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Abstract. Previous works on assumption/guarantee specifications typ-
ically reason about relevant properties at the semantic level or define a
special-purpose logic. We feel it is beneficial to formulate such specifica-
tions in a more widely used formalism. Specifically, we adopt the linear-
time temporal logic (LTL) of Manna and Pnueli. We find that, with past
temporal operators, LTL admits a succinct syntactic formulation of as-
sumption/guarantee specifications. This contrasts, in particular, with the
work by Abadi and Lamport using TLA, where working at the syntac-
tic level is more complicated, Our composition rules are derived entirely
within LTL and can also handle internal variables. We had to overcome a
number of technical problems in this pursuit, in particular, the problem
of extracting the safety closure of a temporal formula. As a by-product,
we identify general conditions under which the safety closure can be ex-
pressed in a succinct way that facilitates syntactic manipulation.

1 Introduction

An open system executes in parallel and interacts with its environment. Such a
system is best described by an assumption/guarantee (A /G for brevity) specifi-
cation, which gives the assumptions on the behavior of the environment and the
properties guaranteed by the system if the environment obeys the assumptions.
In this paper, we explore the use of linear-time temporal logic in writing and
reasoning about A/G specifications.

The idea of representing concurrent systems (programs) and their specifica-
tions as formulae in temporal logic was first proposed by Pnueli [16]. Lamport
later observed that if specifications are invariant under stuttering, then refine-
ment between specifications can be represented by the usual implication in tem-
poral logic {12]. A further advance towards the éffective use of temporal logic for
the specification of concurrent systems was to notice that hidden, or internal,
variables can be represented by existential quantification over program variables
[13, 17]. We intend to make a further contribution in the same vein by showing
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that A/G specifications can be formulated entirely within linear-time tempo-
ral logic. Barringer and Kuiper [6] are, to our knowledge, the first to formulate
A /G specifications in temporal logic; however, their formulation does not allow
quantification over program variables.

Suppose we wish to specify that the behavior of a system satisfies a guarantee
property M if the behavior of its environment satisfies an assumption property
E. An obvious formulation would be the usual implication £ = M. But, this
formulation has a problem, for example, when we compose two systems — one
satisfying £ = M and the other satisfying M = FE. If E and M are safety
properties (stating that “bad things” do not happen [5]), we naturally would
expect that the composed system satisfies both E and M. However, we cannot
come to this conclusion, since it is not possible to discharge any of the antecedents
in the implications.

A solution to the preceding problem was originally proposed by Misra and
Chandy [15]. The basic idea is that a system satisfies an A/G specification
with assumption E and guarantee M if, in every state of an execution, the
system guarantees M up to the current state provided that its environment has
respected F up to the preceding state; the definition implies that M is satisfied
in the first (initial) state. If both F and M are safety properties, then the
circular reasoning encountered when composing two systems can be broken by
induction on the length of executions. Misra and Chandy’s formulation has been
elaborated and extended in various contexts, e.g., [6, 9, 2, 4, 3, 8]. In particular,
Abadi and Lamport [3] combine the formulation with the usual implication so
that the guarantee part may contain liveness properties (stating that “good
things” eventually happen [5]).3

We propose to formulate A/G specifications using the linear-time temporal
logic (LTL for brevity) of Manna and Pnueli [14] that conform to the aforemen-
tioned interpretation. Previous works on A/G specifications, including [15, 10, 9,
2,4,3,7, 8, 18], typically reason about relevant properties at the semantic level
or define a special-purpose logic. In contrast, our definition of an A/G specifi-
cation is syntactic and entirely within LTL, which is relatively well understood
and widely applied. We derive inference rules for composing A /G specifications
as the main results of the paper.

One important aspect of our formulation is being able to handle assumptions
and guarantees with internal variables, which simply are existentially quantified
variables in LTL. Internal variables can be very useful in shortening a specifi-
cation, e.g., the specification of a queue. Abadi and Lamport’s work [3] is most
closely related to ours. Grgnning et al. [9] have also considered internal variables,
but in a semantic framework. In addition, their proof rules seem unnecessarily
strong and are formulated indirectly in terms of simulations rather than directly
in terms of computations. Recently, Collette [8] designed a UNITY-like logic for
A/G specifications (with restricted forms of assumptions and guarantees) that
can handle hiding.

