
Mechanically Verifying a Family of Multiplier
Circuits *

D e e p a k K a p u r M. S u b r a m a n l a m

Computer Science Department
State University of New York

Albany, NY 12222
kapur~cs.albany.edu, subu@cs.albany.edu

Abst rac t . A methodology for mechanically verifying a family of pa-
rameterized multiplier drcuits~ including many well-known multiplier
circuits such as the linear array, the Wallace tree and the 7-3 multi-
plier is proposed. A top level specification for these multipliers is ob-
tained by abstracting the commonality in their behavior. The behavioral
correctness of any multiplier in the family can be mechanically verified
by a uniform proof strategy. Proofs of properties axe done by rewriting
and induction using an automated theorem prover RRL (Rewrite Rule
Laboratory). The behavioral correctness of the circuits is established
with respect to addition and multiplication on numbers. The automated
proofs involve minimal user bltervention in terms of intermediate lemmas
required. Generic hardware components axe used to segregate the speci-
fication and the implementation aspects, enabling verification of circuits
in terms of behavioral constraints that can be realized in different ways.
The use of generic components aids reuse of proofs and helps modulaxize
the correctness proofs, allowing verification to go hand in hand with the
hardware design process in a hierarchical fashion.

1 I n t r o d u c t i o n

There has been a great deal of interest in verifying properties of hardware cir-
cuits at the input-output level. Many papers on this topic have appeared in
conference proceedings and journals[10], to cite a few [3, 5, 8, 11, 6, 17]. Dif-
ferent approaches have been proposed in the literature, notably among them
state-based approaches and the use of model checkers [5, 3], induction-based ap-
proaches adapted from software verification [8, 12] and finally approaches based
on modeling hardware circuits using higher-order logics [6, 11].

Despite this widespread interest, verification efforts involving multiplier cir-
cuits have been few in comparison[14, 4, 13]. The state based approaches and
model checking that employ binary decision diagrams (BDDs) or some variant
of these, do not perform well on multiplier circuits due to the associated state
explosion (see further discussion on this in the next section on related work). It is
possible to verify the correctness of multipliers using theorem provers and proof
checkers but such efforts have also been limited as they are ad hoc in nature .and
require considerable user ingenuity~

* Partially supported by the National Science Foundation Grant no. CCR-9308016.

!36

The focus of this paper is on the use of an automated theorem prover for me-
chanically verifying parameterized multiplier circuits. A methodology for spec-
ifying and verifying a family of parameterized multipliers circuits is described.
The" behavioral correctness of many well-known multiplier circuits such as the
linear array, the Wallace tree and the 7-3 multipliers, with respect to addition
and multiplication over numbers, is mechanically verified using an automated
theorem prover RRL (Rewrite Rule Laboratory)[15].

We first develop a common top level equational specification for a family of
multiplier circuits by abstracting the commonality in behavior. A multiplier cir-
cuit is abstracted in terms of two components: a component that computes the
partial sums, called the partial sum computation component and another that
adds these partial sums to compute the final product, called the partial sum
addition component. We then describe a uniform approach for mechanically ver-
ifying the correctness of any multiplier in the family using RRL. It is shown
that the correctness of any multiplier circuit in the family can be mechanically
established from the behavioral correctness of the partial sum computation com-
ponent and that of the partial sum addition component. The correctness of these
components follow from the correctness of the adder circuits used in them.

The proposed approach is highly generic - not only abstracting over the
word size of multiplier circuits but also abstracting the common behavior of a
variety of different multiplier circuits. The proofs of correctness are obtained for
multiplier circuits of arbitrary word size. Secondly, seemingly different multiplier
circuits share a common specification and proof of correctness using the same
lemmas, with only a few different definitions for each multiplier circuit.

A major complaint against the use of theorem provers and proof checkers
for hardware verification has been the semi-automatic nature of these systems.
Verification efforts using these systems involve considerable user ingenuity. We
believe that a common top level'proof for a family of multiplier circuits with
well-characterized intermediate lemmas that are independent of the underlying
prover, is a step in addressing this issue. It is shown that the intermediate lem-
mas used in the proofs of correctness of multipliers reported here correspond
to formulas that specify the input-output behavior expressed in terms of num-
bers, of different components of the circuits. Such lemmas, we speculate, can be
generated systematically from the structure of the circuits.

