
On behavioural abstraction and behavioural
satisfaction in higher-order logic*

Martin tIofmann** and Donald Sannella***

Laboratory for Foundations of Computer Science
University of Edinburgh, Edinburgh EH9 aJZ

Abs t r ac t . The behavioural semantics of specifications with higher-order
formulae as axioms is analyzed. A characterization of behavioural ab-
straction via behavioural satisfaction of formulae in which the equality
symbol is interpreted as indistinguishability, due to Reichel and recently
generalized to the case of first-order logic by Bidoit et al, is further gen-
eralized to this case. The fact that higher-order logic is powerful enough
to express the indistinguishability relation is used to characterize beha-
vioural satisfaction in terms of ordinary satisfaction, and to develop new
methods for reasoning about specifications under behavioural semantics.

1 I n t r o d u c t i o n

An impor tan t ingredient in the use of algebraic specifications to describe da ta ab-
stractions is the concept of behaviouraI equivalence, which seems to appropriately
capture the "black box" character of data abstractions, see e.g. [GM82], [ST87].
Roughly speaking, two Z-algebras A, B are behaviourally equivalent with re-
spect to a set OBS of observable types if all computat ions that can be expressed
in Z and that yield a result in OBS produce the same result in both A and B. A
specification of a data abstraction should characterize a class of algebras that is
closed under behavioural equivalence; otherwise it forbids some realizations that
are indistinguishable from acceptable ones. Closure can be ensured by means
of a specification-building operation known as behavioural abstractwn [SW83],
[ST87]. The te rm "behavioural semantics" is used to characterize approaches
that take the need for behavioural closure into account.

One issue in behavioural semantics is the relationship between the class of
algebras produced by applying behavioural abstraction to a specification (~, ~),
and that obtained by simply interpreting equality in ~ as indzstinguishability
rather than as identity. The latter approach, sometimes known as behavioural
satisfaction, is due to Reichel [Rei85] who showed that these two classes co-
incide when the axioms involved are conditional equations, provided that the

* This is a condensed version of [HS95].
** E-mail raxh0dcs, ed. ac.uk. Supported by a Human Capital and Mobility fellowship,

contract number ERBCHBICT930420.
*** E-mail dtsOdcs.ed.ac.uk. Supported by an EPSRC Advanced Fellowship and

EPSRC grants GR/H73103 and GR/J07303.

248

conditions used are equations between terms of types in OBS. Bidoit et al have
recently generalized this to the case of specifications with first-order equational
formulae and reachability constraints as axioms, and to arbitrary relations of
behavioural equivalence and indistinguishability. In [BttW94] they show that
the coincidence holds in this context as well, whenever the class of models of
(Z, ~} (under ordinary satisfaction) is closed under quotienting w.r.t, indistin-
guishability, provided that indistinguishability is regular and that behavioural
equivalence is factorizable by indistinguishability.

We examine these issues for the case of (flat) specifications with higher-order
logical formulae as axioms, generalizing the framework and results of [BttW94].
Although it is not made explicit there, the main results in [BttW94] !ncluding
the characterization theorem do not strongly depend on the form of axioms. We
give syntax and semantics for higher-order formulae and show that they have
the required properties. We then define behavioural equivalence and indistin-
guishability and prove regularity and factorizability, which leads directly to a
characterization result analogous to the one in [BttW94].

IIigher-order logic provides sufficient power to express the indistinguishabil-
ity relation as a predicate. We apply this fact to develop methods for reasoning
about specifications under behavioural semantics. We characterize behavioural
satisfaction in terms of ordinary satisfaction, by giving a translation that takes
any formula ~a to a "relativized" formula c~an such that rpn is satisfied exactly
when ~ is behaviourally satisfied. This, together with the characterization the-
orem, leads directly to various proof methods.

For reasons of space, proofs are omitted in this paper. See [ITS95] for these
and for additional material.

2 T h e l a n g u a g e o f h i g h e r - o r d e r l o g i c

The syntax of the typed variant of higher-order logic we will use is described
below. The logic is higher-order because quantification over predicates (i.e. sets)
is allowed in addition to the usual quantification over individuals.

Def ini t ion 2.1 A signature Z conszsts of a set t3 0fbase types and a set C of
constants such that each c C C has an arity n > O, an n-tuple of argument types
b l , . . . , b n c t3 anda r e s u l t l y p e b E B , which we abbreviatec:bl x . •

Let ~ = (B, C) be a signature.

Def in i t ion 2.2 The types over ~ are gzven by the grammar r ::--- b [r l , . . . , r~,],
where b E B and n >_ O. Types(E) denotes the set of all types over Z .

A type [7-1,. �9 r~] is the type of n-ary predicates taking arguments of types
r l , . . . , r,~. The type [] may be thought of as Prop , the type of propositions. Let
X be a fixed infinite set of variables, ranged over by x.

Def in i t ion 2.3 The terms over S are gwen by the following grammar."

t ::= ~ 1 4 t ~ , . . . , t ~) I ~(=~:T~,. . . , x,~:r,~).t I t (t l , . . . , t ,~) I t ~ t' I vx : r . t

249

where c E C and n > O. As usual, we regard c~-convertible t e rms as equal.

