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A b s t r a c t .  In [6] higher order derivatives of discrete functions were con- 
sidered and the concept of higher order differentials was introduced. We 
introduce the concept of truncated differentials and present attacks on 
ciphers presumably secure against differential attacks, but vulnerable to 
attacks using higher order and truncated differentials. Also we give a dif- 
ferential attack using truncated differentials on DES reduced to 6 rounds 
using only 46 chosen plalntexts with an expected running time of about 
the time of 3,500 encryptions. Finally it is shown how to find a minimum 
nonlinear order of a block cipher using higher order differentials. 

1 I n t r o d u c t i o n  

Differential cryptanalysis [1] was introduced by Biham and Shamir.  Lai consid- 
ered higher order derivatives of discrete functions [6] and the concept of higher 
order differentials was introduced. As a special case binary functions were con- 
sidered, which is relevant for cryptanalysis of block ciphers. The cryptographic 
significance of higher order differentials was discussed, but no applications given. 
Knudsen and Nyberg [8] showed tha t  block ciphers exist secure against a differ- 
ential a t tack using first order differentials, as proposed by Biham and Shamir.  

In this paper  we introduce the concept of t r u n c a t e d  differentials, i.e. dif- 
ferentials where only a part  of the difference in the ciphertexts (after a number  
of rounds) can be predicted. We show examples of Feistel block ciphers secure 
against a differential at tack using first order differentials, but vulnerable to a dif- 
ferential a t tack using truncated differentials and higher order differentials, thus 
illustrating tha t  one should be careful when claiming for resistance against dif- 
ferential attacks. Finally, we give a method of how to find a min imum nonlinear 
order of a block cipher using higher order differentials. 

2 D i f f e r e n t i a l  A t t a c k s  

In this paper  we consider Feistel ciphers. A F e i s t e l  c i p h e r  with block size 2n 
and with r rounds is defined as follows. The round function g is 

g :  GF(2)  n • GF(2)  n • GF(2)  m -~ GF(2)  ~ • GF(2)  ~ 

g(x, Y, z) = (Y, f(Y, z)  + x)  
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where f can be any function taking two arguments of n bits and m bits respec- 
tively and producing n bits. '+ '  is a commutative group operation on the set of 
n bit blocks. 

Given a plaintext P = ( p L  pR) and r round keys K1, K2, ..., Kr the cipher- 
text  C = (C L, C -R) is computed in r rounds. Set C L = pL and Co R = pR and 
compute for i = 1, 2, ..., r 

= + c _1) 
Set C i =  (C L , C ~ )  a n d C  L = C r  R a n d C  R - - C  L. 

Traditionally, the round keys (K1, If2, ..., Kr),  where K{ C GF(2)  "~, are com- 
puted by a key schedule algorithm on input a master key K.  

The differential attacks exploit that  pairs of plaintexts with certain differ- 
ences yield other certain differences in the corresponding ciphertexts with a 
non-uniform probability distribution. For a pair of plaintexts, which are not dis- 
carded by a filtering process, see [1, 2], one tries for all values of the round key 
in the last round, if the expected difference in the ciphertexts occur. This is 
repeated several times and the most suggested value is taken to be the value of 
the secret key of the last round. Now all ciphertexts can be decrypted one round 
and a weaker cipher attacked in the same way but  with a smaller complexity. 

The signal to noise ratio, SIN [1, 2], is the number of times the right key is 
counted over the number of times a random key is counted. 

S/N - It~'1 • p 

where p is the probability of the differential used in the attack, ]K I is the number 
of possible values of the key, we are looking for, V is the number of keys suggested 
by each pair of plaintexts and A is the ratio of non-discarded pairs to all pairs, 
see [1, 2] for further details. For our attacks in this paper s ~- 1. If SIN <_ 1 
then a differential attack will not succeed. 

Sometimes one also calls the function f ,  the round function. We adopt this 
convention for convenience, since it should cause no confusion. 

For the remainder of this paper we will assume that the round keys are in- 
dependent and uniformly random and of size n, i.e. half the block size. The 
difference of two quantities is always taken to be the operation for which the 
difference is independent on the value of the inserted key. Therefore when con- 
sidering differences for the round function f we will write f(x) instead of f(x,  k). 
We will assume that  the difference of two quantities chosen in an attack is the 
exclusive-or operation, if not stated explicitly otherwise. The complexity of the 
attacks is measured as the number of encryptions of the full cipher that  an 
attacker has to perform for success. 