® Abadi and Lamport’s formulation of an A/G specification also allows liveness prop-
erties in the assumption part. However, their composition rule only works for safety
assumptions.
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The work of Abadi and Lamport [3] in using TLA [13] for A/G specifications
has been one inspiration of our work. Although they have also used temporal logic
as the basis, their approach is different from ours. Whereas we try to express and
reason about A /G specifications syntactically, they work mostly at the semantic
level (because, for A/G specifications, working at the syntactic level of TLA
would be very complicated). In particular, they introduce an operator %>, which
is defined semantically (though a syntactic definition is possible), to formulate
A /G specifications; inference rules are then derived by semantic arguments. This
in effect is introducing a new operator to the logic.

There are two main technical problems that arise in using linear-time tem-
poral logic for A/G specifications: The first problem is to be able to talk about
the satisfaction of (the safety part of) a formula with respect to a finite prefix
of an infinite sequence (temporal formulae in LTL are interpreted over infinite
sequences of states). Barringer and Kuiper [6] have pioneered the use of past tem-
poral operators in overcoming the problem, while considering particular forms
of assumptions and guarantees. Their idea intuitively is to regard the end of
the prefix as the present and look at the past. We observe that Barringer and
Kuiper’s idea can be applied to any safety formulae of the form OH, where the
truth value of H depends only on the present and the past states. This brings us
to the second problem, which is to extract the safety part, or safety closure, of
the guarantee part (i.e., the strongest safety property implied by the guarantee)
in the form of O H. Although this is always possible, the obtained formula may
be too complicated to reason about. We give a result showing that, if the guar-
antee is specified by a formula in a canonical form that satisfies certain general
conditions, then its safety closure can be expressed in the desired form and in a
more succinct way, which greatly facilitates syntactic manipulation. We actually
could avoid calculating the safety closure, since our formulation of A/G specifi-
cations is applicable as long as the guarantee is given in the form of 3z: DH AL
with H depending only on the present and the past states (no other conditions
on H or L are required). This would be similar to the approach of considering
the guarantee as a pair of a safety property and an arbitrary supplementary
property, e.g., [6, 18].

We give a brief, informal review of LTL in Section 2, where a canonical form
of formulae is defined for expressing the assumption and the guarantee of an A/G
specification. In Section 3, we show how the safety closure of a canonical formula
can be expressed in a succinct way. Section 4 describes our formulation of A/G
specifications in LTL. A general composition rule is derived and compared with
that of Abadi and Lamport. An example is elaborated in Section 5. Section 6 is
the conclusion.

2 Preliminaries

This section gives a brief and informal introduction to linear-time temporal
logic (L'TL) as defined in [14]. The use of the logic in specifying closed systems
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is explained, leading to the definition of canonical formulae. Canonical formulae
are also suitable for expressing the assumption and the guarantee of an A/G
specification, each of which, when standing alone, is a specification of some
closed system.

2.1 LTL

LTL is a logic for expressing properties of infinite sequences of states, where each
state is an assignment to a predefined universe of variables. An LTL formula is
interpreted with respect to a position ¢ > 0 in a sequence of states. We assume
a set of constant, function, and predicate symbols with fixed interpretations. A
state formula is a particular LTL formula built only from variables, constants,
functions, and predicates using the usual first-order logic connectives. The in-
terpretation of a state formula (such as “y > 5A (In:y = n?)”) in position i
is performed as usual using the particular interpretation of variables in state ¢
(plus the fixed interpretations of constants, functions, and predicates). LTL also
contains extra temporal operators; in this paper, we will use the following:

— O means “in the next state”. The formula O¢ is true in position i of a
sequence o (denoted (o,i) = Oyp) iff ¢ is true in position i 4+ 1 of ¢ (ie.,
(0,i+1) k= ).

— O means “always in the future (including the present)”; (o,4) = O¢ iff
Vk>i:(o,k) E .

— & means “sometime in the future”; (o,1) | Op iff 3k > i : (0, k) E .

— & means “in the previous state, if there is any”; (o,1) | Op iff (i > 0) =
(0ri— 1) k= ).

