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Abstract. In 1990 Rivest introduced the hash function MD4. Two years 
later RIPEMD, a European proposal, was designed as a stronger mode 
of MD4. Recently wc have found an attack against two of three rounds of 
RIPEMD. As we shall show in the present note, the methods developed 
to attack RIPEMD can be modified and supplemented such that it is 
possible to break the full MD4, while previously only partial attacks 
were known. An implementation of our attack allows to find collisions 
for MD4 in a few seconds on a PC. An example of a collision is given 
demonstrating that our attack is of practical relevance. 

1 I n t r o d u c t i o n  

Rivest [7] introduced the hash function MD4 in 1990. The MD4 algorithm is 
defined as an iterative application of a three-round compress function. After an 
unpublished at tack on the first two rounds of MD4 due to Merkle and an a t tack 
against the last two rounds by den Boer and Bosselaers [2], Rivest introduced 
the strengthened version MD5 [8]. The most important  difference to MD4 is the 
adding of a fourth round. 

On the other hand the stronger mode RIPEMD [1] of MD4 was designed as a 
European proposal in 1992. The compress function of RIPEMD consists of two 
parallel lines of a modified version of the MD4 compress function. In [4] we have 
shown that  if the first or the last round of its compress function is omitted, then 
RIPEMD is not collision-free. 

Recently Vaudenay [9] described another a t tack against the first two rounds 
of MD4. The two round collisions he found form almost-collisions for the full 
MD4. But none of the previously known partial at tacks can be generalized to 
the three-round MD4. Thus, although MD4 has generally been considered to be 
weak, the. original conjecture that  MD4 is collision-free has still remained to be 
disproved. This will be done in the present paper.  

We shall show that  the methods developed to at tack RIPEMD can be applied 
to MD4 very effectively. We shall derive an algorithm which allows to compute 
collisions for the full MD4 in a few seconds on a PC with Pent ium processor. 
Finally it is demonstrated that  a further development of our a t tack allows to 
find collisions for meaningful messages. Therefore we suggest that  MD4 should 
no longer be applied in practice. 
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It remains a challenge trying to attack MD5 with the techniques presented 
in this note. 

Terminology and basic notations 

Using the term "collision of a compress function" we assume that  the corre- 
sponding initial values coincide for both inputs. For "pseudo, collisions" this is 
not required. But the latter are of much less practical importance and will not 
be considered here. 

Throughout,  all occuring variables and constants are 32-bit quantities. Ac- 
cordingly the value of an expression is its remainder modulo 232 , and equations 
are to be understood modulo 232. The symbols A, V, ~B and -~ are used for bitwise 
AND, OR, XOR, and complement, respectively. For a 32-bit word W, let W <<~ 
denote the 32-bit value obtained by circularly shifting (rotation) W left by s bit 
positions for 0 < s < 32. If  W is an expression then, of course, evaluate it before 
shifting. Further we agree that  - W  <<  ̀ stands for . (W<<' ) .  

A definition of the compress function of MD4 can be found in the Appendix. 

2 M a i n  R e s u l t  a n d  P l a n  o f  t h e  A t t a c k  

The main result of this paper is: 

MD4 is not collision-free. 
\ 

There is an algorithm such that  the finding of collisions for MD4 requires the 
same computational effort as about 220 computations of the MD4-compress func- 
tion. 

The most direct way trying to get a collision for an iterated hash function 
like MD4 is trying to find a collision for the compress function with the fixed 
initial value required at the beginning of the computation of hash values. This 
is precisely what will be done in the present paper for MD4. 

Throughout  this note X = (Xi)i<18 denotes a collection of 16 words, and 
the collection X = ()(~)i<lB is defined by setting 

)(, = X, for (i # 12), 

)~12 = X12 + 1. 

In the sequel we demonstrate how to choose X such that  its MD4 hash value 
coincides with that of X, i.e. 

co _wess(Iv0; x )  = corniest(Iv0; 

As in [4] the basic idea is that  a (small) difference between only one of the 
input variables can be controlled in a way that the differences occuring in the 
computations of the two associated hash values are compensated at the end. 
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Our at tack is separated into three parts.  Each part  considers a certain seg- 
ment of the compress function. For n < m < 48 we therefore introduce the 
notat ion 

compress~ ( ( A, B, C, D); Xv(,~), ..., X~,(,r,)) = ( A', B ' ,C' ,  D') 

for the segment of compress from step n to step m, where the mapping ~ is 
defined such that  Xp(i) is applied the i-th step of compress. This means that  
the computat ion of compress~n starts with the "initial value" (A, B, C, D), then 
steps n to m are applied with the corresponding input words X~(n), ..., Xp(m), 
and the output  (A ~, B ~, C I, D I) ofcompress~ is the contents of the registers after 
step m. 