3 T r u n c a t e d  D i f f e r e n t i a l s  

In a conventional differential attack on a 2n bit Feistel cipher, a differential is a 
tool to predict an n bit value of the ciphertext after a certain number of rounds. 
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One defines a difference of two bit strings of equal length. Then (a, b) is called 
an i round differential, if a difference a in two plaintext blocks yields a difference 
b in the two ciphertext blocks after i rounds of encryption. But as we will show 
now it is not always necessary to predict the full n bit value. Even a 1 bit value 
suffices in some cases. A differential that  predicts only parts of an n bit value is 
called a truncated differential. More formally, let (a, b) be an / - round  differential. 
If a I is a subsequence of a and b' is a subsequence of b, then (a', b') is called an 
i round truncated differential. 

In [7] it is shown that  the functions f (x )  = x -1 in GF(2n) ,  where f (x )  = 0 
for x = 0, are differentially 2-uniform for odd n and differentially 4-uniform for 
even n, i.e. the highest probability of a non-trivial one round differentiM is 2/2 '~ 
and 4 /2"  respectively. In both cases the nonlinear order of the outputs  is n - 1 
[7]. As an example consider a 5 round cipher using as round function 

/ (x ,  k) = (x k) -1 

in GF(2  '~) for n odd. From the results of [8] this cipher is highly resistant against 
differential attacks using full differentials, since any 3 round differential has a 
probability of at most 23-2n according to Th. 2 of [8], that  is, using differentials, 
where full n bit differences are used. In an attack counting on the round key of 
the last round the signal to noise ratio is 

2 n X 2 3-2n 
S I N  < 1 x 1 < 1 

for n > 3 and the attack will not succeed. In an attack counting on the round 
keys of the last two rounds only a 2 round differential is needed. And since the 
concepts of characteristics and differentials coincide for 2 rounds in a Feistel 
cipher it is easy to see that there exists a differential with a probability of 2/2 n 
and that  this differential obtains a maximum probability. The signal to noise 
ratio is 

2 2n X 21-n 
S/N- i x  1 --2n+i 

and the attack will succeed with complexity 2 '~ chosen plaintexts and running 
time of about 2 3~. 

However, for every non-trivial input difference to one round there are only 
2 n-I possible differences in the outputs, each one with a probability of 2/2 n, 
since the round function is differentially 2-uniform and the exclusive-or operation 
is commutative. That is, for a non-trivial input difference we get one bit of 
information about the output differences. From this fact we can construct a 2 
round differential of probability one, where only one bit of the differences after 2 
rounds of encryption is predicted. In a differential attack counting on the round 
keys of the last two rounds for every pair of plaintexts only haft the possible 
values of the keys will be suggested. We obtain 

2 2n x 1 
SIN - 2(2n_i ) x 1 - 2 
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and the attack will succeed with sufficiently many pairs of chosen plaintexts. We 
implemented the attack on a 5 round 18 bit cipher with a key of 45 bits using 
as round function f (x)  = x -1 in GF(29). Using 18 pairs of chosen plaintexts in 
100 tests only one pair of keys was found, the right keys in the fourth and fifth 
rounds. 

The attack can be generalised and the following result holds. 

T h e o r e m  1. Let f (x ,  k) :  GF(2  n) x GF(2'*) --* GF(2 ~) be the round function in 
a 5 round Feistel cipher with block size 2n bits using 5 round keys, each of size n 
bits. Let a (5  O) be an input difference for which only a fraction W of all output 
differences are possible. Then a differential attack using truncated differentials 
has a complexity of 2L chosen plaintexts and a running time of about L • 2 un, 
where L is the smallest integer s.t. (W) L < 2 -2n. The value of L is at most 
2 n + l .  

Proof: Consider the following attack. 

1. Let a be the non-trivial difference of two inputs to f ,  for which only a fraction 
W of the output  differences can occur. 