— @ means “always in the past (including the present)”; (o,%) = B¢ iff V& :
0<k<i:(ok)Ee.

— © means “sometime in the past”; (0,7) | O iff Ik : 0< k <i:(0,k) = ¢.

- For a variable u, the interpretation of u~ (the previous value of u) in position
¢ is the same as the interpretation of variable u in position ¢ — 1; by conven-
tion, the interpretation of 4™ in position 0 is the same as the interpretation
of u in position 0.4

— first is an abbreviation for ©false which is true only in position 0.

We say that a sequence o satisfies a formula ¢ (or ¢ is true for ¢) if (¢, 0) = ¢,
which will be abbreviated as ¢ |= ¢. A formula ¢ is valid, denoted |= ¢ (or simply
¢ when it is clear that validity is intended), if ¢ is satisfied by every sequence.

Quantification deserves special attention. Each variable is either rigid (having
the same interpretation in all states of a sequence) or flexible (with no restrictions

* In contrast to Lamport and others who use “t”-superscribed (or primed) variables
to denote their values in the next state, we use “~”-superscribed variables to denote
their values in the previous state. The reason is that (for conformity) we wish to use
only past operators in the safety part of a specification. The introduction of “~”-
superscribed variables is convenient but not essential, since they can be encoded by
the © operator.
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on interpretation in different states). When specifying a system, flexible variables
can represent program or control variables, whose value may change over time.
For a formula Ju: ¢ we have (o,i) |= Ju: ¢ iff there is another sequence o',
which differs from o in at most the interpretation given in each state to u, such
that (¢/,7) = ¢;® note that the restrictions of rigid variables must be observed.
Intuitively, this means that the truth of Ju: ¢ for a flexible variable u depends
on the existence of an infinite sequence of u-values (one for each state), rather
than just a single value, such that ¢ can be satisfied.

A formula without temporal operators but possibly with “~”-superscribed
variables is called a transition formula (the definition is slightly different from
that in [14]). A formula without any future operator O, O, or ¢ is called a past
formula; in particular, a transition formula is a past formula. A property is said
to be a safety property if the following condition holds: for any sequence o, if
each prefix of ¢ is a prefix of some sequence that satisfies the property, then o
also satisfies the property. A property is said to be a liveness property if every
finite sequence is a prefix of some sequence that satisfies the property. A safety
formula is one that specifies a safety property and a liveness formula is one that
specifies a liveness property. Of particular importance, formulae of the form oH
are safety formulae if the truth value of H depends only on the present and
the past states, e.g., if H is a past formula. The form of a liveness formula is
not important for our purposes. The safety closure of a given property is the
strongest safety property implied by the given property, i.e., a safety property
satisfied by exactly those sequences o such that each prefix of o is a prefix of
some sequence that satisfies the given property. The safety closure of a property
specified by an arbitrary temporal formula can also be specified by a temporal
formula (see the next paragraph), making it meaningful to talk about the safety
closure of a formula.

Notations We use => (instead of —) for implication. Square brackets “[” and
“]” are sometimes used in place of parentheses “(” and “)” for readability. A
formula ¢ is sometimes written as ¢(z) to indicate that the free variables of ¢
are among the tuple of variables x. We write ¢[t/u], where t is a state formula
and u a variable, to denote the formula obtained from ¢ by simultaneously
substituting ¢ for every free occurrence of u, assuming no free variables in ¢
become bound in ¢; when no confusion may arise, we also use the same notation
for changing the name of a bound variable or the value of a constant. ¢[t/u]
is simply written as ¢[t] if the intended substitution is clear from context. The
notation for substitutions generalizes to tuples in the obvious way. To avoid
ambiguity (since there are different but equivalent formulae), the safety closure
C(yp) of a formula () is defined as O[3Z: B(Z = ) A ©(first A p[Z/z])] (which

5 We note that, in contrast to TLA advocated by Lamport, the semantics of existential
quantification in LTL does not preserve invariance under stuttering, i.e., Ju: ¢ is
not necessarily invariant under stuttering even if ¢ is. However, the composition
rules derived in this paper will still be valid if we adopt the semantics of TLA for
existential quantification.
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is satisfied by exactly those sequences ¢ such that each prefix of o is a prefix of
some sequence that satisfies ¢).

