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Abstract 
The utility problem in learning systems occurs when knowledge learned in an 

attempt to improve a system's performance degrades performance instead. We 
present a methodology for the analysis of utility problems which uses 
computational models of problem solving systems to isolate the root causes of a 
utility problem, to detect the threshold conditions under which the problem will 
arise, and to design strategies to eliminate it. We present models of case-based 
reasoning and control-rule learning systems and compare their performance with 
respect to the swamping utility problem. Our analysis suggests that case-based 
reasoning systems are more resistant to the utility problem than control-rule 
learning systems. 

I. Introduction 
An interesting asymmetry exists in the patterns of retrieval in case-based reasoning 
(CBR) and control-rule learning (CRL) systems: to take advantage of past learning 
experiences, CRL systems need to retrieve rules from memory at each step, whereas 
CBR systems need retrieve a case only once. Under certain conditions, this 
asymmetry may provide CBR with an advantage in dealing with the utility problem, 
which arises when knowledge learned in an attempt to improve a system's 
performance degrades performance instead (HOLDER ET ~ .  1990, M~TON 1990). In 
this paper, we analyze the differences between CBR and CRL systems in the context 
of a general methodology for the study of the utility problem. Our methodology 
couples a fimctional analysis of a problem solving system with a performance 
analysis of the system's algorithmic and implementational components. This 
computational model allows us to formally specify the root causes of the utility 
problem in terms of interactions within the system and to predict the threshold 
conditions under which the utility problem will arise. Using this methodology, we 
have found that, while both CBR and CRL systems can suffer from the utility 
problem, CBR systems have important advantages over CRL systems. In partictdar, 
because CBR systems amortize the cost of case retrieval over many adaptation steps, 
ideal case-based reasoners suffer less severely from the same overhead than CRL 
systems. 

1This research was supported by the United States Air Force Laboratory Graduate Fellowship Program and 
the Georgia Institute of Technology. 
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2. Analyzing the Utility Problem 

2.1. What is the Utility Problem? 
The utility problem was first detected in PRODIGY/EBL (]V[INTON 1988). 
PRODIGY/EBL is a control-rule learning system, 2 a type of system that attempts to 
improve its problem-solving performance by learning search-control knowledge, 
called control rules, that reduce the amount of search it needs to perform by 
eliminating dead-end paths and selecting profitable ones. What Minton and others 
noticed about systems like PRODIGY/EBL was that the system could actually get 
slower after having learned control rules, rather than faster. At each step in the 
search space, a CRL system has to match all of its control rules against the current 
state to determine if they should fire. As that library of control rules grows in size, 
the cost of matching the control rules often increases to the point that they outweigh 
the savings in search the rules provide. 

This side effect of learning was called the "utility problem": learning designed to 
improve the system's performance ended up degrading performance instead. Since 
Minton's discovery, researchers have identified many different types of utility 
problems, each manifesting itself in slightly different ways. Because some types of 
utility problems are affected by the hardware architecture of the system and others are 
largely independent of hardware concerns, we can group the different types of utility 
problems into two rough classes: architectural utility problems and search-space 
utility problems (FRANCIS & RAM 1993). 

Architectural utility problems arise when learning has the side effect of causing an 
increase in the costs of basic operations the system performs; for example, in 
PRODIGY/EBL learning new control rules caused the cost of retrieval to rise. Two 
types of architectural utility problem have been identified: swamping, which arises in 
systems like PRODIGY/EBL when the cost of matching a large number of rules 
"swamps" the savings (MrNTON 1990); and expensive chunks, which arises when a 
few individual rules are so expensive to match that they outweigh the benefits of the 
rest (e.g., TAMBE ET AL. 1990). Search-space utility problems arise because of the 
manner in which learning modifies the search performed by a problem solver, and 
not because of limitations in the system's underlying hardware architecture. Three 
have been identified in CRL systems: branching, which arises when a system learns 
macro-operators that increase the branching factor of the search space (ETZIONI 
1992), wandering, which arises when a learner fails to achieve tractability (ETZIONI 
1992), and composability, which arises when learned control rules interfere with 
each other (GRATCrI & DEJONG 1991). 

