
Cryptanalysis of MD4

Hans Dobbertin

German Information Security Agency
P. O. Box 20 03 63

D-53133 Bonn

e-maih dobbert inQskom, rhein .de

Abstract. In 1990 Rivest introduced the hash function MD4. Two years
later RIPEMD, a European proposal, was designed as a stronger mode
of MD4. Recently wc have found an attack against two of three rounds of
RIPEMD. As we shall show in the present note, the methods developed
to attack RIPEMD can be modified and supplemented such that it is
possible to break the full MD4, while previously only partial attacks
were known. An implementation of our attack allows to find collisions
for MD4 in a few seconds on a PC. An example of a collision is given
demonstrating that our attack is of practical relevance.

1 I n t r o d u c t i o n

Rivest [7] introduced the hash function MD4 in 1990. The MD4 algorithm is
defined as an iterative application of a three-round compress function. After an
unpublished at tack on the first two rounds of MD4 due to Merkle and an a t tack
against the last two rounds by den Boer and Bosselaers [2], Rivest introduced
the strengthened version MD5 [8]. The most important difference to MD4 is the
adding of a fourth round.

On the other hand the stronger mode RIPEMD [1] of MD4 was designed as a
European proposal in 1992. The compress function of RIPEMD consists of two
parallel lines of a modified version of the MD4 compress function. In [4] we have
shown that if the first or the last round of its compress function is omitted, then
RIPEMD is not collision-free.

Recently Vaudenay [9] described another a t tack against the first two rounds
of MD4. The two round collisions he found form almost-collisions for the full
MD4. But none of the previously known partial at tacks can be generalized to
the three-round MD4. Thus, although MD4 has generally been considered to be
weak, the. original conjecture that MD4 is collision-free has still remained to be
disproved. This will be done in the present paper.

We shall show that the methods developed to at tack RIPEMD can be applied
to MD4 very effectively. We shall derive an algorithm which allows to compute
collisions for the full MD4 in a few seconds on a PC with Pent ium processor.
Finally it is demonstrated that a further development of our a t tack allows to
find collisions for meaningful messages. Therefore we suggest that MD4 should
no longer be applied in practice.

54

It remains a challenge trying to attack MD5 with the techniques presented
in this note.

Terminology and basic notations

Using the term "collision of a compress function" we assume that the corre-
sponding initial values coincide for both inputs. For "pseudo, collisions" this is
not required. But the latter are of much less practical importance and will not
be considered here.

Throughout, all occuring variables and constants are 32-bit quantities. Ac-
cordingly the value of an expression is its remainder modulo 232 , and equations
are to be understood modulo 232. The symbols A, V, ~B and -~ are used for bitwise
AND, OR, XOR, and complement, respectively. For a 32-bit word W, let W <<~
denote the 32-bit value obtained by circularly shifting (rotation) W left by s bit
positions for 0 < s < 32. If W is an expression then, of course, evaluate it before
shifting. Further we agree that - W << ̀ stands for . (W<<') .

A definition of the compress function of MD4 can be found in the Appendix.

2 M a i n R e s u l t a n d P l a n o f t h e A t t a c k

The main result of this paper is:

MD4 is not collision-free.
\

There is an algorithm such that the finding of collisions for MD4 requires the
same computational effort as about 220 computations of the MD4-compress func-
tion.

The most direct way trying to get a collision for an iterated hash function
like MD4 is trying to find a collision for the compress function with the fixed
initial value required at the beginning of the computation of hash values. This
is precisely what will be done in the present paper for MD4.

Throughout this note X = (Xi)i<18 denotes a collection of 16 words, and
the collection X = ()(~)i<lB is defined by setting

)(, = X, for (i # 12),

)~12 = X12 + 1.

In the sequel we demonstrate how to choose X such that its MD4 hash value
coincides with that of X, i.e.

co _wess(Iv0; x) = corniest(Iv0;

As in [4] the basic idea is that a (small) difference between only one of the
input variables can be controlled in a way that the differences occuring in the
computations of the two associated hash values are compensated at the end.

55

Our at tack is separated into three parts. Each part considers a certain seg-
ment of the compress function. For n < m < 48 we therefore introduce the
notat ion

compress~ ((A, B, C, D); Xv(,~), ..., X~,(,r,)) = (A', B ' ,C' , D')

for the segment of compress from step n to step m, where the mapping ~ is
defined such that Xp(i) is applied the i-th step of compress. This means that
the computat ion of compress~n starts with the "initial value" (A, B, C, D), then
steps n to m are applied with the corresponding input words X~(n), ..., Xp(m),
and the output (A ~, B ~, C I, D I) ofcompress~ is the contents of the registers after
step m.

Sometimes, in the above notation, we write simply X instead of Xp(,~), ...,
X~(m). (But thereby we do not necessarily assume tha t all Xi are actually de-
fined.) We have to introduce another basic notation which will be used in the
sequel. For n < i < m let

(Ai , Bi , Ci, Di), resp. (Ai , Bi, Ci, Di)

be the contents of the registers after step i has been applied computing compress~n
for the input X, resp. X. Further we set

Ai = (Ai - Ai, Bi - / ~ i , C~ - Ci, Di - Di).

