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Abs t rac t .  This paper examines the role of prototypicality in exemplar- 
based concept learning methods. It proposes two approaches to prototyp- 
icality: a shared-properties approach, and a similarity-based approach, 
and suggests measures that implement the different approaches. The 
proposed measures are tested in a set of experiments. The results of the 
experiments show that prototypicality serves as a good storing filter in 
storage reduction algorithms; combining it in algorithms that store all 
the training set does not improve significantly the accuracy of the algo- 
rithm. Finally, prototypicality is a useful notion only in a subset of the 
domains; a preliminary examination of those domains and their charac- 
teristics is proposed. 

1 Background and Motivation 

Human concept learning is studied intensively for about seventy years. In its 
early days the research concentrated about logical concepts defined by a set 
of conditions. Logical concepts have the property that  any given object either 
belongs to the concept or not, and all members of a concept represent it equally, 
or belong to it to the same extent (e.g., 'prime number' ,  as each number is either 
prime or not, and no number is 'more prime' than another; 'grandmother '  can 
be defined as the mother  of a parent, and any grandmother is as good exemplar 
of this concept as any other). Logical concepts are thus unslructured. 

During the last three decades it is argued that  natural concepts, occurring 
in everyday life, are totally different from logical concepts, cannot be defined 
by a set of necessary and sufficient conditions, and are structured. The first 
to propose this idea was Wittgenstein [18] who asked "how would you define 
the concept of game?" He claimed that  this concept contains a large variety of 
objects; each game is similar to some other games in some of its properties, but 
there are no properties common to all of them. Wittgenstein concluded that  
natural  concepts, like games, can not be defined by rules. He suggested that  
members of a natural  concept share a family resemblance: each member of the 
concept is similar to few other members of its concept, or shares few properties 
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with some other members of its concept, the member need not be similar to all 
other members of its concept. 

In line with this argument, Rosch and Mervis [15] claim that  natural  concepts 
are represented in our mind by an image of the prototype of the concept. The 
prototype is an object that  belongs to the concept, and represents it best. 

Rosch further argues that  prototypicality is a graded property, i.e., members 
of a concept can be rated according to the extent that  they represent the concept. 
Thus, Rosch suggests that  natural concepts are structured: different members 
have different status in them, and prototypicality may serve as a measure of 
membership in a concept. She writes: 

"The basic hypothesis was that  members of a category come to be 
viewed as prototypical of the category as a whole in proportion to the ex- 
tent that  they bear a family resemblance to (have attributes which over- 
lap those of other members of) the category. Conversely, items viewed 
prototypical of one category will be those with least family resemblance 
to or membership in other categories. In natural categories of concrete 
objects, the two aspects of family resemblance should coincide rather 
than conflict." ([15], p. 575) 

Thus Rosch suggests that  the rated prototypicality of an item is affected by two 
factors: The number of properties it shares with other members of its concept, 
and the number of properties it shares with members of contrasting concepts. 
We term the first factor locality, and the second peripherality. Rosch argues that  
in a natural  concept the two measures correlate. 

The notion of prototypicality is now considered central to theories of human 
categorization. Many findings concerning phenomenon about human concept 
learning are explained in terms of prototypicality. For example, Rosch showed 
that  children first learn to classify prototypical members of a category, their 
ability to classify peripheral members develops only later [14]. Posner and Keele 
[11] found that  more prototypical members of a category are classified faster and 
more accurately, and are better remembered. 

