
Analyzing the Needham-Schroeder Public Key
Protocol: A Comparison of Two Approaches

Catherine A. Meadows

Code 5543
Center for High Assurance Computer Systems

Naval Research Laboratory
Washington DC, 20375

meadows@it d.nrl.navy.mil

A b s t r a c t . In this paper we contrast the use of the NRL Protocol An-
alyzer and Gavin Lowe's use of the model checker FDR [8] to analyze
the Needham-Schroeder public key protocol. This is used as a basis for
comparing and contrasting the two systems and to point out possible
future directions for research.

Most early work in the automated analysis of cryptographic protocols con-
centrated on building special-purpose tools, such as the NRL Protocol Analyzer
[5, 10], the Interrogator [11, 5], and Longley and Rigby's protocol analysis tool
[6]. Although some work existed on the application of existing tools, such as
Kemmerer's use of Ina Jo [5], this was not an approach followed by many. Some
of this early concentration on special-purpose tools may have been a result of
the belief that cryptographic protocols had certain unique properties that would
make them more amenable to analysis by a tool using special-purpose models
and algorithms. This was certainly the belief thatmotivated much of the develop-
ment of the NRL Protocol Analyzer. But, as research has progressed in this area,
and people are becoming more and more comfortable with the techniques and as-
sumptions that are needed to analyze cryptographic protocols, more researchers
are exploring ways in which existing formal methods tools can be applied to the
problem of either assuring a cryptographic protocol's correctness or finding a
flaw if it exists. Thus, for example the theorem prover HOL has been used by
Snekkenes in [13] for stating and proving properties of cryptographic protocols.

At this point, it makes sense to ask the question: what comparisons can we
make between these two ways of approaching the problem? Clearly, some of the
advantages of using an existing system is its greater power and maturity, while
the advantages of using one's own is that it can be tailored to the problem at
hand, giving better assistance for solving the problems of interest. Thus, we
might expect existing systems to provide the most help in solving the parts of
the problem that most resemble other problems, and a special purpose system
to provide the most help in solving the parts of the problem that are unique or
at least unusual. But one cannot tell exactly how these things will balance out
until some experience has been gained in applying both types of systems to the
problem.

352

In this paper we try to at least begin to answer these questions by compar-
ing the use of two different tools to analyze the same protocol, the Needham-
Schroeder public-key authentication protocol [12]. One of these tools, the NRL
Protocol Analyzer, is a special-purpose tool for analyzing cryptographic proto-
cols. The other, FDR [2], is a model checker that tests whether CSP programs
satsify their specifications. We will use the results of this analysis to provide
a basis for the comparison of these two tools. Although this itself will not be
enough to provide a comparison of the use of special-purpose versus general
tools, it can be used as a basis for further work by others looking at the same
problem.

The history of the use of these two tools to analyze the protocol is as follows.
The FDR tool was used first by Lowe to find a triangular attack on the protocol
[7, 8]. This attack was new; as a matter of fact the protocol had previously been
"proven" correct in [1]. The NRL Protocol Analyzer was then used by us to
reproduce the same attack, as well as to find some new attacks. 1

The remainder of this paper is structured as follows. Section 2 contains a de-
scription of the Needham-Schroeder public-key protocol (from now on referred to
as the Needham-Schroeder protocol, not to be confused with their more famous
private-key protocol), and some of the attacks that were found. In Section 3 we
present a brief account of FDI~ and Lowe's analysis of the Needham-Schroeder
protocol; a more complete account can be found in [8]. In Section 4 we describe
the NRL Protocol Analyzer and show how it was used to analyze the protocol.
In Section 5 we compare the two approaches. Section 6 concludes the paper.

1 The Needham-Schroeder Publ ic -Key Protocol

The Needham-Schroeder protocol uses public keys to achieve authentication be-
tween two parties. The protocol involves an initiator A, a responder B, and a
server S. It proceeds as follows.

1. A ~ S : B
A requests B's public key from S.

2. S ~ A : { K s , B}Ks-~
S sends B's public key and name to A, signed with its digital signature. A
checks the signature and B's name.

3. A ~ B: {RA ,A}Ks
A sends a nonce RA, together with A's name to B, encrypted with B's public
key. B decrypts to get A's name and nonce.