Note that in each step only one of the registers is changed and that for instance
A4k : A4k+l : A4k+2 = A4k+3 (k = 0, 1,..., 11).

P a r t I: I n n e r a l m o s t - c o l l i s i o n s (s t e p 12 to s t e p 19)

For the at tack against two-round RIPEMD [4], X13 was the selected variable
instead of X12 and the first part was to find "inner collisions", i.e. an initial
value and inputs for (both fines of) compress~ 3 such that A1 s = 0. Since X18
occurs precisely in step 13 and step 18 of two-round RIPEMD-compress , this
was a suitable approach to find collisions for two rounds. The main problem in
the case of RIPEMD has been to handle its two parallel fines simultaneously.

However, here we deal with the three rounds of MD4. X12 appears in each
round exactly once, namely in steps 12, 19 and 35. X and) (give a collision if
(and only if) A85 = 0, because X12 appears in step 35 the last time. To achieve
this we require a certain well-chosen value for A19 , namely

A19 = (0, 1 <<25, --1 <<5, 0) .

This means that the outputs of comFressl~ for X and) (are close but not
equal. We are not looking for inner collisions, but for inner "almost"-collisions
with precisely the output difference specified above.

56

Part II: Differential attack m o d u l o 282 (step 20 to s tep 35)

The value for L119 of Part I has been carefully selected such that, with a relatively
high probability, this difference inherits to step 35 in a way that it is compensated
by the difference between the inputs for this step, i.e. XI2 and X12 + 1. (It should
be emphasized that here the considered differences are not meant with respect
to XOR but modulo 28~.) Based on Part I we can therefore find collisions for
the compress function of MD4.

Part III: Right initial value (step 0 to step I I)

In the derived algorithm for finding collisions for the compress function there
are still many variables free. Therefore it is very easy to get even collisions with
an arbitrary prescribed initial value.

The next sections contain a detailed description of the three parts of our
attack.

3 I n n e r A l m o s t - C o l l i s i o n s (S t e p 12 t o S t e p 19)

In this section we consider compress~, i.e. the steps 12 - 19 of compress. Let
(A, B, C, D) be the initial value of compress~. Recall that (A19, Big, C19, DIg)
denotes the output of compress~, i.e. the contents of the registers.after step 19
for the inputs X12, X13, X14, X15, Xo, X4, Xs, X12, resp. (A19, Big, ClO, D19)
for the inputs X12 + 1, X18, X14, X15, Xo, X4, Xs, X12 § 1.

We want to find an inner almost-collision, that are explicit values for A, B,
C, D and X12, X18, X14, X15, Xo, X4, X8 such that

Alg = (0, 1 <<2~, - 1 <<~, 0).

The reason for this requirement will become clear in the next section. The fol-
lowing table shows the contents of the registers after the application of the steps
i = 12, ..., 19 for XI~, X18, ... and for XI~. + 1, X18, ..., respectively. To simplify
the notations we set A, = A30, B, = B19, ..., U = AI~., V = D13, W = C14,
Z = B15 and Cr = ~ , ff = D13, W = C14, Z = B15.

I-step[A I B [C I D [[input

1 2 U B C D

13 U B C V

14 U B W V

15 U Z W V

16 A, Z W V

..... 17 A, Z . W D,

18 A, Z [C, D.

19 A, B, C, D,

X12

X18

X14

Xls

X0

X4
XS

X12

I shift I function I constant I

3

7

11

19

3

5

9

13

F 0

F 0

F 0

F 0

G K1

G K1

G K1

G K~

5 7

I stePll A [B [O l D II
12 [U B C D

!

13 0 B C 9

14 0 B ,[W 9

15 0 2 lYd 9

16 A , [2 I~ 9

17 A. 2 W D,

18 A, 2 0 . D.

19 A. /3. C, D.

input I shift lfunction I constantl

X 1 2 + 1

X13

X14

X15

Xo
X4

X8

X z 2 + 1

3 F 0

7 F 0

11 F 0

19 F 0

3 G K1

5 G K1

9 G K1

13 G K1

Here we require /3 .+1 <<23 = B. and C . + 1 <<s = 0 , . The framed entries are those
which have been modified in the particular steps, and the Boolean functions F
and G are "selection" and "majority":

F(U, V, W) = (V ^ V) V (~g A W),

a(v, v, w) = (u ^ v) v (v A w) v (v A w) ,

and K1 = 0z5a827999 (see Appendix). The finding of an inner almost-collision
is equivalent to the finding of a collection of solutions B, C, A., B. , C., D. , U,
V, W, Z, U', V, ltd, 2 for the following system of equations:

1 = ~r<<2o _ U<<2o, (1)
F (~ , B, C) - F(U, B, C) = 9 <<~5 - V <<~5, (2)
F(V, Lr, B) - F(V, U, B) = l~d <<21 - W <<21, (3)

F(14 r, 9, U) - F(W, V, U) = 2 <<13 - Z <<13, (4)

c (2 , 9v, 9) - a (z , w , v) = v - O, (5)
G(A., 2, 17V) - G(A., Z, W) = V - 9 , (6)

G(D., A., 2) - G(D., A,, Z) = W - l~d + 0 . <<23 - C, <<23, (7)

G(C,, D,, A,) - G(C,, D,, A.) = Z - 2 +/~<<10 _ 8.<<10 _ 1, (8)

where/3, stands for B. - 1 <<25 and C. stands for C. + 1 <<s. Equations (1) - (8)
simply follow by elimination of X~(i) from the two equations defining the steps
i = 12,..., 19 of compresslt~ for the inputs X and X. As an example, by the
definition of step 15 we have

z = (B + F(W, V, U) + X~5) <<~~
= (B -[- F (~ ,r, 9 , ~r) _[_ X15)<<19,

implying (4). Conversely, if a collection of solutions of (1)- (8) is given then we
obtain an inner almost-collision by setting

X13 : arbitrary, (9)

58

X14 = W <<21 - C - F(V, U, B), (10)

x 1 5 = z < < 1 8 - B - F(W, V, U), (11)
X0 = A <<29 - U - G(Z, W, V) - K1, (12)

X4 -- D<. <27 - V - G(A, , Z, W) - E l , (13)

Xs = C. ~23 - W - G(D., A. , Z) - g l , (14)

XI~. = B<, <10 - Z G(C,, D., A .) - g l , (15)

D = Y <<~5 - F(U, B, C) - Xls , (16)

A = U <<lg - F(B, C, D) - X12. (17)

The system (1) - (8) has 14 variables. Thus it is a na tura l idea to make settings
for some of the variables such tha t finding a solution for the remaining variables
is feasible. Therefore we set

U = - 1 : - O x f f f f f f f f , 0 = O, B - : O.

Then (1) is satisfied and (2), (3), (0), (7), (S) can be transformed and reordered
as follows:

= Z - G(C., D., A .) + G(C., D. , A .) +/},<<10 _ B.<<lo _ 1, (18)

I~ r = W - G(D., A. , Z) + a (D . , A., Z) + ~.<<23 _ C.<<23, (19)

Y = W <<21 - 14 r<<~1, (20)

9 = V - G(A, , Z, 17V) + G(A, , Z, W), (21)
C = V <<25 - 9 <<25 , (22)

For this system the variables A. , B . , C. ,D. , Z and W form free parameters for
the set of all solutions. The two remaining equations (4) and (5) are now

G(z, W, V) - G(~, r162 ~) = 1, (23)
F(I)V, V, - 1) - F(W, V, O) - ~<<lS + Z<<ta = 0. (24)

A l g o r i t h m s e a r c h i n g f o r i n n e r a l m o s t - c o l l l s i o n s

After this preparat ions we can give an example of an algori thm leading to solu-
tions of (1) - (8), tha t is to an inner almost-collision, in about one second on a
PC. The basic idea can be described as a kind of "continuous appro~amahon" " "
(cf. [4], Section 4).

i . Choose A , , B . , C,, D. , Z, W randomly, compute Z, 17V, V, 9 according to
(18)- (,.I) and test (28). T/the te,t i, passed goto 2. (Since W and W (resp.
Z and Z) are close with respect to Hamming distance, there is a relatively
high probability that (23) is satisfied.)

2. Take A . , B . , C., D, , Z, W found in 1. as "basic values". Change one
random bit in each of these variables, compute the associated Z, ~V, V, ~r
and test if equation (23) is still satisfied and if, moreover, the left 4 bits of

f (l ~ r, V, - 1) , F(W, V, 0) - ~<<13 + Z<<ls (25)

59

are zero. If this test is passed take the corresponding values A . , B . , C., D. ,
Z, W as the new "basic values". The next is doing the same as before, but
now testing i f the 8 left bits of (25), instead of 4, are zero. Continue with
the le, 16, . . . l e f t bits until (24} is fulfilled.

3. Now (23) and (23) are satisfied, and we obtain an inner almost-eoUision
by setting B = 0 and defining A, C, D, and Xi (i = O, 4, 8, 12, 13, 14, 15)
according to (9) - (17) and (22).

In order that the inner almost-collision can be used for the differential attack
explained in the next section, the following additional equation has to be satis-
fied:

G(B, , C,, D,) = G(B, , C,, D,) . (26)

Since /~, and B, (resp. C, and C,) are close, there is a high probability that
this condition is true. Thus, to achieve also (26), the above step 2. has to be
repeated a few times. (To be more precise: 9 times on average, as we shall see in
the next section.)

