
A Platform for Combining Deductive with
Algorithmic Verification*

Amir Pnueli? Blad Shahar ?

Abs t rac t . We describe a computer-aided verification system which combines
deductive with algorithmic (model-checking) verification methods. The system,
called TLV (for temporal verification system), is constructed as an additional
layer superimposed on top of the CMU SMV system, and can verify finite-state
systems relative to linear temporal logic (LTL) as well as CTL specifications. The
systems to be verified can be either hardware circuits written in the SMV design
language or finite-state reactive programs written in a simple programming
language (SPL).
The paper presents a common computational model which can support these
two types of applications and a high-level interactive language TLV-BASIr in
which temporal verification rules, proofs, and complex assertions can be writ-
ten. We illustrate the efficiency and generality gained by combining deductive
with algorithmic techniques on several examples, culminating in verification of
fragments of the Futurebusq- system. In the.analysis of the Futurebus+ sys-
tem, we even managed to detect a bug that was not discovered in a previous
model-checking analysis of this system.

1 I n t r o d u c t i o n

As part of the general program for combining deductive with algorithmic meth-
ods for the verification of reactive systems (see [Man94] for a declaration of
this manifest, and [RSS95] for an important contribution in this direction), we
constructed a computer-aided verification system, called TLV (a Temporal Logic
Verifier), for experimenting with some of these ideas.

Compared to algorithmic verification (model checking), deductive verifica-
tion is handicapped by the requirement of user interaction, which necessitates a
good understanding of the program and a certain degree of creative ability and
high skills. Therefore, any proposal for replacing or even combining algorith-
mic methods with deductive methods must be accompanied by analysis of the
expected gains from such a combination.

The main conceived advantages of combining deduction with model checking
are:

1. G e n e r a l i t y : In the finite-state world (which is the main concern of the
work reported here), deductive verification can provide a uniform proof which
establishes the correctness of a system of N processes for any N > 0 in a single

* This research was supported in part by a basic research grant from the Israeli
Academy of Sciences, and by the. European Community ESPRIT Basic Research
Action Project 6021 (REACT).

t Department of Computer Science, Weizmann Institute, Rehovot, Israel, e-mail:
amir@wisdom, weizmann, ac. il

185

proof. In comparison, model checking can only examine the systems for particular
values of N.
2. Efficiency of D e d u c t i o n : Most of the model-checking algorithms are
based on computation of the closure of the transition relation, which is ap-
plied either to the initial state or to some target states. This is an iterative
process that may take a large number of steps to converge. In comparison, in
the deductive verification of the same property, we only have to check the two
implications

O --~ p and p A p -~ p',
where ~ is an assertion characterizing the initial condition and p is the transition
relation. It stands to reason that checking these implications takes less time and
requires smaller BDDS than the iterative computation of the closure.
3. C o n s t r a i n e d m o d e l checking : A possible way of combining deduction
with model checking is to use deduction to establish the invariance of an assertion
~. Then, we can carry out regular model checking but use ~ to restrict the range
of considered states. This amounts to model checking with the transition relation

A p instead of the original p.

The (TLV) system described here has been constructed on top of the CMU SMV
system, which supports verification of CTL specifications of finite-state systems
([BCM+92], [McM93]). TLV uses the BDD library and the SMV input language
parser from SMV. The model checking algorithms were replaced by a layer which
consists of a high-level interactive language, to which we refer as TLv-BAsIC.
The main data structure of TLV-BASIC is a quantifier-free assertion, obeying the
SMV syntax for state-formulas~ and represented internally by a BDD.

The TLV-BASIC language is used for three purposes:

�9 Temporal verification rules, such as the basic invariance rule BINV and the
single-step response rule RESP, as well as algorithms for model-checking in-
variance and response properties, are written as TLV-BASIC procedures.

�9 For each particular system to be verified, the user usually prepares a proof
script file which contains definitions of the assertions used in the property
to be verified.

�9 The interactive dialog with the user is carried out in a restricted subset of
TLV-BAsIC.