In our specifications and proofs of various multiplier circuits, we abstract
the adders in terms of generic hardware components with associated behavioral
constraints. The correctness of the multiplier circuits is first established in terms
of such generic components. It is shown later how a particular adder can realize
a generic component by demonstrating that the adder satisfies the behavioral
constraints of the generic component. Such a view provides a clear separation be-
tween specification and implementation aspects. The use of generic components
aids reuse of proofs and modularize the correctness proofs, allowing verification
to go hand in hand with the design process in a hierarchical fashion. Such modu-
larization of proofs is crucial for any verification methodology to effectively scale
up to larger and more complex hardware circuits.

137

Let us briefly review main aspects of different multiplier circuits considered
in this paper. A linear array multiplier performs the multiplication of two n bit
numbers in linear time by computing the partial sums corresponding to the given
numbers and adding the partial sums together to obtain the required result. Ad-
dition of partial sums is done by considering one partial sum at a time. Wallace in
[20] introduced a multiplication scheme, which has popularly come to be known
as the Wallace tree multiplier, for multiplying two n bit numbers in logarithmic
time. Improved performance is achieved in the Wallace tree multiplier by con-
sidering three partial sums for addition together. The multiplication scheme due
to Wallace was generalized and improved upon by Dadda in [7] leading to a rich
family of multipliers called the Dadda multipliers: In these multipliers, larger
than three partial sums are taken up for addition at a particular time. Consider-
ing larger number of partial sums does not improve the asymptotic complexity
but considerably reduces the number of stages required for multiplication result-
ing in reduced wiring delays. The 7-3 multiplier used in IBM RS/6000 is based
on this observation and has been attributed [9] as one of the important features
that contributes to its good performance.

Most of these multiplier circuits are based on the grade school principle
of multiplying any two given n bit numbers-computing the partial sums and
adding the partial sums to obtain the required result. This basic underlying
principle is often not evident in commonly found descriptions of these circuits.
The computation of partial sums is done in the same manner in these circuits,
and these circuits differ only in the number of partial sums that they consider for
addition at any particular time. A common top level specification for the family
of multiplier circuits based on this observation is developed in Section 3. In
section 4, the behavioral correctness of different multiplier circuits with respect
to addition and multiplication over numbers are presented. The use of generic
hardware components in specifying and verifying different multiplier circuits
using RRL is discussed in section 5.

2 Related Work
Among the various approaches employed for hardware verification, the state
based approaches based on symbolic manipulation of boolean functions using
binary decision diagrams BDDs [3] are perhaps the most popular for verifying
hardware circuits of fixed word size (non-parametric circuits). A circuit is spec-
ified using a boolean function theft can be succinctly represented using a BDD.
Further BDDs provide a fast mechanism for comparing boolean functions. Even
for linear circuits, in which the output is a linear function of the inputs, this
approach has two major limitations: (i) it is unclear how circuits of arbitrary
word size can be verified, and (ii) verification is limited to showing that a circuit
implements a boolean function, and not a function on numbers.

It is well-known that for many important boolean functions, especially the
ones for multiplication, that grow exponentially with the word size, the state-
based approaches are less attractive for verification. Bryant and Chen recently
introduced a new data structure Multiplicative Binary Moment Diagram (BMD)
for modeling the functionality of circuits in terms of data at the word level [4].

138

Using this approach, a number of integer multiplier designs with word sizes up to
256 bits have been verified. However, such verifications are not fully automatic
as Bryant and Chen in [4] state:

.... the overall circuit is divided into components, each having a word level spec-
ification. Verification involves proving 1) that each component implements its word
level specification and 2) that the composition of the word level component functions
matches the specification

The approach advocated in this paper using a theorem prover RRL for verify-
ing multiplier circuits is similar to the one suggested using BMDs. We decompose
a multiplier circuit into two components, and establish the number-theoretic
correctness of the individual components. The overall proof then follows by the
composition of these two components. The automated proofs obtained using our
theorem prover RRL do not entail any additional overheads. Due to the gen-
erality afforded by theorem provers like RRL, it was further possible to obtain
common proof for a family of multiplier circuits of arbitrary sizes (parametric
circuits) which would be infeasible otherwise.