We call an inner almost-collision admissible ff (26) is satisfied. Using again
our original notation in (26) we can summarize the result of this section as
follows:

Lernma 1. There is a practical algorithm, which allows to compute an admissi-
ble inner almost-collision, i.e. an initial value (A, B, C, D) and inputs X12, X13,
X14, X15, Xo,)(.4, X8 for compressll~ such that we have

A10 = (0, 1 <<25 , - 1 <<5 , 0) ,

G(BI~, C19, O19) = G(h19, C19, D~9).

The computation requires less than one second on a PC.

4 Differential Attack Modulo 2 $2 (Step 20 to Step 35)

The main part of the work has been done in the preceding section. We are
now well-prepared for a routine differential attack, which will allow us to find
collisions for the compress function of MD4. Using the notation introduced in
Section 2 we can state this result as follows:

I, emrna 2. Suppose that an admissible inner almost-collision, i.e. an initial
value (A, B, C, D) for step 12 and variables X12, XI8, X14, XlS, Xo, X4, X8 are
given according to Lemma 1. Choose the remaining Xi 's randomly and determine
the corresponding initial value by computing compress~ backwards starting with

(All , B l l , Cll, Dll) = (A, B, C, D).

Then the probability that X and f f form a collision for the compress function of
MD4 (i.e. Ass = O) is about 2 -92.

60

Proof. Let p be the probability that Aa6 = 0 under the given assumption. We
have to confirm that

p ~ 2 - n .

The below table defines a sequence of fixed values A* (i = 19, ..., 35) for dif-
ferences starting with A~g = (0, 1 <<26, --1 <<6, 0) and ending with A~6 = 0. The
framed entries correspond to those variables which are modified in the particular
steps. The Boolean functions G and H are majority and XOR, respectively.

19

2O

21

22

23

24

25

2 6

27

28

29

30

31

32

33

34

35

a;

0 1 <<26 - 1 <<6

0 1 <<26 -1 <<6

0 1 <<~6 -1 <<6

0 1 <<26 -1<<141

0 1 <<8 -1 <<14
0 1 <<8 - - I <<14

0 I<<B -1<<14 1

0 1 <<6 - 1 <<28

1<<19 I -I<<~8 0

0 1 <<Ig - 1 <<28
0 1 <<19 - 1 <<2s

0 I <<19 - I

0 i I 1 - I

0 1 - 1

0 1 - 1

o o1!
0 0 0

]

input

0 * * * * *

0 G 3 1 X1 K1

0 I G 5 1/9 X6 K1

0 G 9 1/3 X9 g l

0 G 13 1/3 X13 K1

0 G 3 1/9 X2 K1

0 G 5 1/9 XB K1

0 G 9 1/3 Xlo K1

0 G 13 1/3 X14 K1

0 G 3 1/9 Xs K1

0 G 5 1/9 X7 K1

0 G 9 1/3 X n K1

0 G 13 1/3 X15 K1 i

0 H 3 1/3 X0 K2

0 H 9 1/3 Xs Ks

0 H 11 1/3 X4 K2

0 H 15 1 X n (+ l) Ks

Here ~ (i > j) denotes the probability that Ai : A~ under the assumption that
Aj : A~. The asterisk entries for step 19 mean that we do not refer to these val-
ues in our argumentation. Note that A19 : A~9, since an inner almost-conision
is given. We have A20 = A~O and therefore 19 P20 : 1, because the given inner
almost-collision is admissible. To verify p34 : 1 note that A84 : (0, 1, 0, 0) : A~4
implies

!

B35 : (B34 +',H(C34, D34, A34) + X12 + K2) <<15

= § I) + H(r b3 ,]84) + x,2 + K2)
: (/}S4 + H(Os4, Ds4,-484) + (XI2 + 1 + K2)) <<15

: B35.

61

Also each other of the given values for p~-t can be proved easily. As an example,
for i = 32 we have to show that (R + 1) (9 S = R@ (S + 1) holds with probabili ty
1/3 for independent random words R, S. This equation is satisfied if and only if
exactly one of the following conditions for the binary representations of R and
S is given:

R = * 0 a n d S = * 0 ,

R = .01 and S = .01,

R = *011 and S = *011,

R = 01...11 and S = 01...11,

R = 1...11 and S = 1...11.

Here an asterisk marks an arbi trary bit sequence of suitable length. (These
sequences do not have to coincide for R and S in the particular cases.) Thus we
conclude

pO.~ = 1 1 1 1 1

The above table yields

35
H p ~ - I = 2 -30.11

i--20

(1) 1 1 1 +
284 -- 3 ~ "

This already indicates that p is large enough for a practical attack. Since the
conditions A~ = A* are strongly dependent, we obtain a much more realistic
approximation for p if we consider four steps at once. The values for p~-4 can
certainly be computed similar as p~-l . However, this seems to require lengthy
considerations of various cases. The following values have been found by a simple
Monte Carlo method.

step i

19

23

27
31

135 II o I
Now we get

0 1 <<25 --1 <<5 0 *

0 1 <<6 --1 <<14 0 1/35

0 1 <<10 --1 <<23 0 1/315
0 1 - I 0 1/315

I o I o II 1/71

35
H p ~ - 4 ~ 2 -24"54.

i=23

62

This is a much better approximation for p. Experimental observations suggest
that p is in fact still larger. We found the estimation p .~ 2 -~2. []

Thus we have shown that a random choice of the nine free Xi's gives a
collision of the compress function with probability 2 -2~. Therefore, in principle,
each given inner almost-collision allows to find on average about 22an collisions
for the compress functions.