A full discussion of the different types of utility problems is beyond the scope of 
this paper; we will focus on swamping, which is the utility problem most commonly 
encountered in learning systems. In this paper, we will reserve the term "the utility 

z Etzioni (1992) uses the term meta-level problem solvers for control-rule learning systems. We have avoided 
this term because of the possible confusion with metacognifion, which includes systems that "know what they 
know" (metaknowledge) and systems that reason about their own reasoning processes (metareasoning, or 
introspection). 
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problem" for the general utility problem, and will refer to specific versions of the 
utility problem, such as swamping, by their names. 

2.2. The Methodology 
We propose the use of algorithmic complexity theory as a tool for the analysis of the 
utility problem. Our methodology involves analyzing different types of AI systems 
and decomposing their cognitive architectures into lower-level functional units, 
including problem-solving engines and memory systems, that can be represented by 
formal algorithmic models. Our algorithmic approach incorporates both functional- 
level aspects of the computation, such as the system's cognitive architecture and its 
knowledge base, and implementation-level aspects, such as the performance 
characteristics of the system's hardware architecture. This multi-level analysis is 
crucial for the study of the utility problem because navy utility problems arise due to 
interactions between the functional level of the system and the way that functional 
computation is actuaUy implemented. 

For a comparative analysis to be successful, the AI systems being studied must be 
modeled with a uniform vocabulary of basic cognitive operations that is sufficient to 
describe the architectures of a wide range of systems. This uniform representational 
language will allow us to represent AI systems as computational models whose basic 
operations are identical and thus are suitable for comparative algorithmic complexity 
analysis. The performance of different systems can then be directly compared in 
terms of the costs of basic cognitive operations, such as memory retrieval or operator 
applications. These cognitive operations can in turn be modeled on different 
hardware architectures to determine their costs and the utility of learning in these 
systems. Our methodology can therefore be used to identify potential utility problems, 
as well as to design coping strategies to elin-dnate their effects. 

3. A Quick Introduction to Utility Analysis 

3.1. AI Systems and Learning 
Formally, we can describe an AI system as a triple (CA, KB, ItA) of cognitive 
architecture, knowledge base, and hardware architecture. The cognitive architecture 
CA specifies a system in terms of separate functional modules that carry out fixed 
subtasks in the system, while the knowledge base KB represents the internal "data" 
that the CA uses to perform its computations. The hardware architecture HA defines 
the types of operations that a system can perform at the implementation level, as well 
as the relative costs of such operations. The cost (and hence the utility) of an 
operation may be different on different HA's: for example, retrieval might take 
longer on a serial machine than it would on a parallel machine. 

Utility can only be defined in terms of "performance" measures that judge the 
efflciency of a reasoner, such as execution time, number of states searched, storage 
space used, or even quality of solution. These evaluation metrics measure the costs 
that a system incurs during its reasoning. Because many utility problems are 
dependent on the distribution of problems that a system encounters (e.g., TAMBE ET 
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AL. 1990), we must also represent the problem set PS, which is defined by a tuple (S, 
D) of a problem space S, the space of problems a system can encounter, and a 
problem distribution D, the probability that the system will encounter a particular 
problem. 

3.2. Utility and the Utility Problem 
Given a particular evaluation metric, the utility of a learned item can be defined as 
the change in expectation values of a problem solver's performance on the metric 
across a problem set (MARKOVaTCra & SCO~T 1993). In other words, when we 
compute the utility of a change to the system's knowledge base with respect to some 
metric, we want to compute the costs that the system will incur for different problems 
weighted by the probability that the system will actually encounter those problems. 
Thus, utility is a function not only of the learned item but also of the learning system, 
the problem set, and the e,~luation metric. The utility problem occurs when a 
learning system makes a change to its knowledge base KB with the goal of 
improving problem solving utility on some metric by a calculated improvement F c, 
but which has the side effect of degrading problem solving utility for another 
(possibly identical) evaluation metric by some actual amount F a that outweighs the 
savings (i.e., Fc<Fa). 