Approaches based on theorem provers and proof checkers have been widely
used to verify hardware circuits. Most of this effort has focussed on verification
of different forms of processors [11, 17, 8], different forms of ALUs [19, 8] or has
been used for the verification of adder circuits [19, 8, 16, 12]. In [14], a Braun
Multiplier is formally specified using the Boyer-Moore logic and some properties
about this specification are proven using Nqthm [1].

In [18], a framework for synthesizing a variety of hardware circuits including
the carry save and Wallace tree multipliers is proposed. Higer order metafunc-
tions with different circuit interconnection structures such as the carry save array
and the Wallace tree as inputs are manua l l y transformed to realize multipli-
ers at the gate level. The correctness of the circuits is established by reasoning
about the behavior of these metafunctions and the associated transformations
using the automated theorem prover Hog. We are unaware of other mechanical
verification efforts where the correctness of multipliers such as the Wallace tree
multiplier or the 7-3 multiplier have been mechanically established with minimal
user guidance using a uniform framework such as ours.

3 Specifying a family of Multiplier Circuits

A common, top level equational specification for a family of multiplier circuits is
developed in this section. The Wallace tree multiplier is used as an example to
illustrate the methodology. The overall structure of the Wallace tree multiplier
can be described diagrammatically as in Fig. 1.

Given bit vectors z and y of equal length, a Wallace tree circuit first computes
a list of partial sums (P1 , . . - , P8 in Fig. 1) using a function such as psum-atL
Each partial sum in the list is a bit vector that corresponds to a single bit of x
and is obtMned by shifting y appropriately. The partial Sums in the list are then
added together by adding in parailel three partial sums at a time: Addition of
any three partial sums is typically done using a carry save adder(CSA) that has
three bit vectors as its inputs and produces a pair of bit vectors as its output.

139

-All
. ,V! L",. " . ",, '--,.

Fig. L

The outputs correspond to the bitwise sum and the bitwise carry of the inputs. 2
The parallel addition of three bit vectors at a t ime is repeated on the outputs of
the carry save adder until we have only two bit vectors left. The final product is
obtained by using a ripple carry (t~CA in Fig. 1.) or a carry lookahead adder.

S p e c i f y i n g P a r t i a l S u m s C o m p u t a t i o n in R R L : A bit vector is modeled
in R R L as a list of bits (with 0 denoting bit zero and 1 denoting bit one) with
ni and cons. A list of bit vectors is modeled as a list of lists with lnl denoting
the empty list of lists and consl that adds a list to a list of lists.

Contrary to the usual convention, we assume that the bits increase in order
from left to right i.e., the bit vector 01 stands for 0 * 20 + 1 * 21 = 2.

The partial sum, psum corresponding to a single bit xl of x is the same as y
if xl is 1; otherwise, it is the zero bit vector of the same length as y3:

psum(xl, y) := cond(xl = 0, mkzero(y), y) ,

where mkzero generates a zero bit vector of the same length as its input.
The list of partial sums corresponding to all the bits of x is computed by

applying the function psum pointwise to each bit of x and shifting y to the right
by appending a ~railing zero.

psum-all(nl, y) := Inl

psum-all(cons(xl, x), y) :s consl(psum(xl, y), psum-all(x, cons(O, y)))

S p e c i f y i n g P a r t i a l S u m s A d d i t i o n in R R L : In a Wallace tree circuit, each
level in the tree in Fig. 1. contains a list of bit vectors tha t have to be added to
produce the final result. The root contains the list of partial sums corresponding
to each bit of the bit vector x. The successive levels of the tree are repeatedly
constructed until there are less than three bit vectors at any given level(equations

2 Further details on the specification of the carry save adder are given in section 5.
3 We follow the convention of typesetting RRL specifications and italicizing other

logical formulas.

140

1, 2 and 3 below). In the case of two bit vectors, addition using a ripple carry
adder, rca, is performed(equation 3 below).

