
A Comparative Utility Analysis of Case-Based Reasoning
and Control-Rule Learning Systems

Anthony G. Francis, Jr. and Ashwin Ram
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

(404) 853-9381, (404) 853-9372
{centaur, ashwin} @cc.gatech.edu

Abstract
The utility problem in learning systems occurs when knowledge learned in an

attempt to improve a system's performance degrades performance instead. We
present a methodology for the analysis of utility problems which uses
computational models of problem solving systems to isolate the root causes of a
utility problem, to detect the threshold conditions under which the problem will
arise, and to design strategies to eliminate it. We present models of case-based
reasoning and control-rule learning systems and compare their performance with
respect to the swamping utility problem. Our analysis suggests that case-based
reasoning systems are more resistant to the utility problem than control-rule
learning systems.

I. Introduction
An interesting asymmetry exists in the patterns of retrieval in case-based reasoning
(CBR) and control-rule learning (CRL) systems: to take advantage of past learning
experiences, CRL systems need to retrieve rules from memory at each step, whereas
CBR systems need retrieve a case only once. Under certain conditions, this
asymmetry may provide CBR with an advantage in dealing with the utility problem,
which arises when knowledge learned in an attempt to improve a system's
performance degrades performance instead (HOLDER ET ~ . 1990, M~TON 1990). In
this paper, we analyze the differences between CBR and CRL systems in the context
of a general methodology for the study of the utility problem. Our methodology
couples a fimctional analysis of a problem solving system with a performance
analysis of the system's algorithmic and implementational components. This
computational model allows us to formally specify the root causes of the utility
problem in terms of interactions within the system and to predict the threshold
conditions under which the utility problem will arise. Using this methodology, we
have found that, while both CBR and CRL systems can suffer from the utility
problem, CBR systems have important advantages over CRL systems. In partictdar,
because CBR systems amortize the cost of case retrieval over many adaptation steps,
ideal case-based reasoners suffer less severely from the same overhead than CRL
systems.

1This research was supported by the United States Air Force Laboratory Graduate Fellowship Program and
the Georgia Institute of Technology.

139

2. Analyzing the Utility Problem

2.1. What is the Utility Problem?
The utility problem was first detected in PRODIGY/EBL (]V[INTON 1988).
PRODIGY/EBL is a control-rule learning system, 2 a type of system that attempts to
improve its problem-solving performance by learning search-control knowledge,
called control rules, that reduce the amount of search it needs to perform by
eliminating dead-end paths and selecting profitable ones. What Minton and others
noticed about systems like PRODIGY/EBL was that the system could actually get
slower after having learned control rules, rather than faster. At each step in the
search space, a CRL system has to match all of its control rules against the current
state to determine if they should fire. As that library of control rules grows in size,
the cost of matching the control rules often increases to the point that they outweigh
the savings in search the rules provide.

This side effect of learning was called the "utility problem": learning designed to
improve the system's performance ended up degrading performance instead. Since
Minton's discovery, researchers have identified many different types of utility
problems, each manifesting itself in slightly different ways. Because some types of
utility problems are affected by the hardware architecture of the system and others are
largely independent of hardware concerns, we can group the different types of utility
problems into two rough classes: architectural utility problems and search-space
utility problems (FRANCIS & RAM 1993).

Architectural utility problems arise when learning has the side effect of causing an
increase in the costs of basic operations the system performs; for example, in
PRODIGY/EBL learning new control rules caused the cost of retrieval to rise. Two
types of architectural utility problem have been identified: swamping, which arises in
systems like PRODIGY/EBL when the cost of matching a large number of rules
"swamps" the savings (MrNTON 1990); and expensive chunks, which arises when a
few individual rules are so expensive to match that they outweigh the benefits of the
rest (e.g., TAMBE ET AL. 1990). Search-space utility problems arise because of the
manner in which learning modifies the search performed by a problem solver, and
not because of limitations in the system's underlying hardware architecture. Three
have been identified in CRL systems: branching, which arises when a system learns
macro-operators that increase the branching factor of the search space (ETZIONI
1992), wandering, which arises when a learner fails to achieve tractability (ETZIONI
1992), and composability, which arises when learned control rules interfere with
each other (GRATCrI & DEJONG 1991).

