
Two Practical and Provably Secure Block 
Ciphers: B E A R  and LION 

Ross Anderson 1 and Eh Biham 2 

Cambridge University, England; emall rja14~cl.cmn.ar .uk 
2 Technion, Haifa, Israel; email biham~cs . t ec lmion .ac . i l  

A b s t r a c t .  In this paper we suggest two new provably secure block ci- 
phers, called BEAR and LION. They both have large block sizes, and are 
based on the Luby-Rackoff construction. Their underlying components 
are a hash function and a stream cipher, and they are provably secure in 
the sense that attacks which find their keys would yield attacks on o n e  

or both of the underlying components. They also have the potential to 
be much faster than existing block ciphers in many applications. 

1 I n t r o d u c t i o n  

There are a number of ways in which cryptographic primitives can be trans- 
formed by composition, such as output feedback mode which transforms a block 
cipher into a stream cipher, and feedforward mode which transforms it into a 
hash function [P]. A number of these reductions are provable, in the sense that 
certain kinds of attack on the composite function would yield an attack on the 
underlying primitive; a recent example is the proof that the ANSI message au- 
thentication code is as secure as the underlying block cipher [BKR]. 

One construction which has been missing so far is a means of building a block 
cipher out of a stream cipher. In this paper, we show provably secure ways to 
construct a block cipher from a stream cipher and a hash function. Given that 
ways of constructing keyed hash functions from stream ciphers already exist 
[LRW] [K], this enables block ciphers to be constructed from stream ciphers. 

On the level of engineering, our constructions allow arbitrary sized blocks 
to be enciphered in three passes. Given fast software hash functions and stream 
ciphers, and given that hardware stream ciphers tend to require fewer gates for a 
given speed than block ciphers do, our constructions may be better than previous 
schemes in practical apphcations requiring large block sizes. 

Our proposals use DES-hke structure. This choice was inspired by the well 
known paper of Luby and Rackoff, who showed that a good block cipher can 
be constructed from three good pseudorandom functions by using them as the 
round functions in a three round Feistel structure [LR]. A simphfied treatment 
of their result can be found in [M1]. 

The import of their results is that, so long as we beheve that (say) SHA1 and 
SEAL [RC] are both good pseudorandom functions, and that their composition 
SEALK~(SHAI(X)) is too, we can construct a Luby-Rackoff block cipher as 



114 

L = k S  SEAL(K1 ~ SHAI(R))  

R = R~ SEAL(K2 $ SHAI(L))  

L = L~ SEAL(K3 $ SHAI(R))  (1) 

So long as the keys Ki are independent, this block cipher would be secure. 
One might hope that  it would also be fairly fast, as its computational cost would 
be three hash functions and three stream ciphers; and as SHA1 runs at about 
40 Mbit/sec, and SEAL at over 100 Mbit/sec, we might hope that this cipher 
would run at about 10 Mbit/sec, which is much faster than most of the block 
ciphers reported in [R]. The elegance of Luby-Rackoff might lead one to think 
that  this is an optimal construction. 

However, as we will now show, we can do substantially better. 

2 B E A R  

Our first construction, called BEAR, uses two hashes and one stream cipher. 
Let m be the block size (in bits), which will typically be large (typically of order 
1Kbyte- lMbyte) ;  let HK(M) be a keyed hash function with the key K for a 
message M of arbitrary length, and whose result is of a fixed size k bits (k = 160 
for keyed SHA1 and k = 128 for keyed MD5). This keyed hash function could 
be based on an unkeyed hash function, in which we append and/0r  prepend the  
key to the message (a discussion of the relative merits of appending, prepending 
and both can be found in [T]). 

Next, let S(M) be a stream cipher, or more formally a pseudo random func- 
tion which given the input M will generate an output  of arbitrary length (the 
length used will be clear from the context). Finally, let I denote concatenation 
of two streams. 

BEAR is the unbalanced Feistel cipher [SB] defined as follows. The plaintext 
P is divided into two parts L and R whose sizes are ILl = k and IRI = m - k. 
The key consists of two (independent) subkeys K = (Kt ,  K2), each of which is 
of length greater than h. 

