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Abs t rac t .  We describe a computer-aided verification system which combines 
deductive with algorithmic (model-checking) verification methods. The system, 
called TLV (for temporal verification system), is constructed as an additional 
layer superimposed on top of the CMU SMV system, and can verify finite-state 
systems relative to linear temporal logic (LTL) as well as CTL specifications. The 
systems to be verified can be either hardware circuits written in the SMV design 
language or finite-state reactive programs written in a simple programming 
language (SPL). 
The paper presents a common computational model which can support these 
two types of applications and a high-level interactive language TLV-BASIr in 
which temporal verification rules, proofs, and complex assertions can be writ- 
ten. We illustrate the efficiency and generality gained by combining deductive 
with algorithmic techniques on several examples, culminating in verification of 
fragments of the Futurebusq- system. In the.analysis of the Futurebus+ sys- 
tem, we even managed to detect a bug that was not discovered in a previous 
model-checking analysis of this system. 

1 I n t r o d u c t i o n  

As part  of the general program for combining deductive with algorithmic meth- 
ods for the verification of reactive systems (see [Man94] for a declaration of 
this manifest, and [RSS95] for an important  contribution in this direction), we 
constructed a computer-aided verification system, called TLV (a  Temporal Logic 
Verifier), for experimenting with some of these ideas. 

Compared to algorithmic verification (model checking), deductive verifica- 
tion is handicapped by the requirement of user interaction, which necessitates a 
good understanding of the program and a certain degree of creative ability and 
high skills. Therefore, any proposal for replacing or even combining algorith- 
mic methods with deductive methods must be accompanied by analysis of the 
expected gains from such a combination. 

The main conceived advantages of combining deduction with model checking 
are: 

1. G e n e r a l i t y  : In the finite-state world (which is the main concern of the 
work reported here), deductive verification can provide a uniform proof which 
establishes the correctness of a system of N processes for any N > 0 in a single 
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proof. In comparison, model checking can only examine the systems for particular 
values of N. 
2. Efficiency of  D e d u c t i o n :  Most of the model-checking algorithms are 
based on computation of the closure of the transition relation, which is ap- 
plied either to the initial state or to some target states. This is an iterative 
process that may take a large number of steps to converge. In comparison, in 
the deductive verification of the same property, we only have to check the two 
implications 

O --~ p and p A p -~ p', 
where ~ is an assertion characterizing the initial condition and p is the transition 
relation. It stands to reason that checking these implications takes less time and 
requires smaller BDDS than the iterative computation of the closure. 
3. C o n s t r a i n e d  m o d e l  checking : A possible way of combining deduction 
with model checking is to use deduction to establish the invariance of an assertion 
~. Then, we can carry out regular model checking but use ~ to restrict the range 
of considered states. This amounts to model checking with the transition relation 

A p instead of the original p. 

The (TLV) system described here has been constructed on top of the CMU SMV 
system, which supports verification of CTL specifications of finite-state systems 
([BCM+92], [McM93]). TLV uses the BDD library and the SMV input language 
parser from SMV. The model checking algorithms were replaced by a layer which 
consists of a high-level interactive language, to which we refer as TLv-BAsIC. 
The main data structure of TLV-BASIC is a quantifier-free assertion, obeying the 
SMV syntax for state-formulas~ and represented internally by a BDD. 

The TLV-BASIC language is used for three purposes: 

�9 Temporal verification rules, such as the basic invariance rule BINV and the 
single-step response rule RESP, as well as algorithms for model-checking in- 
variance and response properties, are written as TLV-BASIC procedures. 

�9 For each particular system to be verified, the user usually prepares a proof 
script file which contains definitions of the assertions used in the property 
to be verified. 

�9 The interactive dialog with the user is carried out in a restricted subset of 
TLV-BAsIC. 

The main running example and one of the motivating drives for our system 
is the Futurebus+ system considered in [CGH+93]. That paper presented an 
SMV model for the Futurebus+ system and established several properties of 
the model, using the model-checking techniques of SMV. We considered it an 
interesting challenge to see whether the same properties can be verified using 
deductive techniques, and compare the efficiency and effectiveness of the two 
methods. 