A full discussion of the different types of utility problems is beyond the scope of
this paper; we will focus on swamping, which is the utility problem most commonly
encountered in learning systems. In this paper, we will reserve the term "the utility

z Etzioni (1992) uses the term meta-level problem solvers for control-rule learning systems. We have avoided
this term because of the possible confusion with metacognifion, which includes systems that "know what they
know" (metaknowledge) and systems that reason about their own reasoning processes (metareasoning, or
introspection).

140

problem" for the general utility problem, and will refer to specific versions of the
utility problem, such as swamping, by their names.

2.2. The Methodology
We propose the use of algorithmic complexity theory as a tool for the analysis of the
utility problem. Our methodology involves analyzing different types of AI systems
and decomposing their cognitive architectures into lower-level functional units,
including problem-solving engines and memory systems, that can be represented by
formal algorithmic models. Our algorithmic approach incorporates both functional-
level aspects of the computation, such as the system's cognitive architecture and its
knowledge base, and implementation-level aspects, such as the performance
characteristics of the system's hardware architecture. This multi-level analysis is
crucial for the study of the utility problem because navy utility problems arise due to
interactions between the functional level of the system and the way that functional
computation is actuaUy implemented.

For a comparative analysis to be successful, the AI systems being studied must be
modeled with a uniform vocabulary of basic cognitive operations that is sufficient to
describe the architectures of a wide range of systems. This uniform representational
language will allow us to represent AI systems as computational models whose basic
operations are identical and thus are suitable for comparative algorithmic complexity
analysis. The performance of different systems can then be directly compared in
terms of the costs of basic cognitive operations, such as memory retrieval or operator
applications. These cognitive operations can in turn be modeled on different
hardware architectures to determine their costs and the utility of learning in these
systems. Our methodology can therefore be used to identify potential utility problems,
as well as to design coping strategies to elin-dnate their effects.

3. A Quick Introduction to Utility Analysis

3.1. AI Systems and Learning
Formally, we can describe an AI system as a triple (CA, KB, ItA) of cognitive
architecture, knowledge base, and hardware architecture. The cognitive architecture
CA specifies a system in terms of separate functional modules that carry out fixed
subtasks in the system, while the knowledge base KB represents the internal "data"
that the CA uses to perform its computations. The hardware architecture HA defines
the types of operations that a system can perform at the implementation level, as well
as the relative costs of such operations. The cost (and hence the utility) of an
operation may be different on different HA's: for example, retrieval might take
longer on a serial machine than it would on a parallel machine.

Utility can only be defined in terms of "performance" measures that judge the
efflciency of a reasoner, such as execution time, number of states searched, storage
space used, or even quality of solution. These evaluation metrics measure the costs
that a system incurs during its reasoning. Because many utility problems are
dependent on the distribution of problems that a system encounters (e.g., TAMBE ET

141

AL. 1990), we must also represent the problem set PS, which is defined by a tuple (S,
D) of a problem space S, the space of problems a system can encounter, and a
problem distribution D, the probability that the system will encounter a particular
problem.

3.2. Utility and the Utility Problem
Given a particular evaluation metric, the utility of a learned item can be defined as
the change in expectation values of a problem solver's performance on the metric
across a problem set (MARKOVaTCra & SCO~T 1993). In other words, when we
compute the utility of a change to the system's knowledge base with respect to some
metric, we want to compute the costs that the system will incur for different problems
weighted by the probability that the system will actually encounter those problems.
Thus, utility is a function not only of the learned item but also of the learning system,
the problem set, and the e,~luation metric. The utility problem occurs when a
learning system makes a change to its knowledge base KB with the goal of
improving problem solving utility on some metric by a calculated improvement F c,
but which has the side effect of degrading problem solving utility for another
(possibly identical) evaluation metric by some actual amount F a that outweighs the
savings (i.e., Fc<Fa).

