and INDIE seem complementary in studying 
formalisms that embody different useful subsets of first order logic. However, 
the LCSLearn is comparable only to the AU step in INDIE - - t h e  LCSLearnDisj 



47 

algorithm, the disjunctive induction version of LCSLearn, is more akin to INDIE 
in that  it is able to induce a disjunction of description. While LCSLearn is shown 
to be pat-learnable, nothing is said in [6] about LCSLearnDisj. While INDIE uses 
a distance-based heuristic to select how to split a description into a disjunction 
of descriptions, LCSLearnDisj essentially chooses positive and negative examples 
in a random way until a disjunctive discriminant description is reached. 

Subsumption is a natural way to relate to induction. Classical ML methods 
did so while ILP methods have to deal with deductive relat ions--from which a 
generalization relation has to be defined. Although the relation of the expres- 
siveness of feature term formalisms and Horn clauses formalism is an open issue 
in the current research literature, it is possible that  the first can be a subset 
of the latter. If that  would be the case, the less expressive formalism of feature 
terms--closer  to object-oriented representations--could be more appropriate for 
application domains that  do not require the full induction of logic programs since 
they can work on the well defined subsumption lattice of feature terms. 

The formalization introduced here has to be enriched to include domain meth- 
ods in Noos performing inference. INDIE is already applicable since it requires 
closed feature terms and the AU operation forces method evaluation generat- 
ing the closed feature terms. Future experimental work on several application 
domain is needed to show learning of feature terms with background knowledge. 

Incomplete information has a natural representation in feature terms that  
base the subsumption relation in the notion of information ordering. A subsumed 
description is a refined t e rm- -a  description with more refined (more specific 
sorts) or additional (new features) information. 

The explanation of the framework for combining multiple learning methods 
in SPIN is left out for lack of space but the reader is referred to [3] for such 
an explanation regarding the multistrategy learning system CHROMA. The SPIN 
system currently combines INDIE with CRASS, a lazy learning method that  uses 
an entropy-based measure to estimate the better example to perform an sponge 
identification by case-based reasoning [11]. 

Future work includes finishing a formal study of subsumption and AU com- 
plexity. Currently we know complexity stems from set-valued features - - in  fact, 
subsumption in feature terms without set values is lineal with the number of 
nodes and features [5]. We know that  subsumption is much more costly only 
when we have embedded set-vMues. That  is, if D1.At = S where S is a set, and 
there is a term D2 E S that  also has a set valued attribute, say D2.Aj = S ~, then 
we say S ~ is an embedded set-value at depth one. We estimate the complexity 
of dealing with embedded set-values in subsumption to be O(n k) where n is the 
maximum cardinality of a set and k is the embedding depth. In practice this 
means that  while representing some application domain a user can have a clear 
idea of the expected complexity just looking at the level of embedding. 

Related to complexity two aspects of INDIE are currently being developed. 
One is the effect of using a weaker form of subsumption--roughly, one that  does 
not require in set subsumption that the subsumed elements are different. This 
weaker form decreases the language expressiveness, since the constraint on a 



48 

minimum set cardinality (as used in the drugs domain) is dropped, but may also 
decrease complexity. A second aspect is parameterizing INDIE with a maximum 
node number to be considered during AU--equivalent to a maximum number of 
variables to be considered. Other options are also to limit the depth or number of 
features; the relationship of this bias to ij-determinacy in Horn clauses induction 
is also interesting. Lastly, we are developing a second inductive method using a 
declarative bias mechanism constraining the form of feature terms to be searched 
during induction. 

A c k n o w l e d g m e n t s  The authors thank Josep-Llu~s Arcos and Ramon Ldpez 
de Mgntaras for the discussions and the support he provided in this and other 
closely related work. The research reported on this paper has been developed 
at the IIIA inside the SMASH Project funded by Spanish CICYT grant TIC-96- 
1038, and a CICYT fellowship. Information about this and updated results will 
be posted at http : ll~ww, ilia. esic. eslProj ects/learning, html. 

References  

1. H. Ai't-Kaci and A. Podelski. Towards a meaning of LIFE. J. Logic Programming, 
16:195-234, 1993. 

2. J. L. Arcos and E. Plaza. Inference and reflection in the object-centered represen- 
tation language Noos. Journal of Future Generation Computer Systems, 12:173- 
188, 1996. 

3. E. Armengol and E. Plaza. Integrating induction in a case-based reasoner. In J. P. 
Haton, M. Keane, and M. Manago, editors, Advances in Case-Based Reasoning, 
nmnber 984 in Lecture Notes in Artificial Intelligence, pages 3-17. Springer-Verlag, 
1994. 

4. F. Bergadano and D. Gunetti. Inductive Logic Programming. From Machine 
Learning to Software Engineering. The MIT Press, 1995. 

5. B. Carpenter. The Logic of Typed Feature Structures. Tracts in theoretical Com- 
puter Science. Cambridge University Press, Cambridge, UK, 1992. 

6. W. W. Cohen and H. Hirsh. Learning the classic description logic: Theoretical and 
experimental results. In Principles of Knowledge Representation and Reasoning: 
Proceedings of the Fourth International Conference, 1994. 

7. L. Dami. Software Composition: Towards an Integration of Functional and Object- 
Oriented Approaches. PhD thesis, University of Geneva, 1994. 

8. R. L6pez de M~ntaras. A distance-based attribute selection measure for decision 
tree induction. Machine Learning, 6:81-92, 1991. 

9. J.-U. Kietz and K. Morik. Polynomial induction of structural knowledge. Machine 
Learning, 14:193-217, 1994. 

10. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Tecniques and applica- 
tions. Ellis Horwood, 1940. 

11. E. Plaza, R. Ldpez de MAntaras, and E. Armengol. On the importance of simili- 
tude: An entropy-based assessment. In Boi Faltings et el, editor, Case-Based Rea- 
soning, EWCBR-96, Lecture Notes in Artificial Intelligence. Springer-Verlag, 1996. 

12. X. M. Zhou and T. S. Dillon. Theoretical and practical considerations of uncer- 
tainty and complexity in automated knowledge acquisition. IEEE Trans. Knowl- 
edge and Data Engineering, 7:699-712, 1995. 