Actually we need much less than 222 trials to find a collision for the compress
function. The reason is that we do not have to start each trial from the beginning.
If Xz, Xs, X9 have been found such that together with the already fixed Xi3
we have reached the required difference for step 23, then keep X1, Xs, Xg. Next
choose suitable values for X2, Xa, X10, and so on. In this way we can find a
collision for the compress function in a small fraction of a second on a PC.

5 R i g h t I n i t i a l V a l u e (S t e p 0 t o S t e p 1 1)

It remains to compute collisions with the initial value IVo required by the defini-
tion of MD4. By Lemma 2 there are enough variables free to manage this easily.
(The following argumentation does of course not depend on the particular choice
of/v0.)

Suppose an admissible inner almost-coUision with initial value (A, B, C, D) is
given. Take random X1, X2, X3 and Xs. Recall that X0, X4 and X8 are already
fixed. Compute compress~ Now As = A4, B6 = B4 = B3,
C5 = C4 = C3 = C2, D5 are fixed.

Next we shall define Xa, XT, 29,)(10 and Xt t such that the output of
comwess~ Xo, ..., Xtt) matches with (A, B, C, D), or in other words

comwess~ Bs; C2, Ds); X6, ..., Xzz) = (A, B, C, D).

Matching B, C and D can be done directly by associating suitable values to the
free variables Xzz, Xz0 and X9, respectively. It remains to match A in step 8.
This cannot be done as before, since X8 is already fixed. Step 8 is defined by
the equation

As = (A4 + F(Bz, Ca, D5) + Xs) <<3.

According to the definition of F as selection function we achieve A8 = A if
B~ = -1 = O z f f f f f f f f and Ca = A <<29 - A4 -)/'8. These values for Ca and
B7 can be obtained by a suitable choice of Xa and X~.

Explicitly, this simple idea leads to the settings:

Xa := -C2 - F(Ds, A4, B3) + (A <<29 - A4 - Xs) <<21,

C6 = (C2 + F(Ds, A4, B3) + Xa) <<11 ---- A <<29 - A4 - Xs,

X7 := - B 3 - F(Ca, Ds, A4) - 1,

B7 = (B3 + F(Ca, Ds, A4) + X~) <<l~ = - 1 ,

A8 = (A4 + F (- 1 , Ca, Ds) + Xs) <<3 = (A4 + Ca + Xs) <<8 = A,

63

X9 := D <<25 - D5 - F(A , - 1 , C6),

09 = (05 + F(A , - 1 , Co) + Xg) <<7 = D,

Xz0 := C <<2t - C6 - F (D , , A, -1) ,

Ct0 = (C6 + F(D, A, - 1) + X19) <<tt = C,

Xzz := B <<z3 + 1 - F(C, D, A),

B t t = (- 1 + F (C , D , A) + X t t) <<t9 : B.

This means we obtain

compress~ Xo, ..., X l l) = (Al l , B l l , C11, D l l) = (As, Bzt , Cz0, D9)

= (A , B , C , D) ,

i.e. as desired, we have reached the connection to the given inner almost-colllsion.

6 C o l l i s i o n S e a r c h A l g o r i t h m

As we now have described all parts of the attack, we give an overview summa-
rizing the single steps of the derived algorithm searching for collisions:

1. Compute A, B, C, D and Xo, X4, X8, Xz2, Xz3, Xz4, XIs, which give an
inner almost-collision (from step 12 to 19). The technical details of a suit-
able algorithm have been explained in Section 3. It also fixes values for
A19, B19, C19, D19 and A19, B19, C'19, /~19"

2. According to Section ~ and 5 choose X1, X2, X3, X5 randomly and compute

(As, Bs, C5, Ds) = compress~ Xo, ..., Xs) , (27)

t : A <<29 - As -)(8, (28)

X6 = t <<21 - C5 - F(Ds , As, Bs), (29)

X7 : - 1 - B5 - F(t , Ds, A5), (30)

X9 = D <<25 - D5 - F (A , - 1 , t) , (31)

Xz0 = C <<21 - t - F (D, A, -1) , (32)

Xzz = B <<t3 + 1 - F(C, D, A), (33)

(A35, B35, C35, D35) = compress~~ BIg, C19, DI9; X), (34)

(fi~-35,/}35, ~'~85, D35) : comlyress2~ /}19, 019, D19; X), (35)
/135 : (A35, B35, C85, D85) - (-435, /}35, &35, bz5). (36)

3. If/135 = 0 then we have found a collision. Otherwise make a new trial by
going to 2.

64

T u n i n g , c o m p u t a t i o n a l e f for t , a n d e x a m p l e

To make 2. more effective do not compute the compress function from step 20 to
step 35 completely. Instead, as condition to break up the trial, test immediately
after each step i if Zli # Zl* (i : 21, 22, ...); see first table in Section 4.