2. Compute a table T (initialised to zero in all entries), s.t. for 
i = 0, .., 2 ~ - 1, T[f(i)  �9 f ( i  �9 4))] = 1. 

3. Choose plaintext P1 at random and set P2 = P1 @ (4 I[ 0). 
4. Get the encryptions C1 and C2 of P1 and P2 
5. For every value k~ of the round key RK~ do 

(a) Decrypt the ciphertexts C1, C2 one round using kh. Denote these cipher- 
texts D1, D2. 

(b) For every value k4 of the round key RK4 do 
i. Calculate t~ = f ( D ~  @ k4) for i = 1, 2. 

it. If Tit1 | t2 | D L @ D L] > 0 then output k5 and k4. 

Since the nonlinear order of f (x )  can be as high as n - 1, the information about 
the output  differences we get from a given input difference is not necessarily 
easily determined. Therefore we may have to compute a table T, s.t. for a given 
input difference 4, if T[j3] > 0 then an output difference j3 is possible. The inputs 
to the first round are equal and the inputs to the second round has difference 
4. That  is, we can compute a fraction W of all possible values of the output 
difference of the fourth round from the right halves of the ciphertexts and from 
the values in table T. Upon termination about W • 2 ~n of the possible values 
of (RK4, RKh) have been suggested, one of which is the right pair of keys. By 
repeating the attack sufficiently many times only one unique pair of keys, the 
right pair of keys, will be left suggested. Any other keys will be suggested with 
probability W for each run of the above attack. Therefore after trying L pairs 
of plaintexts any key but the right key, is suggested L times with a probability 
of (W) L and if (W) L < 2 -2n with a high probability the right keys are uniquely 
determined. Finally, note that  since W < 1/2, minn : (1/2) L < 2 -~n = 2n + 1.[] 

The attack can be extended to work on ciphers with any number of rounds 
by counting on all but the first three round keys. 
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4 Higher Order Differentials 

In [6] the definition of derivatives of cryptographic functions was given. 

Def in i t ion2  (Lai [6]). Let (S, +) and (T, +) be Abelian groups. For a function 
f : S ~ T, the derivative of f at the point a G S is defined as 

Aaf (x )  = f ( x  + a) - f (x ) .  

The i'th derivative of f at the point al, ..., ai is defined as 

A(J),...,a,f(x ) = Aa,(Z~(ai~,.!),a,_~f(x)). 

Note that the characteristics and differentials used by Biham and Shamir in 
their attacks correspond to the first order derivative described by Lai. There- 
fore it seems natural to extend the notion of differentials into h igher  o rder  
differentials.  

Def ini t ion3.  A one round differential of order i is an (i + 1)-tuple 

(~1, ..., ~i, ~), s.t. A (0~1,. ,~,j~x~, =/~. 

When considering functions over GF(2) the points al, ..., ai must be linearly 
independent for the i 'th derivative not to be trivial zero. 

P r o p o s l t i o n 4  (Lai [6]). Let L[al, a2, ..., ai] be the list of all 2 i possible linear 
combinations oral,  a2, ..., ai. Then 

A (i) f ( x ~ =  E f ( P  @7). al~. . .Ta ,a \  ] 

yEL(o~I , . . . ,a i )  

I f  ai is linearly dependent oral,  ..., ai-1, then 

A(J) _ f (x )=O.  
t t l  w . , ~ t ~ i o \  / 

P r o p o s i t i o n 5  (Lal [6]). Let ord(f) denote the nonlinear order a of a multi- 
variable polynomial function f (x ) .  Then 

ord(A~f(x))  < ord(f(x))  - 1. 

This leads to the following Corollary. 

Coro l la ry6 .  I f  Aal,...,a.f(x ) is not a constant, then the nonlinear order o f f  is 
greater than i. 

Proof: From Prop. 5 it follows that 

ord(f) >_ ord(Aal f (x) )  + 1 ~_ ............... ~ ord(Aal ..... a , f (x))  -t- i. 