3.3. Dissecting the Utility Problem 
In general, utility problems are not global, emergent properties of computation but 
can instead be tied to specific interactions between the cognitive architecture, the 
knowledge base and the performance characteristics of the hardware architecture. In 
a CRL system, the interaction of interest is the relationship between match time and 
knowledge base size; in a CBR system, a similar interaction exists between case 
retrieval time and case library size. 

We can formally define an interaction to be a combination of a set of parameters, a 
module, and a set of effects. The module represents the part of the CA that is 
responsible for the relationship between independent variables in the interaction (the 
parameters) and the dependent variables (the effects). Parameters represent 
characteristics of the system's knowledge base, while effects represent the 
performance measures that affected by the interaction. Thus, an interaction defines a 
fimction between learning (changes in the knowledge base) and performance 
(changes in the evaluation metric), mediated by the characteristics of the algorithmic 
component of the interaction (the module). 

Utility problems arise when a learning module in the system causes parameter 
changes which interact with some cognitive architecture component to produce side 
effects that impact the performance measures a learning module is designed to 
improve. This kind of coupling between a learning module and an interaction is a 
potential root cause of a utility problem. For a particular root cause, the calculated 
improvement F c is the savings that the learning module is designed to perform, while 
the actual cost F a is the actual change in performance taking into account the side 
effects of the interaction. 
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By comparing the algorithmic behavior of the learning module, the root cause 
interaction it is paired with, and the cost and savings functions that they contribute, 
we can compute threshold conditions ~ limiting values for the parameter changes 
that the system can tolerate before the actual costs exceed the calculated improvement 
and the system encounters a utility problem. Eliminating the general utility problem 
involves identifying the root causes of particular utility problems that can arise in a 
system and designing coping strategies that prevent their threshold conditions from 
being satisfied. 

4. Modeling CRL and CBR Systems 
The baseline for comparison of the computational model approach is the unguided 
problem solver. Unguided problem solvers use knowledge-free weak methods, and 
are always guaranteed to find a solution if one exists; one such method is breadth- 
first search. Given a problem p whose solution is a path of length d--which we shall 
call the depth or dijfficutty of the problem--an unguided problem solver will expand 
on the average b u nodes during its search, where b is the branching factor of the 
search space. The number of nodes that the system expands for a problem p is termed 
the complexity of a problem and is denoted Cp. Figure 1 depicts the search space of 
an unguided problem solver. 

The only knowledge library that an unguided problem solver uses is its operator 
library; its algorithm consists of applying whatever operators are allowable in all of 
the possible sequences that begin with its starting point. The unguided problem solver 
serves as a "baseline" against which learning systems can be compared because it is 
the "worst" system, in terms of performance, that is capable of solving a particular 
problem in a given search space. An unguided problem solver solves problems in 
exponential time in the size of the problem; much of "intelligence" can be viewed as 
attempts to reduce this combinatorial explosion through the use of heuristics or other 
techniques (NEWELL & SIMON 1975; RAM & HUNTER 1992; SCHANK & ABELSON 
1977; SIMON 1993). 

Problem Space 

Difficulty d = 
path length 

Branching Factor b = 
average number of choices per node 

Total Nodes Expanded in Unguided Search: b d 

Figure 1. Unguided Search 
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Problem Space 
Initial State 

~ * ~ & , ~ , ~ ' ~ - -  Application of Control Rules 
Solution P a t h ~  Reduces Space Searched 

Goat State 
~ ' ~ "  Potential Search Space (Cp) 

Space Actually Searched (Cp') 
Total Savings of Guided Search: Cp - Cp' 

Figure 2. Search Guided by Control Rules 

4.1. Control-Rule Learning Systems 

Learning systems improve over the unguided problem solver model by finding ways 
to reduce or eliminate search. A control-rule learning system reduces search by 
retrieving and applying control rules at each state it visits during problem solving, 
giving it the ability to select or reject states. This control knowledge is a completely 
different kind of knowledge than operator knowledge and must be stored in a separate 
control rule library. If a system's control rule library is empty and control rules are 
not available, the problem solver resorts to blind search. Once a solution path has 
been found, the correct decisions can be cached in the library as control rules that 
will guide the problem solver in similar situations in the future. This model, while 
simplified, is a good approximation of many existing systems, including Soar and 
Prodigy. Figure 2 depicts the guided search of a CRL system. 

