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A b s t r a c t  

After a brief flourish in the decade 1979-1989, the study of learn- 
ing has once again stalled. The main method for theorizing about 
learning--symbolic computer simulation--is plagued by serious 
difficulties. Abstract computer models, i. e., models that capture 
the structural features of cognitive processes while ignoring their 
content, overcome those difficulties. An example of abstract 
modeling is discussed and a research agenda outlined. 

1. A Promise  Unfu l f i l l ed  

During the decade 1979-1989, the newly invented techniques 
for implementing machine learning systems inspired a wave 
of theorizing about learning in general and skill acquisition 
in particular. An interesting variety of learning mechanisms 
were proposed, including rule generalization, rule discrimi- 
nation, rule composition, chunking, subgoaling, procedure in- 
duction, proceduralization,  strengthening and weakening, 
constraint-based error correction, redundancy elimination, 
genetic algorithms, analogical transfer and explanation-based 
learning (Anderson, 1981; Chipman & Meyrowitz, 1993; 
Holland, Holyoak, Nisbett & Thagard, 1986; Klahr, Langley & 
Neches, 1987; Kodratoff & Michalski, 1990; Shrager & Langley, 
1990). 

These hypotheses represent the first attempts at describ- 
ing, at a fine level of detail, how adaptive agents alter them- 
selves on the basis of experience. Although incomplete, the list 
nevertheless shows that more hypotheses about the cognitive 
mechan i sms  under ly ing  learning were invented  in that  
decade than in the preceding century, i. e., since Edward L. 
Thorndike and his contemporaries posed the explanation of 
learning as a central scientific problem in the 1890's. 
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In the mid-1980's, the stage was thus set for a productive 
research program aiming to invent more learning mecha- 
nisms, identify the properties of various mechanisms, derive 
their implications and use them to explain the behavior of 
particular adaptive agents. Instead, we now see scattered, iso- 
lated efforts at theory, surrounded by a cloud of unprincipled 
empirical studies that show no signs of crystallizing into a co- 
herent body of knowledge. The production of new ideas about 
the mechanisms underlying learning has almost stopped and 
there is little work on analyzing and evaluating the hypothe- 
ses already proposed. 1 This impasse is caused, in part, by cer- 
tain problems with symbolic machine learning systems as ve- 
hicles for theorizing. 

2. Problems With Symbol ic  Models  

We now have three decades of experience in building symbolic 
computer  simulation models of cognitive processes. Several 
complexit ies and problems have appeared (Anderson, 1987; 
Frijda, 1967; Kieras, 1985; McCloskey, 1991; Neches, 1982; 
Ohlsson, 1988; Schneider, 1988; Young, 1985). These difficulties 
include the following: 

K n o w l e d g e  r e p r e s e n t a t i o n .  A symbolic simulation 
model requires an explicit representation of the knowledge 
that the modeled agent is drawing upon. Such a knowledge 
base represents a large number of micro-hypotheses about 
what the modeled agent knows and how that knowledge is en- 
coded. Those assumptions are, in principle, unverifiable. There 
are no empirical methods that deliver such fine grained in- 
formation that we can ground the individual nodes and links 
in a knowledge base independently of each other. Hence, the 
knowledge base of a symbolic simulation model functions as a 
giant free parameter. Every process assumption can be made to 
generate a wide range of different behaviors by 'hacking the 
representation' .  This introduces considerable fuzziness in in- 
terfacing such models with data. 

D o m a i n  speci f ic i ty .  Because a symbolic model requires 
a knowledge base, its behavioral predictions are only valid for 
the corresponding task domain. To investigate the behavior of 
the model in a different domain, one has to implement a new 
knowledge base. Because knowledge is a major determinant of 

l The work of John R. Anderson on the ACT theory (Anderson, 
1993) and the work of the Soar group on the Soar theory 
(Newell, 1990) are the main exceptions to this generalization. 
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the model 's  behavior,  its behavioral predict ions may or may 
not hold up in the new domain. Hence, when a simulation 
model is claimed to explain a general empir ical  p h e n o m e n o n  
(as opposed to a particular experimental result), it is difficult to 
evaluate the claim: How do we know what the model would do in 
another task domain? There is no principled way to identify 
what is general and what is task specific about the model's be- 
h a v i o r .  