2.2 Canonical Formulae

Using LTL, we can specify the behavior of a closed system ([13, 17]). Each
variable of the system is represented by a flexible variable in LTL. Each execution
of the system is represented by.an infinite sequence of states. The system can
thus be specified by an LTL formula in the sense that the executions of the
system are exactly those satisfying the formula.

In general, a closed system can be specified by the conjunction of a safety
formula and a liveness formula. The safety formula can be put in the form of
OH with H being a past formula, particularly O((first = Init) A (—first = N)),
where Init is a state formula and NV a transition formula. The exact form of the
liveness formula is not important for our purposes. Existential quantifications
may be introduced to hide internal variables. Thus, a complete specification can
be put into the form

Jdz:0HAL

where z is a tuple of flexible variables, H is a past formula (so that O H is a safety
formula), and L is a liveness formula. Formulae of this form are called canonical
formulae; the condition that H is a past formula will be further relaxed.

As we will show in Section 3, it is desirable that the pair of OH and L be
“machine-closed” [1], i.e., C(OH A L) < 0OH; this condition can always be en-
forced as shown in the following paragraphs. One way of understanding machine-
closedness is that L does not rule out safety properties that are allowed by O H.
For example, “0[a(z = 0) VB(z = 1)]” (which equals “0(x = 0) VO(z = 1)”)
and “0¢(x = 1)” is not machine-closed, since OO(x = 1) rules out the possibil-
ity of O(z = 0).

We have required H in a canonical formula “dz : OH A L” to be a past
formula so that the truth value of H depends only on the present and the past
states and thus OH is a safety formula. The requirement can be replaced by
a more general but less practical one, since the fact that “the truth value of a
formula ¢ depends only on the present and the past states” can be precisely
expressed as “O[B(z = y) => (p[z] & ¢[y])] is valid”. A formula that meets the
more general requirement is called a historical (or semantically past) formula.®
Obviously, every past formula is historical. From the definition of a historical
formula it follows that, if H is historical, then OH specifies a safety property
and thus is a safety formula. The defining formula for C(¢), for instance, is in
this form.

Once H is generalized to be historical, the desirable condition of machine-
closedness — C(OH A L) & OH, can always be enforced (at least in theory).
In fact, any formula ¢ is equivalent to the formula C(p) A (=C(¢p) V ¢), which is
in the form of DH, A L, with H, being a historical formula and L, a liveness
formula such that C(0H, A L,) < 0OH,,. (This is analogous to the well-known

& The definition of historical formulae is due to Amir Pnueli.
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result that every property is the conjunction of a safety property and a liveness
property [5].) We may also apply the result to ¢ in the context of a specification
of a closed system Jz : o, translating the specification into another canonical
formula that satisfies the machine-closedness condition.

3 Calculating Safety Closures

We define the stuttering-extensibility of a safety formula and show that, under
machine-closedness and stuttering-extensibility, the safety closure of a canonical
formula can be expressed in a succinct way and in the desired form.

First, we invoke a result in [3]:

Lemmal. If 3z:OH A L 15 a canonical formula such that C(QH A L) < OH,
then C(3z:0H A L) & C(3z: OH).

Note that de: OH may or may not be a safety formula; even if it is, the
formula is not in the desired form of O H’ such that H’ is past or historical.

Let o|; denote the prefix of o (= s, s1, 82, .. .) of length ¢, i.e., the finite se-
quence Sg, 51, . . ., ; (which contains i+1 states and ¢ transitions). The stuttering-
extension of ¢|; is the infinite sequence obtained from o|; by indefinitely repeat-
ing its last state s;, i.e., the infinite sequence sg,si,...,si-1, 8i, S, Si,.... We
say that a safety formula OH (with H being a past or historical formula) is
stuttering-extensible if the following condition holds: for every o and every i > 0,
if @ is true at position ¢ of &, then OH is true for the stuttering-extension
of ;. Equivalently, OH is stuttering-extensible if O[pH(w) = Jo : B(® =
w) AoO(w = @~) A O(first N OH[w/w]) is valid. The intuition is that, if a
system has satisfied a stuttering-extensible safety property so far, then it will
continue to satisfy the safety property simply by doing nothing. We note that
stuttering-extensibility is conjunctive in the sense that the conjunction of two
stuttering-extensible formulae is also stuttering-extensible.