In modern machine learning prototypicality does not have such a central sta- 
tus. Rendell [13] adopts a classic definition of prototypicality, he proposes that  
the prototype of a concept is the centroid of a ball in an Euclidean space. In 
STAGGER [17] the prototypicality of an object is the extent that  it satisfies the 
necessary and sufficient conditions for membership in the concept. In ID3 [12] 
the prototypicality of an example may be obtained by considering its depth as a 
leaf of a decision tree. In AQ15 [8] one can infer the prototypicality of an object 
from the rule that  captures it (if a concept is defined by a set of rules, then a 
rule that  covers more members of the concept is considered more prototypical).  
A similar approach is held by Bergadano et al. [4] in the POSEIDON system, 
where they suggest that a Base Concept Representation should capture the pro- 
totypical members of each concept; the exceptional cases would be identified by 
an Inferential Concept Interpretation process. STAGGER, AQ15, POSEIDON 
and ID3 relate to prototypicality but do not rely on it: the prototypicality of the 
objects can be inferred but is not used in the learning or classification process. 
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In PROTOS [10], EACH [16] and PEBLS [6] the prototypicality of an object 
O refers to the system's 'confidence' in O as a reliable representative of its class. 
O is considered a good representative of its concept to the extent that  if the 
system uses O in order to classify unseen objects (using a nearest neighbour, or 
similar, classification method) then the system predictions would be relatively 
accurate. The weight of an exemplar E in EACH and PEBLS, which can be 
seen as its prototypicality, is the quotient between number of objects E correctly 
classifies (using a nearest neighbour classification rule), and the total number of 
objects E classifies. A similar approach is held by PROTOS. 

As prototypicality bears so much importance in human categorization we 
might expect that  it would also be useful in machine learning. Therefore in the 
sequel I propose and examine two computational models of prototypicality. The 
examination shows that  while some usages of prototypicality in exemplar-based 
concept learning improves the accuracy of the learning algorithm other usages 
degrade the accuracy. 

The next section presents the intuitions that  led to the two prototypicality 
measures that are presented in sections 3 and 4. Sections 5.2 and 5.3 presents 
experiments that  were conducted with the proposed measures. The measures 
were combined in algorithms that  store all the training set (See. 5.2), and in 
these algorithms they did not cause an improvement in the accuracy of the 
algorithm; they were also embedded in storage-reduction algorithms (See. 5.3), 
and in these algorithms they served as a successful storage filters: When the more 
prototypical items from each concept are stored the accuracy of the algorithm 
is better than when other criterions for storing exemplars are applied. 

2 Intuit ion 

Following Rosch I suggest that  an object is considered prototypicalin a concept if 
it is focal and not peripheral; where focality relates to the extent that the object 
represents the concept under discussion, and peripherality describes the extent 
that  it represents other concepts. 

Two alternative approaches to prototypicality are examined. The first is 
termed the shared-properties approach; it is derived from Rosch's theory. Rosch 
suggests that  the focality of an object is determined by the number of properties 
it shares with other members of its concept; thus if a concept C1 contains seven 
members, which in some feature f have the following values {a, a, a, a, b, b, b} 
then the locality of the value a in C1 is greater than that  of b. Consider now 
another concept 6'2 with the following set of values in f :  {a, a, a, a, x, y, z}; I 
suggest that  while in C2 a is the only 'representative' value, in C1 a is the best 
representative, but there is another value that  also serves as a good representa- 
t ire of the ~:ategory; therefore, the focality of a in C~ is greater than its focality 
in C1. Thus, the focality of a value v in a category C is determined by two factor: 
(a) the prevalence of v in C, (b) the prevalence of other values u # v in C. 

Another, more subtle, point in Rosch's theory that was adopted by the 
shared-properties based prototypicality measure is that  prototypicality is not 
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a gestalt property of the object as a whole, but may be expressed as a function 
of its distinct features. Therefore, the locality of an object is defined as the the 
sum of the locality of its features. 

The peripherality of an object is defined as its foeality among members of 
contrasting concepts; the prototypicality of an object is the difference between 
its focality and its peripherality. 

Neumann [9] proposed a concept acquisition model that argue that humans, 
during the learning phase, count the frequency of each feature in each concept 
(e.g., red occurs half of the times among members of C). During the test phase, 
probe items that are described by more frequent features are classified more 
easily. Thus Neumann's model also relys on feature counting processes. 

An alternative approach to prototypicality, one that emerges from Wittgen- 
stein's ideas, relies more directly on similarity evaluations. I denote this approach 
the similarity-based approach. We may suggest that the focality of an object 
should be defined as its average similarity to other members of its concept, the 
peripherality of an object is its similarity to members of contrasting concepts, 
and, like in the previous approach, the prototypicality of an object is the differ- 
ence between its focality and its peripherality. Two variants of this approach are 
also tested. 