1 In [6] called the nonlinear degree. 

[] 
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4.1 A t t a c k s  u s i n g  h i g h e r  o r d e r  d i f f e r en t i a l s  

In the previous section we showed how to exploit partial information of differ- 
entials. One may ask the following question: does round functions exist, which 
does not leak any partial information for any non-trivial difference? The answer 
is positive and in the following we give an example of a 5 round Feistel cipher, 
for which the round function is differentially 1-uniform i.e. for every non trivial 
input difference all output  differences occur exactly once. We show that  differen- 
tial attacks on this cipher using higher order differentials are much more efficient 
than conventional differential attacks. We generalise the result to any 5 round 
Feistel cipher. 

T h e o r e m  7. Let f ( x , k )  -= (x + k) 2 mod p, p prime, be the round function 
in a Feistel cipher of block size log2p 2, where '+' is addition modulo p and the 
difference of two quantities, x and y, is x - y  mod p. f is differentially 1-uniform~ 
a non-trivial one round differential has a probability of l ip .  Secondly, the second 
order derivative of f is constant. 

Proof: To prove the first statement,  consider a fixed a # 0 mod p. Then 

f ( x )  - f ( x  4- a) =p f (y )  - f ( y  + a) r 
_ y2 _ 2ay) x 2 (x 2 + a  2 + 2 a x )  =p ( y 2 + a  2+ r 

2 a x = p 2 a y  r 2 a ( x - y ) = p 0  4=> x = p y  

since p is prime. To prove the second statement, let al ,  a2 be constants, then 

Aa~,a2f(x ) ---- f(x 4- al + a2) -- f(x 4- al) -- f(x + a~) 4- f(x) 

= x 2 + (al + a2) 2 + 2(al + a2)x - (x 2 + a~ + 2alx)  

- ( z  2 + a22 + 2 a : )  + z 2 

---- (a14-a2) 2 - a ~ - a 2  2 

-= 2ala2. 

[] 

T h e o r e m S .  Let f ( x ,  k) = (x + k) 2 mod p, p prime, be the round function in 
a 5 round Feistel cipher of block size log2p 2 with independent round keys, i.e. 
a key size of 5 • log 2 p. A differential attack using first order differentials needs 
about 2p chosen plaintexts and has a running time of about p 3  

Proof: When doing a differential attack counting on the round key in the fifth 
round of the above cipher we need a 3 (or 4) round differential. It is easy to see 
that  there exists a 3 round differential with a probability of 1/p and that  this 
differential obtains a maximum probability. We obtain 

S / N -  p x l / P _ 1  
l x l  

This attack is not possible, since the right key cannot be distinguished from other 
random keys. When doing a differential attack counting on the round keys in 
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both the fourth and fifth rounds we need only a 2 round differential. There exists 
a 2 round differential with a probability of l /p ,  which is a maximum probability 
for the above cipher. In this case we obtain 

p2 X 1/p 
S / N -  l x  1 - P  

This attack is possible. We need about 2p chosen plaintexts and for every pair 
of plaintexts we do two rounds of encryption for every p2 possible keys of the 
fourth and fifth rounds. Therefore we obtain a complexity of about p3. [] 

T h e o r e m  9. Let f (x ,  k) = (x + k) 2 mod p, p prime, be the round function in 
a 5 round Feistel cipher of block size log 2 p2 with independent round keys, i.e. a 
key size of 5 x log 2 p. A differential attack using second order differentials needs 
about 8 chosen plaintexts with a running time of about p2. 

Proof: Consider A~,~f(x) where c~ = a II 0 and • = b I] 0 for some fixed a, b, i.e 
the left halves of c~ and /?  are zero. See Fig. 1, where (0, 0) denotes the trivial 
second order derivative of f and where in the second round the second order 
derivative is (a, b, 2 x a x b). Consider the following attack 

1. Choose plaintext P1 at random. 
2. Set P2 = Pl + a, P3 = Pl + ~ and P4 = Pl + a + t~. 
3. Get the encryptions C1,..., C4 of P1, ..., P4 
4. For every value k~ of the round key RK5 do 

(a) Decrypt all ciphertexts C1,...,C4 one round using ks. Denote these 4 
ciphertexts D1, ..., D4. 

(b) For every value k4 of the round key RK4 do 
i. Calculate ti = f (Di  R + k4) for i = 1,.., 4. 

ii. I f ( t l + t 4 - ( t 2 + t 3 ) ) - ( D  L + D  L - ( D  L + D L ) ) = 2 x a x b t h e n  
output k5 and k4. 