4. B- - -*S:A
B requests A's public key from S.

1 The fact that these attacks were not found by FDI~ does not necessarily point out
a limitation in that system or in Lowe's approach; it is simply the result of the fact
that we and Lowe made slightly different assumptions about primitives used by the
protocol, and that Lowe analyzed a fragment, not the entire protocol.

353

5. S ~ B: {KA, A}Ks-1
S sends B A's public key. B checks the signature and A's name.

6. B ~ A: {RA, RB}KA
B generates a nonce RB and sends it together with RA to A, encrypted with
KA. A decrypts the message. If it finds RA, it assumes that this is a message
from B in response to its original message.

7. A ~ B: {RB}tca
A encrypts RB with KB and sends it to B. B decrypts the message. If it
finds RB, it assumes that this is a message from A in response to its original
message.

The reasoning behind this protocol is straightforward. When A gets the mes-
sage {RA, RB } Ka, it assumes that, since B received the message encrypted under
its public key, and B has no reason to reveal RA, only B knows RA, and thus
the message must be from B in response to the message {RA,A}K~. Likewise,
when B receives {RB}Ks, it reasons that only A knows RB, and so A must have
sent the message in response to the message {RA,.RB}Ka. In other words, RA
and RB serve not only as nonces, but as authenticators. Indeed, in [1] Burrows,
Abadi, and Needham suggest that they be used as authenticators in subsequent
communication. 2 As we will see below, this could have dangerous consequences.

The above argument appears in more rigorous form in [1] where Burrows,
Abadi, and Needham use the logic of authentication set forth in that paper to
prove that the protocol is correct. However, since their logic relies upon the
assumption that principals to not divulge secrets, it misses the following attack
discovered by Lowe [7], which relies on a participant's willingness to divulge a
secret nonce. 3 Following Lowe, we leave off the initial distribution of public keys.
This attack invoh,es four parties: A, B, an.d an:intruder L We use the notation
Ix to mean/impersonating X. Iwithout"a subscript refers to the intruder acting
as itself.
3. A ---+ I: {RA,A}K,

A initiates communication with/ .
3'. IA --+ B: {RA, A}KB

2" initiates communication with B, using RA.
6'. B--.4 A: {RA,RB)Ka

B responds to A. A decrypts and finds RA.
7. A ~ I: {RB}K,

Thinking that the previous message is a response from/, A responds in kind.
I decrypts RB and can now use it to impersonate A to B.
7'. [A ~ B: {RB}KB

I completes the protocol with B.
If RA and RB are used as authenticators subsequent communication, I now

has the ability to impersonate A to B for the rest of the session, although I cannot

2 This is in contrast to the original Needham-Schroeder paper [12], which suggests
that authentication be supplied by digital signatures.

3 For a more complete discussion of the relationship between the attack and Burrows',
Abadi's and Needham's proof of correctness, see [3].

354

read B's messages. Even if digital signatures are used for subsequent authenti-
cation instead, and I cannot impersonate A, I has still managed to get A and B
in an inconsistent state in which B thinks that A has initiated communication
~ith it when in fact it has not.

Both Burrows, Abadi, and Needham, and Lowe assume that principals can
distinguish between types; that it is not possible, for example, to confuse a name
with a nonce, or either with a key. Although this is an assumption that is usually
considered easy to ensure by proper formatting, it is nevertheless sometimes
useful to see what can happen if types are confused. If nothing else, this can at
least point out the places in which unambiguous formatting is vital to security.

The following attack, found using the NRL Protocol Analyzer, makes use
of the key-distribution as well as the authentication phase of the protocol, and
relies upon a confusion between nonces and names.
3. IA -~ B : {Rx, A}K~
4. B -+ S : A
5. S--+ A: {KA, A}gs-1
6. B ~ A: {RI,RB}KA

I intecepts this message.
3'. IRB -+ A: {RI, RB}KA

I sends the intercepted message to A as the initiator of the protocol, with
R s as the name field.
4'. A ~ S : RB

A sends the "name" Rs to S in order to get its public key.
7. IA ~ B : {RB}KB

I now has the information it needs to impersonate A to B. It encrypts RB
with K s and sends it to B.

If nonces are used in authens during the session, then I can imperson-
ate A to B throughout the session as weI1.