Sometimes, in the above notation, we write simply X instead of Xp(,~), ..., 
X~(m). (But thereby we do not necessarily assume tha t  all Xi are actually de- 
fined.) We have to introduce another basic notation which will be used in the 
sequel. For n < i < m let 

( Ai , Bi , Ci, Di ), resp. ( Ai , Bi, Ci, Di ) 

be the contents of the registers after step i has been applied computing compress~n 
for the input X, resp. X.  Further we set 

Ai = (Ai - Ai, Bi - / ~ i ,  C~ - Ci, Di - Di). 

Note that  in each step only one of the registers is changed and that  for instance 
A4k : A4k+l : A4k+2 = A4k+3 (k = 0, 1,..., 11). 

P a r t  I:  I n n e r  a l m o s t - c o l l i s i o n s  ( s t e p  12 to  s t e p  19) 

For the at tack against two-round RIPEMD [4], X13 was the selected variable 
instead of X12 and the first part  was to find "inner collisions", i.e. an initial 
value and inputs for (both fines of) compress~ 3 such that  A1 s = 0. Since X18 
occurs precisely in step 13 and step 18 of two-round RIPEMD-compress ,  this 
was a suitable approach to find collisions for two rounds. The main problem in 
the case of RIPEMD has been to handle its two parallel fines simultaneously. 

However, here we deal with the three rounds of MD4. X12 appears in each 
round exactly once, namely in steps 12, 19 and 35. X and ) (  give a collision if 
(and only if) A85 = 0, because X12 appears  in step 35 the last time. To achieve 
this we require a certain well-chosen value for A19 , namely 

A19 = (0, 1 <<25, --1 <<5, 0) .  

This means that  the outputs  of comFressl~ for X and ) (  are close but not 
equal. We are not looking for inner collisions, but for inner "almost"-collisions 
with precisely the output  difference specified above. 
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Part  II: Differential  attack m o d u l o  282 (step 20 to s tep 35) 

The value for L119 of Part I has been carefully selected such that,  with a relatively 
high probability, this difference inherits to step 35 in a way that  it is compensated 
by the difference between the inputs for this step, i.e. XI2 and X12 + 1. (It should 
be emphasized that  here the considered differences are not meant with respect 
to XOR but modulo 28~.) Based on Part I we can therefore find collisions for 
the compress function of MD4. 

Part  III: Right  initial value (step 0 to step I I )  

In the derived algorithm for finding collisions for the compress function there 
are still many variables free. Therefore it is very easy to get even collisions with 
an arbitrary prescribed initial value. 

The next sections contain a detailed description of the three parts of our 
attack. 

3 I n n e r  A l m o s t - C o l l i s i o n s  ( S t e p  12 t o  S t e p  19) 

In this section we consider compress~, i.e. the steps 12 - 19 of compress. Let 
(A, B, C, D) be the initial value of compress~. Recall that  (A19, Big, C19, DIg) 
denotes the output of compress~, i.e. the contents of the registers.after step 19 
for the inputs X12, X13, X14, X15, Xo, X4, Xs, X12, resp. (A19, Big, ClO, D19) 
for the inputs X12 + 1, X18, X14, X15, Xo, X4, Xs, X12 § 1. 

We want to find an inner almost-collision, that  are explicit values for A, B, 
C, D and X12, X18, X14, X15, Xo, X4, X8 such that  

Alg = (0, 1 <<2~, - 1  <<~, 0).  

The reason for this requirement will become clear in the next section. The fol- 
lowing table shows the contents of the registers after the application of the steps 
i = 12, ..., 19 for XI~, X18, ... and for XI~. + 1, X18, ..., respectively. To simplify 
the notations we set A, = A30, B,  = B19, ..., U = AI~., V = D13, W = C14, 
Z = B15 and Cr = ~ ,  ff = D13, W = C14, Z = B15. 

I-step[ A I B [ C I D [[ input 

1 2  U B C D 

13 U B C V 

14 U B W V 

15 U Z W V 

16 A, Z W V 

..... 17 A, Z . W D, 

18 A, Z [ C, D.  

19 A, B,  C, D, 

X12 

X18 

X14 

Xls 

X0 

X4 
XS 

X12 

I shift I function I constant I 

3 

7 

11 

19 

3 

5 

9 

13 

F 0 

F 0 

F 0 

F 0 

G K1 

G K1 

G K1 

G K~ 



5 7  

I stePll A [ B  [ O l D  II 
12 [ U  B C D 

! 

13 0 B C 9 

14 0 B ,[ W 9 

15 0 2 lYd 9 

16 A , [  2 I~ 9 

17 A. 2 W D, 

18 A, 2 0 .  D.  

19 A. /3. C, D.  

input I shift lfunction I constantl  

X 1 2 + 1  

X13 

X14 

X15 

Xo 
X4 

X8 

X z 2  + 1 

3 F 0 

7 F 0 

11 F 0 

19 F 0 

3 G K1 

5 G K1 

9 G K1 

13 G K1 

Here we require /3 .+1 <<23 = B.  and C . + 1  <<s = 0 , .  The framed entries are those 
which have been modified in the particular steps, and the Boolean functions F 
and G are "selection" and "majority": 