Indeterminate  referent .  A symbolic model is a single 
entity, a particular cognitive agent. It has a particular knowl- 
edge base, a particular set of processes, particular parameter 
settings (e. g., activation levels), and so on. What is such a sys- 
tem a model of? Obviously, adaptive agents (e. g., people) differ 
at least slightly in their knowledge of a domain, as well as in 
their strategies for dealing with it; seldom if ever are two in- 
dividuals exactly alike. But if all individuals differ from each 
other, then a simulation model can be a model of at most one of 
t h e m .  

One solution to this problem is to regard a simulation model 
as a model of the average individual. However, in the face of 
qualitative differences in knowledge or strategy, what is aver- 
age? How does one take the average of two knowledge bases or 
two problem solving strategies? There is only one principled 
way to bridge the gap between the concretion of a symbolic 
computer  program and the generality we desire in a learning 
theory:  To include ind iv idua l  d i f fe rence  variables in the 
model, to systematically vary those variables and to verify that 
they cause the model  to produce the range of  behaviors ob- 
served empirically. However, it is difficult to vary a symbolic 
s imulat ion model  systematically.  

Brit t leness .  Symbolic simulation models are no less 
brittle than other AI systems, i. e., they do not function well at 
the boundaries  of their knowledge,  they usually cannot  be 
applied to new problems without  extensive re-programming,  
and the effects of changes to either the knowledge base or the 
process assumpt ions  are often unpredic table  and somet imes  
disables the program entirely. If a change requires extensive 
reprogramming,  it is difficult  to describe in a principled way 
what changed and what remained the same. Hence, one cannot 
easily conduct  experiments in which particular aspects of such 
a model are systematically varied. 

Princ ip les  versus implementat ion .  Symbol ic  s imula-  
tion models always include a mixture of theoretically motivated 
code and what I call convenience code, i. e., code that had to be 
added to make the model run (Ohlsson, 1988). The behavior of 
the model,  and hence its behavioral  predict ions,  depend as 
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much on the convenience code as on the theoretically moti- 
vated code. Hence, it is difficult to know which predictions to 
take seriously and which to dismiss as accidental consequences 
of the particular implementat ion.  The only principled solution 
to this problem is to have a theoretical reason behind e v e r y  
aspect of the code (Newell, 1990), a methodological dictum that 
is hard to live by and which increases the amount of labor re- 
quired to build a model. 

L a b o r  i n t ens i t y .  The first AI-based simulations of learn- 
ing were small and simple (e. g., Anzai & Simon, 1979). 
However,  as the field shifted attention to real life tasks, the 
complexi ty of our simulations increased to a point  where the 
implementa t ion  of a serious learning model  requires several 
man-years,  perhaps even tens of man-years,  of work. At the 
end of that investment, the only product is a formalization of a 
single point  in the theory space, and the only benefit  of hav- 
ing the model is that we can derive the behavioral predictions 
at that point. This lack of  proportion between initial invest- 
ment and ultimate benefit  is one reason why only one or two 
research groups cont inue to build symbolic models of learn- 
ing; those groups are already up and running, as it were, so 
they can make progress  through incrementa l  improvemen t s  
on past achievements.  However,  there are few, if any, new 
entrants into the field; the cost of entry is prohibitive. 

In short, symbolic simulat ion models  are not convenient  
tools for theorizing about learning. The interact ion between 
domain specificity and labor intensity is lethal. At the end of 
several years of work, the theoretician might  have a formal- 
ization of single cell in the table of all mechanisms versus all 
tasks. We need look no further for an explanation of why the 
development  of learning theory has stalled. 

3. Abstract Computer Models 

Cont inued progress in learning theory requires a theoretical  
method that combines the abstraction, elegance and simplicity 
of mathematical models with the flexibility and power of com- 
putational models.  The solution that I am pursuing is called 
abstract computer modeling. Abstract  models  are computer  
programs and hence not l imited by mathematical  tractability,  
but they are not AI systems and hence do not require domain 
specific knowledge  or complicated algorithms. 

The key step that leads to abstract modeling is to turn a 
common criticism of AI on its head: It is often said that com- 
puter programs are purely syntactic systems, i. e, they do not 
unders tand the symbols they operate upon and the intended 
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meaning of those symbols has no impact on the system's be- 
havior. Only the s tructure  of the knowledge base and the asso- 
ciated processes are important.  