2 Lowe's A n a l y s i s of t h e N e e d h a m - S c h r o e d e r P r o t o c o l

Lowe specified the Needham-Schroeder protocol in CSP [4], and then used the
FDlZ model checker to search for attacks. FDR works by checking whether or
not one CSP specification is a refinement of another. There are several different
notions of CSP refinement, of increasing order of complexity. The simplest notion
of refinement, usually used for proving safety properties, is the traces model,
which is the one used by Lowe. This says that process A refines process B if
the traces of A are a subset of the traces of B. If B is a specification of a safety
property describing what traces of a system are allowable, and A is a specification
of a program, then clearly A satisfies the safety property B if A refines B. FDIZ
checks whether or not one CSP process is a refinement of another in this sense
by building up sequences of possible traces for both processes and checking at
each stage whether or not the subset property is violated. If it is, it returns the
first trace it finds (which will also be the shortest) that violates this property.

355

Briefly, the specification of the protocol itself consists of three communi-
cation events that describe the three authentication messages between A and
B. The existence of sets of initiators, responders, public keys, and nonces are
assumed. Three channels were specified, the standard comm, and two new chan-
nels, fake and intercept, which reflect the intruder's ability to both produce and
read messages. Processes are defined for initiators and responders, that describe
how they send messages and how they react to received messages. The initiator
process begins with a user requesting that process to connect with a responder.
Renamings can be applied to the processes to reflect the fact that messages can
be intercepted or faked. Thus, if Msg is a message sent by the process, then
comm.Msg can be replaced by intercept.Msg; if it is a message received, then
comm.Msg can be replaced by fake.Msg.

Each initiator and responder process is indexed by a name and a nonce. Thus
we can think of an initiator or reponder process as corresponding to a single local
execution of the protocol. Multiple interleaved executions of a protocol can be
represented by interleaving multiple initiator and responder processes. Thus the
number of executions in a simulation of the protocol can be limited by limiting
the number and type of responder and initiator process.

Finally, a definition of the intruder is given, which describes how it tan in-
tercept and fake messages, and how it builds up its knowledge. This is the most
complex part of the specification, since each action available to the intruder,
who is assumed to be capable of any operation, must be specified separately.
The state of the intruder is parametrized by the messages it has been unable to
decrypt, and the set of nonces that it has learned. Since the nonces are the only
secret information passed in the protocol, this set can be thought of as corre-
sponding to the set of decrypted messages plus any nonces the intruder knows
initially (that is, those it generates itself).

After this protocol was specified, the FDR model checker was used on a
specification consisting of one initiator process, one responder process, and one
intruder process. This meant that FDR only generated traces consisting of at
most one local execution of the protocol for initiator and responder. This was
sufficient to find the triangular attack on the Needham-Schroeder protocol, how-
ever, since this requires only one initiator process and one responder process; the
initiator process interacting with the intruder as respondent, and the respondent
process interacting with the intruder impersonating the initiator process.

Two specifications of desirable properties of the protocol, one from the point
of view of the initiator, and one from the point of view of the responder, were
given. The specification AUTH_RESP says that an initiator should only accept
a responder as authenticated if the responder is attempting to respond to the
initiator. The specification AUTH_[NIT says that a responder should only ac-
cept an initiator as authenticated only the user playing the role of the initiator is
actually trying to communicate with the responder. FDR was used to determine
whether all the traces of the protocol satisfied these two properties. It found no
counterexamples to AUTH_RESP, but it found the triangxflar attack when it
checked AUT H_I NIT.

356

When a flaw is found in a protocol, the next thing to do is fix it. Lowe's
suggested fix was to replace the message {RA, RB}KA with {RA, RB, B}KA, so
that the originator of the message was not ambiguous. In this way an intruder
could not replay B's message as his own. FDR was run on the new protocol using
the AUTHJNIT and AUTH_RESP specification, and no attacks were found.

But the failure of FDR to find attacks does not mean that the protocol is
proven secure, since the protocol specification involved a very limited number
of protocol executions. Thus there is still the possibility that there could exist
attacks that depend on the interleaving of more executions. Since a model checker
cannot verify any properties involving an unbounded number of executions, it
alone cannot guarantee security of a protocol. Thus Lowe also performed a hand
proof is of a theorem that states, in the case of the fixed Needham-Schroeder
protocol, that if no attack can be found involving one initiator and one responder,
then the protocol is secure. We will not present this proof in detail, but we note
that it hinges upon some key lemmas concerning the circumstances under which
the intruder can produce and learn words. The first concerns conditions under
which messages containing a nonce can be produced by the intruder, and the
second concerns the conditions under which the intruder can respond to a nonce
challenge by a principal.