Lemma?2. If 3z : OH is a canonical formula such that QH is stuttering-
extensible, then C(3z: 0H) © O(3z: 5 H).

A weaker condition than stuttering-extensibility is sufficient for the above
lemma to hold. However, the weaker condition lacks the conjunctivity property
enjoyed by stuttering-extensibility. From Lemmas 1 and 2, it follows:

Theorem 3. If3z:0H AL is a canonical formula such that C((OH A L) & 0H
and OH s stuttering-extensible, then C(3z: DH A L) & 0o(3z: 0 H).

4 Assumption/Guarantee Specifications

In this section, we describe our formulation of A/G specifications in LTL and
derive inference rules for composing such specifications. In light of the results in
Section 3, we consider A/G specifications where the assumption and the guar-
antee parts are expressed in the canonical form with the additional conditions
of machine-closedness and stuttering-extensibility:
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1. The assumption E is expressed as O(3z: @ HE). Given that O H is stuttering-
extensible, O(3z : @HE) equals the safety closure of 3z : OHg, which is a
specification of the safety properties of a system with the tuple z of internal
variables hidden.

2. The guarantee M is expressed as dy: OHp A Ly where C(QHp A Ly) &
OH s and OHpy 1s stuttering-extensible so that the safety closure of M is
equivalent to O(Jy: B Hp).

In fact, the conditions of machine-closedness and stuttering-extensibility are
not absolutely necessary. The derived composition rules will still be valid without
the two conditions if we regard M as a pair of the safety formula O(3y: B Hp)
and some supplementary formula and interpret the definition of > (Section 4.2)
as a purely syntactical expansion.

4.1 Basic Formulation

Following Misra and Chandy [15], an A/G specification of a system should cap-
ture the following property: For every execution of the system, the guarantee M
is satisfied initially and, for every ¢ > 1, if the assumption F has been satisfied
by the prefix of length 7 — 1, then M is satisfied by the prefix of length i (recall
that the length of an execution is the number of transitions, which is one less
than the number of states in the execution). The satisfaction of a formula with
respect to prefixes of an execution depends only the safety part of the formula
(since each of the prefixes is finite and therefore, by definition, can be extended
to an infinite execution satisfying the liveness part of the formula). Therefore, we
first concentrate on the safety closure of E (which is E itself) and that of M; the
liveness part of M will be taken into account in the next subsection. In other
words, we consider the formulation of an A/G specification with assumption
0(3z: @Hg) and guarantee O(Jy: B Hy).

Since Hg and Hpy (and hence 3z : @Hg and Jy : @Hyy) are historical,
“0(3z: mHE) is satisfied by the prefix of length i—1 of ¢” can be formally stated
as “(0,1) = ©8(3z: @HE)” or equivalently “(0,i) = ©(3z: BHE)” (recall that
the states of o are numbered from 0) and “00(Jy: @Hys) is satisfied by the prefix
of length i of ¢” as “(¢,%) |E (Jy: @Hpr)”. The property that we intended to
capture can, therefore, be expressed as O{&(dz: @HE) = (3y: B Hp)]. This
formula also implies that (3y: @Hs), or simply (Jy: Hps), has to be satisfied
initially, since ©(3z: @ Hg) always holds in the initial state.

In summary, we take O[©(32: @HEg) = (3y: @Hpr)] to be the A/G specifi-
cation with assumption 0(3xz: B Hg) and guarantee O(3y: @H ). The following
lemma states that A /G specifications can be composed in a straightforward way:

Lemma 4. Assuming that z1,...,2n, ¥1,...,Un are pairwise disjoint,

>3

D[é(Eia:,-: EIHE,) = (3y,- : E]HM')]
i=1

= 0[0@z1...9.:8 A Hg) = Gy .yn:0 A Hu,)l
i=1 i=1

2 2
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From Lemma 4 and a simple induction, we obtain

Theorem 5.

Q[6(@y:: BHu,) = By2: BHM)AD[O(By2: B HM,) = (Jyi: BHu, )]
= O3y :8HMm,) AOBy2: BHp,).