The implication of this observation is that the content (i. 
e., the knowledge base) of an AI-based model is not needed to 
generate its behavioral predictions.  Hence, the basic idea of 
abstract modeling is to take the content (knowledge) out of  the 
model.  The result is a computer  program which mimics the 
s t ructural  proper t ies  of the cor responding  AI sys tem and 
which therefore goes through the same number of  steps, i. e., 
which makes the same quantitative predictions.  

This is not an entirely new idea. For example, within AI it 
has long been understood that one can compute the number of 
steps that a particular search algori thm requires to solve a 
problem, if one knows the length of the desired solution path 
and the branching factor of the search space, without actually 
having to implement the system, (e. g., Nilsson, 1971). We have 
taken this insight one step further by applying it to machine 
learning systems.  

An abstract computer  model is not an AI-program. It does 
not carry out the processes it models. An abstract model  of 
problem solving does not solve problems and an abstract model 
of learning does not learn. Unlike AI models, abstract models 
do not satisfy the suf f iciency criterion proposed by Newell ,  
Shaw and Simon (1958, p. 151) as a touchstone for theories of 
cognition. An abstract model goes through certain motions and 
counts how many steps (of certain kinds) it takes to do so. For 
the study of adaptive systems, this is enough. As theoreticians, 
our task is to derive the behavioral consequences of our hy- 
potheses with as little effort as possible, not to make computers 
i n t e l l i g e n t .  

An abstract computer  model can be viewed as an abstrac- 
tion of a particular symbolic model. For example, Rosenbloom 
(1986; see also Rosenbloom & Newell, 1987) used an abstract 
model to analyze certain aspects of the XAPS simulation model. 2 
Similarly, our first abstract model was an abstraction of the HS 
simulation model (Ohlsson, 1993). From this point of view, an 
abstract model is a tool for analyzing the properties of an exist- 
ing system. 

2Rosenbloom (1986) called his abstract model a meta -mode l ,  to 
emphasize the relation between the abstract model and the AI 
system, XAPS, that it was abstracted from. Because we want to 
build abstract models for which there are no prior symbolic 
models, we find the term "abstract model" more descriptive. 
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However, this view is too limited. There is no need to limit 
abstract modeling to points in the theory space for which 
symbolic models have already been built. On the contrary, for 
purposes of studying adaptive agents we can replace symbolic 
models with abstract models. 

The advantages of replacing symbolic models with abstract 
models are numerous. First, there is no need to implement and 
debug ei ther  a knowledge  base or any AI algori thm. 
Implementing and debugging an abstract model can therefore 
be done in a few weeks, sometimes a few days. Second, an ab- 
stract model is not tied to a particular task, so its behavioral 
predictions are general. Third, an abstract model can easily be 
changed and manipulated. 

In summary, one possible escape from the current impasse 
is to work with abstract computer models. Such models are not 
AI systems and hence do not suffer from the latters' problems 
and difficulties, but they are computer programs and hence 
escape from the constraints  of mathemat ica l  t ractabil i ty.  
Abstract models correspond to particular computational mech- 
anisms in the sense of mimicking the structural features of 
those mechanisms. By going through the same motions as a 
symbolic model, an abstract model allows us to derive the be- 
havioral predictions of the latter without implementing it. The 
ease with which abstract models can be built and manipulated 
encourages systematic search through the theory space and 
extensive exploration of parameter variations. 

4. An Example of Abstract Modeling 

Several  different  learning mechanisms have been modeled 
abstractly and a number of results derived (Ohlsson & Jewett, 
1994). The purpose of this section is to present an illustrative 
example .  

Like a symbolic model, an abstract model can be described 
as consisting of three components: a task environment, a per- 
formance module and one or more learning mechanisms. The 
main creative step in abstract modeling is to figure out how to 
represent change in knowledge without an explicit represen- 
tation of the knowledge base. 

4.1 An Abs trac t  Task E n v i r o n m e n t  

The central features of the environments in which adaptive 
behaviors occur are that (a) they require a s e q u e n c e  of ac- 
tions, as opposed to a single action, and (b) there are mult iple  
options at each point in that sequence, only some of which are 
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correct in the sense of being on a path to the desired end state. 
These features imply that an envi ronment  can be conceptual-  
ized as a tree structure. Each situation corresponds to a node in 
the tree and an action that changes situation S 1 into situation 

S 2 corresponds to a link between nodes S 1 and S 2. This si tuat ion 

tree is a map of the task environment.  3 
Because  we are abstract ing from task content ,  the nodes 

and links in the tree structures that we use to model  the envi- 
ronment  are empty. Each node represents some situation but it 
contains no informat ion  as to w h i c h  situation, i. e., which 
proposit ions are true with respect  to the represented situation. 
Similar ly ,  the actions are represented  by links be tween  the 
si tuations,  but the links contain no informat ion  about which 
action is being represented;  each link stands for some unspec- 
i f ied action. In short, the nodes are unin terpre ted  si tuations 
and the links are uninterpreted actions. 

