
Fast Accumulated Hashing

Kaisa Nyberg

Finnish Defence Forces
Communications and Information Systems Division

E-mail: viesti@pp.kolumbus .fi

A b s t r a c t . A new non-trapdoor accumulator for cumulative hashing is
introduced. It can be efficiently realized in practise using existing cryp-
tographic hash algorithms and pseudorandom sequence generators. The
memory requirement is less than in comparable signature-based solu-
tions.

1 I n t r o d u c t i o n

The management of a cryptographic security system involves creating, time-
stamping, maintaining and updating of a diversity of security related lists. Typi-
cal examples are public key directories and lists for certificate revocation, system
configuration, access control and software integrity. The existing solutions are
based on the use of digital signatures of a trusted third party.

In 1993 J. Benaloh and M. de Mare presented an alternative to digital sig-
natures by introducing the principle of accumulated hashing [1]. In accumulated
hashing the items are hashed together to a hash code in such a way that af-
terwards it is possible, for each item separately, to prove its membership in the
accumulation. Benaloh and de Mare also proposed a concrete design for an ac-
cumulator based on a commutat ive t rapdoor one-way function. But the trusted
third par ty was still needed, although off-line, to provide the t rapdoor function.

A further analysis of the requirements and the definition of accumulator was
performed by K. Nyberg in [2]. Instead of commutat ive functions an equiva-
lent algebraic setting for accumulators in terms of commutat ive semigroups was
introduced. Also a construction for a new accumulator was presented. This accu-
mulator is " absolute" in the sense that it is provably secure and not based on a
t rapdoor known to some third party. Consequently, it offers a fully decentralized
alternative to digital signatures.

The purpose of this contribution is to improve the accumulator given in
[2] and make it more efficient while preserving the good properties of the pre-
vious construction. The new accumulator has fast implementations using cer-
tain modes of operation of existing algorithms for hashing and pseudorandom
sequence generation. The requirement for secure memory is less than what is
needed to store an itemized list of digital signatures.

84

2 A c c u m u l a t e d H a s h i n g

In accumulated hashing the list items are cumulatively hashed together in such
a way that the accumulated hash value does not depend on the order in which
the items appear on the list.

This idea was formalized in [1] by the means of commutat ive functions. Let
A and B be sets. A function F : A x B --+ A is said to be commutative (or
quasi-commutative [1]) if

f (F (a , b), c) : f (F (a , c), b), for all a e A and b, c �9 B.

Given a seed a0 and a list of items bl, . . . , bm the accumulated hash value am
is computed iteratively as

ak : F(alt-l , bk), k : 1 , . . . , m .

The seed a0 may be chosen to depend, in a one-way manner, on the charac-
teristics of the list, e.g. the system description, t imestamp etc.

The accumulator proposed in [1] makes use of the t rapdoor commutat ive
function

F(a, b) = a b mod n, a �9 Z,,, b �9 Z, (1)

where n is a RSA modulus of a trusted third party. The trusted third par ty is
needed only off-line to provide the RSA modulus n. The users of this accumu-
lation system for a list bl, bm can compute the accumulated hash value am
without the third party. With each i tem bk the partial accumulated hash value
ak, which is computed for the list containing all other items except bk, needs to
be stored. To verify the membership of bk one simply checks that

F(k, bk) = am.

I f the accumulator of Benaloh and de Mare is used for an application such as
authentication of a list of public keys, it does not offer much improvement over
the solution offered by the trusted par ty certificates, since with each public key
the partial accumulated hash value needs to be given.

An essential security requirement for an accumulator is that it is infeasible
to forge the list, i.e., to find another list with the same accumulated hash value.
Although the function F(a, b) defined in (1) is one-way, it is easy to construct a
forged list (c l , . . . , c,), such that

a m --~ abo l"''b'' mod n ---- a~ ''~'~" mod n

for example, by choosing cl to be products of the original i tems b~. On the other
hand, given bl, �9 �9 bin, it is very unlikely tha t a randomly chosen integer c divides
the product b l . . . b,n [1]. Therefore it is necessary as also recommended in [1] to
hash or encrypt each i tem before taking it to the accumulator.

An open problem presented in [1] was whether it is possible to design an
accumulator without a t rapdoor and without a trusted party. Such an accu-
mulator would be truly decentralized and does not rely on trusted on-line or

85

off-line services. A first positive answer to this problem was given in [2] where
a non-trapdoor accumulator was presented. The idea was to produce long hash
codes bl, for each item i = 1, . . . , m , and represent them as a p-axy n-tuples
yi = (y/t, . . . , y/,~), where p is a prime. The accumulated hash value is computed
as the coordinatewise product modulo p of yl, i = 1 , . . . , m. With a fixed security
level, say, the probability of forgery is e - t , the required length of the accumu-
lated hash value grows as O (N l o g N) with the number N of items on the fist.
Next we show how to modify this construction to improve its efficiency.