The Wallace tree multiplier is specified by 3-mull below. The trace of a
computation of 3-rmlt on input vectors of a specific length corresponds to a
specific circuit.

3-mult(cons(xl, n l) , y) := psum(xl, y)
3-mult(cons(xl, cons(x2, n l)) , y) :=

rca(0, pad(l, psum(xl, y)), psum(x2, cons(0, y)))
3-mult(cons(xl, cons(x2, cons(x3, x))), y) :=

3-repeat(psum-all(cons(xl, cons(x2, cons(x3, x))), y)).

The function 3-repeat repeatedly takes 3 bit vectors and add them; it is specified:

3-repeat (Inl) := nl
3-repeat (consl(xl ,Inl)) : = xl
3-repeat(consl(xl,consl(x2, lnl))) := rca(0, pad(l, xl), x2) if

(len(pad(l, xl)) = len(x2))
3-repeat(consl(xl, consl(x2, consl(x3, x)))) :=

3-repeat (3-once (cortsl (xl, consl (x2, consl (x3, x))))),

where fen denotes the length of a list. The function pad(m, x) produces a hit
vector by appending m leading zeroes to the bit vector x. Bit vectors are typically
padded by lending zeroes in these specifications so that the input bit vectors to
the adders are of equal length. The last equation (equation 4) computes the bit
vectors at the successive level by the function 3-once.

The function 3-once is defined on a list of bit vectors. If the input list contains
less than three bit vectors(equations 1, 2 and 3 below), then the bit vectors in
the input list are carried over to the output list. Otherwise, the bit vectors in the
input list by considering bit vectors in groups of three and adding such groups
in parallel using a carry save adder, csa, (equation 4 below). The outputs of the
csa's and the bit vectors in the input list that were not considered for addition
together, constitute the bit vectors of the output list.

3-once (Inl) := Inl
3-once(consl(xl, inl)) := consl(xl, inl)
3-once(consl(xl, consl(x2, Inl))) :~, consl(xl, consl(x2, Inl))
3-once(consl(xl, consl(x2, consl(x3, x)))) :z consl(fst(zi), consl(snd(zl)

3-once(x))) if
(zl = carrysave-adder(pad(2, xl), pad(1~ x2), x3)) and
(len(pad(2, xl)) " len(x3)) and (fen(pad(l, x2)) = len(x3))

3.1 A common top level specification for multipliers in RRL
Circuits that perform multiplication of two n bit numbers by first computing
the partial sums and then adding these partial sums constitute a rich family of
multipliers based on the number of partial sums that they consider for addition
at a particular time. Any multiplier of this family can be specified in RRL using
the same top level specification as that of the Wallace tree multiplier.

Consider a multiplier circuit defined by the function k-mull; in which k (k > i)
partial sums are added together at any time. The multiplier can be abstracted in
terms of two hardware components that are cascaded together. The first of these

141

components performs partial sum computation with two bit vectors as its inputs
and produces a list of bit vectors as its output. The second of these components
performs partial sum addition with a list of bit vectors as its input and produces
a bft vector as its output. 4

The partial sum computation component of the multiplier is specified by the
functions psum and psum-all. The partial sum addition component is specified in
terms of: k-repeat which adds k partial sums repeatedly, and k-once for adding
partial sums at one level until there are fewer than k partial sums left.

The function k-once is defined in the same way as 3-once. The function
leaves the input list of bit vectors invariant if the list contains less than k (more
precisely, maximum of k - 1 and 1) bit vectors. Otherwise, a suitable adder is
used to add the bit vectors in the list k at a time with the outputs of the adder
constituting the bit vectors to be added in the next round. The definitions of the
functions k-,*ult and k-repeat can be generalized from the definitions of 3-mult
and 3 - r e p e a t respectively in a similar fashion, s

4 Establishing the correctness of multipliers in RRL
In this section we discuss how the behavioral correctness of multip]ier circuits
can be automatically established using RRL. RR[, is a theorem prover based
on rewriting techniques and induction. The main inference steps used in RRL
are (i) contextual simplification using rewrite rules, (ii) case analysis, (iii) de-
cision procedures for data types with free constructors, propositional calculus
and quantifier-free Presburger arithmetic for reasoning about numbers, and (iv)
proofs by well-founded induction. RRL implements many heuristics to select the
order of application of these inferences. For more details on RRL the reader is
referred to [15].