At its current state of implementation, the TLV system cannot yet consider 
variable-size systems where the system size is not fixed at analysis time. There- 
fore, we cannot yet demonstrate uniform proofs of such parameterized systems, 
and all the examples presented in this paper relate to specific values of the size 
parameter. To compensate for this temporary deficiency, we developed methods 
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by which the deductive proof of a parametric system can be parameterized itself, 
so that running a deduction for different values of the size parameter n only re- 
quires modifying a line in the proof script file from "n = 20" to, say, "n = 40." In 
particular, we developed a special format by which one can specify an arbitrary 
configuration of Futurebus+ and generate automatically the proof appropriate 
for this configuration. Details about these instantiation mechanisms are given 
in [PS96]. 

Many approaches to the deductive verification of reactive systems and hard- 
ware circuits were proposed over the years, accompanied by systems supporting 
their automation. Examples of applications for hardware verification are the 
methods described in [Gor86] and [ORSS94]. An effective system for the de- 
ductive verification of linear temporal logic properties of reactive programs is 
reported in [MAB+94]. 

There have been also several approaches which combine deductive and al- 
gorithmic verification methods. The work in [JS93] combines the HOL theorem 
prover with the Voss system. Another combination of methodologies is reported 
in [KL93]~ where TLP, the proof checker for TLA, the temporal logic of actions, 
is combined with the COSPAN verifier. Perhaps closest to our work is [RSS95] 
which embeds symbolic model-checking into the Pvs high-order prover. 

The unique feature of our approach is that it is built as the minimal exten-. 
sion of an existing symbolic model checking system (SMV) needed in order to 
handle parametric systems. The specification language and associated deductive 
verification approach are based on linear temporal logic IMP95]. At present, the 
only deductive machinery we employ is provided by the BDD capabilities of the 
underlying SMV system. 

The rest of the paper is organized as follows. In Section 2 we present the 
underlying computational model and its relation to the FTS model of IMP95]. 
In Section 3, we describe the languages that can serve as inputs to the TIN sys- 
tem. These include the TLV-BAsIC language in which verification rules, model- 
checking procedures, and proof scripts are written; the SMV input languages used 
to specify systems; and the SPL language used to describe simple reactive pro- 
grams [MP95]. In Section 4, we present some of the verification rules supported 
by the system. Section 5 presents several simple examples of deductive and com- 
bined verification, comparing their efficiency with standard model-checking ver- 
ification of the same properties. In Section 6, we present our main case study, 
the Futurebus+ verification, and identify the bug that has escaped previous 
model-checking analysis. 

2 T h e  C o m p u t a t i o n a l  M o d e l  

As an underlying computational model, we adopt the notion of an always-enabled 
fair transition system (ETS). The ETS model can be viewed as a variant of the fair 
transition system (FTS) model, introduced in [MP91] for the specification and 
verification of reactive systems. An ETS consists of the following components: 

V - -  A finite set of state variables. We define a state to be an interpretation 
of Y. The set of all states is denoted by Z. 
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�9 O - -  Initial condition. 
�9 T - -  A finite set of transitions. Each 'transition r E 7" is a function 

mapping a state s to r(s) C_ s a non-empty set of r-successors of s. 
�9 f f  C T ~ A justice (weak fairness) set of transitions. 
�9 C = { ( r t , ~ 1 ) , . . . , ( r ~ , ~ o k ) } -  A compassion (strong fairness)set of pairs 

(r~, toi), i = 1 , . . . ,  k, each consisting of a transition ri and an assertion ~i. 

The requirement that  every state has a non-empty set of successors implies that  
every transition is enabled on every state. 

A model is an infinite sequence of states. Given an ETS ~, we define a com. 
putation of 6~ to be a model 

r : 8 0 , 8 t , 8 2 , .  "'~ 

satisfying the following requirements: 
�9 Initiation: so is an initial state (i.e it satisfies ~9). 
�9 Consecution: For each pair of consecutive states si, si+l in ~, there exists a 

transition r in q- such that  si+l E r(sl).  That  is, si+l is a r-successor of si. 
�9 Justice: Every transition r E ff  is taken infinitely many times. 

Compassion: For every (r~, ~ai) E C, if ~i holds at infinitely many positions 
in cr then ri is taken at ~o~-positions infinitely many times. 

The main differences between the FTS and ETS models are the ETS requirement 
tha t  transitions be always enabled, and the implications this requirement has on 
the requirements of justice and compassion. 