The main running example and one of the motivating drives for our system
is the Futurebus+ system considered in [CGH+93]. That paper presented an
SMV model for the Futurebus+ system and established several properties of
the model, using the model-checking techniques of SMV. We considered it an
interesting challenge to see whether the same properties can be verified using
deductive techniques, and compare the efficiency and effectiveness of the two
methods.

At its current state of implementation, the TLV system cannot yet consider
variable-size systems where the system size is not fixed at analysis time. There-
fore, we cannot yet demonstrate uniform proofs of such parameterized systems,
and all the examples presented in this paper relate to specific values of the size
parameter. To compensate for this temporary deficiency, we developed methods

186

by which the deductive proof of a parametric system can be parameterized itself,
so that running a deduction for different values of the size parameter n only re-
quires modifying a line in the proof script file from "n = 20" to, say, "n = 40." In
particular, we developed a special format by which one can specify an arbitrary
configuration of Futurebus+ and generate automatically the proof appropriate
for this configuration. Details about these instantiation mechanisms are given
in [PS96].

Many approaches to the deductive verification of reactive systems and hard-
ware circuits were proposed over the years, accompanied by systems supporting
their automation. Examples of applications for hardware verification are the
methods described in [Gor86] and [ORSS94]. An effective system for the de-
ductive verification of linear temporal logic properties of reactive programs is
reported in [MAB+94].

There have been also several approaches which combine deductive and al-
gorithmic verification methods. The work in [JS93] combines the HOL theorem
prover with the Voss system. Another combination of methodologies is reported
in [KL93]~ where TLP, the proof checker for TLA, the temporal logic of actions,
is combined with the COSPAN verifier. Perhaps closest to our work is [RSS95]
which embeds symbolic model-checking into the Pvs high-order prover.

The unique feature of our approach is that it is built as the minimal exten-.
sion of an existing symbolic model checking system (SMV) needed in order to
handle parametric systems. The specification language and associated deductive
verification approach are based on linear temporal logic IMP95]. At present, the
only deductive machinery we employ is provided by the BDD capabilities of the
underlying SMV system.

The rest of the paper is organized as follows. In Section 2 we present the
underlying computational model and its relation to the FTS model of IMP95].
In Section 3, we describe the languages that can serve as inputs to the TIN sys-
tem. These include the TLV-BAsIC language in which verification rules, model-
checking procedures, and proof scripts are written; the SMV input languages used
to specify systems; and the SPL language used to describe simple reactive pro-
grams [MP95]. In Section 4, we present some of the verification rules supported
by the system. Section 5 presents several simple examples of deductive and com-
bined verification, comparing their efficiency with standard model-checking ver-
ification of the same properties. In Section 6, we present our main case study,
the Futurebus+ verification, and identify the bug that has escaped previous
model-checking analysis.

2 T h e C o m p u t a t i o n a l M o d e l

As an underlying computational model, we adopt the notion of an always-enabled
fair transition system (ETS). The ETS model can be viewed as a variant of the fair
transition system (FTS) model, introduced in [MP91] for the specification and
verification of reactive systems. An ETS consists of the following components:

V - - A finite set of state variables. We define a state to be an interpretation
of Y. The set of all states is denoted by Z.

187

�9 O - - Initial condition.
�9 T - - A finite set of transitions. Each 'transition r E 7" is a function

mapping a state s to r(s) C_ s a non-empty set of r-successors of s.
�9 f f C T ~ A justice (weak fairness) set of transitions.
�9 C = { (r t , ~ 1) , . . . , (r ~ , ~ o k) } - A compassion (strong fairness)set of pairs

(r~, toi), i = 1 , . . . , k, each consisting of a transition ri and an assertion ~i.

The requirement that every state has a non-empty set of successors implies that
every transition is enabled on every state.

A model is an infinite sequence of states. Given an ETS ~, we define a com.
putation of 6~ to be a model

r : 8 0 , 8 t , 8 2 , . "'~

satisfying the following requirements:
�9 Initiation: so is an initial state (i.e it satisfies ~9).
�9 Consecution: For each pair of consecutive states si, si+l in ~, there exists a

transition r in q- such that si+l E r(sl). That is, si+l is a r-successor of si.
�9 Justice: Every transition r E ff is taken infinitely many times.