Encryption is done by: 

Decryption is done by: 

L = L $  H ~ , ( R )  

R = R ~  S(k)  

k = k S  H ~ ( R )  (2) 

L = L $  HK~(R) 

R = R ~  S(L) 

L = L ~  HK,(R)  (3) 



115 

We assume tha t  these two functions have the following properties: 

1. The keyed hash function HK(M): 
(a) is based on an unkeyed hash function H'(M),  in which we append and /or  

prepend the key to the message (for example by HK(X) = H'(K!M[K)); 
(b) is one-way and collision-free, i.e. it is hard given Y to find X such tha t  

H'(X) = Y,  and to find unequal X and Y such that  H'(X)  = H ' (Y) ;  
(c) is pseudo-random, in that  even given H'(X~) for any set of inputs, it is 

hard to predict any bit of HI(y)  for a new input Y. 
2. The stream cipher S(M):  

Ca) resists key recovery attacks, in that  it is hard to find the seed X given 
r = S(X); 

(b) resists expansion attacks, in that  it is hard to expand any partial  s t ream 
of Y. 

3 S e c u r i t y  o f  B E A R  

Theorem 1. An oracle which finds the key of BEAR, given one plainterct/ciphertezt 
pair, can efficiently and with high probability find the seed M of the stream cipher 
S for any particular output Y = S(M). 

Proof. Given Y = S(M) we wish to find M. We generate a plaintext P = (L, R) 
and a ciphertext C = (L ~, R')  such that  R @ R n = Y, and such that  L and L ~ 
are random. Since we assume that  IKll = IK21 > k, with a high probability 
there are some values of K1 and K2 such that  HK, (R) = L $ M and such that  
HK~(R) = L' @ M (although M is still unknown to the attacker).  Using the 
oracle we can find such values of K1 and K2. Given K1 and K2, we can easily 
derive M. 

Theorem 2. An oracle which finds the key of BEAR, given one plaintext/ciphertext 
pair, can efficiently and with high probability find preimages and collisions of the 
hash function H. 

Proof. Compute  the output  of the stream cipher for the input 0:Y0 = S(0). 
Choose random R, and set R ~ = R $ Y0. Set L = L ~ = 0, and solve the key for 
plaintext P = (L, R) and the ciphertext C = (L', R'). Given this key we actually 
get two messages, both  of which hash to the value zero. By choosing an input 
other than zero, we can get arbitrary preimages. 

These theorems show that  a key recovery at tack on BEAR would break both 
the s t ream cipher and the hash function from which it is constructed. But what 
about  partial  at tacks? 

I f  can expand the output  of the s t ream cipher (whether by finding the input 
key or otherwise), then given a ciphertext and a part  of the plaintext we can 



116 

expand our knowledge of the plaintext. On the other hand, if collisions can be 
found for the hash function, then the attacker might find pairs of plaintexts 
whose right halves hash to the same value, and thus generate a ciphertext most 
of whose bits are predictable. 

Note that  we do not prove any security against attacks which require many 
blocks to be encrypted under the same key, such as linear and differential attacks. 
Since in BEAR the block is very large, it may often be possible to arrange things 
so that  each block is encrypted under a different key. However, if differential [BS] 
or linear [M2] attacks on BEAR are possible, then they can be related to bad 
properties of either the hash function or the stream cipher (or both). 

For example, if after collecting some plaintext-ciphertext pairs we can, with 
probability greater than one-half, predict bits in the right part of a BEAR ci- 
phertext, then this says that  we can predict bits of S(A (9 HK(B)) where K is 
unknown and either A or B is new; and if we can predict bits in the left part, 
then this amounts to a prediction of the exclusive-or of two keyed hashes. 

Conversely, if there is a divide-and-conquer at tack on the stream cipher [A1], 
then we can search part  of its keyspace by varying the appropriate bits in L. In 
addition, if we had a hash function with some regularity in its output,  so that 
we could find )(1, )(2 such that g~c(X1) (B H(X2) lies in a searchable set, then 
an attacker could find two messages which yielded the same input to the stream 
cipher in the second round. Such hash function weaknesses were discussed in 
[A2] and examples found in IV]; the same effect can be obtained even with a 
good hash function if a user who knows the first key K1 is in collusion with the 
attacker. In either case, the attacker can get some known correlation between 
the plaintexts and the ciphertexts; this will not help her find the keys, but might 
help her to find some information about future unknown plaintexts. If we wish 
to make sure that  such attacks are not possible, we might add one additional 
round to BEAR. 

4 L I O N  

Our second construction, called LION, is similar except in that  we use our stream 
cipher twice and our hash function only once. 

Encryption is done by: 

R = R $  S(L (9 K1) 

L = L(9 H'(R) 

R = R(9 S(L (9 K2) (4) 



Decryption is done by: 

117 

R = R(9 S(L (9 K2) 

L = H'(R)  

R = R e  S(L ~ K1) (5) 

In this case, we can have a weaker assumption on the hash function. We do not 
need to assume that  it is a pseudorandom function, but merely that  it is collision- 
free, i.e. that  it is hard to find distinct X1, X2 such that  H~(X1) = H*(X2). 