3 The NRL Protocol Analyzer Analysis of the
Needham-Schroeder Protocol

3.1 Overview of the N R L P ro toco l A n a l y z e r

As in Lowe's CSP specification of the Needham-Schroeder protocol, the NRL
Protocol Analyzer makes the assumption that principals communicate over a
network controlled by a hostile intruder who can:read, modify, and destroy traffic,
and also perform some operations, such as encryption, that are available to
legitimate Participants in the protocol. The means by which this network model
is realized differ in some aspects, however.

In the NRL Protocol Analyzer, actions of legitimate principals are specified
by the user as state transitions. Input to the transitions are values of local state
variables and messages received by the principal, the latter assumed to have been
generated or passed on by the intruder, and output are the new values of local
state variables and messages sent by the principal, the latter which are subject to
interception and modification by the intruder. The means by which the intruder
can modify messages are specified by having the specification writer indicate
which operations are performable by the intruder, and what words the intruder
may be assumed to know initially. Some operations, such as list concatenation
and deconcatenation, are always assumed to be performable by the intruder.

In NRL Protocol Analyzer specifications, local state variables and transitions
are indexed by four things: the name of the principal involved, an identifier for
the local execution, the step of the protocol it corresponds to, and the principal's
local time. The last we have found redundant, and may eliminate in future ver-
sions. Principal names, local execution identifiers, and times are all indicated by

357

variables, which may have an unlimited, even infinite, number of instantiations.
If we choose a particular instantiation of principal name and local execution
identifier, we see that the set of transitions relevant to a particular role in the
protocol corresponds to one of Lowe's CSP processes, where for Lowe the local
execution identifier is the nonce generated by a principal for that local execu-
tion. The main difference between the Protocol Analyzer and FDR specifications,
however, is that for FDR one specifies a finite number of such processes, while
the Protocol Analyzer assumes that an unbounded number of runs and princi-
pals are possible, since variables in a specification can have an infinite number
of possible instantiations. It also allows for odd boundary conditions such as the
case in which the same principal plays the role of both initiator and responder;
this can be done by instantiating the names of the principals playing these roles
to the same term. This possibility of attacks under such conditions will be ex-
plored automatically by the Protocol Analyzer unless the user explicitly states
that the)- should not be considered.

The Protocol Analyzer also differs from FDR and other model checkers in
that, instead of working forwards from an initial state, it works backwords from
a final state. The user of the Analyzer uses it to prove a security property by
specifying an insecure state in terms of words known by the intruder, values of
local state variables, and sequences of events that have or have not occurred. The
Analyzer gives a complete description of all states that can immediately precede
that state, followed by a complete description of all states that can immediately
precede those, and so forth. Since the search space the Analyzer deals with is
infinite, the user is given a number of means of pruning the search space to a
manageable size. These include:

1. Induc t ive p r o o f of unreachab i l i ty of inf ini te classes of s ta tes by
use of fo rmal languages . The Analyzer can be used to prove that if the
intruder learns a member of the language, then it must have already known
a word from that language. The Analyzer in its most recent form can be
used to generate languages as well as prove them unreachable.

2. R e m e m b e r i n g condi t ions on reachabi l i ty o f s ta tes . If a state descrip-
tion has been proved unreachable, or only reachable if the variables in that
state description have been instantiated to certain values, the Analyzer can
remember that fact and apply it the next time that state description is en-
countered in a search.

3. Que ry ing subse ts o f s t a t e descr ipt ions. When a state description is
found by the Analyzer, the user has the option of telling the Analyzer to
look for some subset of that state description. For example, given a state
description in which the intruder knows two words IV and V, the user can
ask the Analyzer how to find the state in which the intruder knows V. This
is a good strategy, for example, if the user suspects that it is easy to show
that the state in which the intruder -knows V is unreachable. The Analyzer
also has several different sets of search-pruning heuristics built in which
the user can specify; these will then be applied automatically For example,
it can be directed to choose to query a state variable or word only if it

358

contains a term that appeared in the original top-level query. Thus, if the
user begins by asking how to find a state in which the intruder knows V,
and the Analyzer finds that this can be done if the intruder knows KA and
{V}KA, the Analyzer will only look for {V}K,~, since KA does not appear
in the original query.