A situation tree has three additional features. We designate 
a randomly chosen leaf node as the goal. The fact that a par- 
ticular node is the goal is modeled by putting the label "GOAL" 
on that node (rather than by writing down a propositional de -  
scr ip t ion  of the goal situation, as in a symbolic model). Links 
which are on a path between the root node and the goal node 
are labeled "correct" ,  the others are labeled " incorrect" .  In 
addition, each link is associated with a s t r eng th .  Initially, all 
l inks have  the same (a rb i t ra r i ly  chosen)  s t rength  value.  
(Nothing in the methodology forces equal initial strengths, but 
it is a natural starting state.) 

4.2 A b s t r a c t  P e r f o r m a n c e  M o d u l e  

To per form a task is to t raverse the corresponding si tuation 
tree f rom the root to the goal. Each situation (node) presents 
the learner with the problem of  deciding which option (link) 
to traverse. In our abstract models, performance is modeled as 
in Figure 1. 

The program sketched in Figure 1 is simple. Nevertheless,  
it executes  the same number  of  steps as an AI a lgor i thm 
opera t ing  on a task-spec i f ic  knowledge  base.  The abst ract  
m e c h a n i s m  does not apply a strategy,  execute  operators  or 

3The situation tree obviously owes much to the concept of a search space 
or problem space (Newell & Simon, 1972). However, the problem space is 
an hypothesis about the mind. In contrast, the situation tree is a tool for 
describing the environment. 
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apply goal criteria, but it mimics the quantitative properties of 
a system that does perform those computations. 

1. Check whether the current node is the goal node; 
a. if yes, exit with the relevant counter(s); 
b. if no, retrieve all outward-bound links (options). 

2. Select one link probabilisticly, with the probability of link 
L a function of the strength associated with L. 4 

3. Make the node at the far end of that link the current node 
and update the step counter. 

4. Check whether the step was correct or incorrect; 
a. if correct, go to 1; 
b. if incorrect, backup to the previous node and go to 2. 

F igu re  1. Pseudo-code for performance module.  

We could derive predictions about steady state performance 
by running the performance model and study, e. g., how the 
number  of  steps required to complete a task (traverse a tree) 
varies with various parameters (e. g., tree size). However, the 
function of the performance model for present purposes is to 
serve as a platform for the learning mechanisms that we want 
to study. 

4.3 A Model of Fai lure-Driven Learning 

One plausible hypothesis about learning is that adaptive agents 
react to errors, expectation failures, negative feedback, or, in 
general ,  n e g a t i v e  o u t c o m e s  by revis ing the per formance  
module in such a way as to avoid similar outcomes in the fu- 
ture. This hypothesis was explored in the (symbolic) HS model 
(Ohlsson, 1992, 1993, 1994; Ohlsson, Ernst & Rees, 1992; Ohlsson 
& Rees, 1991a, 1991b). 

4The exact algorithm used is the following: Each strength value is 
multiplied with a random number between 0 and 1; the highest product 
wins. This algorithm gives a strong preference to the link with the 
highest strength. We are in the process of exploring alternative decision 
algorithms. 
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The HS model was based on an analysis of how a knowl- 
edge-based agent can detect and correct his or her own mis- 
takes. In brief, the basic principles proposed were that (a) er- 
rors are caused by overly general rules which generate ac- 
tions that are not appropriate or useful; (b) errors are detected 
by judging successive situations as either consistent or incon- 
sistent with known constraints on 'good' situations; and (c) er- 
rors, once detected, are corrected by specializing the respon- 
sible rule in such a way that it will not be evoked in situations 
in which it causes errors; the particular specialization is de- 
termined by the learner's casual analysis of the error. 