Here X L and X R denote the left and right halves of X respectively. In the first 
round all inputs to the f-function are equal. In the second round the inputs 
form a second order differential with (a, b, 2 x a x b). Since this differential has 
probability 1 according to Th. 7, the difference in the four inputs to the third 
round is F = 2 x a x b. Therefore the difference in the outputs of the fourth 
round can be computed as the exclusive-or sum of F and of the right halves of 
the ciphertexts. Upon termination a few keys will have been suggested, among 
which the right keys appear, since the two round second order differential has 
probability 1. Therefore by repeating this attack a few times only one value of 
(RK4, RKh) is suggested every time. This value is guaranteed to be the secret 
fourth and fifth round key. The signal to noise ratio of the attack is 

S / N  - p2 x 1 _ p2 
l x l  

where we have assumed that  one key in average is suggested by each pair of 
plaintexts. Now it is trivial to find the remaining three round keys by similar 
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(a, b) (0, 0) 1 
e.  (0,0) [-#-]. (0,0) 
L 

2 x a x b  (a,b) it 

75. ] 
L 

Fig. i .  A second order differential of a five round Feistel cipher 

attacks on cryptosystems with less than five rounds. As in [1, 2] we can pack 
the chosen plaintexts in economical structures, thus as an example obtain four 
second order differentials from 8 chosen plaintexts.Q 

If the prime p above is of cardinality, say about 225, according to Th.  8 a 
differential attack using first order differential has a complexity of about 276 
using about  226 chosen plaintexts, i.e. not at all a practical attack. According 
to Th.  9 a differential attack using second order differentials has a complexity 
of about  250 using only about 8 chosen plaintexts, a practical attack or at least 
not far from being one. 
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The attack in the proof of Th. 9 can be applied to any 5 round Feistel cipher, 
where the round function contains no expansion and where the output  coordi- 
nates are quadratic, i.e. the nonlinear order of f is 2. Furthermore the attack 
can be converted into an attack on any 5 round Feistel cipher. For convenience 
let us now consider functions over GF(2) .  We state explicitly the definition of 
higher order differentials for this important  case. 

D e f i n i t i o n 1 0 .  A one round differential of order i is an (i + 1)-tuple 
(a l ,  ..., ai, t3), s.t. all aj's are linearly independent and 

Z F(P  | 7) - ~. 
"~EL(c~I,...,c~i) 

It is seen there are 2 i plaintexts in an / -order  differential. 

T h e o r e m  11. Let f (x ,  k) be the round function in a 5 round Fcistel cipher of 
block size 2n with independent round keys, i.e. a key size of 5xn bits. Assume that 
the nonlinear order o f f  is r. Then a differential attack using r-order differentials 
needs about 2 r+l chosen plaintexts with a running time of about 2 2n+r 

Proof: According to Prop. 6 the r-order derivative of a function of nonlinear or- 
der r is a constant. Therefore we can obtain a 2 round r-order differential with 
probability 1 and do a similar attack as in the proof of Th. 9. [] 

To illustrate the above attack, we consider now the differentially uniform 
mappings f (x)  = x 2k+1 in GF(2  n) described in [8]. 

L e m m a  12. Consider the permutation f (x)  = x 2k+1 in GF(2 n) for n odd and 
gcd(k, n) = 1. f is differentially 2-uniform and the second order derivative o f f ,  
A~,~f(x) is a constant with the value F = ~ x/~ • (a 2k-1 �9  where ~• 
is multiplication in GF(2~).  

Proof: The first s tatement is proved in [8] and that the second derivative is 
a constant follows from Prop. 5. The actual constant can be computed in a 
straightforward way and is omitted here (see [5]). [] 

We implemented the attack of Th. 11 counting on both the fourth and fifth 
round key using second order differentials in a five round Feistel cipher with 
f (x )  of Lemma 12 as round function and with n = 9 and k = 1, i.e. a 18 bit 
cipher with a 45 bit key. In 100 tests using 12 chosen plaintexts only one pair of 
keys was suggested and every time this pair was the right values of the fourth 
and fifth secret round keys. By using quartets as defined in [1, 2] the number 
of chosen plaintexts can be reduced to about 8. Note that  for this cipher the 
probability of any 3 round differential of first order is at most 23-2~ [8], where 
2n is the block size. Also note that  the example cipher of [8] has 6 rounds, and 
is therefore not vulnerable to the above attacks. 
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The outputs of S-box Does not affect S-boxes 
1, 7 
2, 6 
3, 1 
4, 2 
5, 8 
6, 4 
7, 5 
8, 3 

Table 1. Flow of the S-box output bits. 