Consider a multiplier specified by k-mult that performs multiplication of its
two input bit vectors ~ and y by considering k, k >__ 1, partial sums for addition at
a time. To establish the correctneSss of this circuit with respect to multiplication
over numbers, conversion functions from bit vectors and list of bit vectors to
numbers are needed. The function bton converts a bit vector to the number it
represents (recall that the first bit is the least, significant bit,).

b t o n (n l) := O,
b t o n (c o n s (x l , x)) :ffi c o n d (x l ffi 0~ 2 * b t o n (x) , 1 + (2 * b t o n (x)) .

Given a list of bit vectors as input~ the function b ton l i s t below defines a linear
addition of numbers corresponding to each of the bit vectors.

btonlist(Inl) := O, btonlist(consl(x, y)) := bton(x) + btonlist(y).

4 k itself can be t reated as a parameter while adding the partial sums. Such a specifica-
tion and the correctness proof can be found in flp.cs.albany.edu/ptLb/subu/Multipiers.
The specification uses generic adders (discussed in section 5). Instantiating such
adders requires discharging assumptions on lengthes of the lists of bit vectors in
terms of k and would be discussed in ~he expanded version of this paper.

s The complete specifications of the linear array, the Wallace tree and the 7-3 multiplier
as done in RRL along with the /~ti!L ~ranscripts of their correctness proof are also
available by anonymous ftp.

142

The correctness of a multiplier k-,,ult is stated in R R L as:

Kmult-thm: bton(k-mult(x, y)) == bton(x) * bton(y) i f (len(x) = len(y)) .

The basic strategy employed for proving the above theorem is simple. It in-
volves characterizing the input-output behavior of the partial sum computation
component and the partial sum addition component of the multiplier with re-
spect to numbers, and then showing that cascading these two components leads
to the desired overall behavior. It is shown that i) multiplying the numbers cor-
responding to the input bit vectors of the partial sum computation component
is the same as number obtained by the linear addition of the list of partial sums
output by this component, ii) And, the number corresponding to the bit vec-
tor output by the partial sum addition component is the same as the number
corresponding to the linear addition of the list of partial sums input.

The same strategy can be used to prove the correctness of the correctness of
any multiplier in the family of multipliers (for any fixed k). Linear addition of
partial sums serves as a common denomination for any k and th# addition of k
partial sums together can always be reduced to linear addition.

Sp ecu l a t i ng t he I n t e r m e d i a t e Lemmas
Intermediate lemmas capturing the behavior of each of the component cir-

cuits are first established. For instance, lemma L1 below states that the ripple
carry adder correctly implements addition over numbers (needed for the final
stage).
LI: bton(rca(O, y, z)) == btoa(y) + bton(z) if (fen(y) = len(z)).

There is a similar lemma for carry-save adders (lemma L4 in section 5).
Lemma L2 captures the correctness of the behavior of the partial sum addition
component; it states the number corresponding to the output bit vector is pre-
cisely the one obtained by adding numbers corresponding to the list of input
bit vectors. Finally, L3 relates the number corresponding to the list of bit vec-
tors output by the partial sum computation component to the product of the
numbers corresponding to its two input bit vectors.

L2: b'ton(3-repeat(x)) == btonlist(x).

L3: btonl is t(psum-al l(x, y)) == bton(x) * bton(y)

Each of these lemmas can be verified completely automatically in R R L by the
cover set induction method [15] and the associated heuristics.

%Ve believe that each of the above intermediate lemmas can be speculated
from the structure of the multiplier circuit. Lemmas relate the input-output
behavior of components of a multiplier circuit with respect to numbers. For each
component in the circuit, the number corresponding to its output bit vector
(or a list of vectors) is related to the numbers corresponding to its input bit
vectors. This important issue of generating intermediate lemmas from the circuit
structure needs further investigation; the approach based on generating lemmas
from the component behavior seems to be very promising.