Note that these techniques take the place of the theorems Lowe used to
narrow his search space to that generated by two processes. Note also that the
ability to query a subset of a state description may generate a false attack; the
portion of the description that is queried may be reachable, while the entire state
is not. Thus any attack produced by the Analyzer when this technique is used
must be handchecked to determine whether or not it is a valid one.

Once the various lemmas have been proved, it is possible to use the Analyzer
to perform a search. Each time a state is generated in its backwards search, it is
checked against each of the lemmas to determine whether or not it is unreachable.
If it is, the state is discarded. If it is not, the state is kept, and the Analyzer
tries to determine how that state could have been reached. The Analyzer keeps
a record of all paths generated, and lets the user know which paths begin in
unreachable or initial states. The user can ask the Analyzer to display any path
generated.

3.2 The N R L P r o t o c o l Ana lyze r Specif icat ion of t he
Needharn -Schroede r P ro toco l

Our specification of the Needham:Schroeder protocol was written before we had
seen Lowe's specifications so there are some important differences. First of all, we
specified the request for and distribution of public keys. Secondly, we considered
the possibility that old nonces might be compromised. To this end we included
a transition that states how a nonce can be compromised any time after it is
generated; we specified a "dummy" principal whose sole occupation is to deliver
nonces to the intruder.

Finally, we made somewhat different assumptions about principals' ability to
distinguish between different types of messages. The Protocol Analyzer always
makes the assumption that principals, when asked to retrieve the head of a
concatenated list, will always choose the correct word; that is, they will not
pick a smaller chunk of the word, or the first two words in the list, for example.
However, it makes no other assumptions, except for what the specification writer
tells it to assume. Thus we can specify cases in which principals can or cannot
tell different types of words from each other:

In our specification we originally started out by making no assumptions about
recognizability except for those that are built into the Analyzer. This resulted
in searches that failed to terminate, since the Analyzer kept on generating paths
that contained local state variables containing longer and longer words. Thus we
gave principals the ability to recognize when a message contained the appropriate
amount of words. We also gave principals the ability to recognize whether a word
was a public key. This seemed reasonable since some formatting of a public key

359

is necessary in order for it to be usable; for RSA, for example, a user needs
to know which is the modulus and which is the exponent. Finally, we gave the
server the ability to recognize names, since the server could tell whether or not
something was a name by determining whether or not there was a public key
associated with it, and we gave the initiator the ability to recognize the name
of the principal it was trying to initiate a conversation with. However, when a
principal was expecting a nonce, or the responder received what purported to
be a name of an initiator, we specified no ability to recognize that a word of this
type was what was actually received.

3.3 T h e Analys is

We analyzed four different versions of the Needham-Schroeder protocol. The
first was the original version of the protocol, with the assumptions about typing
that we mentioned in the previous section. The second was Lowe's fix of the
protocol. The third was the fix with the assumption added that the responder
could recognize when a word was not a name. The last was a specification as
close to Lowe's specification of the fixed protocol as possible, for purposes of
comparison. In this specification we left out the key distribution phase, and we
also left out the assumption that nonces could be compromised. All our analyses
took place using SWIProlog 2.1.14 running on a Sparc 20 running SunOS 5.4.

In all our analyses except one, we kept track of two statistics: the amount
of time a search took, and the number of states that were generated during
the search. By "state generated" we mean a state the Analyzer generated in the
course of a search that was not immediately rejected as unreachable. This means
that the correlation between the time a search took and states generated was
not very tight, since some searches may generate more unreachable states than
others, even if the number of states that. had not been proved unreachable was
the same. We also note that times could vary considerably given the load on the
system; however we still include them because they help give a relative idea of
how long the Protocol Analyzer performed on various problems.

We began by asking the Analyzer how to reach two final states: one in which
the initiator of a protocol had accepted a nonce as coming from an honest re-
sponder, and one in ~,hich a responder had accepted a nonce as coming from an
honest initiator. These did generate the attacks described at the beginning of
this paper, as well as legitimate runs of the protocol. We also found the following
attack:

The
1. A - ,
2. S -+
3. A -->

protocol proceeds normally in the first six steps:
S:B
A: "[Ks, B}Ks-,
B: '[RA, A}za

4. B-+ S: A
5. S--~ B: {KA,A}Ks_~
6. B ~ A: {RA, R B } K A

At this point, I intercepts the message and sends it to A, as the first message
in the authentication coming to A from some other party.