The two approaches are not independent, as if an object shares many prop- 
erties with other members of its concept, it is, generally, also similar to many 
other object as well; yet there are also differences between the two definitions, 
for example an object might be highly similar to few other objects, but not share 
many properties with many other members of its concept. 

The next section presents the shared-properties approach to prototypical- 
ity, the section afterward presents the alternative, similarity-based approach to 
prototypicality. 

3 T h e  S h a r e d - P r o p e r t i e s  A p p r o a c h  t o  P r o t o t y p i c a l i t y  

During the learning process the teachers supply examples of different concepts 
(assume that a positive example of a certain concept is a negative example for 
the other concepts). Let {El, ..., Era} be a set of m examples that represent a 
concept C. Each example Ei = (vii, ..., vi,~) is a vector of n values, where each 
value represents a feature, and is taken from a nominal scale domain. For each 
Ei in C we define its focality, peripherality, prototypicality. 

Denote by C/ the set of values in the feature f occurring in members of the 
concept C. Denote by hum(v,  C/ )  the number of examples that belong to C and 
share the value v in the feature f .  

3.1 The  Focal i ty  Measure  

The focality of an example in a concept reflects the extent that this example 
is a good representative of the concept as it shares many features with other 
members of the concept. The focality of an example E in a concept C is a sum of 
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n the focalities of its features, Focex(E, C) = 2 j = l  fOCval(Vj, C) ; (the same holds 
for the other two measures as well, therefore in the sequel we concentrate upon 
focal i ty/peripheral i ty/prototypical i ty of a value. In most cases C is understood 
from the context, and is, therefore, omitted from the notation). 

The focality of a value v in a feature f in a concept C reflects the extent that  
v represents Cf ; it is influenced by two factors: (a) the extent that  v is frequent 
in C: (b) the extent that  other values represent C, or are frequent in C: 

To combine the above two factors we may define the focality of v in Cf to 
be: 

fOCval(V, C f) = num~(v, C]) - E num2(vi' (3]) . 

The first factor in the above definition reflects the prevalence of v in C, the 
second factor reflects the prevalence of other values. To normalize the above 
measure to the range [0..1] we actually define it to be: 

fOCval(V, C]) = 2~_,,~ num'(vj,c,) + 0.5 

For example, the locality of b in {b, b, b, b, a, a, a} is (42 - 32)/(2.  (42 + 32)) + 
0.5 = .64, while the focality of b in {b, b, b, b, x, y, z} is (42 - (12 + 12 + 12))/(2 �9 
(42 + 12 + 12 + 12)) + 0 . 5  = .84. 

The focality measure is a continuous necessity condition: A normal necessity 
condition is Boolean--  an object either satisfies the condition or not, and if it 
does not then it is not considered member of the concept. Above it was argued 
that  Boolean conditions are not suited for natural concepts that  lack sharp 
boundaries; here the Boolean condition is relaxed to a continuous measure: the 
measure gets the extreme values 0 and 1 when a normal necessity condition 
can be applied, i.e. when there is a single value that  can serve as a necessity 
membership condition; the measure gets intermediate values in cases where some 
values are more prevalent than others, in these cases the measure is larger for the 
more prevalent values; for example: focval(a, {a, a, a,b}) > focval(a, {a, a, b, b}) 
as in the left concept a is 'a more necessary value for membership in the concept' 
in the sense that  there are less non-a members of this concept, which means that  
in order to  be a member of the concept, an example should have an a in this 
feature. 

3.2 T h e  P e r i p h e r a l i t y  a n d  P r o t o t y p i e a l i t y  M e a s u r e s  

The peripherality of a value v in Cf reflects the extent that  v is frequent among 
examples of other concepts: the more frequent v is outside C, the more peripheral 
it is in C. Denote by C the set of examples that  do not belong to the concept 
C. The peripherality is dual to the focality and it is defined to be the focality in 
C: 

p~va~ (v, cs )  = focw~(V,-dj). 