For instance, the Wallace tree multiplier can be viewed as a linear composi-
tion of the ripple carry adder(rca), the partial sum addition (3-repeat), and the
partial sum computation (psum-all) components. The main theorem 3muir-thin
can be expressed as:

143

bton(x) * bton(y) = bton(rca(O, 3-repeat(psum-al l (x , y)))) ,

by identifying the list of bit vectors output by 3-repeat with the two input bit
vectors of rca. The number theoretic correctness of the circuit 3muir-tim can be
reduced to the number theoretic correctness of each of these components relating
their corresponding inputs and outputs. These correspond to the intermediate
lemmas L1-L3. Lemma small L4 can be speculated from the use of 3-once in the
iterative component 3-repeat.

Es tab l i sh ing t h e c o r r e c t n e s s of the Wal lace t r ee mul t ip l i e r in R R L :

Below, we briefly review the proof of Wallace tree multiplier as obtained in
Rt~L using the above-discussed strategy using �91 L1, L2, L3, L4. Other
proofs are similar. 6

The correctness of the Wallace tree multiplier is stated in RRL as:

3muir-tim: bton(3-mult(x, y)) == bton(x) * bton(y) i f (len(x) -- len(y)) .

The above theorem was proved in RRL by induction. Induction scheme based
on the definition of the function 3-mult is automatically chosen by the heuristics
implemented in RRL without any user guidance. Here is the RRL transcript.

Let P(x): bton(3-mult(x, y)) == (bton(x) * bton(y)) i f (len(x) = len(y))
Induction r i l l be done on x in 3-mllt(x, y), with the scheme:
[1] P(cons(xl, nl)) [2] P(cons(xl, cons(x2, n l)))
[3] P(cons(xl, cons(x2, cons(x3~ x))))

The subgoal corresponding to Ell is easily established by case analyses based
on the definition of psum, using the definitions of 3-mult and bton for simplifi-
cation. The case analyses is automatically recognized by RRL based on the
definition of psum given in terms of the ternary predicate cond.

The subgoal [23 follows from]emma L1 (ensuring that the ripple carry adder
correctly implements addition over numbers). The proof of the subgoat [3] is also
direct from lemmas L2, L3, thus completing the proof of 3mult-tlm by induction.

The correctness of any other multiplier in the family of multipliers such as
the linear array or the 7-3 multiplier can be performed in RRL using the same
top level proof as that of the Wallace tree multiplier given above. For instance,
the correctness of a linear array multiplier is proved in RRI, using three lemrnas
which are exactly the same as L~ - L3 with the lemma L2 defined in terms of
functions 1-repeat instead of the function 3-repeat. The correctness proof of the
7-3 multiplier also follows from the lemmas L1 - L3 with the lemma L2 defined
in terms of the functions 7-repeat instead of 3-repeat.

5 The use of Gener ic Hardware C o m p o n e n t s

While proving the correctness of different multipliers , the specifications and
the associated correctness proofs of the adders are duplicated. Such duplication
can be avoided by noting that specifications of the input-output behavior of the
adders is sufficient to reason aboul~ different multipliers; other details of adders

6 Detailed pr-'----oof transcripts are available via anonymous ftp from flp.cs.albany.edu:
pub/subu/Multipliers.

144

are irrelevant, So adder circuits are abstracted by generic hardware components
with behavioral constraints. The correctness proof of multipliers is first per-
formed in terms of these generic components. The generic components are then
realized by specific adders that satisfy the associated behavioral constraints.

To specify and reason over generic hardware components, RRL has been
extended along the lines of [2] to allow function instantiations and for handling
theories. The behavioral constraints associated with a generic component are
specified in RRL as equations(possibly conditional) using ? - to indicate that
the equation is a behavioral constraint. For instance, a carry save adder can be
specified in RRL in terms of the generic component g32-adder as:

bton(fst(g32-adder(x, y, z))) + bton(snd(g32-adder(x, y, z))) ?=
bton(x) + bton(y) + bton(z) if (len(x) ~ len(y) = len(z)).

The behavioral constrMnts introduced on these generic components are oriented
into rewrite rules by RRL and are subsequently available for simplification.