F(U, V, W) = (V ^ V) V (~g A W), 

a(v,  v, w)  = (u ^ v) v (v  A w)  v (v  A w ) ,  

and K1 = 0z5a827999 (see Appendix). The finding of an inner almost-collision 
is equivalent to the finding of a collection of solutions B, C, A., B. ,  C., D. ,  U, 
V, W, Z, U', V, ltd, 2 for the following system of equations: 

1 = ~r<<2o _ U<<2o, (1) 
F ( ~ ,  B, C) - F(U, B, C) = 9 <<~5 - V <<~5, (2) 
F(V, Lr, B) - F(V, U, B) = l~d <<21 - W <<21, (3) 

F(14 r, 9,  U) - F(W, V, U) = 2 <<13 - Z <<13, (4) 

c ( 2 ,  9v, 9 )  - a ( z ,  w ,  v )  = v - O, (5) 
G(A., 2, 17V) - G(A., Z, W) = V - 9 ,  (6) 

G(D., A., 2)  - G(D., A,, Z) = W - l~d + 0 .  <<23 - C, <<23, (7) 

G(C,, D,, A,) - G(C,, D,, A.) = Z - 2 +/~<<10 _ 8.<<10 _ 1, (8) 

where/3,  stands for B.  - 1 <<25 and C. stands for C. + 1 <<s. Equations (1) - (8) 
simply follow by elimination of X~(i) from the two equations defining the steps 
i = 12,..., 19 of compresslt~ for the inputs X and X. As an example, by the 
definition of step 15 we have 

z = (B + F(W, V, U) + X~5) <<~~ 
= (B -[- F ( ~  ,r, 9 ,  ~r) _[_ X15)<<19, 

implying (4). Conversely, if a collection of solutions of (1)-  (8) is given then we 
obtain an inner almost-collision by setting 

X13 : arbitrary, (9) 
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X14 = W <<21 - C - F(V, U, B), (10) 

x 1 5  = z < < 1 8  - B - F(W, V, U), (11) 
X0 = A <<29 - U - G(Z,  W, V) - K1, (12) 

X4 -- D<. <27 - V - G(A, ,  Z, W)  - E l ,  (13) 

Xs = C. ~23 - W - G(D.,  A. ,  Z) - g l ,  (14) 

XI~. = B<, <10 - Z G(C,,  D., A . )  - g l ,  (15) 

D = Y <<~5 - F(U, B, C) - Xls ,  (16) 

A = U <<lg - F(B,  C, D) - X12. (17) 

The  system (1) - (8) has 14 variables. Thus  it is a na tura l  idea to make settings 
for some of  the variables such tha t  finding a solution for the remaining variables 
is feasible. Therefore  we set 

U = - 1  : -  O x f f f f f f f f ,  0 = O, B - :  O. 

Then (1) is satisfied and (2), (3), (0), (7), (S) can be transformed and reordered 
as follows: 

= Z - G(C.,  D., A . )  + G(C.,  D. ,  A . )  +/},<<10 _ B.<<lo _ 1, (18) 

I~ r = W - G(D.,  A. ,  Z) + a ( D . ,  A.,  Z)  + ~.<<23 _ C.<<23, (19) 

Y = W <<21 - 14 r<<~1, (20) 

9 = V - G(A, ,  Z, 17V) + G(A, ,  Z, W),  (21) 
C = V <<25 - 9 <<25 , (22) 

For this system the variables A. ,  B . ,  C. ,D. ,  Z and W form free parameters  for 
the set of  all solutions. The  two remaining equations (4) and (5) are now 

G(z, W, V) - G(~, r162 ~) = 1, (23) 
F(I)V, V, - 1 )  - F(W, V, O) - ~<<lS + Z<<ta = 0. (24) 

A l g o r i t h m  s e a r c h i n g  f o r  i n n e r  a l m o s t - c o l l l s i o n s  

After this preparat ions  we can give an example of an algori thm leading to solu- 
tions of  ( 1 ) -  (8), tha t  is to an inner almost-collision, in about  one second on a 
PC.  The  basic idea can be described as a kind of "continuous appro~amahon" " " 
(cf. [4], Section 4). 

i .  Choose A , ,  B . ,  C,,  D. ,  Z, W randomly, compute Z, 17V, V,  9 according to 
(18)- (,.I) and test (28). T/the te,t i, passed goto 2. (Since W and W (resp. 
Z and Z )  are close with respect to Hamming distance, there is a relatively 
high probability that (23) is satisfied.) 

2. Take A . ,  B . ,  C.,  D, ,  Z, W found in 1. as "basic values". Change one 
random bit in each of these variables, compute the associated Z, ~V, V,  ~r 
and test if  equation (23) is still satisfied and if, moreover, the left 4 bits of 

f ( l ~  r, V, - 1 ) ,  F(W, V, 0) - ~<<13 + Z<<ls (25) 
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are zero. If this test is passed take the corresponding values A . ,  B . ,  C.,  D. ,  
Z, W as the new "basic values". The next is doing the same as before, but 
now testing i f  the 8 left bits of (25), instead of 4, are zero. Continue with 
the le, 16,  . . .  l e f t  bits until (24} is fulfilled. 