4.2. Case-Based Reasoners 

Case-based reasoning is primarily experience-based; when a case-based reasoner 
encounters a new problem, it checks its case library of past problem solving episodes, 
or cases, looking for a similar case that it can adapt to meet the needs of the new 
problem. Our model of CBR 3 has two primary knowledge libraries: the case library 
itself, indexed so that the most appropriate case can be retrieved in new problem- 
solving situations, and an adaptation library that stores adaptation operators that are 
used to transform the cases once they are retrieved When a case-based reasoner is 
presented with a problem, it retrieves an appropriate past case based on the problem's 
features, its goals, and the indices it has in its case library- Once a case has been 
retrieved, the case is adapted by performing search in the space of problem paths: the 

3This model leaves out some of  the stages of a full-fledged case-based reasoner, such as situation assessment 
and credit/blame assi~'nent (KOLOD~-~R 1993), but contains the core "'case-based" elements of  the full case- 
based reasoning approach, 
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, , ' ~ ' ~ . . : '  :':::i:!1 ] ~.~.,.!:!:,,.~ Retdeval = 
( [ ~ ! i 1  I SpaceOlPr~ ~ '~ ' , : ' ~ " - ' "  .'~.RG 
~ 1  ('dap'at'~ spa'e) ~ ~ "  

~i~ted.C=se J ~ I I ~ ' : : : : ' . : : : . . ' X  
( s a ~ i o n ] ~ v ~ _ ~ _ ~  ~ I N~w SoUion Pith 

i i & O u t c o m ~  ~ <. r ~/ 
[,~r • Cp = Total Number ol Nodes 

~) Examined in Pith Space 

New Cas~ 
Figure 3. Search in the Space of Problem Paths 

adaptation operators are used to transform entire paths into new paths until a 
satisfactory solution path is achieved. Figure 3 depicts this search in the space of 
problem paths. Once the new solution is found, it is stored in the case library, 
indexed by the goals of the current problem for future retrieval. 

5. Ana lyz ing  Retrieval  Costs 

To illustrate how computational models can be used to analyze utility effects in 
different kinds of problem solving systems, consider retrieval costs in CRL and CBR 
systems--how many retrievals are made, and how much does each of those retrievals 
cost? Retrieval is often cited as the core source of power for CBR systems, yet the 
cost of retrieval is a critical factor in the swamping utility problem. An examination 
of retrieval costs, both before and after learning, in CRL and CBR systems reveals 
both the source of the swamping problem and potential mechanisms for its solution. 

Because the focus of this comparison is on the differences in retrieval between CBR 
and CRL systems, we will make the simplifying assumption that "all other things are 
held equal." Specifically, we will assume that both the CRL and CBR systems operate 
on the same problem set, and moreover that the problem space they function in is 
defined by the same operator library. 

We define a basic operation of retrieval, R, which extracts an item (such as a case 
or operator) from a knowledge library based on some matching function. In general, 
for a given hardware architecture HA, the cost of retrieval for a knowledge library i, 
denoted R i, is a function of both the library i and the item to be retrieved, r: R i = 

f i r ,  i). Some of the features of a knowledge library that affect retrieval time are the 
number and organization of items in the system's knowledge library. However, for a 
serial hardware architecture, HAs, the most important variable in this cost function is 
the number of items in the knowledge library, K i. We will approximate this serial 
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cost function with R i = cKi, where c is a constant multiplier that approximates the 
(nearly) linear cost function for matching on serial systems like ItA s. For the 
purposes of this paper, we will ignore the possible variations in the match cost of 
each individual item, as well as other issues dependent on more specifics of the 
cognitive architecture of the memory system and the hardware architecture upon 
which it runs. 