The reason for this difference is that  the natural SMV representation of tran- 
sition relations, in particular those which result from SPL programs, is such that  
the transition can always be taken. Under the circumstances in which the cor- 
responding FTS transition would be disabled, the ETS transition is still enabled 
but has no effect on the system variables, i.e., it changes the value of no system 
variable. 

An FTS ~ is called a leisurely fair transition system (LFTS), if the idling 
transition r~ is contained in the justice set o f r  Thus, every computation of an 
LFTS contains infinitely many idling steps, i.e. steps which preserve the values of 
all system variables. Obviously, every FTS ~ has a corresponding LFTS k -~', such 
that  �9 and gr are equivalent up to stuttering. 

The following claim shows that  no expressive power is lost in moving from 
the FTS model into the ETS model. 

C l a i m  1 A set of models S is the set of computations of an ETS ~ i f f  it iS the 
set of computations of some LFTS ~.g'. 

In [PS96], we provide a proof of this claim. 

3 T h e  L a n g u a g e s  o f  TLV 

3.1 T h e  SMV I n p u t  L a n g u a g e  

Systems to be verified by TLV are described using the SMV input language 
[McM93], which has been slightly extended to allow for the richer set of fairness 
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requirements associated with the ETS model. In Fig. 1, we present file sem.smv, 
which contains the SMV description of a mutual exclusion algorithm MUX-SEM, 
which implements mutual  exclusion by semaphores. Note that ,  standardly in our 

MODULE main 

VAR 

y : boolean; -- the semaphore variable. It is assigned by both processes. 

proc[l] : process user(y); -- The two processes have interleaved execution. 
proc[2] : process user(y) ; 

ASSIGN 

init(y) := I; 

MODULE user (y) 

VAR 

l o c  : { 0 , 1 , 2 , 3 , 4 } ;  

ASSIGN 

init(loc) := O; 

next (loc) := 

case 

l o c  i n  { 0 , 3 }  : l o c + l ;  

l o c  = 1 : { 1 , 2 } ;  

l o c  = 2 k y = 1 : 3;  

l o c  = 4 : O; 

i : l o c ;  

esac; 

next(y) :=  -- changes t o  t h e  semaphore variable. 

case 

loc = 2 k next(loc) = 3 : O; -- turned off when moving from i_2 to I_3 

loc = 4 k next(loc) = 0 : i; -- turned on ~hen moving from 1_4 to 1_0 

1 : y ;  

esac; 

JUSTICE 

proc [1] , proc [2] ; 

COMPASSION 

(proc[1],proc[l].loc = 2 k y > 0), (proc[2],proc[2].loc = 2 k y > O) 

F i g .  1.  File m u x - s e m ,  stay: a n  SMV d e s c r i p t i o n  o f  A l g o r i t h m  MUX-SEM for  n = 2 p ro -  

CeSSeS. 

applications, we do not use the FAIR or SPEC declarations but introduce instead 
JUSTICE or COMPASSION declarations, wherever necessary. 

Such an SMV specification is input into the TLV system which creates inter- 
nally the ETS corresponding to the specification. In general, there will be one 
ETS transition for each process. Thus, in the max-sere, stay example, the system 
will generate an ETS with two transitions, one corresponding to each process. 
The justice requirement requests that each of the two processes will be activated 
infinitely many  times in every computation of this ETS. 

3 .2  T h e  SPL I n p u t  L a n g u a g e  

While direct coding of hardware circuits in the SMV input language is a practice 
to which experienced users of the SMV system have resigned themselves, we 
can offer a higher description level for applications to reactive programming. To 
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represent reactive programs, we adopted the s imple  p rogramming  language (SPL) 
introduced in [MP91]. We refer the reader to [MP91] or [MP95] for details of 
this language. In Fig. 2, we present an SPL program for the MUX-SEM algorithm. 

Here, we consider the instance n = 2 of this generic program. On reading the 
sPL file with the additional definition n := 2, the system translates it first into 
the SMV representation, presented in Fig. 1. 

in n : integer where n > 0 
local y : integer where y = 1 

rt0 : loop forever do'] 
i] | [ii: noncritical" [ 

C[i] :: I | t2 :  request y / 
,=1 | |s critical / 

L Lt4 : r e l e a s e  y J 

Fig. 2. Program MUX-SEM (mutual exclusion by semaphores - general case). 