The security reduction of LION proceeds similarly to that  of BEAR; an oracle 
which yields the key of LION will break both its components.  Part ial  at tacks 
also reduce, and for example we find that  if an attacker knows a preimage of 0 
in the hash function, then we get a set of weak keys; wherever Kt  = K2, certain 
plaintexts will be encrypted to themselves. The details are left as an exercise to 
the reader. 

We note that  Kaliski and Robshaw's proposal for basing a block cipher with 
a large block size on a hash function [KR] would run at about  half  the speed 
of the underlying hash function. In addition, as their proposal 'unravels '  the 
hash function into a block cipher, it would have to be evaluated afresh as a new 
cryptographic primitive. From the raw figures at least, we might expect LION to 
be the fastest block cipher around, and BEAR to be almost as fast; they would 
also have the advantage that  their security depends on that  of already known 
primitives. So we implemented them to find out. 

5 A c t u a l  I m p l e m e n t a t i o n  

We tested both BEAR and LION using blocks of various sizes. For compatibili ty 
with Roe's results [R], we used a 133MHz DEC Alpha machine (a Sandpiper 
server) with SHA1 as the hash function and SEAL as the s t ream cipher. We 
keyed SHA1 in BEAR by HK(M)  = H(K[MIK);  the s t ream cipher was S(M)  = 
SEALM (0) - -  SEALM (1) - -  SEALM (2) - - . . .  - -  SEALM ([m/(64.1024-8)~). 
We also used Roe's implementations of both  SHA1 and SEAL to ensure strict 
comparability. 

We found that ,  despite the advertised speeds on a 133MHz Alpha of 41.51 
Mbit /sec for SHA1 and 114.8 Mbit /sec for SEAL, we obtained a speed for BEAR 
of only about  13 Mbit/sec. This varied somewhat  according to the block size, 
f rom 12.95 Mbit/sec for 64Kb blocks to 13.62 Mbit /sec for 1Mb blocks, suggest- 
ing that  the key setup times for SEAL were significant. LION confirmed this; 
instead of being significantly faster, it ran at  speeds ranging from 14.83 Mbit /sec 
for 64Kb blocks up to 18.68 Mbit/sec for 1Mb blocks. Finally, we tested SEAL 
for various block sizes; we found that  when the key setup is included, it runs at 
58.7 Mbit /sec with 64Kb blocks, and as little as 7.6 Mbit /sec with 4096 byte 
blocks - -  a far cry from the advertised performance. 



118 

These results show the need for a stream cipher which runs quickly in soft- 
ware, but does not achieve this at the cost of a very slow key schedule. We are 
working on candidate stream ciphers which will be the subject of separate pub- 
lications. Given such ciphers, we expect that BEAR and LION will be highly 
competitive as fast block ciphers. 

6 L I O N E S S  - -  a f o u r  r o u n d  v a r i a n t  o f  B E A R  a n d  L I O N  

Bear and Lion may not be secure when an adaptive combined chosen plaintext 
and ciphertext attack is applicable. This attack is similar to the attack on the 
Luby-ttackoff construction [M1]. It finds the ciphertext of a plaintext that  was 
not encrypted before. In most applications, this attack is not relevant; but for 
the few cases where it might be, we propose a four-round combined variant of 
Bear and Lion, called Lioness, which is secure even against this unusual attack. 

Lioness uses four independent keys, K1, K2, K3, and K4. Encryption is done 
by: 

Decryption is done by: 

R = R e  S(L �9 K1) 

L = L e  HK~(R) 

R - - R e S ( L e K 3 )  

L = L e  H~, (R)  (6) 

L = L e  HK,(R) 

R = R e  S(L �9 g3 )  

L = L e  HK~(R) 

R = R e  S(L �9 K1) (7) 

7 M o d e s  o f  O p e r a t i o n  

We suggest using the above ciphers with the following modes of operation: 

1. Encrypting a single block: the whole message is treated as a single block. 
This mode has several advantages: (a) Each ciphertext bit depends on all the 
plaintext bits in a very complex way, which contributes to the cryptographic 
strength; (b) The security proofs of Bear and Lion hold, since only one 
block is encrypted with any key; (c) It prevents both differential and linear 
cryptanalysis, since the attacker cannot get more than one block encrypted 
under the same key. 