Function application c (t l , . . . , t,~) is distinguished from predicate application
t (t l , . . . , t,~). A-abstraction is for forming predicates; implication (0) and uni-
versal quantification are for forming propositions. There is just one syntax class
for terms: terms that denote individuals are not distinguished syntactically from
terms denoting predicates or propositions. But in order for a term to denote
anything at all, it has to be typable according to the following definitions.

D e f i n i t i o n 2.4 A context F zs a sequence x I " 7 " 1 , . . . , Xn : " I n where xi ~ x j for
al l i 5s j . We write 1"(xj) f o r r j and Vars(V) for {Xl , . . . , Xr,}, and w e identi fy 1"
w,th the Types (~) - sor t ed set of variables such that 1", = {x e Va ts (V) I r(=) =
"I} for all "I E Types (Z) . Let T C_ Types (Z) be a subset of the set of types over
X; then C is called a T-context i f 1"(x) �9 T for all x �9 Vars(1").

D e f i n i t i o n 2.5 We write F F t : "I i f th*s judgement as derivable using the six
rules below, and then we call t a term in context F. A term t is closed zf F t : r .
A predicate (in context 1") zs a term t such that 1" F t : [r l , . . . , r~]. A formula
(in context 1") zs a term ~ such that 1" F (p "[].

V F x : V (x)

F, Zl : r l , . . . , Z n : 7n F t :[]

1" F .~(Zl:T1,...,Xn:7.n).t : [7 " 1 , . . . , ' l - n]

e : bl x . . . x b,~ --+ b
F F t] :81 " " Y F t n :bn

v I- C (t l , . . . , t n) : b

v F t : [q , . . . , r~]
P F t l : r l . . . P F t ~ :rn

v F t (t l , . . . , t ~) : []

r ~ t : [] r>t ' : []

F , z : r F t : []

V ~- Vx:r . t : []

Equality is expressible using higher-order quantification. That is, suppose
F F t : r a n d 1 " ~ - t ' : r ; t h e n

t = , t ' abbreviates VP:[r] .P(t) ~ P (t ')

where P ~ Vars(F) . Existential quantification and the missing connectives are
expressible as usual in terms of V and =>:

true abbreviates VP:[].P => P ~ V ~o' abbreviates (--,~) => p'
false abbreviates VP:[].P p A p' abbreviates ~ (~ V -,~')

~ abbreviates ~ => false 3x : r .~ abbreviates ~Vx:r.--,~o

Finally, there is no need to treat reachability constraints as a special case,
since induction principles are expressible. For example, the following formula
(call it G E N N A T) asserts that nat is generated by 0 and suee:

VP:[nat].(P(0) A W:na t . (P (n) ~ P(suee (n)))) ~ V,~:nat .P(n)

See [HS95] for an example which gives a taste of the expressive power of the
language thus defined.

250

3 S e m a n t i c s o f h i g h e r - o r d e r l o g i c

Let Z = (B, C) be a signature. Terms over Z are interpreted in the context of
a Z-algebra which gives meaning to the base types and the constants in Z.

D e f i n i t i o n 3.1 A ~-algebra A conszsls of a carrier set [b]a for every b E B,
and interpretations of constants [C]AE ([bl~A'• • [bn~A--+ [b~n) for every
c : bl • . ' . • bn ~ b in C. The class of all ~-algebras zs denoted A l g (~) .
Z-homomorphisms and Z-isomdrphisms are as usual.

Let A be a Z-algebra. We define two interpretations for terms. The first is
the obvious "standard" interpretation and the second is modulo a partial con-
gruence relation on A. In the latter interpretation, quantification is over only
those elements of types that respect the congruence; as a result, equality in
formulae refers to the congruence rather than to identity of values. The partic-
ular partial congruence of interest will be a relation of indistinguishability to be
defined in Sect. 4. Theorem 3.19 demonstrates a relationship between the two
interpretations that will be crucial in the sequel. Our use of partial congruences
stems from the need to establish an appropriate relationship between indistin-
guishability and behavioural equivalence, see Theorem 5.12, in order to apply
the characterization theorems in Sect. 6.

3.1 S t a n d a r d i n t e r p r e t a t i o n

De f in i t i on 3.2 Types of the form [v l , . . . , r~] are znterpreted as follows:

[[' , 1 , �9 � 9 , - , 4 1 1 A = Pow(lf~-~L • • [TJ~) .

Thus, [[]]A is {{}, {.}} where * is the empty tuple. Recalling that [] means
P r o p , {} may be thought of as denoting fa lse and {*} as denoting t rue , so we
will use the abbreviation f f for {} and tt for {*}. Let s be a context.

De f in i t i on 3.3 A / '-environment (on A) ~s a Types(~)-sor ted functzon p =
(p~ : Y~ --+ [~]A)r~Typos(Z)- The notation p[xl ~+ v l , . . . , x , ~ v,] denotes
the envzronment p superseded at x l , . . . , x ~ by v l , . . . , v ~ respectzvely. When x E
Vats(V) we wr, te p(x) for pv(~)(x). Let T C_ Types(S) ; a F-env i ronment p is
T-surjective g p~ : F~ --+ [IrmA is surjective for each r E T.