3 .3  TLV-BASIC 

The TLV-BASIC language is easy to learn and simple to program with. It is 
used to program rules, model-checking algorithms, and compute assertions. The 
main (and only) data  structure is a function with boolean arguments and inte- 
ger range. As such, it can represent integers, booleans (a function with range 
{0, 1}, and assertions, which are represented as boolean functions. The underly- 
ing implementation is a BDD, which is manipulated using the SMV BDD library. 
Expressions in the language are constructed out of integer constants and vari- 
ables to which we apply integer operations, integer comparisons, and all the 
boolean and quantifying operators available in the SMV language. 

There are no variable declarations. Like BASIC, variables are created dy- 
namically, whenever they are assigned values, or mentioned as parameters of a 
procedure. In addition, all the variables defined in an SMV input file which is 
loaded into the system can be referenced within TLV-BASIC expressions. 

Following are some of the statements available in TLV-BASIC: 

�9 Let  var  := exp - -  Assign the value of expression exp to variable va t .  

�9 Proc p r o c - n a m e  (par  1 . . . .  , p a r n ) ;  S End - -  Define a procedure p r o c - n a m e  

with parameters p a r l , . .  :, par,,  and body S. 
�9 While ( e x p )  S E n d - -  Repeatedly execute statement S until exp is 0. 

If (ezp) S 1 / else S2I End--If exp evaluates 
f 

to anon-zero value, exe-  

c u t e  statement $1. Otherwise, execute statement $2. 
�9 Load " f i l e -name"  - -  Load file f i l e -name into the system. The loaded file can 

be a rules file or a proof script file. 
�9 Run  p r o c - n a m e  par1,  . . . ,  par,~ - -  Invoke procedure proc -name  with the given 

actual parameters. 

The last two statements are the main commands that  are used in interactive 
mode. 

In Fig. 3 we present a TLV-BAsIc proof script which computes the assertion 
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n i - - 1  

mux: A A ~(proc[i].loc = 3 & proc[j].loc = 3). 
i=l  j = l  

for n = 10. This assertion specifies mutual  exclusion for program MUX-SEM. 
When we consider the same program for a different number of processes, say 11, 

Let n := I0; 

Proc prepare ; 

Let mux : = TRUE ; 

Let i := n; 

While (i) 

Let j := i - i; 

While (j) 
Let mux := mux ~ !(proc[i].loc = 3 ~. proc[j].loc = 3); 

Let j := j - 1; 
End -- end loop o n  j 

Let i := i - i; 

End -- end loop on i 

End -- end procedure 

Run prepare 

Fig. 3. File mux-sem.pf: Proof script for program MUX-SEM for n = 10. 

it is only necessary to change the first statement in this file to Let n := 11. 

4 V e r i f i c a t i o n  R u l e s  

The TLV system comes equipped with a set of deductive verification rules as well 
as various model-checking algorithms. As previously explained, these rules are 
implemented using the TLV-BASIC language. This means that a sophisticated 
user can easily modify any  of the existing rules, as well as write new ones. 

In Fig. 4, we present the two verification rules that have been used for veri- 
fying the examples presented in this paper. 

B1 :O-'-~p 
B 2 : p r A p " ~ p ~  V r 6 T  

A1 : ~ A ~ = 0 - - * q  
A2 : (~^  -~q) ~ 3r e 7"3V'(p. ~ ~ ~- 6') 

[ ]  p AG EF q 

Rule BINV Rule AGEF 

Fig. 4. Verification rules. 

5 S i m p l e  V e r i f i c a t i o n  E x a m p l e s  

In this section we illustrate the use of the TLV system for the verification of 
several simple examples taken from [MP95]. 
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P r o g r a m  MUX-SEM 

In Fig. 2, we presented the general MUX-SEM program parameterized by n. Fig. 1 
illustrated its SMV translation for the case n = 2. The main safety property of 
this program can be specified by the invariance of assertion mux presented above. 

Direct application of rule BINV failed (and produced a counter-example). Ac- 
cording to the terminology of [MP95], this means that assertion mux is invariant 
but not inductive, i.e., it does not carry sufficient information to rule out inacces- 
sible states. The standard remedy is to strengthen assertion mux by additional 
invariants, which will exclude such states. 