82 

The prototypicMity of a value v in Cj reflects the extent that v is frequent 
among members of C and is infrequent in C, while taking into consideration the 
extent that other values have this property; in other words, the prototypicality of 
v is the extent that v and only v characterizes C and only Co The prototypicality 
is define to be: 

cs  ) : f o w (V, e l )  - c i  ) 

Both the locality and peripherality measures are in the range [0..1], therefore 
the prototypicMity measure is in the range [-1..1]. A larger value in each measure 
evidences that the example has more of this property; that is, if the focality of an 
example E1 is larger than the locality of E2 in a concept C, then it evidences that 
the properties (or features) of E1 are more prevalent in C then the properties of 
E2; if the prototypicality of E1 is larger than that of E2 it indicates that E1 is 
a better representative of C as its properties are more prevalent in C, and less 
prevalent in concepts contrasting with C. If the prototypicality of E is less than 
zero it indicates that E represents C better than it represents C. 

This section presented a prototypicMity measure that originates from the 
shared-properties approach. The next section presents two alternative prototyp- 
icality measures that originate from the similarity based approach. 

4 T h e  S i m i l a r i t y - B a s e d  A p p r o a c h  t o  P r o t o t y p i c a l i t y  

The similarity-based approach to prototypicality defines prototypicality by means 
of similarity. Two variants of this approach are tested. The first variant defines 
the locality of an exemplar E that belongs to a concept C as the average simi- 
larity between E and allother members of C, the peripherality of E is defined as 
the average similarity between E and all members of C. Formally expressed, let 
El, Em be the members of C, E~, E 1 be the exemplars that do not belong 
to C; denote by Sim(Ej, Ej) the similarity between the examples E~, Ej. The 
locality of E in C is: 

i = 1  

The peripherMity E in C is defined as: 

k 

Pe ox(E, c )  = si. (E, Ef)/k 
i = i  

The second variant of the similarity-based approach defines the locality of 
E as the average similarity between E and the three members of C that are 
most similar to it; peripherality is, accordingly, defined as the average similarity 
between E and the three objects in C that are most similar to E. In both variants 
the prototypicality of E is the difference between its locality and peripherality. 

Two considerations led me to try the second variant as well: (a) If a concept 
is composed of two or more homogeneous and distinct clusters that are dissimilar 
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one from the other (e.g., in a xor like configuration) then the second definition 
might be more successful than the first one. (b) In the context of exemplar- 
based learning, prototypicality generally serves as a 'utility measure' over the 
exemplars, that  is, it should evidence how useful and accurate an exemplar is 
as a classifier of probe items in the context of a k nearest neighbour, or similar, 
classification method. For this usage, similarity to items that  are distant from 
E is not important,  only the near neighbours of E: whether they belong to C or 
to contrasting concepts is relevant. 

The rest of the paper presents the experiments that  were conducted with the 
proposed prototypicality measures, and discusses their results. 

5 Experimental Results and Discussion 

Two main sets of experiments or comparisons were performed with the proposed 
prototypicality measures: The first set involved exemplar-based learning methods 
that  store, and use during in the test phase, all the training set, the second set 
of experiments involves storage reduction algorithms, i.e., algorithms that  store, 
and use during the test phase, only a subset of the training examples. It turns 
out that:  (a) combining prototypicality measures in algorithms of the first kind 
does not improve their accuracy; (b) prototypicality measures serve as successful 
'storing filters ~ [7] in storage reduction methods, that is, by storing the more 
prototypical members of each concept, the algorithm would achieve best results. 

I shall first describe the negative results, which I find no less interesting. 
I would like to suggest that  these negative results raise substantial questions 
concerning the role ofprototypicality (at least) in computerized learning systems, 
and concerning the relation between human categorization and computerized 
models. 

5.1 T h e  E x a m p l e s  t h a t  were  Used  in t h e  E x p e r i m e n t s  

This section overviews the domains that were used in the experiments, and their 
main properties. 

The examples that  were used were obtained from the repository of machine 
learning databases cited in the University of California, Irvine (UCI). As this pa- 
per concentrates upon examples that  are described by nominal domain features 
only databases that  satisfy this condition are used. On the other hand almost 
all nominal valued databases are examined; thus we may argue that the set of 
domains that  is used is representative of the set of domains used in machine 
learning. Figure 1 presents a statistical overview of the examples. 