D e f i n i t i o n 3.4 Let p be a F-environment . The znterpretatzon of constants zs
extended to terms in context F as follows:

[c(t~,..., t~)L,~ = M~([t~I , ,A, . . . , #4,,~)
[A(,~ :~I , . . . , ~:~ ,~) . tL, ~ = {(~, , . . . , ~) I v~ c [~ , L and . . . and ~ ~ [~ L

and [t]p[~l~v, ' ,.v~v~],A = It}
[t (t l , , . . , t n)] p , a -~ Zf ([t l~p ,A , . . . , [tn]p ,n) E [t]p,a then tt else f f

It =~ tt~p,A ~- i f ~t]p,A: tt then [t']p,A else t l

[Vx:T.t]]p, n = af [t]],[x~v],A = tt for all v e [[r] n then tt else f f

251

Proposi t ion 3.5 I f F F t : r and p is a F-environment then Hp,A E IrmA. []

The following proposition demonstrates that =~ really is equality.

Proposi t ion 3.6 Suppose v, v ~ E [T~A for some type r. Then for any envzron-

ment p, Ix =~ y]p[x~...v,y~..~v,],A = tt Zff V ---- V'. []

Definition 3.7 Let B' C_ B. A value v E [b] A is B'-reachable if there is a B'-
context F, a term t with F ~- t : b, and a F-environment p, such that [tip,A= v.

Intuitively, v is B'-reachable if v can be obtained by application of constants
to values of types in B'. Recall that the formula G E N N A T asserts that nat is
generated by 0 and succ. Indeed, for any algebra A over the relevant signature,
[GENNAT][],A= tt iff every value of type nat in A is 0-reachable.

Definition 3.8 Let ~, ~' be formulae zn context F. Let p be a F-environment;
we write A ~ ; ~ if ~ p , A = tt. We write A ~ ~ (A satisfies p) if A ~ ;

for all F-env,ronments p. We wrzte p ~ p' (~ is equivalent to ~') zf for all
A E Alg(Z) and all F-environments p, A ~p ~ i f f A ~p ~'. Finally, z f r is a
set of formulae in context F then we wrote A ~ ~ zf A ~ ~ for all ~ E ~.

Proposi t ion 3.9 I f A "~ A' then A ~ ~ iff A' ~ ~. []

3.2 Interpretation w.r.t, a partial congruence

Definition 3.10 A partial congruence ~ on A ~s a family 0fpart ial equivalence
relations (~b C [b~A • [b]A)bEB such that for all c : bi • " . • bn --+ b in C
and all vj,v~ E ~b]A such that vj ~bj v~ for 1 < j < n, [C~A(Vi,... ,vn) "~b

'
vn). A (total) congruence zs a reflexive partial congruence.

Let ~ be a partial congruence on A. We now generalise the definition of
satisfaction up to ~ in first-order equational logic to higher-order logic. Whereas
in the first-order case it is enough to interpret the equality symbol as the partial
congruence and to restrict all quantifiers to the domain of the partial congruence,
the situation is more complicated here. We must make sure that the predicate
variables only range over predicates which "respect" ~. That our definition is
the right generalisation is shown by Prop. 3.16 and Theoiem 3.19.

The following definition extends the partial congruence ~ to a so-called logical
relation over all types. The resulting relation will be used below to interpret
bracket types.

Definition 3.11 We extend ..~ to "bracket" types by taking p ~[ri, .,~] P' for
p,p' E [[[Ti,..., T~]]] A ~ff for all v~, vj. E [7-j~ A such that vj ~ 3 v~ for 1 <_ j <_ n,
(v i , . . . , v n) E p iff (v~, . . ., v'n) E p'. We say that v E ~'~A respects ~ / fv ~ v.

A predicate p E [[q , . . . , v~]] A respects ~ if it does not differentiate between
values that are related by ~. Note that v ~[] v ~ iff v = v ~.

The difference between the standard interpretation of terms and their inter-
pretation with respect to a partial congruence stems from the following.

252

D e f i n i t i o n 3.12 Interpretat ion of types w.r.t. ~ is defined as follows:

[~]] = {v e ~% Iv respects ~}

~['~,..., "-]L : {p e P o w ([~ L • • [~) I ; respects ~}

We have [[]]A = [[]~A = {if, t t} . The second clause of the above definition is
well-formed because [r~AC - ~r~A for any type r. Let s be a context.

D e f i n i t i o n 3.13 A F-environment (w.r.t. ~ , on A) is a Types (2) - sor t ed rune-

D e f i n i t i o n 3.14 Let p be a F - e n w r o n m e n t w.r.t . ~ . The interpretat ion w.r.t.
of t erms in context F is defined as follows:

t ~ [~(~:~1,' " , ~ : '~) ' L,~

#(t~, ..,t~)~7, ~

= p(~)

= {(v~ , . . . , v~) I Vl e [TI~A a n d . . , and v n ~ ~Tn~ A

and [t? }~ ,~ ~ o ~ l , ~ = t t }

= if ([ta~7,~,.. , # 4 7 , ~) e lt~7,~ then tt e l se / /

= if [t~7,~= tt then It']7, ~ e l s e .

= ~f #LI ,~ , I ,A= tt for ~ll v C [~ then tt els~]if

P r o p o s i t i o n 3.15 I f F F t : 7 and p zs a F -env i ronmen t w.r.t . ~ then [t ~ A ~

The following shows that =~ refers to ~ under the interpretation w.r.t. ~.
This is because P in VP:[T].P(t) ~ P(t ') ranges over predicates that respect ,,~.

