
The Mur~ Verification System

David L. Dill

Computer Systems Laboratory
Stanford University

Email: dill@cs.stanford.edu

Abstract. '/'his is a brief overview of the Mul~p verification system.

The Mur~ description language

Mur~ is both a description language and a verifier for finite state concurrent sys-
tems [DDHY92]. It is appropriate for protocols and finite-state systems which can
reasonably be modelled as a collection of processes that run at arbitrary speeds, where
the steps of the processes interleave (only one process takes a step at any time), and
where the processes interact by reading and writing shared variables. The Murp ver-
ifier works by explicitly generating states and storing them in a hash table. We have
put some effort into developing state reduction techniques, including symmett2t re-
duction [ID93a, ID93b] , exploitation of reversible rules [ID96a], and verification of
systems with varying numbers of replicated components [ID96b]. We have also inves-
tigated probabilistic verification techniques in Mur~ [SD95c].

The Mur~ description language was inspired by Misra and Chandy's Unity formal-
ism [CM88]. A Mur~ description consists of a collection of declarations of constants,
data types such as subranges, records, and arrays, global variables, transition rules
(which are guarded commands), start rules, and invariants.

The rules are similar to compound statements Pascal or Modula. Indeed, a rule
can be arbitrarily complex, yet it is still executed atomically, meaning that the other
rules cannot interfere. A state consists of the current values of the global variables.
An execution of a Murqa program is any sequence of states that can be generated by
starting in one of the states generated by a start rule, then repeatedly selecting a rule and
executing it. Executing a rule generally changes the state, because the rule assigns to
the global variables. Mur~ is nondeterministic: there can be many executions, varying
according to which rule was selected at each step of the execution.

A user can encode one of several concurrent processes by declaring variables for
the process state and providing rules to capture its behavior. The behavior of several
processes can be simulated by forming the union of the state variables and rules into
a single Mur~ program. Rule selection then simulates scheduling choices (the process
whose rule is chosen runs next) as well as nondeterministic choice within a process.

Verification
The basic Mur~ verifier generates all of the reachable states systematically, using
a standard search algorithm such as breadth-first search. The search uses two data
structures: a set of states whose descendants must be explored, and a table of states
which have been previously encountered. When the search generates a state that is
already in the table, the search is cut off. The invariant, which is a predicate which

391

reads the state variables, is evaluated in each newly generated state. If the result is false,
verification halts and an error message is generated. The same effect can be achieved by
an execution of an error statement in a rule. Similarly, if a state has no successors other
than itself, the verifier halts and reports an error. In either event, the verifier also prints
an execution from a start state to the offending state, to help with debugging.

We believe that explicit state verifiers are still useful, even when there are highly
efficient B DD-based verifiers. One reason is that they are more predictable- performance
is more closely related to the number of states, so the behavior of the verifier is more
stable than with clever symbolic representations. The other reason is that some protocols,
notably the ones we were most interested in verifying, require great cleverness to attack
with successfully with BDDs. A naive approach performs much worse than Murk.
It is necessary to use non-obvious representations of state, identify variables that are
functions of other variables, and/or decompose BDDs in various ways [HD93b, HD93a,
HYD94]. Thus, verifying a such protocol with BDDs requires more expert users than
attacking the same protocol with Murk.

The basic Mur~ verifier has been applied very successfully to several problems.
It is especially suitable for multiprocessor cache coherence problems, because those
were the problems we were working on most intensively when we were designing
and redesigning the verifier. However, it has also been used for link-level protocols,
a hybrid byzantine agreement algorithm, mutual exclusion algorithms, memory model
specifications, and probably numerous other examigles.

Symmetry reduction
In the last few years, we have found several ways of improving the performance of
Murk. The first was to exploit symmetry [ID93a, ID93b]. In some cases (particularly
high-level descriptions of multiprocessor cache coherence protocols), components or
values of a type can be exchanged arbitrarily without affecting the future behavior of the
protocol. We have exploited this in Mur~ by adding a new data type, called a ScalarSet,
which is a subrange type with the additional restriction that it cannot be used in any
way that "breaks the symmetry" between elements of the type (for example, there are
no literal constants of the type, and one value cannot be compared with another using
<). The Mur~ semantic analyzer enforces these constraints, so that symmetry cannot
be broken in the description.

Symmetry is exploited in the verifier by doing symmetry reduction. A canonicaliza-
tionfunction is constructed by the verifier, which maps all states which are equivalent
up to rearrangement of the elements of a scalarset to a particular representative state
(a simple example of normalization would be sorting an array whose index set is a
scalarset, if there are no scalarsets in the array itself). States are canonicalized before
they are looked up or stored in the state table, so a state is not inspected if it is equiv-
alent to a state in the state table, even if the states are not identical. This optimization
has resulted in 100-fold reductions in the numbers of states generated in some cache
coherence protocols. In certain cases (when a scalarset is not used as an array index),
systems with unbounded scalarsets can be verified. For example, this property can be
used to verify cache coherence regardless of the number of data values, and, hence, the
number of bits in each data value.