Compassion: For every (r~, ~ai) E C, if ~i holds at infinitely many positions
in cr then ri is taken at ~o~-positions infinitely many times.

The main differences between the FTS and ETS models are the ETS requirement
tha t transitions be always enabled, and the implications this requirement has on
the requirements of justice and compassion.

The reason for this difference is that the natural SMV representation of tran-
sition relations, in particular those which result from SPL programs, is such that
the transition can always be taken. Under the circumstances in which the cor-
responding FTS transition would be disabled, the ETS transition is still enabled
but has no effect on the system variables, i.e., it changes the value of no system
variable.

An FTS ~ is called a leisurely fair transition system (LFTS), if the idling
transition r~ is contained in the justice set o f r Thus, every computation of an
LFTS contains infinitely many idling steps, i.e. steps which preserve the values of
all system variables. Obviously, every FTS ~ has a corresponding LFTS k -~', such
that �9 and gr are equivalent up to stuttering.

The following claim shows that no expressive power is lost in moving from
the FTS model into the ETS model.

C l a i m 1 A set of models S is the set of computations of an ETS ~ i f f it iS the
set of computations of some LFTS ~.g'.

In [PS96], we provide a proof of this claim.

3 T h e L a n g u a g e s o f TLV

3.1 T h e SMV I n p u t L a n g u a g e

Systems to be verified by TLV are described using the SMV input language
[McM93], which has been slightly extended to allow for the richer set of fairness

188

requirements associated with the ETS model. In Fig. 1, we present file sem.smv,
which contains the SMV description of a mutual exclusion algorithm MUX-SEM,
which implements mutual exclusion by semaphores. Note that , standardly in our

MODULE main

VAR

y : boolean; -- the semaphore variable. It is assigned by both processes.

proc[l] : process user(y); -- The two processes have interleaved execution.
proc[2] : process user(y) ;

ASSIGN

init(y) := I;

MODULE user (y)

VAR

l o c : { 0 , 1 , 2 , 3 , 4 } ;

ASSIGN

init(loc) := O;

next (loc) :=

case

l o c i n { 0 , 3 } : l o c + l ;

l o c = 1 : { 1 , 2 } ;

l o c = 2 k y = 1 : 3;

l o c = 4 : O;

i : l o c ;

esac;

next(y) := -- changes t o t h e semaphore variable.

case

loc = 2 k next(loc) = 3 : O; -- turned off when moving from i_2 to I_3

loc = 4 k next(loc) = 0 : i; -- turned on ~hen moving from 1_4 to 1_0

1 : y ;

esac;

JUSTICE

proc [1] , proc [2] ;

COMPASSION

(proc[1],proc[l].loc = 2 k y > 0), (proc[2],proc[2].loc = 2 k y > O)

F i g . 1. File m u x - s e m , stay: a n SMV d e s c r i p t i o n o f A l g o r i t h m MUX-SEM for n = 2 p ro -

CeSSeS.

applications, we do not use the FAIR or SPEC declarations but introduce instead
JUSTICE or COMPASSION declarations, wherever necessary.

Such an SMV specification is input into the TLV system which creates inter-
nally the ETS corresponding to the specification. In general, there will be one
ETS transition for each process. Thus, in the max-sere, stay example, the system
will generate an ETS with two transitions, one corresponding to each process.
The justice requirement requests that each of the two processes will be activated
infinitely many times in every computation of this ETS.

3 .2 T h e SPL I n p u t L a n g u a g e

While direct coding of hardware circuits in the SMV input language is a practice
to which experienced users of the SMV system have resigned themselves, we
can offer a higher description level for applications to reactive programming. To

189

represent reactive programs, we adopted the s imple p rogramming language (SPL)
introduced in [MP91]. We refer the reader to [MP91] or [MP95] for details of
this language. In Fig. 2, we present an SPL program for the MUX-SEM algorithm.