Because the learning operations in both case-based reasoners and control-rule 
learning systems have the effect of increasing the size of knowledge libraries in the 
system, the learning modules in both types of systems, combined with the retrieval 
time interactions in each, form potential root causes of the utility problem. The 
particular interaction we will examine, therefore is the retrieval time interaction: the 
relationship between the system parameters R i (number of retrieval operations) and 
K i (knowledge library size), and the effect t (running time). Given these definitions, 
let us examine the actual dynamics of learning and retrieval in CRL and CBR 
systems and attempt to establish the threshold conditions for the utility problem in 
each. 

5.1. Retrieval in CRL systems 

In its initial state, without control rules, a CRL system is equivalent to an unguided 
problem solver. It searches Cp states, retrieving a set of operators at each step with a 
cost of Ro. Thus, the total cost, in retrievals, of the initial system is CpRo. After the 
system has learned a set of control rules, it has the capacity to guide its search. The 
number of states searched is reduced to Cp; where Cp'< Cp. However, in addition to 
retrieving a set of operators, it also needs to retrieve control rules at each step; thus, 
the cost for solving a problem rises to Cp'(Ro+Rc). 

The expected savings that CRL brings are the costs of the states that the problem 
solver avoids, or just (Cp - Cp~)Ro. The added costs are the costs of matching the 
control n~es at each step, Cp'Rc. Obviously, the utility problem will arise when the 
added costs exceed the expected savings. Thus, the threshold condition is (Cp - 
Cp~J~o < Cp'Rc; in other words, when the cost of retrieval outweighs the benefits of 
individual rules. This is, in effect, the swamping utility problem. But will this 
threshold condition ever be met? To determine this, we must examine how large the 
expected savings in states can become, and how that compares to the added costs of 
retrieval. 

In the limit, the maximum search reduction is to a single path (Cp' = d), and 
operator retrieval costs are constant (Ro' = Ro) since the library of operators the 
system uses does not change in size. The maximum expected savings possible for any 
problem are thus (Cp - d)Ro. In contrast, the cost of retrieving control rules (Rc) 
increases without bound as the control base Kc increases in size; in the limit, the 
added costs associated with a rnlebase are dRc = dc(Kc) and thus can outweigh the 
mmximum possible savings. Therefore, the threshold conditions can be met and the 
CRL system will encounter the utility problem. 

These results indicate that swamping is a function of the potential speedup of 
learned items, the cost function of retrieval (which is itself dependent on retrieval 
strategies and machine architecture), and the number of items a system needs to 
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learn. If the system converges on a bounded set of learned items and the hardware 
slowdown never approaches the utility of those items, the system will never be 
swamped. 4 If the learned items are of low utility, or if the learner never converges on 
a bounded set, as might be the case for an open-world or multidomain system, then 
the swamping problem can eliminate the benefits of the learned rules. 

5.2. Retrieval in Case-Based Reasoners 

To analyze utility effects in case-based reasoning systems, we need to measure the 
performance of a CBR system as it learns. To provide a basis for this measurement, 
we assume that a CBR system that does not have an appropriate case in memory can 
resort to some method (e.g., adaptation of a "null case," or using first principles 
problem solving to produce a sketchy case which can then be adapted), and this 
method is no worse than an unguided problem solver. Most existing CBR systems 
have such a last-resort method; for example, the earliest case-based reasoner, 
MEDIATOR, had a rule-based problem solving method that it could fall back on if 
no case was available (KOLODNER & SIMPSON 1988). 