3.3. Dissecting the Utility Problem
In general, utility problems are not global, emergent properties of computation but
can instead be tied to specific interactions between the cognitive architecture, the
knowledge base and the performance characteristics of the hardware architecture. In
a CRL system, the interaction of interest is the relationship between match time and
knowledge base size; in a CBR system, a similar interaction exists between case
retrieval time and case library size.

We can formally define an interaction to be a combination of a set of parameters, a
module, and a set of effects. The module represents the part of the CA that is
responsible for the relationship between independent variables in the interaction (the
parameters) and the dependent variables (the effects). Parameters represent
characteristics of the system's knowledge base, while effects represent the
performance measures that affected by the interaction. Thus, an interaction defines a
fimction between learning (changes in the knowledge base) and performance
(changes in the evaluation metric), mediated by the characteristics of the algorithmic
component of the interaction (the module).

Utility problems arise when a learning module in the system causes parameter
changes which interact with some cognitive architecture component to produce side
effects that impact the performance measures a learning module is designed to
improve. This kind of coupling between a learning module and an interaction is a
potential root cause of a utility problem. For a particular root cause, the calculated
improvement F c is the savings that the learning module is designed to perform, while
the actual cost F a is the actual change in performance taking into account the side
effects of the interaction.

142

By comparing the algorithmic behavior of the learning module, the root cause
interaction it is paired with, and the cost and savings functions that they contribute,
we can compute threshold conditions ~ limiting values for the parameter changes
that the system can tolerate before the actual costs exceed the calculated improvement
and the system encounters a utility problem. Eliminating the general utility problem
involves identifying the root causes of particular utility problems that can arise in a
system and designing coping strategies that prevent their threshold conditions from
being satisfied.

4. Modeling CRL and CBR Systems
The baseline for comparison of the computational model approach is the unguided
problem solver. Unguided problem solvers use knowledge-free weak methods, and
are always guaranteed to find a solution if one exists; one such method is breadth-
first search. Given a problem p whose solution is a path of length d--which we shall
call the depth or dijfficutty of the problem--an unguided problem solver will expand
on the average b u nodes during its search, where b is the branching factor of the
search space. The number of nodes that the system expands for a problem p is termed
the complexity of a problem and is denoted Cp. Figure 1 depicts the search space of
an unguided problem solver.

The only knowledge library that an unguided problem solver uses is its operator
library; its algorithm consists of applying whatever operators are allowable in all of
the possible sequences that begin with its starting point. The unguided problem solver
serves as a "baseline" against which learning systems can be compared because it is
the "worst" system, in terms of performance, that is capable of solving a particular
problem in a given search space. An unguided problem solver solves problems in
exponential time in the size of the problem; much of "intelligence" can be viewed as
attempts to reduce this combinatorial explosion through the use of heuristics or other
techniques (NEWELL & SIMON 1975; RAM & HUNTER 1992; SCHANK & ABELSON
1977; SIMON 1993).

Problem Space

Difficulty d =
path length

Branching Factor b =
average number of choices per node

Total Nodes Expanded in Unguided Search: b d

Figure 1. Unguided Search

143

Problem Space
Initial State

~ * ~ & , ~ , ~ ' ~ - - Application of Control Rules
Solution P a t h ~ Reduces Space Searched

Goat State
~ ' ~ " Potential Search Space (Cp)

Space Actually Searched (Cp')
Total Savings of Guided Search: Cp - Cp'