P r o p o s i t i o n 3.16 Suppose v, v' E ~7]~ for some type v. Then for any envir-
onment p w.r.t. ,,~, [x ~ = y]p[x~v,y~v,],A = it i f f v ~ r v I. []

The interpretation of G E N N A T with respect to z is also different from what
it was under the s tandard interpretation. For any algebra A, [[GENNAT]I~],A= It

iff every value in ~nat~A is congruent to a 0-reachable value.

D e f i n i t i o n 3.17 Let ~ be a formula in context F. Suppose p zs a F -envz ronmen t
w.r.t . ~," then we write A ~ 7 ~ zf [~] ; ,a = ft. We write A ~ " ~ (A satisfies

w.r.t. ~) if A ~ 7 ~ for all r-enwronments p w.r.t. ~. I r e is a set of formulae
in context F then we wrote A ~ ~ i f A ~ ~ for all ~ E r

When ~ is the indistinguishability relation (see Definition 4.1 below), ~ is
known as behavioural sat~sfactzon.

253

3.3 Relating ~ and ~

Let ~ be a partial congruence on A.

De f in i t i on 3.18 Suppose v E ~b~ A for b E B such that v ~b v; then the congru-
ence class of v w.r.t. ~ is defined as [v]~ b -- {v' E [b]A [v ~b v '] . The quotient
of A by ..~, wmtten A / ~ , is then defined as follows:

[b]A/~ = {[v]~ b Iv E ~b]A and v ~b v}

 C]AI-_ =

The following demonstrates a fundamental relationship between ~ and ~--.
In the first-order case, it says that standard satisfaction of u formula ~o in A / ~
is equivalent to satisfaction of p, with the symbol : interpreted as ~, in A itself.

T h e o r e m 3.19 A / ~ ~ ~ ~ff A ~ ~. []

A trivial consequence of this is the fact that ~= coincides with ~ .

4 B e h a v i o u r a l e q u i v a l e n c e a n d i n d i s t i n g u i s h a b i l i t y

Let E = (B, C) be a signature, and let OBS, the observable base types of ~ , be
a subset of B. The intention is that OBS includes just those base types that are
directly visible to clients. All other types, including bracket types, are h~dden
in the sense that their values may only be inspected indirectly by performing
experiments (i.e. evaluating terms) that yield a result of a type in OBS.

The following defines indistinguishability as in [NO88]; v ~ oBs v' if no exper-
iment of observable type with observable inputs can distinguish between them.

De f in i t i on 4.1 Let the family of partial congruences ~ o B s = (~OBS,A)AEAlg(.V,)
V I (V, V I indistinguishable) zff v and v' be such that v ~.~OBS,A,b 6 [b] A are are

OBS-reachable, and for any OBS-contex t F, variable x ~ Vars(ff) , term t wzth
F, x : b F t : b' for b' 6 0 B S , and F-envwonmen t p, [[t~p[x~v],A = [tl]p[x~v,], A.

By analogy with the terminology of denotational semantics, a Z-algebra A is
called fully abstract when the indistinguishability relation on A is equality. Such
an A is called an algebra of min imal redundancy in [Rei85].

D e f i n i t i o n 4.2 ([BHW94]) Let ,.~ = (~A)AeAig(~) be a family of partial con-
gruences. A Z-algebra A is ~-fully abstract when for all v, v' E ~b] A, v ~A v l

, ff v --: v'. For any .4 C A lg(E) , define

FA=(A) : {A E A I A zs E-ful ly abstract}.

The family ..~ zs regular if A / ~ A zs ..~-fully abstract for every A E A lg (Z) .

P r o p o s i t i o n 4.3 ~oBs zs regular. []

254

We now define what it means for two Z-algebras to be behaviourally equi-
valent. The definition resembles that of indistinguishability in that it is based
on the idea of experiments. But in this case performing an experiment means
testing satisfaction of a formula rather than evaluating a term of base type.

D e f i n i t i o n 4.4 An observable equation ,s a formula t =b t' in OBS-eontext F
where b E O B S . ObsEqr (Z) is the set of observable equations m P.

D e f i n i t i o n 4.5 A is behaviourally equivalent to A', wmtten A =oBs A ~, if there
is an OBS-eontezt F and OBS-surjective F-environments PA on A and PA' on
A' such that for any ~ E ObsEqr(L'), A ~PA ~ iff A' ~PA' ~"

Note that the definition of =-oBs does not make use of higher-order features,
except as a result of the way that equality is expressed via quantification over
predicates. So =oBs is just the same as in e.g. [SW83], [MG85], [NO88]. But
the natural modification of the definition of ---oss to make use of higher-order
formulae gives exactly the same relation, see Corollary 5.13.

The following definition is the key to understanding the relationship between
indistinguishability and behavioural equivalence. The idea is that a family of
partial congruences naturally induces an equivalence on Alg(Z) . Since behavi-
oural equivalence is the relation induced by indistinguishability (Theorem 5.12),
we can translate constructions phrased in terms of behavioural equivalence into
constructions phrased in terms of indistinguishability, and vice versa. There is a
close analogy with the case of finite state machines, where two machines M, M'
are equivalent if quotienting M and M ~ by the so-called Nerode equwalence on
states yields isomorphic machines.

D e f i n i t i o n 4.6 ([B H W 9 4]) Let ~ = (~A)AeAlg(~) be a family of partial con-
gruences, and let = C Alg(Z) x Alg(~) be an equivalence relation. Then =_ is
factorizable by ~ if for any A , A ' E Alg(~) , A = A' iff A / ~ A ~- A'/ .~A,.