For example,  consider a novice driver. (a) Driving on a 
two-lane highway, a novice driver is likely to have a general 
tendency to change into the left-hand lane whenever the ve- 
hicle in front is traveling too slowly. In its unrestricted form, 
this disposition is dangerous, because it will lead him or her to 
change lanes even when there is another car in the left-hand 
lane. (b) One possible outcome of such an error is screeching 
tires or irritated honkings from that other car. Even a novice 
driver knows that such signals indicate an error on his or her 
part. (c) The causal analysis is in this case obvious: The error 
arose because there was another car in the left-hand lane. 
Hence, the needed correction is to specialize the overly gen- 
eral disposition so that it is only evoked in situations in which 
the left-hand lane is empty. 

Our efforts to derive the behavioral implications of the HS 
model  i l lustrates the diff icult ies  of symbolic  model ing.  The 
model was applied to three different, fairly small, task domains: 
counting,  ari thmetic and a particular skill in organic chem- 
istry (see Ohlsson, 1993, for an overview of the three applica- 
tions). Development of the knowledge base took over a year for 
each domain.  Hence, providing minimal evidence for the gen- 
erality of the learning mechanism took three years of work. 

Fur thermore ,  to derive the learning curve predicted by 
the HS model  we ran a quanti tat ive learning exper iment  in 
which the model learned a simple symbolic skill in chemistry: 
to construct  Lewis structures (structural formulas) for particu- 
lar molecules given their sum formulas. HS could learn this 
skill both by practicing repeatedly on a single molecule and by 
practicing a sequenced of different molecules. Figure 2 shows 
a typical result from repeated practice on a single molecule. 

The s imula t ion  runs required to ident i fy  the learning 
curve of HS took several months to complete. To investigate 
how the curve is affected by various parameters,  e. g., task 
complexity, we would have to run the simulation repeatedly for 
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Figure  2. Learning curve for HS model. 

each parameter value, making this seemingly simple analysis 
a mult i -year  enterprise. 

A b s t r a c t  r e p r e s e n t a t i o n .  Abstract modeling provides a 
more convenient way to derive the implications of the basic 
hypotheses behind the HS model. The main creative step in 
constructing an abstract model is to represent the correction 
of faulty knowledge without an explicit representation of that 
knowledge. To a first approximation, the effect of detecting and 
correcting an error is that one avoids that error in the future. 
(Error correction might have other effects as well, but avoid- 
ance of the error is obviously central.) How do we represent 
this outcome in the abstract? 

The effect of error correction is that the unsuccessful op- 
tion will not be tried again. This effect can be modeled by 
deleting the relevant link from the situation tree. This opera- 
tion has the same effect as constraining a knowledge structure 
so that it does not apply in a particular situation; the action 
generated by that knowledge structure will not be taken again. 
Similarly, to remove a link from a tree is to make the corre- 
sponding option unavailable for the decision making algo- 
rithm; but if the link is not considered during decision mak- 
ing, then it will not be selected and hence not traversed. The 
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(abstract and simple) operation of deleting a link mimics the 
(content-full  and complicated)  process of correcting an error. 

The abstract model  that implements  this learning mecha- 
nism works as shown in Figure 3 (the pseudo-code added to the 
performance module--see  Figure 1--to model  error correct ion 
is shown in bold faced font). This abstract model mimics the 
behavior of the symbolic HS model. To determine the learning 
curve produced by the version of fai lure-driven learning im- 
plemented in HS, we ran a series of simulation experiments  
with the abstract model. 

1. Check whether the current node is the goal node; 
a. if yes, exit with the relevant counter(s); 
b. if no, retrieve all outward-bound links (options). 

2. Select one link probabilisticly, with the probability of 
link L being proportional to the strength associated 
with L. 

3. Make the node at the far end of that link the current 
node and update the step counter. 

4. Check whether the step was correct or incorrect; 
a. if correct, go to 1; 
b. if incorrect, backup to the previous node, r e m o v e  

the traversed link from the s i tuation tree, 
and go to 2. 

Figure 3. Pseudo-code for error correction model. 

Simulat ion  experiments .  Our goal was to make the ex- 
periments as similar as possible to empirical studies of skill ac- 
quisition. We used situation trees with a branching factor of 10 
and a path length of 20. These trees represent the abstract 
structure of a task that requires 20 steps (actions) to solve and 
that present  the performer with approximately 10 options in 
each step. Tasks that illustrate this level of complexity include 
proving a college-level algebra theorem, using a word proces- 
sor to write a letter and cooking a dish from the classical 
French cuisine.  