Figure 2. Search Guided by Control Rules

4.1. Control-Rule Learning Systems

Learning systems improve over the unguided problem solver model by finding ways
to reduce or eliminate search. A control-rule learning system reduces search by
retrieving and applying control rules at each state it visits during problem solving,
giving it the ability to select or reject states. This control knowledge is a completely
different kind of knowledge than operator knowledge and must be stored in a separate
control rule library. If a system's control rule library is empty and control rules are
not available, the problem solver resorts to blind search. Once a solution path has
been found, the correct decisions can be cached in the library as control rules that
will guide the problem solver in similar situations in the future. This model, while
simplified, is a good approximation of many existing systems, including Soar and
Prodigy. Figure 2 depicts the guided search of a CRL system.

4.2. Case-Based Reasoners

Case-based reasoning is primarily experience-based; when a case-based reasoner
encounters a new problem, it checks its case library of past problem solving episodes,
or cases, looking for a similar case that it can adapt to meet the needs of the new
problem. Our model of CBR 3 has two primary knowledge libraries: the case library
itself, indexed so that the most appropriate case can be retrieved in new problem-
solving situations, and an adaptation library that stores adaptation operators that are
used to transform the cases once they are retrieved When a case-based reasoner is
presented with a problem, it retrieves an appropriate past case based on the problem's
features, its goals, and the indices it has in its case library- Once a case has been
retrieved, the case is adapted by performing search in the space of problem paths: the

3This model leaves out some of the stages of a full-fledged case-based reasoner, such as situation assessment
and credit/blame assi~'nent (KOLOD~-~R 1993), but contains the core "'case-based" elements of the full case-
based reasoning approach,

144

P R O B L E ~

Elaborated] ~ Cost ol Case Retdeval ~ Rr

, , ' ~ ' ~ . . : ' :':::i:!1] ~.~.,.!:!:,,.~ Retdeval =
([~ ! i 1 I SpaceOlPr~ ~ '~ ' , : ' ~ " - ' " .'~.RG
~ 1 ('dap'at'~ spa'e) ~ ~ "

~i~ted.C=se J ~ I I ~ ' : : : : ' . : : : . . ' X
(s a ~ i o n] ~ v ~ _ ~ _ ~ ~ I N~w SoUion Pith

i i & O u t c o m ~ ~ <. r ~/
[,~r • Cp = Total Number ol Nodes

~) Examined in Pith Space

New Cas~
Figure 3. Search in the Space of Problem Paths

adaptation operators are used to transform entire paths into new paths until a
satisfactory solution path is achieved. Figure 3 depicts this search in the space of
problem paths. Once the new solution is found, it is stored in the case library,
indexed by the goals of the current problem for future retrieval.

5. Ana lyz ing Retrieval Costs

To illustrate how computational models can be used to analyze utility effects in
different kinds of problem solving systems, consider retrieval costs in CRL and CBR
systems--how many retrievals are made, and how much does each of those retrievals
cost? Retrieval is often cited as the core source of power for CBR systems, yet the
cost of retrieval is a critical factor in the swamping utility problem. An examination
of retrieval costs, both before and after learning, in CRL and CBR systems reveals
both the source of the swamping problem and potential mechanisms for its solution.

Because the focus of this comparison is on the differences in retrieval between CBR
and CRL systems, we will make the simplifying assumption that "all other things are
held equal." Specifically, we will assume that both the CRL and CBR systems operate
on the same problem set, and moreover that the problem space they function in is
defined by the same operator library.

We define a basic operation of retrieval, R, which extracts an item (such as a case
or operator) from a knowledge library based on some matching function. In general,
for a given hardware architecture HA, the cost of retrieval for a knowledge library i,
denoted R i, is a function of both the library i and the item to be retrieved, r: R i =

f i r , i). Some of the features of a knowledge library that affect retrieval time are the
number and organization of items in the system's knowledge library. However, for a
serial hardware architecture, HAs, the most important variable in this cost function is
the number of items in the knowledge library, K i. We will approximate this serial

145

cost function with R i = cKi, where c is a constant multiplier that approximates the
(nearly) linear cost function for matching on serial systems like ItA s. For the
purposes of this paper, we will ignore the possible variations in the match cost of
each individual item, as well as other issues dependent on more specifics of the
cognitive architecture of the memory system and the hardware architecture upon
which it runs.