The following proposition gives half of faetorizability of - o B s by ~ o B s . The
other half is a consequence of a more general result, see Corollary 5.8 below.

P r o p o s i t i o n 4.7 I f A =-OBS A' then A/~--,OBS,A ~- A~/~OBS,A '. []

In this paper, we consider only the definitions of indistinguishability and
behavioural equivalence given above. There are two other 'candidates for each of
these, as described in [BHW94]. These alternatives are not studied here, although
the results given here should hold for them as well.

5 E x p r e s s i b l e c o n g r u e n c e s a n d r e l a t i v i z a t i o n

Higher-order logic is powerful enough to express directly the indistinguishability
relation ~oBs . Let Z = (B, C) be such that B and C are finite.

D e f i n i t i o n 5.1 Let ~ = (' ~ A) A E A l g (~ 7) be a family of partial congruences, and
Iet ,.~ -- (~b)beB be a family of closed predicates such that f- N b : [b, b] for every
base type b E B. Then ~ as expressible by ..~ if["~b~[],A= "~A,b for every b E B.

255

T h e o r e m 5.2 The indzstinguishabflity relatwn ~o Bs zs expressible by a family
of predicates (INDISTb)beB. []

In [Sch94] an analogous expressibility result for the indistinguishability rela-
tion used in [Rei85] is given for a language of second-order logic.

Let ~ = (~A}AeAO(~) be expressible by --, = ("b)beB. We can use ~ to give
predicates characterizing the values in the interpretation of types w.r.t. ~.

P r o p o s i t i o n 5.3 For any t y p e r there is a closed predicate DOM~ such thai
?- DOMr : [r] and [DOMr~[],A = [Irma A. []

We can use the predicates DOMr thus defined to transform any formula ~ into
a formula r9~7 such that r~7 is satisfied exactly when ~ is satisfied w.r.t. ~.
We simply "relativize" each bound variable by attaching a requirement that its
value is in the interpretation of its type w.r.t. ,,~.

D e f i n i t i o n 5.4 Let t be a term ,n context F. The ~-relativization of t zs the
term ct7 (in context F) defined as follows:

FX7

F c (t l , . . . , t r y) 7 =

~(x~:n,..., z ~ : r ~) . t ~ =

r t (t l , . . . , t ~) 7 =
r t ::~ t 17 =

rVx:~-.t7 =

c (r t17 , . . . , rtn7)

, . . . , Z)OM , A... A Z)OM .
r t n (c t l T , . . . , c t ~ 7)
rt7 ~ r tm

Vx:r .DOM,(x) ~ rtn

T h e o r e m 5.5 Let A be a Z-algebra, let ~ be a formula in context I" and let p
be a F-environment w.r.t. ~A. Then A ~ A ~ zff A ~p r~7. []

The ~-relativization of a formula is similar to the notion of "lifted" formula in
[BH95], and Theorem 5.5 is a higher-order version of Theorem 15 there.

The relativization construction may be used to define another behavioural
equivalence relation, in which two algebras are regarded as behaviourally equi-
valent provided they cannot be distinguished by relativized formulae. It will turn
out (Corollary 5.13) that this "new" relation coincides with --oBs.

D e f i n i t i o n 5.6 A is behaviourally equivalent to A ~ via relativized formulae,
written A =RcZFo~,~ A ~, if there is an OBS-context 1" and OBS-surjectwe F-
envwonments PA on A and PA' on A ~ such that for any formula ~ zn context F,
A ~ ; a c~7 i f fA ' ~;A, c~7, where r~7 ~s the (INDlSTb)beB-relatwizahon of~ .

T h e o r e m 5.7 I f A/,.~OBS,A ~- AI/~OBS,A , then A =--RetFo~m X . []

C o r o l l a r y 5.8 I f A / ~ o B S , A -~ At/,.~OBS,A , then A -~oBs A ~. []

Yet another definition of behavioural equivalence is obtained by extending
the definition of =oBs to use higher-order formulae to perform experiments.

D e f i n i t i o n 5.9 A type r is observable if either:

256

r is a base type that is in OBS; or
- r = [r l , . . . , rn] and rl is observable for all 1 < i < n.

A formula ~ m OBS-conlexl F zs observable zf all types occurring zn ~ (z.e. as
types of bound variables) are observable. Let ObsFormv(Z) be the set of observ-
able formulae in context F.

The restrictions on observable formulae ensure that predicates in such formulae
always have observable type. Note that ObsEqv(5) C ObsFormv(Z) .

D e f i n i t i o n 5.10 A zs behaviourally equivalent to A' via formulae, wmtten A
=--OBSForm A', , f there zs an OBS-context F and OBS-surjective l '-environments
flA on A and flA' on A t such that for any ~ E ObsFormv(Z), A ~p,~ ~ iff

A' ~o~, ~.

A I" C o r o l l a r y 5.11 I f A/,,~OBS,A = A~/,,~OBS,A , then A =OBSFo~,~ []

T h e o r e m 5.12 =--ReZForm, =--OBS and----OBSForm are factorizable by ~OBS. []

C o r o l l a r y 5.13 ==-RelForm = ==-OBS ~- "-~OBSForrn. []

This demonstrates that using formulae more complex than equations as experi-
ments does not allow finer distinctions between algebras to be made. This is not
necessarily what one would expect: in the case of non-deterministic algebras, the
use of more complex formulae does yield a different relation, see [Nip88].

