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A b s t r a c t .  A new non-trapdoor accumulator for cumulative hashing is 
introduced. It can be efficiently realized in practise using existing cryp- 
tographic hash algorithms and pseudorandom sequence generators. The 
memory requirement is less than in comparable signature-based solu- 
tions. 

1 I n t r o d u c t i o n  

The management  of a cryptographic security system involves creating, time- 
stamping, maintaining and updating of a diversity of security related lists. Typi- 
cal examples are public key directories and lists for certificate revocation, system 
configuration, access control and software integrity. The existing solutions are 
based on the use of digital signatures of a trusted third party. 

In 1993 J. Benaloh and M. de Mare presented an alternative to digital sig- 
natures by introducing the principle of accumulated hashing [1]. In accumulated 
hashing the items are hashed together to a hash code in such a way that  af- 
terwards it is possible, for each item separately, to prove its membership in the 
accumulation. Benaloh and de Mare also proposed a concrete design for an ac- 
cumulator based on a commutat ive t rapdoor  one-way function. But the trusted 
third par ty  was still needed, although off-line, to provide the t rapdoor  function. 

A further analysis of the requirements and the definition of accumulator was 
performed by K. Nyberg in [2]. Instead of commutat ive functions an equiva- 
lent algebraic setting for accumulators in terms of commutat ive semigroups was 
introduced. Also a construction for a new accumulator was presented. This accu- 
mulator  is " absolute" in the sense that  it is provably secure and not based on a 
t rapdoor  known to some third party. Consequently, it offers a fully decentralized 
alternative to digital signatures. 

The purpose of this contribution is to improve the accumulator given in 
[2] and make it more efficient while preserving the good properties of the pre- 
vious construction. The new accumulator has fast implementations using cer- 
tain modes of operation of existing algorithms for hashing and pseudorandom 
sequence generation. The requirement for secure memory  is less than  what  is 
needed to store an itemized list of digital signatures. 
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2 A c c u m u l a t e d  H a s h i n g  

In accumulated hashing the list items are cumulatively hashed together in such 
a way that  the accumulated hash value does not depend on the order in which 
the items appear  on the list. 

This idea was formalized in [1] by the means of commutat ive functions. Let 
A and B be sets. A function F : A x B --+ A is said to be commutative (or 
quasi-commutative [1]) if 

f ( F ( a ,  b), c) : f ( F ( a ,  c), b), for all a e A and b, c �9 B. 

Given a seed a0 and a list of items bl, . . . ,  bm the accumulated hash value am 
is computed iteratively as 

ak : F(alt-l ,  bk), k : 1 , . . . , m .  

The seed a0 may be chosen to depend, in a one-way manner,  on the charac- 
teristics of the list, e.g. the system description, t imestamp etc. 

The accumulator proposed in [1] makes use of the t rapdoor  commutat ive 
function 

F(a, b) = a b mod n, a �9 Z,,, b �9 Z, (1) 

where n is a RSA modulus of a trusted third party. The trusted third par ty  is 
needed only off-line to provide the RSA modulus n. The users of this accumu- 
lation system for a list bl, . . . .  bm can compute the accumulated hash value am 
without the third party. With each i tem bk the partial accumulated hash value 
ak, which is computed for the list containing all other items except bk, needs to 
be stored. To verify the membership of bk one simply checks that  

F( k, bk) = am. 

I f  the accumulator of Benaloh and de Mare is used for an application such as 
authentication of a list of public keys, it does not offer much improvement over 
the solution offered by the trusted par ty  certificates, since with each public key 
the partial  accumulated hash value needs to be given. 

An essential security requirement for an accumulator is that  it is infeasible 
to forge the list, i.e., to find another list with the same accumulated hash value. 
Although the function F(a, b) defined in (1) is one-way, it is easy to construct a 
forged list ( c l , . . . ,  c,), such that  

a m  --~ abo l"''b'' mod n ---- a~ ''~'~" mod n 

for example, by choosing cl to be products of  the original i tems b~. On the other 
hand, given bl, �9 �9 bin, it is very unlikely tha t  a randomly chosen integer c divides 
the product b l . . .  b,n [1]. Therefore it is necessary as also recommended in [1] to 
hash or encrypt each i tem before taking it to the accumulator.  

An open problem presented in [1] was whether it is possible to design an 
accumulator without a t rapdoor  and without a trusted party. Such an accu- 
mulator  would be truly decentralized and does not rely on trusted on-line or 
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off-line services. A first positive answer to this problem was given in [2] where 
a non-trapdoor  accumulator was presented. The idea was to produce long hash 
codes bl, for each item i = 1, . . . , m ,  and represent them as a p-axy n-tuples 
yi = (y/t, . . . ,  y/,~), where p is a prime. The accumulated hash value is computed 
as the coordinatewise product modulo p of yl, i = 1 , . . . ,  m. With a fixed security 
level, say, the probability of forgery is e - t ,  the required length of the accumu- 
lated hash value grows as O ( N l o g  N)  with the number N of items on the fist. 
Next we show how to modify this construction to improve its efficiency. 