5 T r u n c a t e d  D i f f e r e n t i a l s  o f  t h e  D E S  

For the DES [9] there are truncated differentials with probability one. When two 
inputs to the F-function are equal in the inputs to an S-box, the outputs from 
that  S-box are always equal, independent of the values of the inputs to other 
S-boxes. These truncated differentials are used to a wide extent in Biham and 
Shamirs attacks on the DES [1, 2]. 

The  output  of an S-box affects the inputs of at most six S-boxes in the 
following round, because of the P-permutation,  see Table 1. This fact can be used 
to construct a four round truncated differential for the DES with probability one, 
which gives knowledge about the difference of eight bits in the ciphertext after 
four rounds. Consider a pair of plaintexts where the right halves are equal and 
the left halves differ, such that  the inputs to only one S-box, say S-box 1, are 
different after the E-expansion. The first round in the differential holds always, 
and in the second round the outputs of all S-boxes except S-box 1 are equal. In 
the inputs to the third round the inputs of two S-boxes, S-boxes 1 and 7, are 
always equal, since S-box 1 does not affect these S-boxes according to Table 1. 
Therefore the outputs  of these S-boxes are equal, and the xor of eight bits in the 
right halves of the ciphertexts after three rounds are known, since the xor in the 
inputs in the second round is known. The right halves after three rounds equal 
the left halves after four rounds, therefore the xor of eight bits after four rounds 
of encryption are known with probability one. This differential can be used to 
attack the DES with 6 rounds in a differential attack using only a few chosen 
plaintexts as we will show in the next section. 

5.1 A t t a c k  on  6 r o u n d  D E S .  

In this section we consider the DES [9] reduced to 6 rounds. We take the first 
6 rounds of the standard and omit the initial and final permutation,  since they 
are of no importance for our attack. 

T h e o r e m 1 3 .  There exists a differential attack on DES with 6 rounds, which 
finds the secret key using 45 chosen plaintexts in expected time the time of about 
3,500 encryptions, which can be done in a few seconds on a PC. 
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a 20000000x 1 
G , oL [ - - ~ ,  20000000~ 
L_ 

o o ] 
< 

~ 
. " X ~-~-], 20000000~ it 

k_ 

Y x ] 

Fig. 2. A 4 round differential of DES. 

Proof: We consider a differential chosen plaintext attack using the differential in 
Fig. 2 and a similar differential where all the quantities 20000000~ are replaced 
by 40000000~. Assume first that the outputs of the first round have difference a. 
The inputs to the third round differ in only two bits both affecting only S-box 
1. According to the above discussion, the inputs with difference X to the fourth 
round are equal in the inputs to the S-boxes 1 and 7. Therefore eight bits of 
the difference Y are zero. Since the difference of the inputs to the third round 
is known, the attacker knows eight bits of the difference of the outputs of the 
F-function in the sixth round, since he knows the difference in the ciphertexts. 
These eight bits are the output bits of S-boxes 1 and 7. The attacker now tries 
for all 64 possible values of the key whether the inputs to S-box 1 yield the 
computed expected output difference, and does the same for S-box 7. For every 
pair of ciphertexts used in the analysis for both S-boxes the attacker will get 
an average of 4 suggested key values, among which the right key values appear, 
since the used differential has probability one. By trying a few pairs, e.g. four 
pairs with a high probability only one key value, the right key value, will be left 
suggested by all pairs. 
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In the following, let Ki,j denote the six bit key in S-box no. j in the i ' th 
round and let P be the 32 bit linear permutation in the DES round function, 
see [9]. '1' and 'll' denotes concatenation of 4 bit and 32 bit strings respectively. 