360

3'. I - ~ A : {RA, RB}K~
A decrypts the message, and, thinking that Rs is some party initiating com-

munications, sends off a request to S for its public key.
4'. A -+ S: R s

Now I can learn RB and impersonate A to B, causing B to think A has
successfully responded to it:
7. IA -+ B: {RB}Ks

We did not attempt to perform an exhaustive search in this case.
Then, in order to better compare our work with Lowe's we tried asking the

Analyzer the same or similar questions that Lowe asked FDR. Note that the
attack we just mentioned above did not appear in these cases, since although B
accepted RB as from A when it had not been sent by A, A had in fact initiated
the conversation.

In each case, we asked the Analyzer how two states could be found. The
first, corresponding to Lowe's AUTHA~ESp, was a state in which an initiator
A would accept.a nonce RB as coming from an honest responder B in response
to a request containing RA when:

1. B had not sent RB to A in response to RA, and;
2. RA had not been compromised.

The second condition was necessary because the Needham-Schroeder protocol
(or any other) could trivially be compromised if a secret was compromised during
the session in which was generated.

The other state, corresponding to Lowe's AUTH_INIT, was a state in which
a responder B accepted a nonce RA as coming from an honest initiator A to which
it had responded with Rs when:

1. A had not initiated a session with B using RA, and;
2. Rs had not been compromised.

We began by running the Analyzer on the second state. In this case, we
were able to generate Lowe's attack and another. This attack, like the one on
the initiator we presented earlier, relies upon a confusion between names and
nonces.

We also found a number of minor variations on Lowe's and the above attack.
Unfortunately, we were not able to complete an exhaustive search in this

case. The Analyzer state space exploded when it was well into its search, and
this overwhelmed the resources of our system. However, this had an interesting
result. After we finished the analysis of the other protocols, we returned to this
case and attempted to Complete the search by examining the unreachable states
produced in the original search and using the results to suggest new lemmas to be
proved about unreachability of states. We were still not successful in completing
the search, but we proved similar lemmas for the other versions of the protocol,
and found that we had reduced the number of states produced considerably. In
most cases we reduced the amount of time taken by a proof too, although the
reduction was not as dramatic. This is probably because the time taken up in

361

checking each of the lemmas made up for some of the time saved in checking
fewer states.

Our search on the state in which the initiator is fooled went much more
smoothly, and completed in about half an hour with no manual intervention,
generating 155 states. The Analyzer found the following rather quaint attack, in
which the initiator can be fooled if it is trying to talk to itself:
1. A--+ S : A
2. S---4 A : {KA, A}lcs-1
3. A ~ A : {RA,A}KA

This is intercepted by I, who sends the following to A as responder, imper-
sonating A as initiator.
6. IA ~ A: {RA,A}Ka

A as initiator checks for RA, and believes that it has successfully responded
to itself. It wilt now assume that the second field is a nonce, encrypt that field
under- KA, and send the result to itself.

Again, this "attack" depends upon A's confusing messages containing names
with messages containing nonces.

We next ran the Protocol Analyzer on Lowe's fix to the Needham-Schroeder
protocol, but did not make the assumption that principals could distinguish be-
tween names and nonces. Verification of the protocol from the point of view
of the responder (Lowe's AUTH.JNIT) could now be done completely auto-
matically, and took a little under an hour, generating 689 states. Verification
of the protocol from the point of view of the initiator (Lowe's AUTH_RESP)
took only about three and a half minutes, generating 66 states. In our second try
using the additional lemmas we had proved, AUTH_.[NIT took 50 minutes gen-
erating 360 states, and AUTH_.RESP took three minutes generating 34 states.
Moreover, we were able to prove that the protocol was now sound with respect
to these properties. No attacks were fou/ld in the exhaustive search. This is not
surprising. First of all, Lowe's attack is prevented because the second message
can no longer be passed off as coming from another user. Secondly, the various
type of confusion attacks are prevented because, even though principals can not
distinquish between a name and a nonce, they can distingish between different
types of messages. One is an encrypted string containing one word, one contains
two, and one contains three.