3. Now (23) and (23) are satisfied, and we obtain an inner almost-eoUision 
by setting B = 0 and defining A, C, D, and Xi (i = O, 4, 8, 12, 13, 14, 15) 
according to (9 ) -  (17) and (22). 

In order that the inner almost-collision can be used for the differential attack 
explained in the next section, the following additional equation has to be satis- 
fied: 

G(B, ,  C,, D,)  = G(B, ,  C,, D,) .  (26) 

Since /~, and B,  (resp. C, and C,)  are close, there is a high probability that  
this condition is true. Thus, to achieve also (26), the above step 2. has to be 
repeated a few times. (To be more precise: 9 times on average, as we shall see in 
the next section.) 

We call an inner almost-collision admissible ff (26) is satisfied. Using again 
our original notation in (26) we can summarize the result of this section as 
follows: 

Lernma 1. There is a practical algorithm, which allows to compute an admissi- 
ble inner almost-collision, i.e. an initial value (A, B, C, D) and inputs X12, X13, 
X14, X15, Xo, )(.4, X8 for compressll~ such that we have 

A10 = (0, 1 <<25 , - 1  <<5 , 0 ) ,  

G(BI~, C19, O19) = G(h19, C19, D~9). 

The computation requires less than one second on a PC. 

4 Differential Attack Modulo 2 $2 (Step 20 to Step 35) 

The main part of the work has been done in the preceding section. We are 
now well-prepared for a routine differential attack, which will allow us to find 
collisions for the compress function of MD4. Using the notation introduced in 
Section 2 we can state this result as follows: 

I, emrna 2. Suppose that an admissible inner almost-collision, i.e. an initial 
value (A, B, C, D) for step 12 and variables X12, XI8, X14, XlS, Xo, X4, X8 are 
given according to Lemma 1. Choose the remaining Xi  's randomly and determine 
the corresponding initial value by computing compress~ backwards starting with 

(All ,  B l l ,  Cll,  Dll)  = (A, B, C, D). 

Then the probability that X and f f  form a collision for the compress function of 
MD4 (i.e. Ass = O) is about 2 -92. 
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Proof. Let p be the probability that  Aa6 = 0 under the given assumption. We 
have to confirm that  

p ~ 2 - n .  

The below table defines a sequence of fixed values A* (i = 19, ..., 35) for dif- 
ferences starting with A~g = (0, 1 <<26, --1 <<6, 0) and ending with A~6 = 0. The 
framed entries correspond to those variables which are modified in the particular 
steps. The Boolean functions G and H are majority and XOR, respectively. 

19 

2O 

21 

22 

23 

24 

25 

2 6  

27 

28 

29 

30 

31 

32 

33 

34 

35 

a; 

0 1 <<26 - 1  <<6 

0 1 <<26 -1  <<6 

0 1 <<~6 -1  <<6 

0 1 <<26 -1<<141 

0 1 <<8 -1  <<14 
0 1 <<8 - - I  <<14 

0 I<<B -1<<14 1 

0 1 <<6 - 1  <<28 

1<<19 I -I<<~8 0 

0 1 <<Ig - 1  <<28 
0 1 <<19 - 1  <<2s 

0 I <<19 - I  

0 i I 1 - I  

0 1 - 1  

0 1 - 1  

o o1! 
0 0 0 

] 

input 

0 * * * * * 

0 G 3 1 X1 K1 

0 I G 5 1/9 X6 K1 

0 G 9 1/3 X9 g l  

0 G 13 1/3 X13 K1 

0 G 3 1/9 X2 K1 

0 G 5 1/9 XB K1 

0 G 9 1/3 Xlo K1 

0 G 13 1/3 X14 K1 

0 G 3 1/9 Xs K1 

0 G 5 1/9 X7 K1 

0 G 9 1/3 X n  K1 

0 G 13 1/3 X15 K1 i 

0 H 3 1/3 X0 K2 

0 H 9 1/3 Xs Ks 

0 H 11 1/3 X4 K2 

0 H 15 1 X n ( + l )  Ks 

Here ~ (i > j)  denotes the probability that  Ai : A~ under the assumption that  
Aj : A~. The asterisk entries for step 19 mean that  we do not refer to these val- 
ues in our argumentation. Note that  A19 : A~9, since an inner almost-conision 
is given. We have A20 = A~O and therefore 19 P20 : 1, because the given inner 
almost-collision is admissible. To verify p34 : 1 note that  A84 : (0, 1, 0, 0) : A~4 
implies 

! 

B35 : (B34 +',H(C34, D34, A34) + X12 + K2) <<15 

= § I) + H(r b3 ,  ]84) + x,2 + K2) 
: (/}S4 + H(Os4, Ds4,-484) + (XI2 + 1 + K2)) <<15 

: B35. 
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Also each other of the given values for p~-t can be proved easily. As an example, 
for i = 32 we have to show that  ( R +  1) (9 S = R@ ( S +  1) holds with probabili ty 
1/3 for independent random words R, S. This equation is satisfied if and only if 
exactly one of the following conditions for the binary representations of R and 
S is given: 

R = * 0 a n d S = * 0 ,  

R = .01 and S = .01, 

R = *011 and S = *011, 

R = 01...11 and S = 01...11, 

R = 1...11 and S = 1...11. 