In this way for the largest part of all trials the computation will be broken
up a l ready after step 21, i.e. it is restricted to (27) - (33) and two steps of
(34) and (35), respectively. (On the other hand it is unlikely that Z135 : 0 but
A i # A~ for some i. The sequence LI[9 , ..., A~4 in Section 3 is the "almost
unique" way leading to AS5 : 0. If we leave this way then it is very likely that
the avalanche effect brings everything out of control. Hence it is unlikely that we
loose a successful trial by the proposed selection.) Thus mostly a trial requires
about the same effort as 16 steps (one third) of MD4-compress.

In view of Lemma 2 this means that the finding of a collision takes on average
the same computational effort as about 2 ~~ computations of MD4-compress. This
estimation has been confirmed by an implementation of the attack.

The algorithm sometimes runs into a dead end. For instance, this happens
if the values A19, B19, Cx0, D19 and -419, B19, C19, b19 coming from the inner
almost-collision are bad-conditioned with respect to the differential attack. This
effect can be taken into account by controlling the success of the algorithm and
making a new start if necessary.

Beside the complexity of a collision search algorithm, the "variety" of colli-
sions which, at least theoretically, can be found is another important aspect. In
particular the number of obtainable collisions is of interest. We therefore mention
that by Lemma 2 for each found inner almost-colllsion, in principle, about 21~
collisions of MD4 can be computed a~plying the above algorithm, since there are
four words free in 2. (i.e. 2128 trials), ~nd t h ~ r o b a b i l i t y for a success is about

For the sake of readability of our exposition we have restricted ourselves to
the description of the most direct version of our attack. But there are still many
further technical tricks to improve it considerably. In this way we can even get
collisions of practical relevance. This is demonstrated in the next section. First,
however, we give a collsion which has
search algorithm:

X0 = 0x13985e12 X4 = Ox2dfeO9ac
X1 = 0x748a810b X5 -- Oz4bfdbdb9
X2 = Ox4dldf l5a Xs = 0xf464b0c8
X3 = 0x181dlS16 Xz = Oz.fbalc097

been found by the previously described

X8 = Oxabel7beO X12 = 0x20771027
X9 = Oxedled4b3 X13 = O~fd . f f fb f . f

X lo = Ox412Oabf5 X14 = O ~ f f f f b f f b
Xl l = 0z20771029 X15 = Oxf774bed2

Recall that X is defined by setting Xi -- Xi (i < lfi, { # 12) and

X12 = X12 + 1 = 0z20771028.

X and .~ have the same MD4-compress value with respect to the initial value
I ~ (see Appendix). The complete MD4 algorithm, including the padding rule,
associates to X and X the common hash value

Ox711ad51b Oxbbab5e22 0zf18blc76 0z17c15892.

65

7 Coll is ions for Crooks

H o w to swind le A n n (cf. [10])

Alf wanted to sell Ann his house, and Ann was interested. They agreed on a price
of $176,495. Alf asked Ann to sign a contract using a digital signature scheme
which is based on some public-key algorithm and the hash function MD4. The
contract read as follows:

CONTRACT

At the price of $176,495 AIf Blowfish
sells his house to Ann Bonidea

"The first 20 bytes (each of them is represented by an asterisk above) are random.
They have been placed before the text for security reasons!" claimed Alf~ and
Ann signed the contract. Later, however, All substituted the contract file by
another which read as follows:

CONTRACT

At the price of $276,495 All Blowfish
sells his house to Ann Bonidea

The contract had been prepared by him such that replacing $176,495 by $276,495
does not change the MD4 hash value!

H o w A l f did it

We shall now explain the precise definition of the above digital contract. Its first
sixteen 32-bit words are:

M o = Ox9074449b M4 = Ox63247e24 Ms = 0x68742074 M12 = 0x2C363731
M I : OxlO89fc26 Ms = Ox4e4f430a M9= 0x72702065 Mla = 0x20353934
M2:Ox8bf37fa2 M s = Ox43415254Mlo = 0x20656369 M14 = 0x20666c41
M a : Oxld63Odaf M7 = Ox41OaOa54Mll = Ox2420666f M15 = Ox776f6C42

66

The twenty bytes of M0 - M4 are the above mentioned "random bytes". The
bytes of Ms, in reverse ordering (according to the definition of MD4) and inter-
preted as ASCII read as follows:

0a 43 4f 4e -- Line .feed 'CON',

and so on to M15 which reads

42 6c 6 f 77 ---- 'B low' .