Because the learning operations in both case-based reasoners and control-rule
learning systems have the effect of increasing the size of knowledge libraries in the
system, the learning modules in both types of systems, combined with the retrieval
time interactions in each, form potential root causes of the utility problem. The
particular interaction we will examine, therefore is the retrieval time interaction: the
relationship between the system parameters R i (number of retrieval operations) and
K i (knowledge library size), and the effect t (running time). Given these definitions,
let us examine the actual dynamics of learning and retrieval in CRL and CBR
systems and attempt to establish the threshold conditions for the utility problem in
each.

5.1. Retrieval in CRL systems

In its initial state, without control rules, a CRL system is equivalent to an unguided
problem solver. It searches Cp states, retrieving a set of operators at each step with a
cost of Ro. Thus, the total cost, in retrievals, of the initial system is CpRo. After the
system has learned a set of control rules, it has the capacity to guide its search. The
number of states searched is reduced to Cp; where Cp'< Cp. However, in addition to
retrieving a set of operators, it also needs to retrieve control rules at each step; thus,
the cost for solving a problem rises to Cp'(Ro+Rc).

The expected savings that CRL brings are the costs of the states that the problem
solver avoids, or just (Cp - Cp~)Ro. The added costs are the costs of matching the
control n~es at each step, Cp'Rc. Obviously, the utility problem will arise when the
added costs exceed the expected savings. Thus, the threshold condition is (Cp -
Cp~J~o < Cp'Rc; in other words, when the cost of retrieval outweighs the benefits of
individual rules. This is, in effect, the swamping utility problem. But will this
threshold condition ever be met? To determine this, we must examine how large the
expected savings in states can become, and how that compares to the added costs of
retrieval.

In the limit, the maximum search reduction is to a single path (Cp' = d), and
operator retrieval costs are constant (Ro' = Ro) since the library of operators the
system uses does not change in size. The maximum expected savings possible for any
problem are thus (Cp - d)Ro. In contrast, the cost of retrieving control rules (Rc)
increases without bound as the control base Kc increases in size; in the limit, the
added costs associated with a rnlebase are dRc = dc(Kc) and thus can outweigh the
mmximum possible savings. Therefore, the threshold conditions can be met and the
CRL system will encounter the utility problem.

These results indicate that swamping is a function of the potential speedup of
learned items, the cost function of retrieval (which is itself dependent on retrieval
strategies and machine architecture), and the number of items a system needs to

146

learn. If the system converges on a bounded set of learned items and the hardware
slowdown never approaches the utility of those items, the system will never be
swamped. 4 If the learned items are of low utility, or if the learner never converges on
a bounded set, as might be the case for an open-world or multidomain system, then
the swamping problem can eliminate the benefits of the learned rules.

5.2. Retrieval in Case-Based Reasoners

To analyze utility effects in case-based reasoning systems, we need to measure the
performance of a CBR system as it learns. To provide a basis for this measurement,
we assume that a CBR system that does not have an appropriate case in memory can
resort to some method (e.g., adaptation of a "null case," or using first principles
problem solving to produce a sketchy case which can then be adapted), and this
method is no worse than an unguided problem solver. Most existing CBR systems
have such a last-resort method; for example, the earliest case-based reasoner,
MEDIATOR, had a rule-based problem solving method that it could fall back on if
no case was available (KOLODNER & SIMPSON 1988).