Here an asterisk marks an arbi trary bit sequence of suitable length. (These 
sequences do not have to coincide for R and S in the particular cases.) Thus we 
conclude 

pO.~ = 1 1 1 1 1 

The above table yields 

35 
H p ~ - I  = 2  -30.11 

i--20 

(1) 1 1 1 +  
284 -- 3 ~ " 

This already indicates that  p is large enough for a practical attack. Since the 
conditions A~ = A* are strongly dependent, we obtain a much more realistic 
approximation for p if we consider four steps at once. The values for p~-4 can 
certainly be computed similar as p~-l .  However, this seems to require lengthy 
considerations of various cases. The following values have been found by a simple 
Monte Carlo method. 

step i 

19 

23 

27 
31 

135 II o I 
Now we get 

0 1 <<25 --1 <<5 0 * 

0 1 <<6 --1 <<14 0 1/35 

0 1 <<10 --1 <<23 0 1/315 
0 1 - I  0 1/315 

I o I o  II 1/71 

35 
H p ~ - 4 ~  2 -24"54. 

i=23 
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This is a much better approximation for p. Experimental observations suggest 
that p is in fact still larger. We found the estimation p .~ 2 -~2. [] 

Thus we have shown that  a random choice of the nine free Xi's gives a 
collision of the compress function with probability 2 -2~. Therefore, in principle, 
each given inner almost-collision allows to find on average about  22an collisions 
for the compress functions. 

Actually we need much less than 222 trials to find a collision for the compress 
function. The reason is that  we do not have to start each trial from the beginning. 
If Xz, Xs, X9 have been found such that  together with the already fixed Xi3 
we have reached the required difference for step 23, then keep X1, Xs, Xg. Next 
choose suitable values for X2, Xa, X10, and so on. In this way we can find a 
collision for the compress function in a small fraction of a second on a PC. 

5 R i g h t  I n i t i a l  V a l u e  ( S t e p  0 t o  S t e p  1 1 )  

It remains to compute collisions with the initial value IVo required by the defini- 
tion of MD4. By Lemma 2 there are enough variables free to manage this easily. 
(The following argumentation does of course not depend on the particular choice 
of/v0.) 

Suppose an admissible inner almost-coUision with initial value (A, B, C, D) is 
given. Take random X1, X2, X3 and Xs. Recall that  X0, X4 and X8 are already 
fixed. Compute compress~ Now As = A4, B6 = B4 = B3, 
C5 = C4 = C3 = C2, D5 are fixed. 

Next we shall define Xa, XT, 29, )(10 and Xt t  such that  the output of 
comwess~ Xo, ..., Xtt)  matches with (A, B, C, D), or in other words 

comwess~ Bs; C2, Ds); X6, ..., Xzz) = (A, B, C, D). 

Matching B, C and D can be done directly by associating suitable values to the 
free variables Xzz, Xz0 and X9, respectively. It remains to match A in step 8. 
This cannot be done as before, since X8 is already fixed. Step 8 is defined by 
the equation 

As = (A4 + F(Bz, Ca, D5) + Xs) <<3. 

According to the definition of F as selection function we achieve A8 = A if 
B~ = -1  = O z f f f f f f f f  and Ca = A <<29 - A4 - )/'8. These values for Ca and 
B7 can be obtained by a suitable choice of Xa and X~. 

Explicitly, this simple idea leads to the settings: 

Xa := -C2 - F(Ds, A4, B3) + (A <<29 - A4 - Xs) <<21, 

C6 = (C2 + F(Ds, A4, B3) + Xa) <<11 ---- A <<29 - A4 - Xs, 

X7 := - B 3  - F(Ca, Ds, A4) - 1, 

B7 = (B3 + F(Ca, Ds, A4) + X~) <<l~ = - 1 ,  

A8 = (A4 + F ( - 1 ,  Ca, Ds) + Xs) <<3 = (A4 + Ca + Xs) <<8 = A, 
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X9 := D <<25 - D5 - F(A ,  - 1 ,  C6), 

09  = (05 + F(A ,  - 1 ,  Co) + Xg) <<7 = D, 

Xz0 := C <<2t - C6 - F ( D , ,  A, -1 ) ,  

Ct0 = (C6 + F(D,  A, - 1 )  + X19) <<tt = C, 

Xzz := B <<z3 + 1 - F(C,  D, A), 

B t t =  ( - 1  + F ( C , D , A )  + X t t )  <<t9 : B. 

This means we obtain 

compress~ Xo, ..., X l l )  = (Al l ,  B l l ,  C11, D l l )  = (As, Bzt ,  Cz0, D9) 

= ( A , B , C , D ) ,  

i.e. as desired, we have reached the connection to the given inner almost-colllsion. 