Here, we consider the instance n = 2 of this generic program. On reading the
sPL file with the additional definition n := 2, the system translates it first into
the SMV representation, presented in Fig. 1.

in n : integer where n > 0
local y : integer where y = 1

rt0 : loop forever do']
i] | [ii: noncritical" [

C[i] :: I | t2 : request y /
,=1 | |s critical /

L Lt4 : r e l e a s e y J

Fig. 2. Program MUX-SEM (mutual exclusion by semaphores - general case).

3 .3 TLV-BASIC

The TLV-BASIC language is easy to learn and simple to program with. It is
used to program rules, model-checking algorithms, and compute assertions. The
main (and only) data structure is a function with boolean arguments and inte-
ger range. As such, it can represent integers, booleans (a function with range
{0, 1}, and assertions, which are represented as boolean functions. The underly-
ing implementation is a BDD, which is manipulated using the SMV BDD library.
Expressions in the language are constructed out of integer constants and vari-
ables to which we apply integer operations, integer comparisons, and all the
boolean and quantifying operators available in the SMV language.

There are no variable declarations. Like BASIC, variables are created dy-
namically, whenever they are assigned values, or mentioned as parameters of a
procedure. In addition, all the variables defined in an SMV input file which is
loaded into the system can be referenced within TLV-BASIC expressions.

Following are some of the statements available in TLV-BASIC:

�9 Let var := exp - - Assign the value of expression exp to variable va t .

�9 Proc p r o c - n a m e (par 1 , p a r n) ; S End - - Define a procedure p r o c - n a m e

with parameters p a r l , . . :, par,, and body S.
�9 While (e x p) S E n d - - Repeatedly execute statement S until exp is 0.

If (ezp) S 1 / else S2I End--If exp evaluates
f

to anon-zero value, exe-

c u t e statement $1. Otherwise, execute statement $2.
�9 Load " f i l e -name" - - Load file f i l e -name into the system. The loaded file can

be a rules file or a proof script file.
�9 Run p r o c - n a m e par1, . . . , par,~ - - Invoke procedure proc -name with the given

actual parameters.

The last two statements are the main commands that are used in interactive
mode.

In Fig. 3 we present a TLV-BAsIc proof script which computes the assertion

!90

n i - - 1

mux: A A ~(proc[i].loc = 3 & proc[j].loc = 3).
i=l j = l

for n = 10. This assertion specifies mutual exclusion for program MUX-SEM.
When we consider the same program for a different number of processes, say 11,

Let n := I0;

Proc prepare ;

Let mux : = TRUE ;

Let i := n;

While (i)

Let j := i - i;

While (j)
Let mux := mux ~ !(proc[i].loc = 3 ~. proc[j].loc = 3);

Let j := j - 1;
End -- end loop o n j

Let i := i - i;

End -- end loop on i

End -- end procedure

Run prepare

Fig. 3. File mux-sem.pf: Proof script for program MUX-SEM for n = 10.

it is only necessary to change the first statement in this file to Let n := 11.

4 V e r i f i c a t i o n R u l e s

The TLV system comes equipped with a set of deductive verification rules as well
as various model-checking algorithms. As previously explained, these rules are
implemented using the TLV-BASIC language. This means that a sophisticated
user can easily modify any of the existing rules, as well as write new ones.

In Fig. 4, we present the two verification rules that have been used for veri-
fying the examples presented in this paper.

B1 :O-'-~p
B 2 : p r A p " ~ p ~ V r 6 T

A1 : ~ A ~ = 0 - - * q
A2 : (~^ -~q) ~ 3r e 7"3V'(p. ~ ~ ~- 6')

[] p AG EF q

Rule BINV Rule AGEF

Fig. 4. Verification rules.

5 S i m p l e V e r i f i c a t i o n E x a m p l e s

In this section we illustrate the use of the TLV system for the verification of
several simple examples taken from [MP95].

191

P r o g r a m MUX-SEM

In Fig. 2, we presented the general MUX-SEM program parameterized by n. Fig. 1
illustrated its SMV translation for the case n = 2. The main safety property of
this program can be specified by the invariance of assertion mux presented above.