6 R e l a t i n g a b s t r a c t o r a n d b e h a v i o u r a l s p e c i f i c a t i o n s

D e f i n i t i o n 6.1 A ('flat) specification consists of a s~gnature Z and a set ~ of
closed Z-formulae, called axioms. The models of a specificatzon (E , r are all
the algebras ~n the class

Mod({Z ,~)) = {A C Alg(Z) I A ~ ~}.

Let (Z , ~) be a specification. Let ~ = ("~A}A~AO(~) be a family of partial
congruences, and let = C Alg(Z) • Alg(Z) be an equivalence relation.

D e f i n i t i o n 6.2 For any A C_ AIg(Z), the closure of A under = is

Abs==_(A) = {A E Alg(Z) I A = A' for some A' E A} .

When = is the relation =oBs for some OBS, Abs-_ zs known as behavioural
abstraction. An abstractor specification, written abstract (Z, r w.r.t. ~, has as
models all those Z-algebras that are equwalent to models of (Z , ~) :

Mod(abstract {Z, ~) w.r.t. --) = A b s - (M o d ((Z , ~))).

D e f i n i t i o n 6.3 A behavioural specification, written behaviour (Z ,~) w.r.t. ,~,
has as models all those Z-algebras that satisfy the axzoms ~ w.r.t. ~:

Mod(behaviour (Z ,~) w.r.t. ~) = {A E Alg(~) I A ~A ~}.

257

We have now built up enough machinery to redo the development in [BHW94]
for higher-order logic. Although it is not explicit there, their results are independ-
ent of the logic used in axioms, provided properties corresponding to Prop. 3.9
and Theorem 3.19 hold. We merely state the theorems; for proofs and discussion,
see [BHW94].

A s s u m p t i o n ~ is regular and = is factomzable by ~.

The particular case of interest is where ~ and - are ~oBs and =OBS respect-
ively, for an arbitrary choice OBS of observable base types. These satisfy the
assumption by Prop. 4.3 and Theorem 5.12.

T h e o r e m 6.4 ([BHW94])
Mod(behaviour (Z, 4i) w.r.t. ~) = Abs=(FA~(Mod({Z, r []

Def in i t i on 6.5 ([BHW94]) For any A C_ Alg(Z), define the classes Beh=(A)
= Abs-(FA~,(A)) and A / ~ = {A /~A I A C ,4}.

T h e o r e m 6.6 ([BHW94])
Mod(abstract (~,~b} w . r . t . -) = Beh~(Mod((Z, ~}) /~) . []

The main characterization theorem is the following:

T h e o r e m 6.7 ([BHW94]) The follow,ng conditzons are equivalent:

1. Mod(behaviour (Z,~P} w.r.t. ~) = Mod(abstract (Z ,#) w.r.t. =)
2. Mod((Z, ~)) C_ Mod(behaviour (~, ~b) w.r.t. ~)
3. Mod((X, 4~))/,,~ C_ Mod((Z, ~P)) []

7 R e a s o n i n g a b o u t s p e c i f i c a t i o n s

A concrete benefit of the results above is a number of methods for reasoning
about specifications. Let ~ = (B, C} be a signature. Let ,~ = (~-oA)AEAlg(Z)
be a family of partial congruences that is expressible by --~ = ("b)bEB, and let
-- C_ Alg(~) x Alg(Z) be an equivalence relation. We restrict attention to closed
formulae.

De f in i t i on 7.1 A formula p zs a consequence of a set ~ of formulae, written
~ ~, zffor any Z-algebra A, A ~ ~ implies A ~ 9.

Def in i t i on 7.2 Let ,4 C Alg(Z). The theory w.r.t. ~ of~4 is The(A) = {9]
A ~ A ~ for every A E A}. The (ordinary) theory of A is Th(A) = Th=(A).
We write Th(SP) for Th(Mod(SP)) and Th~,(SP) for Th=(Mod(SP)).

The essence of reasoning about specifications is to find a way of reducing the
problems ~, C Th(SP) and ~, C Th~(SP) to that of consequence (# ~ ~b for
appropriate ~ and r then any proof system that is sound for ~ may be used
to finish the job. We consider the most important cases below, giving proof
methods that provide such reductions. See [HS95] for the remaining cases.

258

7.1 ~ G T h ~ ((T , , ~))

It is argued in [BH95] that a solution to this problem can be used to prove
correctness of implementation steps in stepwise refinement.

The following proof method follows immediately from Theorem 5.5:

P r o o f M e t h o d 7.3 9 E Th~((~ ,O)) ,ff4) ~ "r-gn. []

This is essentially the solution.proposed in [BH95], except that because the
analogue of our Corollary 5.5 there involves infinitary formulae, more work is
required to reduce the problem to one of consequence for finitary formulae.