3 T h e  N e w  A c c u m u l a t o r  

Let N = 24 be an upperbound to the number of items to be accumulated and 
let r be an integer. We assume that  there is a one-way hash function h which 
maps bit strings of arbitrary length to bit strings of fixed length t : rd. 

Let x t , . . . ,  xm,  m < N ,  be the items to be accumulated and let 

h(x i )  -= y/, i = 1 , . . . , m  

be their corresponding hash codes, which are bit strings of length g -- rd. These 
strings are divided into r blocks of length d and we denote 

y, :- ( y / t , . . . ,  y / , ) ,  

where y/j is a string of bits of length d. Further, we map each i tem y / t o  a binary 
string b/ of length r by replacing y/j by 1, f fy / j  ~t 0, and by replacing y/j by 0, 
ff y/j is a string of zero bits. 

In this way we have mapped  each i tem m/ to a bit string bi = ( b i t , . . . ,  bl,) 
of length r, which in the case of an ideal hash function h can be considered as 
values of r independent binary random variables, for which the probabili ty of 
taking the value 0 is equal to 2 -4.  

The accumulated hash code ( a t , . . . , a , )  is computed as a coordinatewise 
product modulo 2 of the binary r-tuples b/, i -- 1 , . . . ,  m. 

To verify the membership of an i tem xl on a list described by the accumulated 
hash value a ---- ( a t , . . . ,  a , )  o n e  computes yi = h(zl) ,  forms the corresponding 
bi = (bit . . . .  ,b i , )  and cheks that,  for all j = 1 , . . . , r ,  whenever b/j = 0 then 
aj = O .  

The verification procedure is essentially simpler than the verification in the 
Benaloh-de Mare accumulator where the prover also needs to provide the partial  
accumulator of m -  1 items. 

Next we show that  the security of the new accumulator depends in a proven 
way only o n t h e  randomness properties of the hash function h. We also derive 
estimates to what is the required size of the length of the accumulator to achieve 
a certain security level. 

T h e o t ' e m  1. Let  bij and cj be independent  binary random variables such that 
Pr(blj  = O) = Pr(c j )  --- 2 -d ,  for  i = 1 , . . . , m  and j = 1 , . . . , r .  Let a = 
( a l , . . . , a , )  be the coordinatewise product of  the r- tuples  bi = (b /1 , . . . ,b / , ) ,  
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i = 1 , . . . , m .  Then the probability that, for  all j = 1 , . . . ,  r, 
only i.f aj  = O, is equal to 

( 1  - - 2 - ' * ) " ) ' .  

we have cj = 0 

Proof. For each j = I,... ;r the probability that cj = 0 and aj = 1 equals 

2-d(1 _ 2 -d ) 'L  

[] 

Assuming that  h produces truly random hash codes, and recalling that  N -- 
2 d is the upperbound to the number of items to be accumulated, we get by the 
theorem that  the probability of finding a forged i tem to a list described by an 
accumulated hash value a = ( a l , . . . ,  a , )  can be estimated as follows 

l l v  , 1 , 1 ( 1 - ~ )  ) ~ ( 1 -  ~ e - ~ r ; .  (1 - 2 - d ( 1  -- 2 - a ) m ) "  _~ {1 -- ~ ~--~e ) 

4 Requirements 

For some applications, it is sufficient that  the hash function is one-way. In o t h e r  
applications non-repudiation may  be essential and then the hash function needs 
to be collision resistant. For example, if the items to be accumulated are docu- 
ments belonging to different users and the accumulator is used for t ime-stamping, 
then it is desirable tha t  .the users cannot find two documents with the same hash 
code. 

Formally, the requirements for the hash function used in combination with the 
new accumulator are the same as for any cryptographic hash function. However, 
the existing hash functions are designed for the purposes of digital signatures 
and produce short hash codes of  128 - 160 bits. By the theorem the length ~ of 
the hash codes needed by the new accumulator is determined by the formula 

l = N e t  log N 

where N is the max imum number of items, e is Nepe r ' s  number, and e - t  is 
the probability of forgery. For example with N = 1000 and t = 100 we need to 
compute 2.8 megabits of hash code for each item. 

The length r of the accumulated hash value is shorter by the factor of log N.  
It  can be estimated by r -- N e t .  This is how much memory  is required to store 
the accumulated hash value. It is less than in a traditional directory solutions. 
An itemized list, with a digital signature as appendix to each item, takes at least 
s N  log N bits of memory, where s is the length of the signature and log N is a 
lower bound to the length of the description of an item. 

A straightforward implementat ion of a required "long" hash function using 
existing cryptographic algorithms could be as follows. The item is first hashed 
to a short hash code which is then fed as a seed to a binary random sequence 
generator. From this seed as many  pseudorandom bits as needed can be generated 
for the long hash code. 
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