We next ran the Protocol Analyzer on the fixed protocol with typing built
in. This did not change the results, but the verification was somewhat faster.
Verification of soundness from the responder's point of view (AUTH_INIT)
took about forty-five minutes, generating 612 states, while verification from the
initiator's point of view (AUTH..RESP) took about two and a half minutes, gen-
erating 60 states. Using the additional lemmas, AUTH. . INIT took 38 minutes
generating 276 states, while AUTH_RESP took 2 minutes generating 26 states.
Note that the ability to distinguish nonces from names did not give us much a
benefit here, probably because principals already had the ability to distinguish
between different types of messages.

Finally, for the purposes of comparison, we ran the Protocol Analyzer on a

362

version of the protocol that corresponded more closely with Lowe's, leaving off
request for and distribution of public keys and the compromise of old nonces.
For this protocol, verification of AUTH_RESP took under two minutes and
generated 57 states, while the verification of AUTH_INIT showed even more
marked improvement, taking about four and a half minutes and generating 128
states. Using the additional lemmas, AUTH_.RESP took one minute 45 seconds
and generated 32 states, while AUTH_INIT took six minutes to generate 75
states. In contrast, the FDR analysis took about thirty seconds each running
on a Pentium PC for AUTH..RESP and AUTH.[NIT, most of the time being
spent on compiling the process definitions, and generated 251 states for each
check [9]. In order to get a feel for how the two tools would perform on the
same platform, we also used the Analyzer and FDR to analyze their respective
protocol specifications on a Sparc 10 on which we had a copy of FDR. In this
case the Analyzer took about four times as long as FDR, so FDR's lead was
maintained.

4 Comparision Between the NRL Protocol Analyzer and
Lowe's Analysis Method

There are a number of similarities between the NRL Protocol Analyzer analysis
and Lowe's. Both model the protocol in terms of processes communicating across
a channel controlled by a hostile intruder who can modify, intercept and destroy
messages. Both deal with a possibly infinite state space by proving results show-
ing that if an attack takes place it must do so within a finite state space, and
then searching that space exhaustively. However, the way in both the search and
the proofs are conducted are very different. . , . : . -

W i t h the Protocol Analyzer, the user: first uses the tool to generate a number
of lemmas that identify a number of states as unreachable, and others that are
only reachable if certain conditions are satisfied. The user then specifies an inse-
cure final state, and the Analyzer searches backwards. Each time it encounters
a state, it tests it against each of the conditions on unreachability stated by the
lemmas. If the state satisfies one of these it is discarded. This means, that, every
time a state is generated, it must be subjected to a number of tests. This is
an inefficient way of searching, especially towards the end of an analysis when
the number of lemmas is large. Thus it is not surprising that the Analyzer is
much worse at searching through a large number of states than FDR, or any
other model checker, for that matter. There is also the drawback that the user
never really knows when the Analyzer has proved enough lemmas, except when
a search has successfully completed. Thus the usual strategy is to generate a set
of standard lemmas, try a search, see where it blows up, generate some more
lemmas, and try a search again.

Lowe's analysis proceeded in a very different way. First, it was proved that
the fixed Needham-Schroeder protocol was only vulnerable if an attack could
be produced within a certain easily defined search space. Then a specification
which generated exactly that search space was searched using FDR. This made

363

for a.much for efficient search than that done by the Protocol Analyzer. On the
other hand, the proof, which was somewhat complex, was informal and manual.
Although the NRL Protocol Analyzer results give independent confirmation that
no errors or hidden assumptions were made, this has not always been the case
~ith hand analyses of cryptographic protocols. It is easy to let one's intuition
about what should happen get in the way of one's perception of what is actually
going on. An automated proof mechanism, which is not burdened by intuition,
can often be at an advantage here. Finally, it also appears that the the lemma-
prming capability of the Analyzer, if used carefully, can be used to generate a
search space that is much smaller than that that would be searched by a model
checker. Thus, our analysis of Lowe's fix of the Needham-Schroeder protocol
generated 128 and 57 states for the two goals, while Lowe's analysis generated
251 states for each one. The model checker's more efficient search mechanism,
however, more than makes up for any potential disadvantages in search time
arising from this difference.