Three of the databases that  are used in the following experiments are good 
examples of domains that  contain natural concepts: (a) The 'Zoo' domain con- 
tains different kinds of animals. (b) The 'LED display' example can be described 
as an 'artificial natural concept': It is artificial on the one hand, as it is produced 
by a computer program, but it has many characteristics of natural concepts on 
the other hand; it also resembles the kind of concepts psychologists use in their 
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laboratory experiments that  aim to investigate human categorization in natural 
domains. (c) 'Hayes-Roth and Hayes-Roth (1977)' is an example of a database 
that  was borrowed from such experiments. The characterization of other con- 
cepts is less obvious, at least for someone who is not expert in these fields. 

Domain 
# 

The domains that were used in the experiments 

Missing values 

Frequency of most frequent concept (%) 

Number of concepts 

Number of values in attribute 

Number of predicting attributes 

Number of examples 

Domain 

6 

7 

8 

9 

10 

1984 U.S. Congressional voting 435 16 2 2 61 y 

LED display 500 7 2 10 10 n 

LED display + 17 irrelevant attributes 500 24 2 10 10 n 

Tic-Tac-Toe ondgame 958 9 3 2 65 n 

Standardized audiology 226 69 2 24 48 y ,  

Lung cancer data 32 56 3 3 41 y 

E. coil promoter gene sequences (DNA) 106 57 4 2 50 n 

Primate splice-junction gene sequences (DNA) 1200 60 4 3 50 n 

Zoo 101 16 2 7 41 a 

Hayes-Roth & Hayes-Roth (1977) 160 4 4 3 41 n 

Fig. 1. A statistic overview of the examples. 

5.2 P r o t o t y p i c a l i t y  in  a l g o r i t h m s  t h a t  s to re  all  t h e  t r a i n i n g  set  

The proposed prototypicality measures were added to a basic Nearest Neighbour 
(NN) classifier that  bases its predictions over a single exemplar-the one that  is 
most similar to the probe, and to a classifier that  bases its predictions over a set 
of three exemplars. The following subsections presents these experiments, and 
their results. 

1 -NN Class i f iers  The most common, and probably basic, exemplar-based learn- 
ing method is the IB1 algorithm [2] that  bases its classification of a probe over 
its similarity to a single exemplar--the one that  is most similar to the probe, 
i.e. its Nearest Neighbour (NN). This algorithm works as follows: 

- During the learning phase: Store all the exemplars the teacher supplies as 
they are without any processing. 
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- During the test phase: In order to classify a probe object P - -  Evaluate 
the similarity between P and all the stored exemplars, and predict that P 
belongs to the same concept as the exemplar that is most similar to it. 

We could expect that if the algorithm in addition to evaluating the similarity 
between P and each stored exemplar Ei, would also consider the prototypicality 
of Ei in its concept, it would be more accurate. Therefore we may propose the 
following Proto-IB1 algorithm: 

- During the learning phase: Store all the exemplars the teacher supplies. For 
each exemplar compute its prototypicality. 

- During the test phase: In order to classify a probe object P - -  For each stored 
exemplar Ei, compute Sire(P, Ei ). Proto( Ei) (where Sire(P, El) denotes the 
similarity between P and Ei, and Proto(Ei) denotes the prototypicality of 
Ei in its concept), and predict that P belongs to the same concept as the 
exemplar for which this term is maximal. 

A comparison between these two algorithms is depicted in Fig. 2. The indices 
in first line of the figure relates to the domains from Fig. 1. The second line 
presents the accuracy of a basic IB1 algorithm. (All the algorithms that are 
examined in this experiment utilize the Context-Similarity measure [5].) The 
third line presents the classification rate of a Proto-IB1 algorithm that uses the 
shared-properties based definition of prototypicality. The last two lines depict 
the accuracies of variants of Proto-IB1 that use the similarity-based definition of 
prototypicality: In the fourth line prototypicality of an exemplar E that belongs 
to a concept C is defined as the average similarity between E and its three nearest 
neighbours in C, versus its three nearest neighbours outside C. In the fifth line 
the prototypicality of E is defined as the average similarity to all other members 
of its concept, versus to all the objects that belong to contrasting concepts. Each 
entry in the table is a result of averaging over 50 runs. 