A CBR system that resorts to null-case adaptation beginning with no experiences
must still incur the cost of retrieving the null case (Re) and then search the space of
problem paths until the case has been adapted into a satisfactory solution. Under our
earlier assumptions, the total number of paths the system examines is Cp, and one
adaptation retrieval (Ra) occurs per step. Thus, the total cost of case adaptation before
learning is Re + CpRa. After the system has learned a library of cases, it will still need
to retrieve a case from the library but each case will require much less adaptation,
reducing the number of paths examined to Cp' where Cp' << Cp. Also, the cost of
retrieving cases may increase to Re' where Re' >Re. Thus, the total costs are Re' +
Cp'Ro,

To evaluate these results we must again examine the benefits and costs of case
retrieval. The expected savings are the costs of the states that the problem solver
avoids: (Cp - Cp ') Ra, while the added costs are the increased costs of retrieval of

cases Re' - Re = ARc. In the limit, the cost of retrieval increases without bound as the
casebase increases in size: Re' = e(Kc). However, as we approach the limit the
casebase contains many appropriate cases and little adaptation needs to be done---
perhaps only one or two steps. In general, whenever the threshold condition (Cp -
Cp ~) Ra < ARc is met, the cost of retrieval outweighs the benefits of case adaptation;
under these conditions, CBR systems will be swamped.

4 For example, on a parallel machine with a logarithmic cost function R i = c(log Ki), the threshold condition
(Cp-Cp')R o < Cp'c(log Kc) may never be met in a closed-world domain in which a small set of knowledge
items learned by rote are adequate for performance. If the learning system successfully converges on a small
enough set, the logarithmic slowdown will be negligible compared to the potential savings. (This condition can
arise on serial architectures as well, but because the cost function is linear in the size of the knowledge base the
constraints on the size of the learned set are much more severe.)

147

5.3. Advantages of Case-Based Reasoning

While this analysis reveals that both control-rule learners and CBR systems can
suffer from the swamping utility problem, it also reveals that CBR systems have
important advantages over CRL systems.

One advantage of CBR Systems is that they have a greater potential improvement
than CRL systems. Even if a CRL system learns enough rules to guide search
completely, with no false paths, the control rules and operators must nevertheless be
retrieved and applied at each step; this means the minimum cost of solution in a CRL
system will be dRoRc. In contrast, if a case that completely solves the current problem
is retrieved from the case library, no adaptation will need to be done and the
minimum cost will be just Re. In practice, it is just as unrealistic to assume that the
case library will have an exact case as it is to assume that a CRL System will be able
to completely guide search. Some adaptation will need to be done, for a total cost of
Cp'Ra + Re. The precise tradeoffs between case-based and CRL systems depend on the
particular domain, but nevertheless the potential savings are greater for CBR
systems.

Another advantage CBR systems have over CRL systems is that cases are retrieved
only once during the lifetime of problem solving. For a CRL system to avoid
swamping, the increase in cost of retrieval of a control rule must be less than the
fraction of total states that the system avoids in guided problem solving times the cost

of an operator: ARc < Ro(Cp - Cp)/Cp'. For a CBR system, on the other hand, the
increase in cost of a case retrieval must be less than the cost of the number of

adaptation steps avoided: ARc < Ra(Cp - Cp). The missing Co' term in the
denominator of the CBR equation arises because the increased cost of retrieval of
control rules are incurred at each step in the search space, whereas the increased cost

Control-Rule Problem Solver Guided PS Time Exceeds
Ung~ded PS "lime

. +.U~dedGui+de+ d. ~ (Swamping Occurs)

P~ I ~ ~ (Operator Apl~lCafloII) T,n+ |

Increasing # of Co~rol Ru~s I

I Extremely F.xpsns~ve
Equivalent Costs Case Retrieval

Case-Based Reasoner No Swaln~ng in CBR (Swamping Occurs)

.......... I

'~"" |

Increasing Size of Case-Base ~ _ ~ (Case Retrieval)

J Knowledge Application
(Adaptation Steps)

Figure 4. Comparing Control Rules and Cases

148

of case retrieval is incurred only once during problem solving for a case-based
reasoner. In other words, CBR systems amortize the cost of case retrieval across all
adaptations, making them much more resistant to increases in retrieval costs than
CRL systems.