One marked difference between the Analzyer and FDR was the fact that the
amount of time used to verify A U T H _ I N ! T and AUTH. .RESP differed greatly
for the Analyzer but was the same for FDR. This is because the Analyzer works
backwards from a specified final state, and the protocol terminates earlier for
the initiator than the receiver. On the other hand, FDR works forwards from an
initial state, and thus generates the same state space no matter what property
is being verified. We can see how this property of the Analyzer could be useful
in analyzing large-scale protocols. Such protocols generally consist of a number
of smaller protocols interacting together. If the protocol is well-designed, this
interaction should be minimal, and searching backwards from a specified final
state should only require examination of a part of the possible state space. Thus,
the Analyzer could be well-positioned to explore the security of such protocols.

In summary, it would appear that the Analyzer is better at proving than
searching, while Lowe's analysis, at least in its present state, is better at searching
that proving. However, Lowe's proofs have the advantage that they are directed
to a particular goal, namely, proving that one needs to check only a previously
defined finite search space. Thus no trial and error is involved. This suggests a
possible direction for Analyzer proofs. Presently lemmas are generated according
to rules of thumb, and proved blindly until the user is satisfied, by trial and error,
that the Analyzer can complete its search. But it might be possible to indicate
a large but finite search space, and see if the Analyzer can used to prove that
an exhaustive search of that space is enough to verify a protocol's security.

If it is possible to direct the Analyzer's Iemmas in such a way, this suggests
a possible way of combining the Analyzer with a model checker. The Analyzer,
with its built-in proof techniques specific to cryptographic protocols, could be
used to narrow the original infinite search space to a finite one. A model checker
could then be used to search the finite space. This would allow us to obtain the
benefits of both technologies.

364

5 C o n c l u s i o n

In this paper we compared the usefulness of the NRL Protocol Analyzer and
model checkers to cryptographic protocol analysis by studying the application
of the Analyzer and the model checker FDR to the same protocol. We found the
two tools to be somewhat complementary. FDR was very good at exploring a
finite state space quickly, but needed outside assistance to prove that exploring a
finite state space was sufficient to prove security of a protocol. The Analyzer was
considerably slower in exploring state spaces, but could be used to generate a
finite state space and prove that exploring it was sufficient for proof of security.
This in turn led to considerations of possible directions for future research in
which the best parts of the two technologies could be combined.

6 A c k n o w l e d g e m e n t s

I would like to thank Bill Roscoe for suggesting that I apply the NRL Protocol
Analyzer to the Needham-Schroeder public key protocol, and Gavin Lowe for
useful discussions on his use of FDR to analyze that protocol.

References

1. Michael Burrows, Martin Abadi, and Roger Needham. A Logic of Authentication.
ACM Transactions in Computer Systems, 8(1):18-36, February 1990.

2. Formal Systems (Europe) Ltd. Failures Divergence Refinement Users Manual and
Tutorial, Version 1.4, January 1994.

3. Dieter Gollmann. What do We Mean by Entity Authentication? In Proceedings
of the 1996 IEEE Computer Society Symposium on Security and Privacy, pages
55-61. IEEE Computer Society Press~ Los Alamitos, California, 1996.

4. C. A. R. Hoare. Communicating Seq(iential Processes. Prentice Hall, 1985.
5. Richard Kemmerer, Catherine Meadows, and Jonathan Millen. Three Systems for

Cryptographic Protocol Analysis. Journal of CryptoIogy, 7(2), 1994.
6. D. Longley and S. Rigby. An Automatic Search for Security Flaws in Key Man-

agement Schemes. Computers and Security, 11(1):75-90, 1992.
7. Gavin Lowe. An attack on the Needham-Schroeder public key protocol. Informa-

tion Pro~essing Letters, 56:131-133, 1995.
8. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using

CSP and FDR. In Proceedings of TACAS. Springer Verlag, 1996.
9. Gavin Lowe. personal communication, Feb. 1996.

10. Catherine Meadows. The NR_L Protocol Analyzer: An overview. Journal of Logic
Programming, 26(2):1t3-131, February 1996.

11. J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: Protocol Security
Analysis. IF, BE Transactions on Software Engineering, SE-13(2), 1987.

12. R..M. Needham and M. D. Schroeder. Using Encryption for Authentication in
Large Networks of Computers. Communications of the ACM, 21(12):993-999,
December 1978.

13. Einar Snekkenes. Formal Specification and Analysis of Cryptographic Protocols.
PhD thesis, University of Oslo, May 1995.