Recent improvements
More recently, we have found an optimization which avoids storing transient st/~tes in
the state table. The optimization works by identifying rules that do not lose information

392

when they are executed. The verifier can execute the "backwards" to map normalize
transient states by finding a unique non-transient progenitor state from which they
evolved [ID96a],

Most recently, we have developed a way of verifying certain systems with arbitrary
numbers of replicated components in Mur~ [ID96b]. The replicated components are
flagged by using a datatype RepetitivelD, which is similar to a scalarset type but even
more restricted. The verifier exploits this by working in an abstract space, where every
global state is mapped to an abstract state which keeps track of whether there are zero,
one, or more than zero of the replicated components in each component state. This
method can be used to show that cache coherence protocols work properly for any
number of processors. The method can be combined with symmetry reduction and the
method of the previous paragraph to yield truly massive reductions in the state explosion
problem.

We have also been exploring probabilistic verification algorithms, originally based
on ideas from Gerard Holzmann, Pierre Wolper, and Denis Leroy [Ho187, WL, WL93],
in which a small signature for each state is entered into the hash table instead of the state
itself, saving a great deal of space at the expensive of some probability of producing
a false positive result. The key is to find a bound on this probability, as Leroy and
Wolper did. We have found several ways to reduce this bound, by changing the search
and hashing algorithms and doing a more refined analysis of the probability [SD95a,
SD95b, SD96]. This work has culminated in a factor-of-four reduction in the number
of bits required per state, compared with Wolper and Leroy's original result, while
guaranteeing the same or lower probability of missing an error,

Liveness

A few years ago, we implemented a version of Mur~ which could verify common forms
of liveness properties, expressed in a subset of linear temporal logic, using quite efficient
state exploration algorithms. However, we have not updated the liveness verifier to use
symmetry reduction and subsequent optimizations.

The Mur~ verifier is available free by anonymous ftp from
s n o o z e . s t a n f o r d , edu (directory/pub/murphi), under very liberal licensing terms.

Acknowledgements

The Mur~ system was designed, implemented, redesigned, reimplemented, etc. by many
different people, including me and the following students: C. Han Yang, Alan J. Hu,
Andreas Drexler, Ralph Melton, C. Norris Ip, Seungjoon Park, and Ulrich Stern.

References

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design - - a Foundation.
Addison-Wesley, 1988.

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol verifica-
tion as a hardware design aid. IEEE International Conference on Computer Design:
VLSI in Computers and Processors, pages 522-525, 1992.

[HD93a] Alan J. Hu and David L. Dill. Conjunctive partitioned invariants for efficient verifi-
cation with bdds. 5th International Conference on Computer-Aided Verification, June
1993.

393

[HD93b]

[Hot87]

[HYD94]

[ID93a]

[ID93b]

[ID96a]

[ID96b]

[SD95a]

[SD95b]

[SD95c]

[SD96]

[WL]

[WL93]

Alan J. Hu and David L. Dill. Reducing BDD size by exploiting functional dependen-
cies. In 30th Design Automation Conference, pages 266-271, 1993. Dallas, Texas,
June 14-18.
G. J. Holzmann. On limits and possibilities of automated protocol analysis. In
Protocol Specification, Testing, and Verification. 7th International Conference, pages
339-344, 1987.
Alan J. Hu, Gary York, and David L. Dill. New techniques for efficient verification
with implicitly conjoined BDDs. In 31st Design Automation Conference, pages 276-
282, 1994.
C. Norris Ip and David L. Dill. Better verification through symmetry. 11th In-
ternational Symposium on Computer Hardware Description Languages and Their
Applications, pages 87-100, April 1993. Extended version with complete proofs and
semantic analysis to appear in Formal Methods in System Design.
C. Norris Ip and David L. Dill. Efficient verification of symmetric concurrent sys-
tems. IEEE International Conference on Computer Design: VLSI in Computers and
Processors, pages 230-234, October 1993.
C. Norris Ip and David L. Dill. State reduction using reversible rules. 33rd Design
Automation Conference, June 1996.
C. Norris Ip and David L. Dill. Verifying systems with replicated components in
murk. In this proceedings, 1996.
U. Stem and D. L. Dill. Automatic verification of the SCI cache coherence protocol.
In IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware
Design and Verification Methods, pages 21-34, 1995.
U. Stem and D. L. Dill. Improved probabilistic verification by hash compaction. In
IFIP WG 10~5 AdvancedResearch Working Conference on Correct Hardware Design
and Verification Methods, pages 206-224, 1995.
Ulrich Stern and David L Dill. Improved probabilistic verification by hash com-
paction. In Correct Hardware Design and Verification Methods: IFIP WGIO.5 Ad-
vanced Research Working Conference Proceedings, 1995.
U. Stem arid D. L. Dill. A new scheme for memory-efficient probabilistic verification.
Submitted for publication, 19.96.
P. Wolper and D. Leroy. Reliable hashing without collision detection. Unpublished
revised version of [WL93].
P. Wolper and D. Leroy. Reliable hashing without collision detection. In Computer
Aided Verification. 5th International Conference, pages 59-70, 1993.