Direct application of rule BINV failed (and produced a counter-example). Ac-
cording to the terminology of [MP95], this means that assertion mux is invariant
but not inductive, i.e., it does not carry sufficient information to rule out inacces-
sible states. The standard remedy is to strengthen assertion mux by additional
invariants, which will exclude such states.

Indeed, our next step in the verification process, was to formulate the auxil-
iary invariant assertion

phi: y < - > A -,(p,:oc[i].loc {3,4})
{----1

Application of rule BINV to the conjunction mux �9 phi succeeded which estab-
lished the invariance of both nmx and phi over program MUX-SEM.

This experimentation was carried out for the low value of n = 2. However,
once the strategy was established we prepared a proof script for computing the
conjunction mux ~ phi and can now run the verification for various values of n,
changing only the value of the parameter between successive runs.

To compare the time and space complexity of conventional model checking
and the deductive approach, we plot in Fig. 5 the time and space complexity of
verifying the invariance of assertion max by the two approaches for increasing
number of processes in program MUX-SEM. The line labeled SMV represents the
conventional model-checking approach, while the line labeled TLV represents the
deductive approach.

i - " 1 - - - ' -

/

/ "
/

/
~176

o
/

~

~176
.o

~ 1 7 6 1 7 6
, .1. .~ "~ ,

20 40 60 80
processes

80000

0 r -

�9 "o 40000
" 0
c~

0

t ime
I I

100 tlv
smv

" 0
t--
O
o 50

0

space
I I I I

fly - - / / i
smv"

/ *
, "

o..f" ~
.~176

20 40 60 80
processes

Fig. 5. Comparison of SMV and TLV for MUX-SEM

P r o g r a m REs-sv

As the next example, we considered program RES-SV, presented in Fig. 6. Program
P:Es-sv consists of an alloator process A and customer processes C[i], ~ =
1, . . . , n. The allocator provides a centralized control which is exptected to guar-
antee mutual exclusion between the customers. We refer readers to IMP95] for

192

in n : i n t e g e r w h e r e n > 0
loca l g, r : a r r a y [1..n] o f b o o l e a n w h e r e g = F, r = F

A::

" local t : i n t e g e r w h e r e t = 1
m0 : l o o p f o r e v e r do

[ma : i f r[t] t h e n

r ' - 2 : := 1
/m.~: await ,It] /
L~, :g[t]:=F J

ms : t := t @n 1

,, i
i= l

C[i] : :

"go : l oop f o r e v e r do"

I
gl : noncritical]
6:,[i]:=w /
la : awa i t g[0 /
& : c r i t i ca l]
i s : r[i] : = p /
& : awa i t -~g[,] j

Fig . 6. Program ~ s - s v (resource allocator).

detai ls of this a lgor i thm and its verification. Here we set to ourselves the more
m odes t goal of verifying m u t u a l exclusion between customers C[1] and C[2] in a
sys t em of n > 2 customers .

This p r o p e r t y can be specified as the invariance of the assertion

raux: ~(at_~4[1] A atJ4[2]),
where, for any i and j , at_ti[j] s tands for C [j] . l o c = s

As in the previous case, assert ion mux is an invar iant of the p r o g r a m but is
not induct ive. To comple te the proof, we used six s t rengthening assert ions for
i E {1, 2}. T h e first two assert ions of this set are:

~1[i] : ~ t _ m 3 , 4 A t = i ~ g[i]
~ [i] : at_e3..s +-+ r[i]

Using these s t reng then ing invariants , assert ion mux has been proven an in-
var ian t of p r o g r a m a E s - s v .

In Fig. 7, we plot the t ime and space complex i ty of verifying the invar iance
of assert ion mux over p r o g r a m RES-SV as a funct ion of the number of processes.
Again, the convent ional mode l checking and deduct ive approaches are compared .