6 C o l l i s i o n  S e a r c h  A l g o r i t h m  

As we now have described all parts of the attack, we give an overview summa- 
rizing the single steps of the derived algorithm searching for collisions: 

1. Compute A, B,  C, D and Xo, X4, X8, Xz2, Xz3, Xz4, XIs,  which give an 
inner almost-collision (from step 12 to 19). The technical details of a suit- 
able algorithm have been explained in Section 3. It also fixes values for 
A19, B19, C19, D19 and A19, B19, C'19, /~19" 

2. According to Section ~ and 5 choose X1, X2, X3, X5 randomly and compute 

(As, Bs, C5, Ds) = compress~ Xo, ..., Xs) ,  (27) 

t : A <<29 - As - )(8, (28) 

X6 = t <<21 - C5 - F(Ds ,  As, Bs),  (29) 

X7 : - 1  - B5 - F( t ,  Ds, A5), (30) 

X9 = D <<25 - D5 - F ( A , - 1 , t ) ,  (31) 

Xz0 = C <<21 - t - F (  D, A, -1 ) ,  (32) 

Xzz = B <<t3 + 1 - F(C, D, A), (33) 

(A35, B35, C35, D35) = compress~~ BIg, C19, DI9; X),  (34) 

(fi~-35,/}35, ~'~85, D35) : comlyress2~ /}19, 019, D19; X), (35) 
/135 : (A35, B35, C85, D85) - (-435, /}35, &35, bz5). (36) 

3. If/135 = 0 then we have found a collision. Otherwise make a new trial by 
going to 2. 
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T u n i n g ,  c o m p u t a t i o n a l  e f for t ,  a n d  e x a m p l e  

To make 2. more effective do not compute the compress function from step 20 to 
step 35 completely. Instead, as condition to break up the trial, test immediately 
after each step i if Zli # Zl* (i : 21, 22, ...); see first table in Section 4. 

In this way for the largest part of all trials the computation will be broken 
up a l ready after step 21, i.e. it is restricted to (27) - (33) and two steps of 
(34) and (35), respectively. (On the other hand it is unlikely that  Z135 : 0 but 
A i # A~ for some i. The sequence LI[9 , ..., A~4 in Section 3 is the "almost 
unique" way leading to AS5 : 0. If we leave this way then it is very likely that 
the avalanche effect brings everything out of control. Hence it is unlikely that  we 
loose a successful trial by the proposed selection.) Thus mostly a trial requires 
about the same effort as 16 steps (one third) of MD4-compress. 

In view of Lemma 2 this means that  the finding of a collision takes on average 
the same computational effort as about 2 ~~ computations of MD4-compress. This 
estimation has been confirmed by an implementation of the attack. 

The algorithm sometimes runs into a dead end. For instance, this happens 
if the values A19, B19, Cx0, D19 and -419, B19, C19, b19 coming from the inner 
almost-collision are bad-conditioned with respect to the differential attack. This 
effect can be taken into account by  controlling the success of the algorithm and 
making a new start if necessary. 

Beside the complexity of a collision search algorithm, the "variety" of colli- 
sions which, at least theoretically, can be found is another important  aspect. In 
particular the number of obtainable collisions is of interest. We therefore mention 
that  by Lemma 2 for each found inner almost-colllsion, in principle, about 21~ 
collisions of MD4 can be computed a~plying the above algorithm, since there are 
four words free in 2. (i.e. 2128 trials), ~nd t h ~ r o b a b i l i t y  for a success is about 

For the sake of readability of our exposition we have restricted ourselves to 
the description of the most direct version of our attack. But there are still many 
further technical tricks to improve it considerably. In this way we can even get 
collisions of practical relevance. This is demonstrated in the next section. First, 
however, we give a collsion which has 
search algorithm: 

X0 = 0x13985e12 X4 = Ox2dfeO9ac 
X1 = 0x748a810b X5 -- Oz4bfdbdb9 
X2 = Ox4dldf l5a Xs = 0xf464b0c8 
X3 = 0x181dlS16 Xz = Oz.fbalc097 

been found by the previously described 

X8 = Oxabel7beO X12 = 0x20771027 
X9 = Oxedled4b3 X13 = O~fd . f f fb f . f  

X lo  = Ox412Oabf5 X14 = O ~ f f f f b f f b  
Xl l  = 0z20771029 X15 = Oxf774bed2 

Recall that  X is defined by setting Xi -- Xi (i < lfi, { # 12) and 

X12 = X12 + 1 = 0z20771028. 

X and .~ have the same MD4-compress value with respect to the initial value 
I ~  (see Appendix). The complete MD4 algorithm, including the padding rule, 
associates to X and X the common hash value 

Ox711ad51b Oxbbab5e22 0zf18blc76 0z17c15892. 
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7 Coll is ions for Crooks  

H o w  to  swind le  A n n  (cf. [10]) 

Alf wanted to sell Ann his house, and Ann was interested. They agreed on a price 
of $176,495. Alf asked Ann to sign a contract using a digital signature scheme 
which is based on some public-key algorithm and the hash function MD4. The 
contract read as follows: 

CONTRACT 

At the price of $176,495 AIf Blowfish 
sells his house to Ann Bonidea . . . .  