Indeed, our next step in the verification process, was to formulate the auxil- 
iary invariant assertion 

phi: y < - > A -,(p,:oc[i].loc {3,4}) 
{----1 

Application of rule BINV to the conjunction mux �9 phi succeeded which estab- 
lished the invariance of both nmx and phi over program MUX-SEM. 

This experimentation was carried out for the low value of n = 2. However, 
once the strategy was established we prepared a proof script for computing the 
conjunction mux ~ phi and can now run the verification for various values of n, 
changing only the value of the parameter between successive runs. 

To compare the time and space complexity of conventional model checking 
and the deductive approach, we plot in Fig. 5 the time and space complexity of 
verifying the invariance of assertion max by the two approaches for increasing 
number of processes in program MUX-SEM. The line labeled SMV represents the 
conventional model-checking approach, while the line labeled TLV represents the 
deductive approach. 
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Fig. 5. Comparison of SMV and TLV for MUX-SEM 

P r o g r a m  REs-sv 

As the next example, we considered program RES-SV, presented in Fig. 6. Program 
P:Es-sv consists of an alloator process A and customer processes C[i], ~ = 
1, . . . ,  n. The allocator provides a centralized control which is exptected to guar- 
antee mutual exclusion between the customers. We refer readers to IMP95] for 
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in  n : i n t e g e r  w h e r e  n > 0 
loca l  g, r : a r r a y  [1..n] o f  b o o l e a n  w h e r e  g = F, r = F 

A::  

" local  t : i n t e g e r  w h e r e  t = 1 
m0 : l o o p  f o r e v e r  do  

[ ma : i f  r[t] t h e n  

r ' - 2 :  := 1 
/m.~: await ,It] / 
L~, :g[t]:=F J 

ms : t := t @n 1 

,, i 
i= l  

C[i] : :  

"go : l oop  f o r e v e r  do" 

I 
gl : noncritical] 
6:,[ i]:=w / 
la : awa i t  g[0 / 
& : c r i t i ca l  ] 
i s  : r[ i ]  : =  p / 
& : awa i t  -~g[,] j 

Fig .  6. Program ~ s - s v  (resource allocator). 

detai ls  of  this  a lgor i thm and its verification. Here we set to  ourselves the  more  
m odes t  goal of  verifying m u t u a l  exclusion between customers  C[1] and C[2] in a 
sys t em of  n > 2 customers .  

This  p r o p e r t y  can be specified as the invariance of  the assertion 

raux: ~(at_~4[1]  A atJ4[2]), 
where, for any  i and j ,  at_ti[j] s tands  for C [ j ]  . l o c  = s 

As in the  previous  case, assert ion mux is an invar iant  of  the p r o g r a m  but  is 
not  induct ive.  To comple te  the  proof,  we used six s t rengthening assert ions for 
i E {1, 2}. T h e  first two assert ions of  this set are: 

~1[i]  : ~ t _ m 3 , 4  A t  = i ~ g[i] 
~ [ i ]  : at_e3..s +-+ r[i] 

Using these s t reng then ing  invariants ,  assert ion mux has been proven an in- 
var ian t  of  p r o g r a m  a E s - s v .  

In Fig. 7, we plot  the  t ime  and space complex i ty  of  verifying the  invar iance 
of assert ion mux over p r o g r a m  RES-SV as a funct ion of the number  of  processes. 
Again,  the  convent ional  mode l  checking and deduct ive approaches  are compared .  
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Fig. 7. Comparison of SMV and TLV for RES-SV 

C o n s t r a i n e d  M o d e l  C h e c k i n g  

In addi t ion  to the  purely  deduct ive  approach,  we also implemented  and tested a 
mixed  (or combined)  approach,  in which we use deduct ively derived invar iants  to 
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restrict the range of the transition function in computing the backwards closure, 
usually employed in model checking for invariance properties. 

We considered again program rtEs-sv but used the deductive approach to 
verify only the two first invariants in the list: ~1[i] and !a2[i]. These are very 
simple invariants, which can be discovered automatically by various heuristics 
(as explained in [MP95]). At this point we ceased using deductive methods, 
and invoked a special model-checking procedure CMCINV, written in TLV-BASIC, 
with a constraint parameter, which is the conjunction of tal[i] and ~a2[i]. This 
procedure performs regular backwards closure computation, but eliminates all 
states which do not satisfy the given constraint. 