We assumed above that  the difference of the outputs of the first round is a,  
which it will not always be. First we note that  since the inputs to the first round 
differ in the inputs to only one S-box, there are only 16 possible values of a.  
Choose a set of 4 plaintexts 

P i = A i  II Pn 

for i = 0,. . . ,3,  where Ai = P(ai I ro I rl I ...Ir5 [ r6), where ai = i, each of 4 
bits, the rk's are randomly chosen 4 bit numbers and Pa  is a randomly chosen 
32 bit string. Next choose a set of 4 plaintexts 

P~,j = By II PR e ~ , ~  

for j = 0 ,  . . . ,  3 ,  where Bj = P(bj I ~o I ~1 I... I ~5 I ~6), ~1,1 = 2ooooooo. and 
b0 = 0~, bl = 4x, b~ = 8~, b3 = cz. 

By combining each of the four plaintexts Pi with each of the four plaintexts 
PI,j one obtains one pair of plaintexts with difference 

P(h. IOlO IO IO IO IOLO) II ~1,1 (1) 

for all values of h = 0, ..., fx, that  is, from these eight plaintexts one pair of 
plaintexts is a right pair with respect to the characteristic in Fig. 2. 

To get more right pairs choose a set of 4 plaintexts 

P2,j = By II PR e~1 ,2  

for j = 0, ..., 3, where ~1,2 = 40000000,, and a set of 4 plaintexts 

Pa,j = Ai II PR �9 (~1,1 ~ ~1,2 

for i = 0, ..., 3. 
By combining the set P2,j with the set P3,j one obtains another pair of 

plaintexts with difference (1) for all values of h = 0, ..., f~. 
By combining the set PI,j with the set P2,j and combining the set Pi with 

the set Pz,j one obtains 2 pairs of plaintexts with difference 

P(hz IOlOlOlOlOlOlO)II ~x,2 

for all values of h = 0, ..., f~. Note that  the characteristics just defined both 
affect the same S-box in the first round. Get the encryptions of the 16 plaintexts 
Pi, PI,j, P2,j and P3,j. 

The attack proceeds as follows. 

1. For every value kl,1 of the key KI,1 in S-box 1 in the first round do 
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(a) Let kl,, be the 48 bit key obtained from the concatenation of the value 
of kl,1 and 42 randomly chosen bits. 
Compute co = F(kl,,, Pn) and cl = F(kl , . ,  Pn | 4~1,1). Now c0 | el = 
P(Y I 0 I 0 I . . .  I 0) for some hex value y. Find the plaintext P~ and 
PI,j, such that  co @ Cl = A~ | B d. The pair of plaintexts Pi and PI,j is 
a right pair with respect to the characteristic in Fig. 2. Next compute 
c2 = F(kl,., Pn | ~1,2) and c3 = F(kl,,, PR @ ~1,1 | ~1,2). Find the 
plaintext P2,j and P3,j, such that  c2 | = By | The pair of plaintexts 
P2,j and P3,j is a right pair with respect to the characteristic in Fig. 2. 

Repeat this procedure finding 2 right pairs Pi and P2,j, PI,j and P3,j for 
the second characteristic. 

(b) Use the four right pairs in the differential attack described above. First 
do the attack on S-box 1 in the last round. If one key value k6,1 of K6,1 
is suggested by all four pairs, perform the differential attack on S-box 7 
in the last round. If one key value k6,7 of K6,7 is suggested by all four 
pairs, take k6,1 and k6,7 as the key values of K6,1 and K6,7 and take kl,1 
as the value of KI,1. 

The above attack finds 18 key bits with a high probability. In step l(a) above we 
need not do a complete evaluation of the F-function, only the computation of the 
one S-box involved is needed. For every value of K1,1 we do 4 S-box evaluations. 
Then for every value of K6,1 we do 8 S-box evaluations, one for each of the 8 
ciphertexts in the 4 pairs. The search for K6,7 is done only when one key value 
of K6,1 is suggested all four times. Totally the time used is about the time of 215 
S-box evaluations, about the time of 500 encryptions of six round DES. Note 
that  the differential used in the attack has probability one. More key bits can 
be found in similar attacks by plaintexts yielding other characteristics. 