"The first 20 bytes (each of them is represented by an asterisk above) are random. 
They have been placed before the text for security reasons!" claimed Alf~ and 
Ann signed the contract. Later, however, All substituted the contract file by 
another which read as follows: 

CONTRACT 

At the price of $276,495 All Blowfish 
sells his house to Ann Bonidea . . . .  

The contract had been prepared by him such that  replacing $176,495 by $276,495 
does not change the MD4 hash value! 

H o w  A l f  did it 

We shall now explain the precise definition of the above digital contract. Its first 
sixteen 32-bit words are: 

M o =  Ox9074449b M4 = Ox63247e24 Ms = 0x68742074 M12 = 0x2C363731 
M I :  OxlO89fc26 Ms = Ox4e4f430a M9= 0x72702065 Mla = 0x20353934 
M2:Ox8bf37fa2  M s =  Ox43415254Mlo = 0x20656369 M14 = 0x20666c41 
M a :  Oxld63Odaf M7 = Ox41OaOa54Mll = Ox2420666f M15 = Ox776f6C42 
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The twenty bytes of M0 - M4 are the above mentioned "random bytes". The 
bytes of Ms, in reverse ordering (according to the definition of MD4) and inter- 
preted as ASCII read as follows: 

0a 43 4f  4e -- Line .feed 'CON', 

and so on to M15 which reads 

42 6c 6 f  77 ---- 'B low' .  

The sequence M~ (i < 16) has been chosen such that  setting M~. ---- MI~ -1-1 and 
M~ = Mi for i < 16, i r 12 gives a collision, i.e. 

com ess(Iv0; M) = comp e,s(IV0; M') 

for the compress function of MD4 and its fixed initial value IVo. This collision 
has been found in less than one hour on a PC. Interpreting Mr2 = 0z2c363731 
and M~2 = 0z2c363732 we get: 

M12 = 31 37 36 2c = '176, '  

M~2 = 32 37 36 2c = ' 2 7 6 /  

In view of the definition of MD4 as the iterative application of compress we 
obtain a collision by taking any bit string and appending it to M and M ~. 

8 Conclusions 

A dedicated hash function should be secure and fast at  the same time. Every- 
one who comes up with a new design of a fast algorithm, especially if there is 
not already sufficient experience with related algorithms, runs a great risk to 
overlook weaknesses and to underestimate possibilities of finding new cryptana- 
lyric methods. But there is no other way than to s tar t  with concrete proposals 
and thereby pushing on an evolutionary process leading to better  and better  
solutions. Therefore the introducing of MD4 by Ron Rivest [7] in 1990 was a 
significant contribution. Today there is a whole family of  hash functions based 
on MD4's design elements. 

A short t ime after MD4 had been introduced, some weaknesses became ap- 
parent and Rivest introduced MD5 in 1991. He explained his reasons in [8]: 

"The MD5 algorithm is an extension of the MD4 message-digest algo- 
ri thm. MD5 is slightly slower than MD4, but  is more "conservative" in 
design. MD5 was designed because it was felt that  MD4 was perhaps 
being adopted for use more quickly than justified by the existing critical 
review; because MD4 was designed to be exceptionally fast, it is "at the 
edge" in terms of risking successful cryptanalytic a t tack . . . .  " 



67 

The weaknesses of MD4 observed in [3] and [9], two-round attacks and almost 
coUisions~ were generally considered to be mainly of theoretical importance. Now 
in view of the presented attack this can no longer be assumed, as has been 
demonstrated. 

/ 

[ Where MD~ i8 8ti~ in ~e,  i~ ~ho~d be ~eplaced ~, ] 
i 

An exception is the application of MD4 as a one-way function. What  are possible 
alternatives? - The compress function of the 256-bit extension of MD4 (see [7]) 
is not collision-free [5]. RIPEMD is another strengthened mode of MD4 proposed 
in 1992 [2]. The design of RIPEMD and that  of extended MD4 are very similar. 
We anticipate that,  in addition to the already known two-round attacks [4], the 
compress function of RIPEMD is also not collision-free. 

We have some reservations about MD5 as well. Although we think that  MD5 
is much stronger than MD4 and stronger than extended MD4, it might still turn 
out that the adding of one round and the other changes are not sufficient to 
protect MD5 against the methods developed in [4] and the present note. 

As replacements for MD4 and MD5 we would suggest RIPEMD-160 (with 
160-bit hash values) or RIPEMD-128 (with 128-bit hash values). These are de- 
scribed in [6] and have been designed as a strengthened version of RIPEMD, 
taking account of recent progress in the cryptanalysis of the MD4 family of hash 
functions. 

Another alternative is the Secure Hash Algorithm (SHA-1), which was de- 
signed by NSA and pubhshed by NIST (National Institute of Standards and 
Technology, US) [1]. However, its design criteria are secret. 