Few conclusions can be drawn from a comparison between the accuracies of 
the four classifiers. Probably the most notable one is that in seven out of the ten 
domains that were examined, the basic IB1 algorithm performs best. In three do- 
mains the Proto-IB1 algorithms were more successful, two out of these domains 
are the artificial examples: 'LED display' and 'Hayes Roth & Hayes Roth (1977)'. 
These domains were proposed by researchers that synthesized them on the basis 
of their assumptions concerning the structure of prevalent natural domains. (cf. 
[1,3] concerning performing experiments, and synthesizing artificial domains.) It 
should be said that the assumptions their inventors held are widely accepted 
among researchers in cognitive psychology. In both these domains concepts are 
composed of 'ideal' prototypes and other examples that are distortions of the pro- 
totypes. The finding that in them the prototypicality-based algorithms perform 
well evidence that the proposed definitions of prototypicality are valid- if the 
concepts are truly composed of ideal prototypes and other objects with graded 
degrees of prototypicality then using the proposed prototypicality measures im- 
proves the accuracy. The finding that even in these two domains the accuracy 
of the three different Proto-IB1 algorithms is not always similar evidences that 
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A v e r a g e  c la s s i f i c a t i on  a c c u r a c y  
o f  1 - N N  a l g o r i t h m s  

Domain # i 1 2 3 4 5 6 7 8 9 11~ 

IBI 93 60 64 57 81 44 77 78 96 i95 
Proto-IB1 (shared properties) , 89 70 62 49 69 48 57 69 94 94 
Proto- B1 (slm lar ty to 3 vs. 3 objects) 92 54 60 49 81 51 74 78 94 96 

[ Proto-IB1 (similarity to all objects) 89 61. 52 46 23 49 50 48 88 , 

Fig. 2. The accuracy of four classifiers that base their classification on a single 
exemplar. ' IBF is the basic nearest neighbour algorithm, 'Proto-IB1 (shared 
properties)' refer to the variant of Proto-IB1 that utilizes the shared-properties 
based definition of prototypicality, 'Proto-IB1 (similarity to 3 vs. 3 objects)' 
refer to a va~iant of Proto-IB1 that utilizes a similarity-based definition of 
prototypicality, but examines the similarity to only three other objects within 
the exemplar's concept versus to three other objects from contrasting concepts, 
'Proto-IB1 (similarity to all objects)' is the variant that examines the similarity 
to all other objects when evaluating the prototypicality of an object. 

even in domains that  are composed of structured concepts ( that  are composed of 
prototypes),  the way to capture this structure may differ. In this experiment the 
most successful prototypicality measure is the one that  bases its evaluation over 
similarity to '3 vs. 3' objects. The fact that  this definition is far more successful 
than the similarity-based definition that  relies over similarity to all the exem- 
plar hints that  most of the concepts in our domains are not composed o f  a single 
distinct cluster. Finally, and what I find as the most interesting result, the fact 
that  in seven out of the eight real life domains the prototypicality-based classi- 
fiers were less accurate than the basic IB1 algorithm raise a question whether 
the common assumption that  natural concepts are structured and contain pro- 
totypes is valid, or, if we rephrase the question in a more positive manner: what 
is the role of prototypes and prototypicality in natural  domains? Do they have 
different role in human learning than in computerized one? 

T h e  F a m i l y  R e s e m b l a n c e  M e a s u r e  a n d  3 - N N  Class i f ie rs  In a slightly 
different experiment I compared algorithms that  base their classification of a 
probe item not over its similarity to a single exemplar, but over its three nearest 
neighbours. The basic 3-NN classifier works as follows: 

- During the learning phase: Store all the exemplars the teacher supplies as 
they are. 

- During ~he tes~ phase: In order to classify a probe object P - -  Evaluate the 
similarity between P and all the stored exemplars. Let S be the set of three 
exemplars that are most similar to P.  If at least two members of S belong 
to the same concepts C, then predict that  P also belongs to this concept, 
otherwise predict the P belongs to the same concept as its nearest neighbour. 
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The basic 3-NN algorithm is compared with a version that  bases its pre- 
dictions over three exemplars from each concept, and also weights the proto- 
typicality of the stored exemplars. The measure that is used is termed family 
resemblance (fare). The family resemblance between a probe object P and a 
concept C that  is represented by the exemplars {El, ..., Era} is define as follows 

3 

fare(P, C) = ~ Sire(P, E',). Proto(E'~)/a , 
4 - 1  

where E'i belongs to C, and the summation goes over the three exemplars in C 
that  maximize Sim( P, E'i ) " Proto( E'i). 