A special case of the theorem is the composition principle essentially formu-
lated by Misra and Chandy:

(OB Hy, = BHM,) ANO(OBHy, = BHy,) = OHu, AOHM,.

4.2 Adding Liveness

To allow liveness properties in the guarantee, we simply strengthen the specifi-
cation by conjoining it with the usual implication between the assumption and
the entire guarantee. As the complete formulation of an A/G specification with
assumption £ = O(3dz: @Hg) and guarantee M = Jy: OHpy A Ly, we define
E > M as follows:

E > M 2 n[d@z:aHe) = (Gy: aHm)] A[E = M)

This is consistent with our taking “0[®(3z: @HEg) = (Jy: @Hum)]” to be the
A /G specification with assumption O(3z: @ Hg) and guarantee O(Jy: @ H ) in
the previous subsection, since if M is a safety formula, the implication £ = M is
subsumed by 0O[&(3z: B HEg) = (Jy: @Hpy)]. Therefore, [O(Jz: 2HEg) > O(Jy:
BHuy)] & D[6(Fz: 0HE) = (Jy: 8 Hu))].

The general composition rule is as follows (assuming that , y, z1,...,%n,
Y1,...,Yn are pairwise disjoint); when M is a safety formula, Premise 2(b) can
be dropped.

Theorem 6.

1. D[(El:c: BHp)A Gy ...yn: B 7\ Huy) = (3z1...25:0 ;\1 HE)]

=1 i=

2. (a) D[é(ﬂx:gHE) AQQyr...yn: 8 '2\1 Hy,) = (3y: EHM)]

(b)) EANM; =M
1=1

AE: > M) = (E b M)
i=1

We now show how one goes about establishing the premises of the composi-
tion rule. Premise 2(b) is in the usual form of refinement between two canonical
formulae, which can be proven by standard “refinement mapping” techniques
[13, 17]. Premises 1 and 2(a) can respectively be rewritten as follows:

n n
1. EI[EHE/\EI N Hy, = 3. .zn80 A\ HE,]
i=1 i=1

= =
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n
9.0 [éBHE A A Hy, = 3y EIHM]
i=1

Both formulae are in a weaker form than the usual refinement between two
canonical formulae, because the existential quantifications occur inside the O op-
erator. Like in the usual case, we may find appropriate functions fy,..., f,, g that
map from the free variables of Hg, Har,, ..., Hy, to the domainsof 1, ..., 2,,y
respectively, and prove the following:

1. D[EIHE AB A Hy, =0 7\ HE‘[fi/xi]]

i=1 =1

n
2. D[éEIHE/\E] N Hu, = E!HM[g/y]]
i=1

The first premise can be proven by showing
n n
o[He A N\ Hy, = |\ Ha.[fi/=]]-
i=1 i=1

The second premise needs more work. It can be shown that O(GBHE A
n n
8 A Hum, = BHum(g/y]) is implied by O(©1e A \ Hum, = Hulg/y]), where
i=1 i=1
I is a state formulasuch that O(2Hg = Ig). The validity of (28 Hg = Ig) can
be established by the usual proof of an invariant. Let I denote the transition
formula obtained from Ig by superscribing every flexible variable with “=”. It
follows that the second premise can be proven by showing

O {(—'ﬁrst > I5) A\ Ha, = HM[g/y]].

It is sometimes possible, e.g., in the example of Section 5, to prove a stronger

and simpler formula O( A Huy, = Humlg/y]).
i=1

4.3 Comparison with Abadi and Lamport’s Work

In [3], Abadi and Lamport further develop their earlier work on A/G speci-
fications [2] using the framework of TLA [13]. Although they have also used
temporal logic as the basis, their approach is different from ours. Whereas we
express and reason about A/G specifications syntactically, they work mostly at
the semantic level. Technically, due to the absence of past operators in TLA,
they extend the semantic model for TLA formulae to include finite sequences
so that the assertion “a finite prefix of an execution satisfies a formula” (which
plays a central role in A/G specifications) can be stated directly, which other-
wise would require extensive usage of auxiliary variables that result in long and
complicated formulae.