5.1 Real iz ing the gener ic c o m p o n e n t s : C a r r y Save A d d e r

To complete correctness proofs of different multipliers, the generic components
used are realized by specific adders that satisfy the associated behavioral con-
straints. In this section we use the correctness proof of a carry save adder as an
example to realize the generic component g32-adder. The other generic compo-
nents used in the proofs of the multiplier circuits have been realized similarly
using RRL. For details refer to [12].

A carry save adder has three bit vectors of equal length as its inputs and
outputs two bit vectors corresponding to the bitwise parity and the bitwise sum
of its inputs. It is specified in RRL as:

csa(x, y, z) := pairl(paritylst(x, y, z), cons(O, majoritylst(x, y, z)))
if (fen(x) = len(y) and (len(y) = fen(z)),

where pa i r l given two bit vectors constructs a pair of bit vectors. The func-
tion pa r i ty l s t , computes the bitwise parity of its three inputs, and the function
major i ty ls t computes their bitwise majority. These functions can be easily de-
fined by invoking parity and majority functions on bits.

The correctness of the carry save adder can be stated as:

L4: bton(x) + bton(y) + bton(z) =ffi bton(paritytlst(x, y, z)) + bton(cons(O~

majori%ylst(x, y, z))) if (fen(x) = len(y)) and (len(y) = fen(z)).

The above formula is proved directly in RRL by induction using the scheme
based on the definition of par i ty l s t .

The component g32-adder can be realized by the carrysave adder, csa in
RRL using the instantiate directive with a set of function replacements such
as ((632-adder csa)). Based on these function replacements the behavioral
constraints are suitably instantiated by RRL and the instantiated formula is
treated as a proof obligation which must be discharged from the properties of
the realization.

145

6 Conc lus ion
A number of well-known multiplier circuits such as the linear array, the Wallace
tree and the 7-3 multiplier employed in IBM RS/6000 have been verified using
the automated theorem prover/~/~L. It has been shown that by abstracting the
commonality in behavior, a family of multiplier circuits can be specified using
a common top level specification. Such a specification was used to illustrate a
common top level correctness proof for the family of multiplier circuits. The basic
strategy employed in performing these correctness proofs is simple, and it leads
to concise proofs with a handful of meaningful lemmas that are independent of
the underlying prover. It should be possible to duplicate these proofs using other
provers which support capabilities similar to those implemented in RRL.

Circuit Comm. Defs Comm. Lemm. Spec. De]s Spec. Lernm. Time
Linear Array 2 0 2.48
Wallace Tree 12 5 2 0 2.45
7-3 12 0 6.22

The intermediate lemmas used in these proofs correspond to the input-output
behavior of the various components of the multiplier circuit. Speculation of such
lemmas can be done by the user in a routine manner. The use of generic compo-
nents to segregate the specification and implementation aspects was advocated.
The use of such generic components lead to concise proofs and help reuse of
proofs. It was Mso demonstrated that generic components lead to modular proof
development in a hierarchical fashion analogous to the design process.

The specification and the correctness proofs of the Wallace tree multiplier
were attempted first in RRL and it took less than a week. This time is inclusive
of our attempts to familiarize ourselves with the multiplier itself. The subsequent
multipliers were formalized and their correctness proof was proved in a couple
of days. The statistics for the various correctness proofs obtained using RRL are
given in the table. RRL is implemented in Common Lisp and the timings are on
a Sun Spare 5 station(64Mb memory). The proofs of the linear array and the
Wallace tree multiplier can be performed in//RL within 5 sees. The time required
for the 7-3 multiplier is larger due to extensive contextual rewriting required for
establishing the appropriateness of the lengthes of seven bit vectors. There are
no specific intermediate lemmas needed in the proofs. For each multiplier circuit,
only two definitions specific to the circuit are needed.

The results of our initial experiments, in terms of adder circuits [12] and
multiplier circuits performed in RRL, are encouraging, and they lead us to be-
lieve that RRI, is well-suited for reasoning about the properties of hardware
descriptions using recursive equations that can be oriented into rewrite rules.
Particularly, RRI, can be used for verifying properties of parameterized circuits,
which cannot be handled by state based approaches, as well as for structuring
proofs of larger circuits in terms of proofs of their component circuits. Further,
circuit properties are verified in terms of the arithmetic functions they compute
in contrast to boolean functions. The major stumbling block in the use of the-
orem provers is perhaps the need for intermediate lemmas. As shown for adder

146

and multiplier circuits, these lemmas correspond to capturing the ari thmetic
function of the component circuits; generation of such lemmas, we speculate,
can be automated.