119 

2. The message can be divided into several blocks, and each block is encrypted 
under a different key. 

3. Lioness can also be used with the s tandard modes of DES: Divide the message 
to several blocks of some length (say 1Kbyte - lMbyte )  and use the s tandard 
modes of DES. 

Modes of operation whose blocks are long and /or  variable may have added 
at tract ions in particular application areas. For example, when constructing au- 
thentication protocols, the use of a variable length block cipher which treats 
each protocol message as a single block will prevent splicing at tacks of the kind 
demonstrated by Mao and Boyd on DES-CBC implementations of the Otway- 
Rees protocol [MB94]. Another example is where the law requires all but 40 
bits of the session key to be sent in the clear; if one wishes to get the highest 
acheivable level of security subject to this constraint, then using a larger block 
makes the cryptanalyst  work harder. 

8 C o n c l u s i o n s  

Previously it had been known how to construct s tream ciphers and hash functions 
from block ciphers, and hash functions from stream ciphers; by showing how to 
construct a block cipher from a stream cipher and a hash function, we have 
completed the set of elementary reductions. 

Our constructions possess some interesting provable security properties, and 
may also be of practical value: they provide fast and strong block ciphers whose 
block sizes are large and variable. Such ciphers may be useful in a significant 
number of applications. 

A c k n o w l e d g m e n t :  We would like to thank Mike Roe for making his code 
available to us for testing, and to the referees for valuable comments.  

R e f e r e n c e s  

[A1] 

[A2] 

[BKR] 

[BS] 

[K] 

[KR] 

RJ Anderson, "Solving a Class of Stream Ciphers", in Cryptologia v XIV no 3 
(July 1990) pp 285-288 
RJ Anderson, "The classification of hash functions", in Codes and Cyphers - -  
Cryptography and Coding I V  (IMA, 1995) pp 83-93 
M Bellare, J Kilian, P Rogaway, "The Security of Cipher Block Chaining", in 
Advances in Cryptology - -  CRYPTO 94, Springer LNCS v 839 pp 341-358 
E Biham, A Shamir, 'Differential Cryptanalysis of the Data Encryption Stan- 
dard' (Springer 1993) 
H Krawczyk, "LFSR-based Hashing and Authentication", in Advances in Cryp- 
tology - -  CRYPTO 94, Springer LNCS v 839 pp 129-139 
BS Kaliski, MR Robshaw, "Fast Block Cipher Proposal", in Fast Software 
Encryption, Springer LNCS 809 (1994) pp 33-40 



120 

[LR] Luby, C Rackoff, "How to construct pseudorsndom permutations from pse- 
duorandom functions", in SIAM Journal on Computing v 17 no 2 (1988) pp 
373-386 

[LRW] XJ Lai, RA Rueppel, J Woollven, in preproceedings of Auscrypt 9~ pp 8-7 - 
8-11 

[M1] U Maurer, "A Simplified and Generalized Treatment of Luby-Rackoff Pseudo- 
random Permutation Generators', in Advances in Cryptology - EUROCRYPT 
9~, Springer LNCS v 658 pp 239-255 

[M2] M MatsuJ, "The first experimental cryptanalysis of the Data Encryption Stan- 
dard", in Advances in Cryptology - -  CRYPTO g~, Springer LNCS v 8 3 9  pp 
1-11 

[MB94] WB Mao, C Boyd, "Classification of Cryptographic Techniques in Authenti- 
cation Protocols", in Workshop on Selected Areas in Cryptography (SAC 94) - -  
Workshop Record, pp 95 - 104 

[P] B Preneel, 'Analysis and Design o/Cryptographic Hash Functions ', PhD Thesis, 
Katholieke Universiteit Leuven, 1993 

[R] M Roe, "Algorithms Contest - -  Preliminm*y Results", preprint handed out at 
KU Leuven workshop on algorithms 

[RC] P Rogaway, D Coppersmith, "A Software-Optimised Encryption Algorithm", 
in Fast Software Encryption, Springer LNCS 809 (1994) pp 56-63 

[SB] B Schneier, MA Blaze, "McGuffm: an unbalanced Feistel network block cipher", 
in KU Leuven Workshop on Cryptographic Algorithms, preproceedings p 44 

[T] G Tsudik, "Message Authentication with One-Way Hash Functions", in Com- 
puter Communications Review v 22 no 5 pp 29 - 38 

[V] S Vaudenay, 'La Sdcuritd des Primitives Cryptographiques ', Th~se de Doctorat, 
Laboratoire d'Inforrnatique de l'Ecole Normale Sup~rieure, Avril 1995 