A CBR system that resorts to null-case adaptation beginning with no experiences 
must still incur the cost of retrieving the null case (Re) and then search the space of 
problem paths until the case has been adapted into a satisfactory solution. Under our 
earlier assumptions, the total number of paths the system examines is Cp, and one 
adaptation retrieval (Ra) occurs per step. Thus, the total cost of case adaptation before 
learning is Re + CpRa. After the system has learned a library of cases, it will still need 
to retrieve a case from the library but each case will require much less adaptation, 
reducing the number of paths examined to Cp' where Cp' << Cp. Also, the cost of 
retrieving cases may increase to Re' where Re' >Re. Thus, the total costs are Re' + 
Cp'Ro, 

To evaluate these results we must again examine the benefits and costs of case 
retrieval. The expected savings are the costs of the states that the problem solver 
avoids: (Cp - Cp ') Ra, while the added costs are the increased costs of retrieval of 

cases Re' - Re = ARc. In the limit, the cost of retrieval increases without bound as the 
casebase increases in size: Re' = e(Kc). However, as we approach the limit the 
casebase contains many appropriate cases and little adaptation needs to be done--- 
perhaps only one or two steps. In general, whenever the threshold condition (Cp - 
Cp ~) Ra < ARc is met, the cost of retrieval outweighs the benefits of case adaptation; 
under these conditions, CBR systems will be swamped. 

4 For example, on a parallel machine with a logarithmic cost function R i = c(log Ki), the threshold condition 
(Cp-Cp')R o < Cp'c(log Kc) may never be met in a closed-world domain in which a small set of  knowledge 
items learned by rote are adequate for performance. If the learning system successfully converges on a small 
enough set, the logarithmic slowdown will be negligible compared to the potential savings. (This condition can 
arise on serial architectures as well, but because the cost function is linear in the size of  the knowledge base the 
constraints on the size of  the learned set are much more severe.) 
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5.3. Advantages of Case-Based Reasoning 

While this analysis reveals that both control-rule learners and CBR systems can 
suffer from the swamping utility problem, it also reveals that CBR systems have 
important advantages over CRL systems. 

One advantage of CBR Systems is that they have a greater potential improvement 
than CRL systems. Even if a CRL system learns enough rules to guide search 
completely, with no false paths, the control rules and operators must nevertheless be 
retrieved and applied at each step; this means the minimum cost of solution in a CRL 
system will be dRoRc. In contrast, if a case that completely solves the current problem 
is retrieved from the case library, no adaptation will need to be done and the 
minimum cost will be just Re. In practice, it is just as unrealistic to assume that the 
case library will have an exact case as it is to assume that a CRL System will be able 
to completely guide search. Some adaptation will need to be done, for a total cost of 
Cp'Ra + Re. The precise tradeoffs between case-based and CRL systems depend on the 
particular domain, but nevertheless the potential savings are greater for CBR 
systems. 

Another advantage CBR systems have over CRL systems is that cases are retrieved 
only once during the lifetime of problem solving. For a CRL system to avoid 
swamping, the increase in cost of retrieval of a control rule must be less than the 
fraction of total states that the system avoids in guided problem solving times the cost 

of an operator: ARc < Ro(Cp - Cp)/Cp'. For a CBR system, on the other hand, the 
increase in cost of a case retrieval must be less than the cost of the number of 

adaptation steps avoided: ARc < Ra(Cp - Cp). The missing Co' term in the 
denominator of the CBR equation arises because the increased cost of retrieval of 
control rules are incurred at each step in the search space, whereas the increased cost 

Control-Rule Problem Solver Guided PS Time Exceeds 
Ung~ded PS "lime 

. +.U~ded ......... .Gui+de+ d. ................... ~ .... (Swamping Occurs) 

P~ I ~ ~ (Operator Apl~lCafloII ) T,n+ | 

Increasing # of Co~rol Ru~s I 

I Extremely F.xpsns~ve 
Equivalent Costs Case Retrieval 

Case-Based Reasoner No Swaln~ng in CBR (Swamping Occurs) 

.......... ...... I .................... ............... 

'~"" | 

Increasing Size of Case-Base ~ _  ~ (Case Retrieval) 

J Knowledge Application 
(Adaptation Steps) 

Figure 4. Comparing Control Rules and Cases 
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of case retrieval is incurred only once during problem solving for a case-based 
reasoner. In other words, CBR systems amortize the cost of case retrieval across all 
adaptations, making them much more resistant to increases in retrieval costs than 
CRL systems. 