Alternatively, if Theorem 6.7 applies, then this problem is equivalent to the
problem treated in Sect. 7.2 below according to the following result:

P r o p o s i t i o n 7.4 ([BHW94]) I f - is factomzabIe by ~ then Th~(Abs-(.A)) =
The(A). []

7.2 ~ E Th~(behaviour (Z,4)) w.r.t. ,~)

This problem is studied in [BH94], for the indistinguishability relation of [Rei85].
Theorem 5.5 yields the following proof method:

P r o o f M e t h o d 7.5 9 E Th=(behaviour (L',4)) w.r.t. ~) zffr4) n ~ r97. []

A more powerful approach is obtained via the following results:

P r o p o s i t i o n 7.6 ([BHW94]) Th~(Abs=(FA~(A))) = Th(FA~(.A)) if = is
factorizable by ~. []

P r o p o s i t i o n 7.7 ([BH95]) Mod((Z, 4)U{Vx, y:b.(x ~b Y r x =b Y) I b ~ B}>)
= FA~. (Mod((Z, 4)))). []

These together with Theorem 6.4 yield the following:

P r o o f M e t h o d 7.8 Suppose that ,,~ is regular and - zs factomzabIe by ,,~. Then
9 E Th~(behaviour (Z, 4)) w.r.t. ~) i f f4) U {Vx , y:b.(x "b Y r x =b Y) I b 6
B} 9. []

This is essentially the method proposed in [BH95], with the proviso concerning
infinitary formulae mentioned earlier.

Finally, a more direct approach to this problem is to reduce it trivially to
consequence w.r.t. ~:

Def ini t ion 7.9 A formula 9 zs a consequence of a set 4) of formulae w.r.t. ,,~,
wmtlen 4) ~ 9, if for any Z-algebra A, A ~ A 4) imphes A ~ a 9.

P r o o f M e t h o d 7.10 9 E Th~(behaviour (Z, 4)) w.r.t. ~) zff4) ~ 9- []

Then what is required to finish the job is a proof system that is sound for ~ .

259

7.3" q# E Th(abstract (~',r w.r.t. _=)

This problem arises in reasoning about specifications in ASL [SW83] which in-
eludes a specification-building operation corresponding to abstract; el. [Far92].

Theorems 5.5 and 6.7 yield the following:

P r o o f M e t h o d 7.11 Suppose that ,,~ is regular and =_ ~s factorizable by ~,
and the conditzons in Theorem 6.7 hold for the speczfication (~ , r Then ~ E
Th(abstraet (Z, ~) w.r.t. =) iff vqSn ~ ~. []

Alternatively, if the formula to be proved is a relativized formula or is logically
equivalent to such a formula, we obtain the following reduction.

P r o o f M e t h o d 7.12 Suppose that = zs factorizable by ~ and ~ ~ t e n for
some r Then ~P ~ ~ implies ~ E Th(abstract (Z, ~) w.r. t . -) . []

This is a direct extension of the method for reasoning about abstractor specific-
ations presented in Sect. 4 of [ST87], which applies only to formulae built in
certain ways from observable equations. A formula that is equivalent to a rela-
tivized formula is called a "~-invariant" formula in [BIt95], but this concept is
not used as the basis of a reasoning method there.

A useful special case of Proof Method 7.12 can be obtained by adding "re-
spectful" abstraction A r and quantification V r to the syntax, where:

Ar(x l : r l , . . . , x~:r~).t abbreviates A (z l : q , . . . , x~:7-~).
DOMTI(Xl) A . . . A D O M , , (x ~) A t

Vrx:T.t abbreviates Vx:r.DOM~ (x) ~ t

Def in i t i on 7.13 A respectful formula ,s a formula that may contain)~r and/or
Y ~ but does not contain)~ or V.

It is easy to see that ~ ~ r ~ for any respectful formula ~. This gives:

P r o o f M e t h o d 7.14 Suppose that = is factorizable by ~ and ~ zs a respectful
formula. Then ~ ~ ~ ,replies T E Th(abstract (~,~5) w.r.t . =). []

In the case of behavioural abstraction, V ~ on base types corresponds exactly to
reachable quantification as in [Sch92]. Also, since every observable formula is
equivalent to a respectful formulae, we have:

P r o o f M e t h o d 7.15 Suppose that ~ zs an observable formula. Then ~ ~
zmplies qp E Th(abstract (L',r w.r.t. ---oBs). []

In Section 5 of [Sch92], Schoett highlights an inadequacy in the method for
reasoning about abstractor specifications presented in [ST87]. He gives a simple
abstractor specification with axioms in first-order equational logic and a prop-
erty that it satisfies, and shows 'that an infinite number of applications of the
proof method in [ST87] would be required in a proof of that property. This ex-
ample is easily dealt with using Proof Method 7.14: the required property can be
expressed using higher-order respectful quantifiers and proved in the unabstrac-
ted specification, whereupon a single application of the proof method completes
the proof.

260

8 F u r t h e r w o r k

One reason for studying behavioural semantics in higher-order logic was the
desire to apply the results in the Extended ML framework for the formal de-
velopment of ML programs [KST94]. The results are of direct relevance in this
context: the interpretation of interfaces involves abstractor specifications, and
axioms are written in (a form of) higher-order logic. However, the framework
here needs to be extended in two ways to make the match perfect.

First, the framework needs to be generalized to allow functions of higher
type, in addition to the predicates of higher type that are already present. This
would involve adding constants of higher type to signatures and allowing A-
abstraction to be used for forming functions. This can be done, as we will describe
in a future paper; it is not straightforward because [r~ACs [r]A if we extend
Definition 3.12 with obvious choices for function types. But note that n-ary
functions may already be coded as (n + 1)-ary predicates in the usual way.