15

t :
0
0

5

time

tlv ~ / '
s m v :

d

/

. . . o

[~ml'"': : L : :

20 40 60 80
processes

200000
" 0
0 r

-7, 100oo0
,.Q

space

20 40 60 80
processes

Fig. 7. Comparison of SMV and TLV for RES-SV

C o n s t r a i n e d M o d e l C h e c k i n g

In addi t ion to the purely deduct ive approach, we also implemented and tested a
mixed (or combined) approach, in which we use deduct ively derived invar iants to

193

restrict the range of the transition function in computing the backwards closure,
usually employed in model checking for invariance properties.

We considered again program rtEs-sv but used the deductive approach to
verify only the two first invariants in the list: ~1[i] and !a2[i]. These are very
simple invariants, which can be discovered automatically by various heuristics
(as explained in [MP95]). At this point we ceased using deductive methods,
and invoked a special model-checking procedure CMCINV, written in TLV-BASIC,
with a constraint parameter, which is the conjunction of tal[i] and ~a2[i]. This
procedure performs regular backwards closure computation, but eliminates all
states which do not satisfy the given constraint.

In Fig. 8, we present plots of time and space complexity which compare
regular model checking with constrained model checking for program Rws-sv.
The line representing constrained model checking is labeled by CMC, as compared
to regular model checking which is labeled by MC. Both were performed by
appropriate TLV-BASIC procedures.

1 0 0
(n

- o
c-
O
0
| 50

time
i !

c m c

mc

0

! /!
/
/

o"

o,/

_L . . - o ~

10 20 30 40
processes

400000
(D

aooooo
0
e.-
�9 .~ 200000

100000

space

, , , .-/
" c m c . .

r n c ,,,"

S
10 20 30 40

processes

Fig. 8. Comparison of Model Checking and Constrained Model Checking for RES-SV

6 Verification of the F u t u r e b u s +

The IEEE Futurebus+ protocol specification is a technology-independent proto-
col for single-bus and multiple-bus multiprocessor systems. Part of this standard
is the cache coherence protocol designed to work in a hierarchically structured
multiple-bus system. Coherence is maintained by having the caches observe all
bus transactions. Coherence across buses is maintained using bus bridges. A bus
bridge is a memory agent/cache agent pair, each of them on a different bus,
which can communicate. The memory agent represents the memory on its bus.
The cache agent represents all the remote caches, caches on the bus of the cor-
responding memory agent, which may need to get access to the cache line via
the bus bridge.

The protocol defines various transactions which let caches on a bus obtain
readable and writable copies of cache lines. A cache line is a series of consecutive
memory locations that is treated as a unit for coherence purposes.

We refer the reader to [CGH+93] for additional explanations and details
about the SMV coding of the Futurebus+.

194

6.1 S p e c i f y i n g a n d v e r i f y i n g C a c h e C o h e r e n c e

The following specifications are the ones which were proved in [CGH+93]. We
repeated their verification, using deductive methods. There are four classes of
safety properties and one for liveness.

The first class of safety properties is used to check that no device ever observes
an illegal combination of bus signals or an unexpected transaction. Thus, we have
the following formulas for every device d:

A G "~d.bus-err or A G -~d.err or

If these formulas are true then we say that the model is error free.
The exclusive write property states that if a cache has an exclusive modi-

fied copy of some cache line, then no other cache has a copy of that line. The
specification includes the formula

A G (pl.writable --+ "~p2.readable).

for each pair of caches pl and p2. pl.writable is true when pl is in the
exclusive-modified state. Similarly, p2.readable is true when p2 is not in the
invalid state.

The consistency property requires that if two caches have copies of a cache
line, then they agree on the da ta in that line:"

A G (pl.readable A p2.readable --* pl.data = p2.data)

The memory consistency property is similar to the consistency property.
It specifies that any cache line that has a readable copy must agree with the
memory device on the data.

A G (pl.readable A -~m.memory-line-modi f ied -~ pl.data = re.data)

There is only one class of liveness specifications. It is used to check that it is
always possible for a cache to get read and write accesses to a line. In a sense,
it says that the model does not get stuck.

A G EF p.readable A G E F p.writable

All these properties were verified for small configurations, using deductive meth-
ods. We refer the reader to [PS96] for details of the inductive assertions that were
used.