Figure 4 illustrates this phenomenon. Each bar graph represents the time a 
problem solver takes to solve a problem plotted against its knowledge base size; white 
blocks in the bar graph represent problem solving or adaptation steps, while grey 
blocks represent knowledge retrievals. Because a CRL system makes a retrieval from 
memory- at each step, the costs of retrieval (illustrated by the size of the grey blocks) 
can outweigh the savings of reduced search more quickly than they can in a case- 
based reasoner, in which retrieval from a large knowledge library is (ideally) 
performed only once during problem solving. 

This amortization also makes CBR more amenable to solutions to the swamping 
problem, such as deletion policies or indexing schemes. In order to be effective, any 
coping strategy needs to reduce retrieval time to the point that the threshold 
conditions are never satisfied. For a CRL system, this upper limit on retrieval time is 
Re < Ro(Cp-Cp~/Cp'; for a CBR system, this upper limit is Re < Ra(Cp-Cp'), a much 
higher (and hence much less stringent) limit on the maximum time retrieval can take 
for a system to be guaranteed to avoid swamping, 

Whether the benefits suggested by this analysis will be realized in practice depends 
critically on other factors that may affect the cost-benefit relationships within the 
system. Specifically, this analysis claims that, for CBR and CRL systems operating 
over the same problem set and same operator library, an identical increase in retrieval 
costs is less harmful to the ease-based system than it is to the CRL system. However, 
the actual retrieval costs of the two systems may be different over the same learning 
history; moreover, the two types of systems may differ in the amount of improvement 
they gain from learning. Therefore, while this analysis suggests that there may be 
advantages for CBR systems, actually determining the tradeoffs between particular 
CBR and CRL systems requires a more precise specification of the costs and specifics 
of the learning algorithms of the systems, as well as of the characteristics of the 
problem set over which the systems will operate. 

6. Related Work 
Little research has been done on direct comparisons of case-based reasoning and 
control-nile learning systems. Minton (1990) and Etzioni (1992) have theoretically 
and empirically- investigated the utility of control-rule learning systems, and Koton 
(1989) empirically evaluates the utility of a particular case-based reasoning system 
against a non-learning reasoner. 

Our theoretical model of control-nile learning systems was based in part on 
Etzioni's theoretical model of control-rule learning systems, which he calls meta-level 
problem solvers (ExzIonI 1992). While we developed our theoretical model of case- 
based reasoning systems independently, it shares many characteristics with the 
Systematic Plan Adaptor (SPA) algorithm (HANKS & WELD 1995), a case-based 
reasoning system built on top of an unguided partial-order planning system called 
SNLP (BAR~TT & WELD 1994). 



149 

A closely related body of work concerns DerSNLP (IrmiG & KAMBHAMPATI 1994). 
DerSNLP is a derivational analogy system also layered on top of SNLP. Ihrig and 
Kambhampati use the DerSNLP framework to theoretically and empirically" evaluate 
the efficiency of plan-space and state-space planning systems. While their work and 
ours both focus on comparative theoretical analysis of AI systems, their work 
compares two different planning algorithms in the context of the same learning 
algorithm and our work compares two different learning algorithms in the context of 
the same planning system. 

7. The Bottom Line 
The utility problem is caused by interactions between a system's learning modules 
and other portions of a system and can arise completely independently of hardware 
concerns. Analyzing the utility problem at an algorithmic level allows us to identify 
the root causes responsible for the problem and to identify the threshold conditions 
under which the problem will arise; solving the utility problem involves applying 
coping strategies which prevent these threshold conditions from occurring. Our 
uniform framework for utility analysis also facilitates the direct comparison of 
different systems on the utility issues. We are currently extending this framework to 
account for more factors that can affect the utility problem, such as domain 
beundedness, representation language and indexing vocabulary. 

Several features of CBR make it resistant to the utility problem. First, cases have 
the potential to eliminate vast amounts of problem solving, providing improvements 
robust enough to survive large increases in retrieval time. Second, because the cost of 
case retrieval is amortized over many adaptation steps, ideal case-based reasoners 
suffer less severely from the same overhead than CRL systems. Finally, this 
amortization makes CBR systems more amenable to coping strategies than CRL 
systems. 
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