Second, the use of behaviour and abstract in the context of structured specific-
ations needs to be studied. An at tempt appears in [BHW94], where they define
Mod(behaviour SP w. r . t . ~) = Beh~(Mod(SP)). Unless SP is a flat specifica-
tion, the result is different from what is obtained when the specification-building
operations in SP are interpreted as usual but with axioms in SP satisfied ac-
cording to ~= rather than ~. Further work is required to clarify the relationship
between abstractor specifications (which generalize easily to structured specific-
ations) and this alternative interpretation of behavioural specifications.

Applying the results and proof methods to concrete examples should shed
considerable light. Without having at tempted such examples, we are not yet in
a position to understand the tradeoffs between the various proof methods. But
in view of the complexity of the predicates INDISTb (see [HS95]), it seems clear
that proof methods involving the manipulation of relativized formulae will not be
convenient for use in practice when ~ is ~oBs . Here, a promising avenue is the
search for more tractable predicates which correctly express ,~oBs in restricted
circumstances (cf. the notion of "conditional axiomatization" in [BH95]). Proof
methods which make no use of the predicates INDISTb (e.g. Proof Methods 7.10
and 7.15) do not suffer from this problem.

A c k n o w l e d g e m e n t s : Thanks to Michel Bidoit and Roll Hennicker for many
very useful comments. Proof Method 7.8 is due to them, and they pointed out
that a previous version of Proof Methods 7.12 and 7.14 were unnecessarily re-
strictive. Thanks to Andrzej Tarlecki for many discussions on related topics and
for drawing our attention to the idea behind INDISTb in Theorem 5.2. Thanks
to David Aspinall and Wolfgang Degen for helpful suggestions.

References

[BH94] M. Bidoit and R. Hennicker. Proving behaviourM theorems with standard
first-order logic. Proc. 4th Intl. Conf. on Algebraic and Logic Programming,
Madrid. Springer LNCS 850 (1994).

261

[BH95]

[BHW94]

[Far92]

[GM82]

[HS95]

[KST94]

[MG85]

[Nip88]

[NOSS]

[Rei85]

[ST87]

[SWS3]

[Sch92]

[Sch94]

M. Bidoit and R. Hennicker. Behavioural theories. Selected Papers from the
lOth Workshop on Specification of Abstract Data Types, Santa Margherita
Ligure. Springer LNCS, to appear (1995).
M. Bidoit, R. Hennicker and M. Wirsing. Behavioural and abstractor spe-

cifications. Report LIENS-94-10, Ecole Normale Sup6rieure (1994). To appear
in Science of Computer Programming. A short version appeared as: Charac-
terizing behaviourai semantics and abstractor semantics. Proc. 5th European
Syrup. on Programming, Edinburgh. Springer LNCS 788, 105-119 (1994).
J. Farr6s-Casals. Verification in ASL and Related Specification Languages.
Ph.D. thesis, Report CSR-92-92, Univ. of Edinburgh (1992).
J. Goguen and J. Meseguer. Universal realization, persistent interconnection
and implementation of abstract modules. Proc. 9th Intl. Colloq. on Automata,
Languages and Programming, Aarhus. Springer LNCS 140, 265-281 (1982).
M. Hofmann and D. Sannella. On behavioural abstraction and behavioural
satisfaction in higher-order logic. Report ECS-LFCS-95-318, Univ. of Edin-
burgh (1995). Available on WWW in h t tp ://~w~. des. ed. ac . u k / l f c s r e p s /
EXPORT/95/ECS-LFCS-95-318.
S. Kahrs, D. Sanne]la and A. Tarleeki. The semantics of Extended ML: a
gentle introduction. Proc. Intl. Workshop on Semantics of Specification Lan-
guages, Utrecht, 1993. Springer Workshops in Computing, 186-215 (1994).
J. Meseguer and J. Goguen. Initiality, induction and computability. In: Al-
gebraic Methods m Semantics (M. Nivat and J. Reynolds, eds.). Cambridge
Univ. Press, 459-540 (1985).
T. Nipkow. Observing nondeterministie data types. Selected Papers from the
5th Workshop on Specification of Abstract Data Types, Gullane. Springer
LNCS 332, 170-183 (1988).
P. Nivela and F. Orejas. Initial behaviour semantics for algebraic specific-
ations. Selected Papers from the 5th Workshop on Specification of Abstract
Data Types, Gullane. Springer LNCS 332, 184-207 (1988).
H. Reichel. Behavioural validity of conditional equations in abstract data
types. Proc. of the Vienna Conf. on Contributions to General Algebra, 1984.
Teubner-Verlag, 301-324 (1985).
D. Sannella and A. Tarlecki. On observational equivalence and algebraic spe-
cification. Journal of Computer and System Sc,ences 34:150-178 (1987).
D. Sannella and M. Wirsing. A kernel language for algebraic specification
and implementation. Proc. 1983 Intl. Conf. on Foundations of Computation
Theory, Borgholm. Springer LNCS 158, 413-427 (1983).
O. Schoett. Two impossibility theorems on behavioural specification of ab-
stract data types. Acta Informat,ca 29:595-621 (1992).
P.-Y. Schobbens. Second-order proof systems for algebraic specification lan-
guages. Selected Papers from the 9th Workshop on Specification of Abstract
Data Types, Caldes de Malavella. Springer LNCS 785, 321-336 (1994).