With an additional 2 sets of each 16 plaintexts involving other S-boxes in the 
first round one finds 54 key bits. By a careful choice of each of the 2 sets one 
of the plaintext Pi in the above described attack can be reused. Since the DES 
has dependent round keys some of the key bits tried in the first and in the sixth 
round are identical. Using the S-boxes 1, 2 and 5 in the first round is an optimal 
choice and the attack finds 45 bits of the 56 bit secret key. The remaining 11 
bits can be found by exhaustive search. The attack needs a total of 46 plaintexts 
and runs in time about 3,500 encryptions of six round DES, which can be done 
in a few seconds on a PC. [] 

There are possible variations of the above attack, which are listed in Table 2. 
It should be noted that  the linear attack combined with differential 'techniques' 
by Hellman and Langford [4] exploits the same phenomenon as in our attack, but 
the two attacks are different. Finally we note that  in [10] Preneel et al. considered, 
what they call reduced exors, in differential attacks on the DES in CFB mode. 
The reduced exors have some resemblance with truncated differentials. 
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No. of chosen plaintexts No. of key bits found 
7 8 
16 18 
31 33 
46 45 

Table 2. Complexities of our attacks on DES with 6 rounds. 

6 C o m p u t i n g  t h e  N o n l i n e a r  O r d e r  

In [11] it was considered to cryptanalyse the DES by the method of formal 
coding. The conclusion was that  this is hardly possible. It was shown also that  
the nonlinear order of any of the 8 S-boxes in the DES is 5. An open question 
is, what is the order of the outputs for the full 16 round DES. In general, a 
cipher will be vulnerable to attacks like the method of formal coding if the 
nonlinear order of the outputs is too low. Higher order differentials can be used 
to determine a lower bound of the nonlinear order of a block cipher. 
T e s t  f o r  n o n l i n e a r  o r d e r  
Input: EK(-),  a block cipher, a key K, plaintexts Xl 76 X2 and r, an integer. 
Output:  i < r, a minimum nonlinear order of EK. 
Let a l  , a2, ..., ai be linearly independent. 

1. Set i = 1 
2. Compute  Yl = A a l  ..... a , E K ( X l )  and Y2 = Z~al  ..... aiEK(X2) 
3. If Yl = Y2 output  i and stop 
4. If i > r output  i and stop 
5. Set i = i + 1 and go to step (2) 

If in step (3), yl 76 y2 then the nonlinear order is greater than i according to 
Prop. 6. If yl = y2 then the nonlinear order may be greater than i, because it is 
possible for other values of x~ and x~ that y[ 76 y~. However the above test must 
stop, since if the i ' t h  derivative of f is constant, then the i + r ' th  derivative of 
f is zero for all r > 0. Also, note that  computing an i ' th order derivative of f ,  
is equivalent to computing two times an i - l ' s t  order derivative of f .  Therefore 
the values of Yl, Y2 can be stored and re-used in following steps. 

To test a block cipher E ,  pick a random key K and two random plaintexts 
and run the test for nonlinear order. If the output  of the test is d then the 
nonlinear order of E K  is at least d. Repeat this procedure for as many keys and 
plaintexts as desired. The input r and the test in step (4) is necessary for block 
ciphers like the DES and r should be chosen not much greater than 32, since it 
takes about 2 r encryptions to check a nonlinear order of r. 

7 Conc luding  Remarks  and Open Problems  

We have shown applications for truncated and higher order differentials. We 
presented ciphers secure against conventional differential attacks, but vulnerable 
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to at tacks using either t runcated or higher order differentials. We presented 
a differential a t tack on DES with 6 rounds using truncated differentials with 
complexity of about  46 chosen plaintexts and a running t ime of about  the t ime 
of 3,500 encryptions. Finally we presented a method to test the nonlinear order 
of a block cipher using higher order differentials. 

In the above attacks we have exploited the small number  of rounds in the 
Feistel ciphers we have analysed. It  is an open problem, whether differential 
at tacks based on higher order differentials are applicable to ciphers with more 
than 5 rounds. This seems to require a method of iterating higher order differ- 
entials to more than two rounds in the same way as with first order differentials. 
Truncated differentials can be combined with conventional differentials to refine 
at tacks using the latter. It  is an open problem whether t runcated differentials 
can improve the at tacks on DES [1, 2] for more than 6 rounds. 
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