3 T h e N e w A c c u m u l a t o r

Let N = 24 be an upperbound to the number of items to be accumulated and
let r be an integer. We assume that there is a one-way hash function h which
maps bit strings of arbitrary length to bit strings of fixed length t : rd.

Let x t , . . . , xm, m < N , be the items to be accumulated and let

h(x i) -= y/, i = 1 , . . . , m

be their corresponding hash codes, which are bit strings of length g -- rd. These
strings are divided into r blocks of length d and we denote

y, :- (y / t , . . . , y / ,) ,

where y/j is a string of bits of length d. Further, we map each i tem y / t o a binary
string b/ of length r by replacing y/j by 1, f fy / j ~t 0, and by replacing y/j by 0,
ff y/j is a string of zero bits.

In this way we have mapped each i tem m/ to a bit string bi = (b i t , . . . , bl,)
of length r, which in the case of an ideal hash function h can be considered as
values of r independent binary random variables, for which the probabili ty of
taking the value 0 is equal to 2 -4.

The accumulated hash code (a t , . . . , a ,) is computed as a coordinatewise
product modulo 2 of the binary r-tuples b/, i -- 1 , . . . , m.

To verify the membership of an i tem xl on a list described by the accumulated
hash value a ---- (a t , . . . , a ,) o n e computes yi = h(zl) , forms the corresponding
bi = (bit ,b i ,) and cheks that, for all j = 1 , . . . , r , whenever b/j = 0 then
aj = O .

The verification procedure is essentially simpler than the verification in the
Benaloh-de Mare accumulator where the prover also needs to provide the partial
accumulator of m - 1 items.

Next we show that the security of the new accumulator depends in a proven
way only o n t h e randomness properties of the hash function h. We also derive
estimates to what is the required size of the length of the accumulator to achieve
a certain security level.

T h e o t ' e m 1. Let bij and cj be independent binary random variables such that
Pr(blj = O) = Pr(c j) --- 2 -d , for i = 1 , . . . , m and j = 1 , . . . , r . Let a =
(a l , . . . , a ,) be the coordinatewise product of the r- tuples bi = (b /1 , . . . ,b / ,) ,

86

i = 1 , . . . , m . Then the probability that, for all j = 1 , . . . , r,
only i.f aj = O, is equal to

(1 - - 2 - ' *) ") ' .

we have cj = 0

Proof. For each j = I,... ;r the probability that cj = 0 and aj = 1 equals

2-d(1 _ 2 -d) 'L

[]

Assuming that h produces truly random hash codes, and recalling that N --
2 d is the upperbound to the number of items to be accumulated, we get by the
theorem that the probability of finding a forged i tem to a list described by an
accumulated hash value a = (a l , . . . , a ,) can be estimated as follows

l l v , 1 , 1 (1 - ~)) ~ (1 - ~ e - ~ r ; . (1 - 2 - d (1 -- 2 - a) m) " _~ {1 -- ~ ~--~e)

4 Requirements

For some applications, it is sufficient that the hash function is one-way. In o t h e r
applications non-repudiation may be essential and then the hash function needs
to be collision resistant. For example, if the items to be accumulated are docu-
ments belonging to different users and the accumulator is used for t ime-stamping,
then it is desirable tha t .the users cannot find two documents with the same hash
code.

Formally, the requirements for the hash function used in combination with the
new accumulator are the same as for any cryptographic hash function. However,
the existing hash functions are designed for the purposes of digital signatures
and produce short hash codes of 128 - 160 bits. By the theorem the length ~ of
the hash codes needed by the new accumulator is determined by the formula

l = N e t log N

where N is the max imum number of items, e is Nepe r ' s number, and e - t is
the probability of forgery. For example with N = 1000 and t = 100 we need to
compute 2.8 megabits of hash code for each item.

The length r of the accumulated hash value is shorter by the factor of log N.
It can be estimated by r -- N e t . This is how much memory is required to store
the accumulated hash value. It is less than in a traditional directory solutions.
An itemized list, with a digital signature as appendix to each item, takes at least
s N log N bits of memory, where s is the length of the signature and log N is a
lower bound to the length of the description of an item.

A straightforward implementat ion of a required "long" hash function using
existing cryptographic algorithms could be as follows. The item is first hashed
to a short hash code which is then fed as a seed to a binary random sequence
generator. From this seed as many pseudorandom bits as needed can be generated
for the long hash code.

87

References

1. J. Benaloh and M. de Mare, One-way accumulators: a decentralized alternative to
digital signatures. In: Advances in Cryptology - Eurocrypt'93 (ed. by T. Helleseth),
Lecture Notes in Computer Science 765, Springer-Verlag, Heidelberg 1994, 274-
285.

2. K. Nyberg, Commutativity in cryptography. In: Proceedings of the First Interna-
tional Workshop on Functional Analysis at Trier University, Walter de Gruyter 8z
Co, Berlin (to appear).