6.2 A B u g w a s F o u n d

During our verification process, we came across a bug which seems to have
escaped the attention of the previous verifiers of this design. In all probability,
this is due to the fact that they have not considered the particular configuration
in which this particular bug was lurking. We managed to prove the specifications
for this configuration after fixing this bug.

The bug is manifested under the following circumstances. Consider a bus
with a memory agent and three processors. We start from a reachable state
where all processors have a shared copy of the cache line and the memory agent
is in the r e r a o t e - s h a x e d - t m m o d i f i e d - i n v a l i d state which indicates that the
current bus has shared copies on it but the memory agent itself does not have
a copy. Suppose that process pl wants an exclusive copy of the cache line. It
issues an invalidate transaction on the bus, which tells all other caches to release

195

their copies of the cache line. However, the other two processors, p2 and p3,
choose to split the request so they continue to hold a shared Copy but they
each owe a response. Eventually, p2 responds and enters an invalid state. The
memory agent observes this and enters the r e r a o t e - e x c l u s i v e - r a o d i f i e d state.
This means tha t the memory agent thinks that pl already has an exclusive-
modified copy but, in fact, p l and p3 still hold shared copies. When p3 issues a
response the memory agent sets on the error flag since, if only one process has
a copy of the cache line, no other process should owe a response indicating a
release of its hold on a shared copy.

References

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMiUan, D.L. Dill, and J. Hwang. Sym-
bolic model checking: 102~ states and beyond. Information and Computa-
tion, 98(2):142-170, 1992.

[CGH+93] E.M Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMillan,
and L.A. Ness. Verification of the Futurebus+ cache coherence protocol.
In L. Claesen, editor, Proc. of the llth Int. Syrup. on Computer Hardware
Description Languages and their Applications. North-Holland, April 1993.

[Gor86] M. Gordon. Why higher-order logic is a good formalism for specifying and
verifying hardware. In Formal Aspects of VLSI Design, pages 153-177.
Elsevier Science Publishers (North Holland), 1986.

[JS93] J.J 3oyce and C.-J.H. Seger. Linking SDD-based symbolic evaluation to
interactive theorem proving. In Proc. of the 30th Design Automation Conf..
ACM, 1993.

[KL93] 1%. Kurshan and L. Lamport. Verification of a multiplier: 64 bits and be-
yond. In C. Courcoubetis, editor, Proc. of 5th CAV, volume 697 of Lect.
Notes in Comp. Sci., pages 166-179. Springer-Verlag, 1993.

[MAB+94] Z. Manna, A. Anuchitanukul, N. Bjcrner, A. Browne, E. Chang, M. Col6n,
L. De Alfaro, H. Devar~jan, H. Sipma, and T. Uribe. STEP: The Stanford
Temporal Prover. TechnicM Report STAN-CS-TR-94-1518, Dept. of Comp.
Sci., Stanford University, Stanford, California, 1994.

[Man94] Z. Manna. Beyond model checking. In D. L. Dill, editor, Proc. of 6th CA V,
volume 818 of Lect. Notes in Comp. Sci., pages 220-221. Springer-Vertag,
1994. Invited talk.

[McM93] K.L McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Boston, 1993.

[MPgl] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, New York, 1991.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

[ORSS94] S. Owre, J.M. Rushby, N. Shankar, and M.K. Srivas. A tutorial on using
PVS for hardware verification. In R. Kumar and T. Kropf, editors, Proc. of
the 9nd Conf. on Theorem Provers in Circuit Design, pages 167-188. FZI
Publication, Universit~.t Karlsruhe, 1994. Preiminary Version.

[PS96] A. Pnueli and E. Shahar. The TLV system and its applications. Technical
report, The Weizmann Institute, 1996.

[RSS95] S. Rajan, N. Shankar, and M.K. Srivas. An integration of model checking
with automated proof checking. In P. Wolper, editor, Proc. of 7th CAV,
volume 939 of LNCS, pages 84-97. Springer-Verlag, 1995.