In Fig. 8, we present plots of time and space complexity which compare 
regular model checking with constrained model checking for program Rws-sv. 
The line representing constrained model checking is labeled by CMC, as compared 
to regular model checking which is labeled by MC. Both were performed by 
appropriate TLV-BASIC procedures. 
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Fig. 8. Comparison of Model Checking and Constrained Model Checking for RES-SV 

6 Verification of the  F u t u r e b u s +  

The IEEE Futurebus+ protocol specification is a technology-independent proto- 
col for single-bus and multiple-bus multiprocessor systems. Part of this standard 
is the cache coherence protocol designed to work in a hierarchically structured 
multiple-bus system. Coherence is maintained by having the caches observe all 
bus transactions. Coherence across buses is maintained using bus bridges. A bus 
bridge is a memory agent/cache agent pair, each of them on a different bus, 
which can communicate. The memory agent represents the memory on its bus. 
The cache agent represents all the remote caches, caches on the bus of the cor- 
responding memory agent, which may need to get access to the cache line via 
the bus bridge. 

The protocol defines various transactions which let caches on a bus obtain 
readable and writable copies of cache lines. A cache line is a series of consecutive 
memory locations that is treated as a unit for coherence purposes. 

We refer the reader to [CGH+93] for additional explanations and details 
about the SMV coding of the Futurebus+. 
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6.1  S p e c i f y i n g  a n d  v e r i f y i n g  C a c h e  C o h e r e n c e  

The following specifications are the ones which were proved in [CGH+93]. We 
repeated their verification, using deductive methods. There are four classes of 
safety properties and one for liveness. 

The first class of safety properties is used to check that  no device ever observes 
an illegal combination of bus signals or an unexpected transaction. Thus, we have 
the following formulas for every device d: 

A G  "~d.bus-err or A G  -~d.err or 

If these formulas are true then we say that  the model is error free. 
The exclusive write property states that  if a cache has an exclusive modi- 

fied copy of some cache line, then no other cache has a copy of that  line. The 
specification includes the formula 

A G  (pl.writable --+ "~p2.readable). 

for each pair of caches pl and p2. pl.writable is true when pl is in the 
exclusive-modified state. Similarly, p2.readable is true when p2 is not in the 
invalid state. 

The consistency property requires that  if two caches have copies of a cache 
line, then they agree on the da ta  in that  line:" 

A G  (pl.readable A p2.readable --* pl.data = p2.data) 

The memory consistency property is similar to the consistency property. 
It specifies that  any cache line that  has a readable copy must agree with the 
memory device on the data. 

A G  (pl.readable A -~m.memory-line-modi f ied  -~ pl.data = re.data) 

There is only one class of liveness specifications. It is used to check that  it is 
always possible for a cache to get read and write accesses to a line. In a sense, 
it says that  the model does not get stuck. 

A G  EF  p.readable A G  E F  p.writable 

All these properties were verified for small configurations, using deductive meth- 
ods. We refer the reader to [PS96] for details of the inductive assertions that  were 
used. 

6.2  A B u g  w a s  F o u n d  

During our verification process, we came across a bug which seems to have 
escaped the attention of the previous verifiers of this design. In all probability, 
this is due to the fact that they have not considered the particular configuration 
in which this particular bug was lurking. We managed to prove the specifications 
for this configuration after fixing this bug. 

The bug is manifested under the following circumstances. Consider a bus 
with a memory agent and three processors. We start from a reachable state 
where all processors have a shared copy of the cache line and the memory agent 
is in the r e r a o t e - s h a x e d - t m m o d i f i e d - i n v a l i d  state which indicates that  the 
current bus has shared copies on it but the memory agent itself does not have 
a copy. Suppose that  process pl  wants an exclusive copy of the cache line. It 
issues an invalidate transaction on the bus, which tells all other caches to release 
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their copies of the cache line. However, the other two processors, p2 and p3, 
choose to split the request so they continue to hold a shared Copy but  they 
each owe a response. Eventually, p2 responds and enters an invalid state. The 
memory agent observes this and enters the r e r a o t e - e x c l u s i v e - r a o d i f i e d  state. 
This means tha t  the memory  agent thinks that  pl  already has an exclusive- 
modified copy but, in fact, p l  and p3 still hold shared copies. When p3 issues a 
response the memory  agent sets on the error flag since, if only one process has 
a copy of the cache line, no other process should owe a response indicating a 
release of its hold on a shared copy. 
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