The fare based algorithm that is examined is termed a family resemblance 
classifier. It operates as follows: 

- During the learning phase: Store all the exemplars the teacher supplies. For 
each exemplar compute its prototypicality. 

- During. the test phase: 
In order to classify a probe object P do: 

For each concept Ci compute fare(P, Ci). 
Predict that  P belongs to the concept for which fare(P, Ci) is maxi- 

mal. 

The results of the comparison between the basic 3-NN algorithm and the 
family resemblance classifiers are depicted in Fig. 3. 

Average classification accuracy 
of 3-NN algorithms 

Domain  # 1 2 3 4 5 6 7 8 9 10 

3-NN classifier 94 64 71 56 81 49 76 78 93 96 

fare-3 (shared properties) 90 69 65 49 50 49 55 69 93 96 

fare-3 (similarity to 3 vs. 3 objects) 92 59 65 48 81 52 74 78 95 

Fig. 3. The accuracy of three classifiers that base their classification on three 
exemplars. '3-NN classifier' is the basic three-nearest-neighbour algorithm, 
'fare-3 (shared properties)' refer to the family resemblance classifier that uti- 
lizes the shared-properties based definition of prototypicality, 'fare-3 (similar- 
ity to 3 vs. 3 objects)' refer to a variant of the family resemblance classifier 
that utilizes the similarity-based definition of prototypicality. 

The first finding that  emerges from Fig. 3, and that  is consistent with the 
previous experiment, is that  in four domains the basic 3-NN algorithm is more 
accurate than the prototypicality-based methods, while in three domains the 
prototypicality-based algorithms (as a group) are most successful. 

As can be seen from Fig. 3, again, the prototypicality-based algorithms are 
successful on the two artificial domains: 'LED display' and the 'Hayes-roth & 
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Hayes-Roth (1977)'. A third domain in which these algorithms are accurate is 
the 'Zoo' domain. Thus we may say that the prototypicality-based classifiers are 
successful in domains that are composed of structured concepts, that contain 
more and less prototypical members. But, from the results of the two exper- 
iments we may also conclude that many concepts do not have this desired(?) 
structure. A clear example is the 'Tic-Tac-Toe endgame' domain. Each example 
in this domain represents a possible board configuration at the end of a 'Tic- 
Tac-Toe' game. The examples are divided into two concepts: 'a win for player 
• or not. This domain is not struetured~ and contains no prototypes: there is 
no 'prototypical winning configuration ~, each 'winning configuration' is as good 
as any other one, by changing a single attribute we may turn each 'winning con- 
figuration' into a non winning one, that is we may move the example from one 
concept to the other. Other domains are more difficult to analyze: For example 
in the '1984 U.S. congressional voting' domain we may wonder are there proto- 
typical 'Democrat members'? Can we infer from the results of the experiment 
that the answer to this question is negative, or maybe we have to invoke another 
definition of prototypicality in order to reveal the structure that does exist in 
this domain? Databases #5 and =//:6 represent diseases, while domains #7 and 
#8 are taken from the molecular biology, we may prematurely speculate that 
in the first area prototypicality-based methods are relatively successful, while 
in the latter they are not. A more cautious conclusion would be that different 
domains have different properties, that could be used by a learning algorithm, 
if and when these properties would be better explored. 

5.3 P ro to typ i ca l i t y  in S to rage -Reduc t ion  a lgor i thms  

In the previous section prototypicality was used as a kind of weighting over the 
exemplars in algorithms that store, and use during the test phase, all the training 
set. There are situations in which we need to store only a subset of the training 
set; in such situations the algorithm needs to decide which exemplars would be 
stored, and which would be discarded. Different authors have proposed different 
storing criterions ([2,19]). Here I would like to suggest the following storing 
criterion: From each concept C, store the f(C) most prototypical exemplars 
(where f(C) is determined by some constraints). 