Each simulation experiment  consists of running the model  
through a sequence of training trials, i. e., traversals of the 
situation tree. The model is started in the root node of the tree 
and cycles through the decision cycle until it reaches the goal 
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node; it is then restarted in the root node; and so on. The 
training trials cont inue until mastery. The criterion for mas- 
tery is three consecut ive error-free traversals of the situation 
t r ee .  

We run  several s imulated subjects until  cri terion, as is 
standard procedure in experiments  on learning. (Because the 
decis ion making module  is probabil ist ic,  successive runs are 
not identical.)  In the explorations reported below, there were 
20 simulated subjects in each simulation experiment.  

Finally, we collect data on the behavior of the model, typi- 
cally the number of steps (link traversals) required to traverse 
the tree. These numbers are averaged across simulated subjects 
for each trial. Hence, the procedure by which we construct  
learning curves corresponds  closely to the empir ical  proce- 
dures used to construct  the learning curves of human learn- 
e rs .  

Se lec ted  resu l t s .  We have performed extensive explo- 
rat ions of  the abstract  error correct ing model  (Ohlsson & 
Jewett, 1994). Figure 4 shows the basic result, plotted with log- 
ari thmic coordinates  along the y-axis. The behavior  of the 
model is a straight line in this type of plot. This is the hallmark 
of an exponential learning curve. The fit to the exponential is 
ex t remely  good. Fur thermore ,  the rate of learning is very 
high. The model  requires less than 10 trials to reach criterion. 
(To judge the psychological  plausibil i ty of this achievement ,  
r emember  that the task requires 20 steps and presents the 
learner with 10 options in each step.) 

For comparison,  Figure 5 shows the learning curve for the 
symbolic version of HS (see Figure 2) replotted in log-normal 
coordinates. Both the symbolic and the abstract models produce 
good approximat ions  to straight lines in log-normal  coordi-  
nates, indicat ing that both generate exponent ia l  (rather than 
power law) learning curves. The slopes of the two curves (as 
indicated by the exponents)  are also comparable (.289 versus 
.314). Hence, the abstract model does indeed mimic the quanti- 
tative behavior of the symbolic model. 

The amount  of  work required to derive the predic ted  
learning curve with the abstract model was a mere fraction of 
what it took to make the corresponding derivation with the 
symbolic version of HS: a few days versus several months. The 
ease and speed with which the abstract model can be manipu- 
lated also enables us to carry out several other analyses that 
would be completely prohibitive with the symbolic model. 



100 

10- 
S 
t 
O 

P 1- 
S 

0.1 
0 

45 

~ x y = 200.133 * 10-0.314x 

I I I 

2.5 5 7.5 10 

T r i a l s  

Figure  4. Curve for failure-driven learning. 

For example, one natural question is to what extent the 
learning curve predicted by failure-driven learning is robust 
across different task environments. Intuition suggests that the 
complexity of the task might affect the shape of the curve, be- 
cause more difficult tasks ought to cause slower learning. To 
investigate this question, we have to perform a sensitivity ex- 
p e r i m e n t  (Schneider, 1988) i. e., derive the learning curve 
again and again for different values of the relevant complex- 
ity parameters (i. e., branching factor and path length. 

This 2-by-2 (path length by branching factor) experiment 
was carried out with the abstract model, with path lengths ei- 
ther 10 or 40 and branching factor either 3 and 17. Figure 6 
shows the result. The four learning curves are straight lines 
in log-normal coordinates. Failure-driven learning is robustly 
exponential across levels of complexity. Furthermore, the four 
curves are almost parallel. Hence, manipulating either dimen- 
sion of task complexity produces parametric displacement of 
the curve, but leaves its shape unaffected. The two dimensions 
do not interact. The exponential nature of failure-driven 
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learning is robust across variations in task complexity (as 
measured by path length and branching factor). 