Acknowledgment. The author thanks Antoon Bosselaers for reading an earlier 
version of this paper very carefully and giving several hints improving the expo- 
sition. 
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Appendix 

The hash function MD4 is defined as the iteration of a certain compress function, 
which we shall specify below. The computation starts with the initial value 

IVo= 0x674523010xefcdab89 Ox98badcfe 0x10325476. 

Each application of the compress function uses a collection of four words as initial 
value and 16 words of the message as input, and it gives four words output, which 
are then used as initial value for the next application. The final output is the 
hash value. This works, since there is a padding rule (addition of bits to the 
message such that  its length is a multiple of 512 --: 16 x (length of words)). A 
description of MD4 including also the padding rule can be found in [7]. 

The compress function of MD4 uses the Boolean vector functions 

F(U, V, W) = (U A V) V (-~U A W), 

a(V, Y, W) = (U ^ V) V (U ̂  W) V (V ^ W), 
H(U, V, W) = U $ V ~g W. 

and the constants 

K1 = OxSa827999, 

K2 = Ox6ed9ebal, 

Let FF(a, b, c, d, Z, s), aa(a,  b, c, d, Z, s) and HH(a, b, c, d, Z, s) denote the op- 
erations 

a := (a + F(b, c, d) + Z)<<', 

a := (a + G(b, c, d) + Z) <~ 

a := (a + H(b, c, d) + Z)<<', 

respectively. In order to define the MD4 compress function suppose now that the 
initial value CA, B, C, D) and inputs X0, X1, ..., X15 are given. Copy A, B, C, D 
into registers a, b, c, d, and apply the following steps: 
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First round 

step 0 FF(a, b, c, d, Xo, 3) 
step 1 FF(d,a,b,c,  X1,7) 
s tep2 FF(c,d,a,b,  X2,11) 
step 3 FF(b, c, d, a,)[3, 19) 
step 4 FF(a, b, c, d, X4, 3) 
step 5 FF(d, a, b, c, Xs, 7) 
step 6 FF(c, d, a, b, X6, 11) 
step 7 FF(b, c, d, a, XT, 19) 
step 8 FF(a, b, c, d, X8, 3) 
step 9 FF(d, a, b, c, X9, 7) 
step 10 FF(c, d, a, b, Xlo, 11) 
step 11 FF(b, c, d, a, Xtt ,  19) 
step 12 FF(a, b, c, d, XI2, 3) 
step 13 FF(d, a, b, c, XIa, 7) 
step 14 FF(c, d, a, b, X14, 11) 
step 15 FF(b, c, d, a, XI5, 19) 

step 
step 
step 
step 
step 
step 
step 
step 
step 
step 
step 
step 
step 
step 
step 
step 

Second round 

16 GG(a, b, c, d, Xo + Kt,  3) 
17 GG(d,a,b,c, X4+ K1,5) 
18 GG(c, d, a, b, )[8 + K1,9) 
19 GG(b, c, d, a, Xt2 + K1, 13) 
20 GG(a, b, c, d, XI + K1,3) 
21 GG(d,a,b,c, Xs + K1,5) 
22 GG(c, d, a, b, X9 + K1,9) 
23 GG(b, c, d, a, XI3 + K1,13) 
24 GG(a, b, c, cl, X2 + Kt,  3) 
25 GG(d, a, b, c, )[6 + K1,5) 
26 GG(c, d, a, b, Xlo + K1,9) 
27 GG(b, c, d, a, Xt4 + Kt,  13) 
28 GG(a, b, c, d, X~ + K1,3) 
29 GG(d, a, b, c, X7 + Kt,  5) 
30 GG(c, d, a, b, XI1 + Kt,  9) 
31 GG(b, c, d, a, X15 + K1, 13) 

step 32 
step 33 
step 34 
step 35 
step 36 
step 37 
step 38 
step 39 
step 40 
step 41 
step 42 
step 43 
step 44 
step 45 
step 46 
step 47 

Third round 

HH(a, b, c, d, Xo + K2, 3) 
HH(d, a, b, c, X 8 + K2, 9) 
HH(c, d, a, b, X4 + K2 11) 
HH(b, c, d, a, Xt2 + K2 15) 
HH(a, b, c, d, X2 + K2 3) 
HH(d, a, b, c, Xto + K2 9) 
Hg(c ,d ,a ,b ,  Xg+ ga 11) 
HH(b, c, d, a, X14 + K2 15) 
HH(a, b, c, d, X1 + K2 3) 
HH(d, a, b, c, X9 + K2 9) 
HH(c, d, a, b, X5 + K2 11) 
HH(b, c, d, a, Xla + K2 15) 
HH(a, b, c, d, X3 + K2 3) 
HH(d, a, b, c, Xtt  + K2 9) 
HH(c, d, a, b, X7 + K2 11) 
HH(b, c, d, a, X15 + Kg. 15) 

Finally compute the output AA, BB,  CC, DD as follows: 

A A = - A + a ,  B B = - B + b ,  C C = C + c ,  D D = - D + d .  

That is one sets 

compress( ( A, B, C, D); Xo, XI, ..., Xts) = ( AA, B B, CC, D D). 