Figure 4 illustrates this phenomenon. Each bar graph represents the time a
problem solver takes to solve a problem plotted against its knowledge base size; white
blocks in the bar graph represent problem solving or adaptation steps, while grey
blocks represent knowledge retrievals. Because a CRL system makes a retrieval from
memory- at each step, the costs of retrieval (illustrated by the size of the grey blocks)
can outweigh the savings of reduced search more quickly than they can in a case-
based reasoner, in which retrieval from a large knowledge library is (ideally)
performed only once during problem solving.

This amortization also makes CBR more amenable to solutions to the swamping
problem, such as deletion policies or indexing schemes. In order to be effective, any
coping strategy needs to reduce retrieval time to the point that the threshold
conditions are never satisfied. For a CRL system, this upper limit on retrieval time is
Re < Ro(Cp-Cp~/Cp'; for a CBR system, this upper limit is Re < Ra(Cp-Cp'), a much
higher (and hence much less stringent) limit on the maximum time retrieval can take
for a system to be guaranteed to avoid swamping,

Whether the benefits suggested by this analysis will be realized in practice depends
critically on other factors that may affect the cost-benefit relationships within the
system. Specifically, this analysis claims that, for CBR and CRL systems operating
over the same problem set and same operator library, an identical increase in retrieval
costs is less harmful to the ease-based system than it is to the CRL system. However,
the actual retrieval costs of the two systems may be different over the same learning
history; moreover, the two types of systems may differ in the amount of improvement
they gain from learning. Therefore, while this analysis suggests that there may be
advantages for CBR systems, actually determining the tradeoffs between particular
CBR and CRL systems requires a more precise specification of the costs and specifics
of the learning algorithms of the systems, as well as of the characteristics of the
problem set over which the systems will operate.

6. Related Work
Little research has been done on direct comparisons of case-based reasoning and
control-nile learning systems. Minton (1990) and Etzioni (1992) have theoretically
and empirically- investigated the utility of control-rule learning systems, and Koton
(1989) empirically evaluates the utility of a particular case-based reasoning system
against a non-learning reasoner.

Our theoretical model of control-nile learning systems was based in part on
Etzioni's theoretical model of control-rule learning systems, which he calls meta-level
problem solvers (ExzIonI 1992). While we developed our theoretical model of case-
based reasoning systems independently, it shares many characteristics with the
Systematic Plan Adaptor (SPA) algorithm (HANKS & WELD 1995), a case-based
reasoning system built on top of an unguided partial-order planning system called
SNLP (BAR~TT & WELD 1994).

149

A closely related body of work concerns DerSNLP (IrmiG & KAMBHAMPATI 1994).
DerSNLP is a derivational analogy system also layered on top of SNLP. Ihrig and
Kambhampati use the DerSNLP framework to theoretically and empirically" evaluate
the efficiency of plan-space and state-space planning systems. While their work and
ours both focus on comparative theoretical analysis of AI systems, their work
compares two different planning algorithms in the context of the same learning
algorithm and our work compares two different learning algorithms in the context of
the same planning system.

7. The Bottom Line
The utility problem is caused by interactions between a system's learning modules
and other portions of a system and can arise completely independently of hardware
concerns. Analyzing the utility problem at an algorithmic level allows us to identify
the root causes responsible for the problem and to identify the threshold conditions
under which the problem will arise; solving the utility problem involves applying
coping strategies which prevent these threshold conditions from occurring. Our
uniform framework for utility analysis also facilitates the direct comparison of
different systems on the utility issues. We are currently extending this framework to
account for more factors that can affect the utility problem, such as domain
beundedness, representation language and indexing vocabulary.