The sequence M~ (i < 16) has been chosen such that setting M~. ---- MI~ -1-1 and
M~ = Mi for i < 16, i r 12 gives a collision, i.e.

com ess(Iv0; M) = comp e,s(IV0; M')

for the compress function of MD4 and its fixed initial value IVo. This collision
has been found in less than one hour on a PC. Interpreting Mr2 = 0z2c363731
and M~2 = 0z2c363732 we get:

M12 = 31 37 36 2c = '176, '

M~2 = 32 37 36 2c = ' 2 7 6 /

In view of the definition of MD4 as the iterative application of compress we
obtain a collision by taking any bit string and appending it to M and M ~.

8 Conclusions

A dedicated hash function should be secure and fast at the same time. Every-
one who comes up with a new design of a fast algorithm, especially if there is
not already sufficient experience with related algorithms, runs a great risk to
overlook weaknesses and to underestimate possibilities of finding new cryptana-
lyric methods. But there is no other way than to s tar t with concrete proposals
and thereby pushing on an evolutionary process leading to better and better
solutions. Therefore the introducing of MD4 by Ron Rivest [7] in 1990 was a
significant contribution. Today there is a whole family of hash functions based
on MD4's design elements.

A short t ime after MD4 had been introduced, some weaknesses became ap-
parent and Rivest introduced MD5 in 1991. He explained his reasons in [8]:

"The MD5 algorithm is an extension of the MD4 message-digest algo-
ri thm. MD5 is slightly slower than MD4, but is more "conservative" in
design. MD5 was designed because it was felt that MD4 was perhaps
being adopted for use more quickly than justified by the existing critical
review; because MD4 was designed to be exceptionally fast, it is "at the
edge" in terms of risking successful cryptanalytic a t tack "

67

The weaknesses of MD4 observed in [3] and [9], two-round attacks and almost
coUisions~ were generally considered to be mainly of theoretical importance. Now
in view of the presented attack this can no longer be assumed, as has been
demonstrated.

/

[Where MD~ i8 8ti~ in ~e, i~ ~ho~d be ~eplaced ~,]
i

An exception is the application of MD4 as a one-way function. What are possible
alternatives? - The compress function of the 256-bit extension of MD4 (see [7])
is not collision-free [5]. RIPEMD is another strengthened mode of MD4 proposed
in 1992 [2]. The design of RIPEMD and that of extended MD4 are very similar.
We anticipate that, in addition to the already known two-round attacks [4], the
compress function of RIPEMD is also not collision-free.

We have some reservations about MD5 as well. Although we think that MD5
is much stronger than MD4 and stronger than extended MD4, it might still turn
out that the adding of one round and the other changes are not sufficient to
protect MD5 against the methods developed in [4] and the present note.

As replacements for MD4 and MD5 we would suggest RIPEMD-160 (with
160-bit hash values) or RIPEMD-128 (with 128-bit hash values). These are de-
scribed in [6] and have been designed as a strengthened version of RIPEMD,
taking account of recent progress in the cryptanalysis of the MD4 family of hash
functions.

Another alternative is the Secure Hash Algorithm (SHA-1), which was de-
signed by NSA and pubhshed by NIST (National Institute of Standards and
Technology, US) [1]. However, its design criteria are secret.

Acknowledgment. The author thanks Antoon Bosselaers for reading an earlier
version of this paper very carefully and giving several hints improving the expo-
sition.

References

1. FIPS 180-1, Secure hash standard, Federal hfformation Processing Standard, NIST,
US Department of Commerce, Washington D.C., April 1995.

2. RIPE, Integrity Primitives]or Secure Information Systems. Final Report o] RACE
Integrity Primitives Evaluation (RIPE-RACE 10~0), Lecture Notes in Computer
Science, vol. 1007, Springer-Verlag, 1995.

3. den Boer, B., Bosselaers, A.: An attack on the last two rounds o] MD~, Advances in
Cryptology, CRYPTO '91, Lecture Notes in Computer Science, vol. 576, Springer-
Verlag, 1992, pp. 194 - 203.

4. Dobbertin, H.: RIPEMD with two-round compress]unction is not collision-free, J.
of Cryptology, to appear.

5. Dobbertin, H.: The compress function o] extended MD~ is not collision-free,
preprint.

6. Dobbertin, I-I., Bosselaers, A., Preneel, B.: RIPEMD-160: A strengthened version
of RIPEMD, these proceedings.

68

7. Rivest, R.: The MD~ message-digest algorithm, Request for Comments (RFC) 1320,
Internet Activities Board, Internet Privacy Task Force, April 1992.

8. Rivest, R.: The MD5 message-digest algorithm, Request for Comments (RFC) 1321,
Internet Activities Board, Internet Privacy Task Force, April 1992.

9. Vaudenay, S.: On the need o] multipermutations: Cryptanalysis of MD~ and
SAFER, Fast Software Encryption (Proceedings of the 1994 Leuven Workshop
on Cryptographlc Algorithms), Lecture Notes in Computer Science, vol. 1008,
Springer-Verlag, 1995, pp. 286 - 297.