A second natural question is how the efficiency of the 
learner affects the resul t .  An alert learner has a greater prob- 
ability of detecting and correcting an error. Intuitively, it is 
plausible that variation in learner efficiency affects the shape 
of the learning curve. This question is easily explored with the 
abstract model. The results presented so far were derived under 
the assumption that the learner catches and corrects every er- 
ror he or she makes; let us call this 100% efficiency. Figure 8 
shows the learning curve predicted under the alternative as- 
sumption that the learner has 50% efficiency, i. e., that he or 
she only detects or corrects every other error that he or she 
makes. Once again, we see that the learning curve is a straight 
line in log-normal coordinates. Hence, failure-driven learning 
is exponential across levels of learner efficiency. 
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D i s c u s s i o n .  Fai lure-driven learning appears to be ro- 
bustly exponential across variations in both task and learner 
parameters. Empirical studies of skill acquisition (primarily in 
humans, but also in animals and social structures such as man- 
ufacturing plants) have shown that skill acquisition typically 
follows a power law, not an exponential curve (Lane, 1987; 
Newell  & Rosenbloom, 198l). Hence, these simulations show 
that pure failure-driven learning does not predict the type of 
learning curve observed empirically. Contrary to the strong 
claims sometimes made for failure-driven leaning, people (and 
perhaps other adaptive agents as well) do not learn solely by 
reacting to their failures. (These results leave open the pos- 
sibility that adaptive agents learn by some combination of er- 
ror correction and one or more other learning mechanisms.) 

The main point for present purposes is that the methodol- 
ogy of abstract modeling enables extensive exploration of the 
quant i ta t ive  propert ies  of par t icular  learning mechanisms.  
The sensitivity experiments shown in Figures 7 and 8 would 
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Figu re  8. Fai lure-driven learning with 50% efficiency. 

have required at least one man-year of work each if carried 
out with a symbolic model, but they took only between two and 
three weeks with the abstract model. 

5. S u m m a r y  

The deve lopment  of  theories of skill acquisi t ion has stalled. 
Al though a rich and interest ing variety of hypotheses  about 
the cogni t ive  mechan i sms  under ly ing  learning emerged  in 
the decade 1979-1989, little current work is devoted to the anal- 
ysis and evaluation of those ideas and the production of new 
ideas has s lowed down. To transform a set of hypothes ized 
change mechanisms into a theory of adaptive agents we need 
to explore the propert ies  of those mechanisms,  derive their 
behaviora l  impl ica t ions  and use them to explain par t icular  
regulari t ies  in adaptive behavior.  

Symbolic computer  simulation are not convenient  tools for 
such explorat ions.  In part icular ,  the combinat ion  of britt le- 
ness and labor intensity discourages exper imentat ion and ex- 
ploration. In addition, the task specificity that comes with de- 
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pendence on a knowledge base makes it difficult to interpret a 
symbolic model. In particular, there is no principled way of 
deciding which behavioral predictions are general and which 
are task specific. 

Abstract computer models avoid these difficulties by com- 
bining the abstraction, elegance and simplicity of mathemati- 
cal models with the flexibility and power of computational 
models. An abstract model is a computer program, but it is not 
an AI system. Specifically, abstract models mimic the struc- 
tural features (and hence the quantitative behavior) of sym- 
bolic models but without explicitly representing the content of 
the relevant knowledge base. Abstract models are orders of 
magnitude easier to design, implement,  debug and run and 
hence encourage extensive exploration of the behavioral pre- 
dictions of particular adaptive mechanisms. 

The issues to be explored in future include the following. 
First, what types of learning curves are generated by other 
lea rn ing  mechan i sms  (chunking ,  p lanning,  s t reng then ing ,  
etc.)? Second, which, if any, of the learning mechanisms pro- 
posed to date correctly predicts some s e t  of behavioral regu- 
larities (as opposed to a single regularity): forgetting, over- 
learning, the difference between distributed and massed prac- 
tice, error distributions and so on? Third, we want to investi- 
gate more complex models of task environment. How are vari- 
ous learning mechanisms affected by, for example, multiple 
correct paths, non-uniform branching or random fluctuations 
in strengths? Fourth, how do learning mechanisms interact 
with individual  difference variables? Can the mechanisms 
proposed to date account for so-called aptitude-treatment in- 
t e r a c t i o n s ?  

Finally, a particularly important question is how learning 
mechanisms interact with each other in the production of 
adaptive behavior. Are learning curves and other regularities 
invariant over composit ion of learning mechanisms? If not, 
what are the effects of combining multiple learning mecha- 
nisms? In a mult i-mechanism system, observable changes in 
behavior are not direct expressions of any one of the relevant 
mechanisms, but a composite result of their interactions. In 
other  sc iences ,  complex in terac t ions  be tween under ly ing  
causal mechanisms map onto observable system properties in 
complex ways. The mapping from genes to phenotypic traits or 
from molecules to macroscopic properties of substances are 
good examples. There is no reason to expect the mapping from 
cognitive mechanisms to observable behavior to be any sim- 
pler. We are currently exploring the consequences of compos- 
ing error correction with other learning mechanisms. 
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