Several features of CBR make it resistant to the utility problem. First, cases have
the potential to eliminate vast amounts of problem solving, providing improvements
robust enough to survive large increases in retrieval time. Second, because the cost of
case retrieval is amortized over many adaptation steps, ideal case-based reasoners
suffer less severely from the same overhead than CRL systems. Finally, this
amortization makes CBR systems more amenable to coping strategies than CRL
systems.

References
Barret, A. & Weld, D. (1994). Partial order planning: evaluating possible efficiency

gains. Arti ficial lntelligence, 67 (1), 71-112.
Etzioni, O. (1992) An Asymptotic Analysis of Speedup Learning. In Machine

Learning: Proceedings of the 9th International Workshop, 1992.
Francis, A. and Ram, A. (1993). Computational Models of the Utility Problem and

their Application to a Utility Analysis of Case-Based Reasoning. In Proceedings of
the Third International Works'hop on Knowledge Compilation and Speedup
Learning, pages 48-55, University of Massachusetts at Amherst, June 30, 1993.

Gratch, J.M. and Dejong, G.F. (1991) Trouble with gestalts: The composability
problem in control learning. Technical Report, University of Illinois at Urbana-
Champaign, April 1991.

Hanks, S. & Weld, D.S. (1995). A domain-independent algorithm for plan
adaptation. Journal of Artificial Intelligence Research 2 (1995), 319-360.

150

Holder, L.B.; Porter, B.W.; Mooney, R.J. (1990). The general utility problem in
machine learning. In Machine Learning: Proceedings of the Seventh International
Conference, 1990.

Ihrig, L. & Kambhampati, S. (1994). On the Relative Utility of Plan-Space v. State-
Space Planning in a Case-Based Framework, Technical Report 94-006, Department
of Computer Science and Engineering, 1994. Arizona State University.

Kolodner, J.L. & Simpson, R.L. (1988). The Mediator: A case study of a case-based
reasoner. Georgia Institute of Technology, School of Information and Computer
Science, Technical Report no. GIT-ICS-88/I 1. Atlanta, Georgia.

Kolodner, J.L. (1993). Case-based Reasoning. Morgan Kaufmann, 1993.
Koton, P. A. (1989). A Method for Improving the Efficiency of Model-Based

Reasoning Systems. Laboratory for Computer Science, MIT, Cambridge, MA.
Hemisphere Publishing, 1989.

Markovitch, S. and Scott, P.D. (1993) Information Filtering: Selection Methods in
Learning Systems. Machine Learning, 10:113-151.

Minton, S. (1988). Quantitative results concerning the utility of explanation-based
learning. In Proceedings of the Seventh National Conference on Artificial
Intelligence, Morgan Kanfmann, 1988.

Minton, S. (1990). Quantitative results concerning the utility of explanation-based
learning. Artificial Intelligence, 42(2-3), March 1990.

Newell, A. & Simon, H.A. (1975). Computer Science as Empirical Inquiry: Symbols
and Search. Reprinted in Haugeland, J., (ed.). Mind Design: Philosophy,
Psychology, Artificial Intelligence, chapter 1, pp 35-66. MIT Press, 1981.

Ram, A. & Hunter, L. (1992) The Use of Explicit Goals for Knowledge to Guide
Inference and Learning. Applied Intelligence, 2(1):47-73.

Schank, R. & Abelson, R. (1977). Scripts, Plans, Goals and Understanding.
Lawrence Erlbaum Associates, HiUsdale, NJ.

Simon, H.A. (1993). Artificial Intelligence as an Experimental Science. Invited Talk.
Abstracted in Proceedings of the Eleventh National Conference on Artificial
Intelligence, page 853, July 11-15, 1993.

Tambe, M.; Newell, A.; Rosenbloom, P. S. (1990). The Problem of Expensive
Chunks and its Solution by Restricting Expressiveness. Machine Learning, 5:299-
348, 1990.