References

1. R.S. Boyer a~nd J. Moore, A Computational Logic Handbook. New York: Academic
Press, 1988.

2. R.S. Boyer, J. Moore and M. Kaufmann "Functional Instantiation in Nqthm', CLI
Inc. Tech. Report.

3. Bryant R.E., "Graph-based Algorithms for boolean function manipulation", IEEE
trans, on Computers, C-35(8), 1986.

4. R. E. Bryant, and Y.-A. Chen, "Verification of Arithmetic Functions with Binary
Moment Diagrams", Tech. Rep. CMU-CS-94-160, June 1994.

5. J. R, Butch, E.M. Clarke, K. L. Mcmillan and D.L. Dill, "Sequential Circuit
Verification using symbolic model checking", in proceedings of Twenty seventh
ACM/IEEE Design Automation Conference, 1999.

6. A.J. Camilleri, M.J.C. Gordon and T.F.Melham, "ttardware verification using
higher-order logic"", HDL Descriptions to Guaranteed Correct Circuit Designs,
D. Borrione (editor) pp. 43-67, N.Holland, Amsterdam 1987.

7. L. Dadda "Some Schemes for parallel multipliers," in Computer Arithmetic Vol. l,
E.E. Swartzlander Jr. (editor), IEEE Computer Society Press, 1990.

8. W.A. Hunt., "FM8501: A verified Microprocessor", Ph.D thesis, UT Austin, 1985.
9. R.K.Montoye, E. Hokenek and S.L.Runyon, "Design of the IBM RISC System/6000

floating-point execution unit," IBM Journal, Vol. 34, No. 1, 1990.
10. "Theorem Provers in circuit design',IFIP Transactions, V. Stavridou, T.F. Mel-

ham, R.T.Boute (eds.) N.Holland 1992.
11. J. Joyce, G. Birtwistle and M. Gordon, "Proving a computer correct in HOL',

Tech. Report 100, Computer Lab. University of Cambridge 1986.
12. D. Kapur and M. Subramaniam, "Mechanical Verification of Adder Circuits Using

Powerlists," CS.Tech. Report, Dept. of CS Suny Albany, November 1995.
13. R.P. Kurhshan, L. Lamport, "Verification of a Multiplier: 64 Bits and Beyond,"

Fifth Intl. Conf. on CAV, C. Courcoubetis (editor), LNCS 697, July 1993.
14. L. Pierre, "VHDL Description and Formal Verification of Systolic Multipliers," in

Proc. of CHDL, D. Agnew and L. Claesen (eds.) N. Holland 1993.
15. D. Kapur, and H. Zhang, "An overview of Rewrite Rule Laboratory (RRL)," J. of

Computer and Mathematics with Applications, 29, 2, 1995, 91-114.
16. D. Cyrluk and S. Rajan and N. Shankar and M. K. Srivas, "Effective Theorem

Proving for Hardware Verification"~ Proc. 2 '~ conference on theorem provers in
circuit design, R. Kumar and T. Kropf (eds.), Sept. 1994.

17. M. Srivas and M. Bickford, "Formal Verification of a pipelined microprocessor.",
IEEE Software, Sept. 1990.

18. Shui-Kai Chin, "Verified Functions for Generating Signed-Binary Arithmetic Hard-
ware", 1EEE trans, on Computer Aided Design, Vol. 1t, No. 12, Dec. 1992.

19. D. Verkest, L. Claesen, and H. De Man, "Correctness Proofs of Parameterized
Hardware Modules in the Cathedral-II Synthesis Environment", EDA C'90, Glas-
gow, Scotland, March 1999.

20. C.S. Wallace, "A Suggestion for a fast multiplierf in IEEE Trans. Electron. Corn-
put., EC-13:14-17, 1964.