The proposed storing criterion was tested, by comparing it with three other 
storage-reduction algorithms: IB2, IB3 [2], and TIBL [19]. The comparison was 
done in the following way: The IB2 and TIBL algorithms were executed on 
a given training set and test set; the number of exemplars they stored from 
each concept, and their accuracy was recorded; then the prototypicality-based 
algorithm was ran on the same dataset, the algorithm stored from each concept 
the same number of exemplars as IB2 (or as TIBL) did, and its accuracy was 
measured. All the algorithms used during the test phase the same classification 
method: the nearest-neighbour, and stored the same number of exemplars, they 
differ in their storing criterion. 

The results of the comparisons are depicted in Fig.4, 5. 
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Average classification accuracy 
IB2, IB3, Proto-IB2 

IB2 .66 .55 .42 .53 .65 ,39 .68 ,63 .92 .~8 

IB3 .90 .58 .41 .65 .69 AO .69 .65 .90 . ' ~  

ProIo-IB2 .84 -67 .68 ,47 .77 .42 .76 ,77 .90 

Fig. 4. The accuracy of three storage reduction algorithms: IB2, IB3 and 
Proto-IB2. The latter stores from each concept the same amount of exem- 
plaxs as IB2 does, but picks the most prototypical objects. 

Average classification accuracy 
TIBL, Proto-TIBL 

] 
Domain # 1 2 3 4 5 6 7 8 9 1 0 |  

TIEIL .88 .44 .26 .50 .70 .29 .50 .57 ,87 ..~],89 

Proto-TIBL .59 .59 _65 .47 .81 .46 .73 .77 .91 

Fig. 5. 

If we compare the prototypicality-based algorithm with IB2, IB3, TIBL we 
notice that it is more accurate than IB2 in nine out of the ten domains, more 
accurate than IB3 in seven domains (but it also generally stores more exemplars 
than IB3), and more accurate than TIBL in eight domains. 

Looking at the domains in which Proto-IB2 is less accurate reveals that  in 
the '1984 U.S. congressional voting' domain, and in the 'Tic-Tac-toe endgame' 
one Proto-IB2 and Proto-TIBL are less successful than IB3 and TIBL. The 
latter domain was discussed earlier, and the failure of the prototypicality-based 
algorithm in it was expected, and is understood; concerning the former domain, 
it is a wonder to me why on this domain prototypicality fails; I wonder whether 
an expert in the American political system could foresee this result; and more 
generally, should it be possible for an expert in a field to foresee whether a 
prototypicality-based algorithm would be successful on a given domain. 

The results clearly evidence that storing the more prototypical exemplars is 
a relatively successful storing criterion. It is 'relatively' successful in the sense 
that  it t ruly produces better results than other storing filters; yet, the accura- 
cies of Proto-IB2 or Proto-TIBL are generally inferior to those of the basic IB1 
algorithm; thus, at least theoretically, it is possible to achieve even better accu- 
racies than those achieved by Proto-IB2, P ro to -TIBL- - I f  the storage reduction 
algorithm would store all the exemplars that  are used for the classification of 
probe objects by IB1 then it would achieve the same accuracy as IB1 does. 

6 C o n c l u s i o n  

This paper examines the role of prototypicality in exemplar-based concept learn- 
ing methods. It proposes two approaches to prototypicality, and suggests mea- 
sures that  implement the different approaches. The proposed measures were 
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tested in a set of experiments. The results of the experiments show that  proto- 
typicali ty serves as a good storing filter in storage reduction algorithms, combin- 
ing it in algorithms tha t  store all the training set does not cause a meaningful 
improvement  in the accuracy of the algorithm. It  was also found tha t  the rela- 
tive accuracy of an algori thm tha t  utilizes prototypical i ty varies across domains: 
while in some domains (e.go the 'LED display'  one) it improves the performance, 
in other domains (e.g., the 'Tic-Tac-Toe endgame')  it even degrade the accu- 
racy. While in some of the domains this result is understood~ in other its reasons 
are not clear enough and require further examination.  Future research should 
also address questions like: how can a prototypieal i ty measure be combined in a 
learning algorithm, what is the similarity and difference between the way humans  
utilize prototypical i ty versus the manner  computers  (should) do it. 
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