10. Yuval, G.: How to swindle Rabin, Cryptologia, vol. 3, no. 3, 1979, pp. 187-189.

Appendix

The hash function MD4 is defined as the iteration of a certain compress function,
which we shall specify below. The computation starts with the initial value

IVo= 0x674523010xefcdab89 Ox98badcfe 0x10325476.

Each application of the compress function uses a collection of four words as initial
value and 16 words of the message as input, and it gives four words output, which
are then used as initial value for the next application. The final output is the
hash value. This works, since there is a padding rule (addition of bits to the
message such that its length is a multiple of 512 --: 16 x (length of words)). A
description of MD4 including also the padding rule can be found in [7].

The compress function of MD4 uses the Boolean vector functions

F(U, V, W) = (U A V) V (-~U A W),

a(V, Y, W) = (U ^ V) V (U ̂ W) V (V ^ W),
H(U, V, W) = U $ V ~g W.

and the constants

K1 = OxSa827999,

K2 = Ox6ed9ebal,

Let FF(a, b, c, d, Z, s), aa(a, b, c, d, Z, s) and HH(a, b, c, d, Z, s) denote the op-
erations

a := (a + F(b, c, d) + Z)<<',

a := (a + G(b, c, d) + Z) <~

a := (a + H(b, c, d) + Z)<<',

respectively. In order to define the MD4 compress function suppose now that the
initial value CA, B, C, D) and inputs X0, X1, ..., X15 are given. Copy A, B, C, D
into registers a, b, c, d, and apply the following steps:

69

First round

step 0 FF(a, b, c, d, Xo, 3)
step 1 FF(d,a,b,c, X1,7)
s tep2 FF(c,d,a,b, X2,11)
step 3 FF(b, c, d, a,)[3, 19)
step 4 FF(a, b, c, d, X4, 3)
step 5 FF(d, a, b, c, Xs, 7)
step 6 FF(c, d, a, b, X6, 11)
step 7 FF(b, c, d, a, XT, 19)
step 8 FF(a, b, c, d, X8, 3)
step 9 FF(d, a, b, c, X9, 7)
step 10 FF(c, d, a, b, Xlo, 11)
step 11 FF(b, c, d, a, Xtt , 19)
step 12 FF(a, b, c, d, XI2, 3)
step 13 FF(d, a, b, c, XIa, 7)
step 14 FF(c, d, a, b, X14, 11)
step 15 FF(b, c, d, a, XI5, 19)

step
step
step
step
step
step
step
step
step
step
step
step
step
step
step
step

Second round

16 GG(a, b, c, d, Xo + Kt, 3)
17 GG(d,a,b,c, X4+ K1,5)
18 GG(c, d, a, b,)[8 + K1,9)
19 GG(b, c, d, a, Xt2 + K1, 13)
20 GG(a, b, c, d, XI + K1,3)
21 GG(d,a,b,c, Xs + K1,5)
22 GG(c, d, a, b, X9 + K1,9)
23 GG(b, c, d, a, XI3 + K1,13)
24 GG(a, b, c, cl, X2 + Kt, 3)
25 GG(d, a, b, c,)[6 + K1,5)
26 GG(c, d, a, b, Xlo + K1,9)
27 GG(b, c, d, a, Xt4 + Kt, 13)
28 GG(a, b, c, d, X~ + K1,3)
29 GG(d, a, b, c, X7 + Kt, 5)
30 GG(c, d, a, b, XI1 + Kt, 9)
31 GG(b, c, d, a, X15 + K1, 13)

step 32
step 33
step 34
step 35
step 36
step 37
step 38
step 39
step 40
step 41
step 42
step 43
step 44
step 45
step 46
step 47

Third round

HH(a, b, c, d, Xo + K2, 3)
HH(d, a, b, c, X 8 + K2, 9)
HH(c, d, a, b, X4 + K2 11)
HH(b, c, d, a, Xt2 + K2 15)
HH(a, b, c, d, X2 + K2 3)
HH(d, a, b, c, Xto + K2 9)
Hg(c ,d ,a ,b , Xg+ ga 11)
HH(b, c, d, a, X14 + K2 15)
HH(a, b, c, d, X1 + K2 3)
HH(d, a, b, c, X9 + K2 9)
HH(c, d, a, b, X5 + K2 11)
HH(b, c, d, a, Xla + K2 15)
HH(a, b, c, d, X3 + K2 3)
HH(d, a, b, c, Xtt + K2 9)
HH(c, d, a, b, X7 + K2 11)
HH(b, c, d, a, X15 + Kg. 15)

Finally compute the output AA, BB, CC, DD as follows:

A A = - A + a , B B = - B + b , C C = C + c , D D = - D + d .

That is one sets

compress((A, B, C, D); Xo, XI, ..., Xts) = (AA, B B, CC, D D).