Abadi and Lamport formulate an A /G specification by means of the operator
%>, They define the formula E > M to be true of a behavior o iff (a) E = M
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is true of o, (b) M holds initially, and (c) for every n > 0, if E holds for the
prefix of o of length n, then M holds for the prefix of o of length n + 1. Part
(a) is also present in our formulation of £ > M. Parts (b) and (c) presuppose a
definition of when a formula is satisfied by a prefix of a behavior; the definition
of satisfaction by Abadi and Lamport depends only on the safety closure of a
formula (i.e., parts (b) and (c) can be equivalently formulated using the safety
closures C(FE) and C(M) of E and M). Consequently, their general composition
theorem, shown below, makes extensive use of safety closures.

1. C(E) A Z\ C(Mi) = /"\ E;

i=1

2. (@) C(E)su A A\ C(M:) = C(M)

f=1

(®) EA N\ M= M
i=1

A (s > M) = (E % M)

where C(FE)4,, for some tuple v of variables, intuitively means that the values
of v may change in a state transition only if the prefix up to the current state
satisfies C(E).

Aside from using the novel (and not very easy to reason about) operator
+v”, the theorem explicitly uses safety closures, which are a semantic notion.
In contrast, our composition theorem is presented purely syntactically within
LTL. It can be shown [11] that, under some general assumptions, the definitions
of 3> and > are equivalent and the composition theorem of Abadi and Lamport
can be derived from Theorem 6.

«

5 An Example

To illustrate the application of our formulation of A /G specifications, we consider
the same example as used by Abadi and Lamport [3] and others, e.g., [6, 7], where
two queues for storing natural numbers are composed in series to obtain a larger
one. A queue is an open system whose environment is the user of the queue. In the
most straightforward A/G specification of a queue, the guarantee part contains
an internal variable that is used to store a finite sequence of natural numbers. To
make the example more interesting, we stipulate that numbers are sent by the
environment in ascending order. We deliberately introduce an internal variable
(which could have been avoided) in the assumption part that stores the next
number to be sent by the environment to the queue and we specify that the next
number be greater than the previous one sent. It should be noted that internal
variables are often introduced for the ease of writing specifications and need
not correspond to actual program variables in an implementation. We take the
liberty to borrow notions from [3] for our exposition of the example. We shall
concentrate only on safety properties; liveness properties can be handled in a
similar way as in [3]. Moreover, we shall adopt a noninterleaving representation
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of the queue, permitting the addition of a number to and the removal of another
from the queue to occur simultaneously; an interleaving representation can also
be treated in a similar way as in [3].

A queue interacts with its environment via two single-buffered channels: an
input channel for receiving a number from the environment and an output chan-
nel for sending a number to the environment, as depicted in Figure 1. A channel
¢ consists of two variables c.sig and c.ack of type boolean and a third variable
(the single buffer) c.val of type natural number. Boolean variables c.sig and c.ack
are used for the synchronization between the sender and the receiver of channel
¢. The channel is ready for sending ifl c.sig = c.ack. When c.sig = c.ack, the
sender may deposit a number in c.val and at the same time negate the value of
c.sig so that c.sig # c.ack, indicating that a value has been sent. Subsequently,
the receiver may read the value of c.val and negate c.ack, which makes c.sig and
c.ack equal indicating that the channel is ready for sending again. This synchro-
nization mechanism is usually referred to as the (two-phase) handshake protocol.
We write ¢ to denote {c.sig, c.ack, c.val) and c.snd to denote (c.sig, c.val).

i.snd 0.snd
—p] e

i.ack Queue o.ack
———— S —

Fig. 1. A queue as an open system.

We introduce abbreviations for the initial condition and two relevant transi-
tion formulae on a channel:

CInit(c) 2 c.sigAc.ack A c.val =0
Send (v, ¢) 2 c.sig” = c.ack™ A c.ack = c.ack™ A c.snd = (—c.sig”, v)
Ack(c) £ ¢.sig™ # c.ack™ A c.ack = —c.ack™ A c.snd = c.snd”

In accordance with the handshake protocol, the environment of a queue with
input channel { and output channel o is expected to obey the following assump-
tion:

E(i,0,2) 2 0(3z:8HE(,o0,x))
A

Hg(i,0,2) (first = Initg) A (—first = (Put V Get V GetPut V Skippy))
where the initial condition and relevant transition formulae are defined as fol-
lows. A

Initg = Clnit(3)
Put 2 Send(z~,)) Az >z~ Ao.ack = o.ack™
Get 2 Ack(o) Ai.snd = i.snd”
GetPut £ Ack(o) A Send(z™, i) ANz >z~
4

Skip g i.snd =i.snd” Ao.ack =o.ack™ ANz =z~
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‘The queue in return should guarantee M as defined below:

M(i,o0,q, maz) O(¢: 8HM (4, 0, ¢, maz))

(first = Imitpr) A (—first = (Enq V Deq V DeqEng V Skipy,))

s e

Hp(i,0,q, maz)

where the relevant formulae are defined as follows.

Inity 2 Clnit(o) Ag = ()

Eng 2 |g7| < maz A Ack() A (g = ¢~ o (i.val™)) A o.snd = o0.snd~
Deq £ |47 > 0 A Send(head(q™),0) A q = tail(g™) A i.ack = i.ack™
DegEng 2 |g~| > 0 A Send(head(q™), 0) A Ack(i) A (g = tail(¢™) o {i.val™))
Skip pr 2 o.snd = 0.snd™ Ai.ack = i.ack™ Ag=gq~

Note that Hp and Hps are indeed past and hence historical formulae as
required. Both OHg and OH s are apparently stuttering-extensible. From The-
orem 3, O(3z : @HE(i,0,z)) and 0O(3¢ : BHum (%, 0,9, maz)) express the safety
closures of 3z: OHE(i,0,z) and 3g: OH (7, 0,9, maz), respectively.

The assertion that the composition of two queues in series results in a larger
one can be expressed by the following formula.

(E[i,m, 1] > M[i,m,q1, Ni]) A (E[m,0,25] > M[m, 0,2, N3])
= (Eli,0,z] > Ml[i,o0,q,(N1+ Nz + 1)])

Figure 2 shows the statement in picture.

i.snd o.snd
Queue
i.ack |(size Ny 4+ N2 +1)| o.ack
- —rr—

i.snd m.snd o.snd

Queuel Queue2
t.ack (size Ni) m.ack (size No) o.ack

B — < |

Fig. 2. Implementation of a queue by two composed in series.

We now apply Theorem 6 to show the validity of the above statement. Fol-
lowing the discussion in Section 4.2, the premises of the theorem translate into
the following two formulae:

1. 0@ Hzli,0,2) A B(Huli,m, g1, Ni] A Harlm, o, g2, Nal)
= dr @e: A(HE[i, m, 1) A Hg[m, o, :02])}
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2.0 [éBHE[l; o, ZL‘] A E(HM[Z, m,qi, Nl] A HM[’I'TL, 0, q2, N2])
= 3g: D Huli, 0,9, (Vi + N2 + )]

The required mappings can be defined as follows:

1. For variable z1, the required mapping Z; is simply Z;(z) = z. For variable
z9, we define the mapping Z, as follows:

Za(z,i,q1) 2 head(q1) if g1 # ()
ival  if g1 = ) Ai.sig # i.ack
z otherwise

Intuitively, for the second queue, the next number to be sent by its environ-
ment is either the value at the head of ¢; (if not empty), ¢.val (if ¢; is empty
and channel ¢ not empty), or .

2. The mapping from ¢;, m, and ¢z to ¢ is the same as in [3]:

- A . .
lI(ql, m, (I2) =q@oq if m.sig = m.ack
g2 o (m.val) o q1 otherwise

Using these mappings, it is straightforward to prove

1.0 [HE[l, 0, CI}] A (HM[Z, m,qi, Nl] A HM[m,o, g2, Ng])
= Hgl[i,m, 3] A Hg[m, o, 52]]
2. D[HM[i,m;(hle] A Hpr[m, 0,92, Na] = Huli, 0,4, (N1 + N2 + 1)]]

which implies the needed premises.

6 Conclusion

We have developed a formulation of A/G specifications within linear-time tem-
poral logic. We have shown that, by using past temporal operators, it is possible
to give a natural and general formulation of A/G specifications and to derive
needed inference rules in a simple and straightforward way. We have also shown
how internal variables can be handled. It is our intention that the results will fur-
ther advance the use and applicability of temporal logic in specifying concurrent
systems.
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