
A Parallel Algorithm for Relational Coarsest

Partition Problems and Its Implementation *

Insup Lee and S. Rajasekaran

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389

A b s t r a c t

Relational Coarsest Partition Problems (RCPPs) play a vital role in verify-

ing concurrent systems. It is known that RCPPs are P-complete and hence it

may not be possible to design polylog time parallel algorithms for these prob-

lems.

In this paper, we present a parallel algorithm for RCPP, in which its asso-

da ted label transition system is assumed to have m transitions and n states.

This algorithm runs in O(n TM) time using ~ EREW PRAM processors, for
n �9

any fixed e < 1. This algorithm is analogous and optimal with respect to the

sequential algorithm of Kanellakis and Smolka. The same algorithm runs in

time O(n log n) using ~ log log n CRCW PRAM processors. We also describe

implementation and experimental results on performance of our algorithm.

1 I n t r o d u c t i o n

Relat ional Coarsest Par t i t ion Problems (RCPPs) play an impor tan t role in verifying

concurrent systems in the form of equivalence checking. In their pioneering work,

Kanellakis and Smolka [6] presented an efficient algori thm for the RCPP with mult iple

relations. Their algori thm had a run t ime of O(mn), where m is the number of

t ransi t ions and n is the number of states in the RCPP. This algori thm has been used

in pract ice to verify systems with thousands of states. Our work is to extend the

appl icabi l i ty of this algori thm with the use of parallelism.

In a recent work of Zhang and Smolka [9], an a t t empt has been made to parallelize

the classical Kanellakis-Smolka algorithm. However, the main thrust of this work was

from pract ical considerations. In part icular , complexi ty analysis has not been provided �9

*This research was supported in part by NSF CCR93-11622 and DARPA/NSF CCR90-14621.

405

and was not the main Concern of the paper. On the other hand, it has been shown
that RCPP (even when there is only a single function) is 7~-complete [1]. P-complete
problems are presumed to be problems that are hard to efficiently parallelize. It is
widely believed that there may not exist polylog time parallel algorithms for any of
the ~-complete problems that use only a polynomial number of processors.

Since RCPP has been proven to be 7~-complete, we restrict our attention to de-
signing polynomial time algorithms. In this paper we present a parallel algorithm
for RCPP: This algorithm runs in O(n TM) time using ~ EREW (Exclusive-Read
Exclusive-Write) PRAM processors for any fixed e < 1. This algorithm is optimal with
respect to the Kanellakis-Smolka algorithm. We say a parallel algorithm that runs in
time T using P processors is optimal with respect to a sequential algorithm with a run
time of S, if PT = O(S), i.e., the work done by the parallel algorithm is asymptoti-
cally the same as that of the sequential algorithm. The same algorithm runs in t ime
O(nlogn) using ~ l o g l o g n CRCW (Concurrent-Read Concurrent-Write) PRAM
processors. The parallel algorithm described in this paper is for single-relation RCPP.
It can, however, be easily extended for multiple-relation RCPP without changing the
asymptotic run-time complexity or processor bound.

The rest of the paper is organized as follows. In Section 2, we state the problem
and provide some useful facts about parallel computation. Section 3 gives details
of our parallel algorithm and Section 4 describes an example that explains how our
algorithm works. Section 5 presents analysis of our algorithm and Section 6 reports
our implementation results. Section 7 concludes the paper.

2 P r o b l e m S t a t e m e n t

Defin i t ion 1 A labeled transition system (LTS) M is (Q, Qo, T), where Q is a set
of states, Qo c Q is a set of initial states, and T C_ Q x Q is a transition relation.

Defin i t ion 2 For any state p E Q, let T(p) = {q e Q[(p,q) E r } . Also for any
subset B of Q, let T(B) stand for UpesT(p). Similarly define T-l(p) and T- I (B) for
any p E (2 a. rid for any B c Q.

The Relational Coarsest Partitioning Problem (RCPP) is defined as follows:

I n p u t : An LTS M = (Q, Q0, T) with a finite state set Q, an initial partition ~r0 of Q
and a relation T on Q x Q.

O u t p u t : the coarsest (having the fewest blocks) partition 7r = {B1,.--,Bz} of Q
such that

1. ~r is a refinement of ~r0, and

2. for every p, q in block Bi, and for every block Bj in %

T(p) n Bj 7~ ~ iff T(q) n Bj 7~

That is, either B~- C T-I(Bi) or B i n T-I(B;) = ~.

406

2.1 Parallel Computat ion Models

A large number of parallel machine models have been proposed. Some of the widely
accepted models are: 1) fixed connection machines, 2) shared memory models, 3) the
boolean circuit model, and 4) the parallel comparison trees. Of these we'll focus on 1)
and 2) only. The time complexity of a parallel machine is a function of its input size.
Precisely, time complexity is a function g(n) that is the maximum over all inputs of
size n of the time elapsed when the first processor begins execution until the time the
last processor stops execution.

A fixed connection network is a directed graph G(V, E) whose nodes represent
processors and whose edges represent communication links between processors. Usu-
ally we assume that the degree of each node is either a constant or a slowly increasing
function of the number of nodes in the graph. Fixed connection networks are sup-
posed to be the most practical models. The Connection Machine, Intel Hypercube,
ILLIAC IV, Butterfly, etc. are examples of fixed connection machines.

In shared memory models (also known as PRAMs, i.e., Parallel Random Access
Machines), processors work synchronously communicating with each other with the
help of a common block of memory accessible by all. Each processor is a random access
machine. Every step of the algorithm is an arithmetic operation, a comparison, or a
memory access. Several conventions are possible to resolve read or write conflicts that
might arise while accessing the shared memory. EREW (Exclusive Read Exclusive
Write) PRAM is the shared memory model where no simultaneous read or write
is allowed on any cell of the shared memory. CREW (Concurrent Read Exclusive
Write) PRAM is a variation which permits concurrent read but not concurrent write.
And finally, CRCW (Concurrent Read Concurrent Write) PRAM model allows both
concurrent read and concurrent write. Write conflicts in the above models are taken
care of with a priority scheme.

The parallel run time T of any algorithm for solving a given problem can not be
less than ~ where P is the number of processors employed and S is the run time of
the best known sequential algorithm for solving the same problem. We say a parallel
algorithm is.optimal if it satisfies the equality: P T = O(S). The product P T is
referred to: as work done by the parallel algorithm.

The model assumed in this paper is the PRAM. Though no PRAM machines exist,
it is easy to describe algorithms on this model and usually algorithms developed for
this model can be easily mapped on to more practical models.

2 . 2 S o m e U s e f u l F a c t s

In this section, we state some well-known results which are used to analyze algorithms
presented in this paper.

L e m m a 1 [3] I f W is the total number of operations performed by all the processors
using a parallel algorithm in time T, we can simulate this algorithm using P processors
such that the new algorithm runs in time [wj + T.

40?"

As a consequence of the above Lemma we can also get:

L e m m a 2 I f a problem can be solved in time T usin 9 P processors, we can solve the
same problem using P ' processors (for any P' < P) in time 0 (-~,) .

Given a sequence of numbers kl, k2 , . . . , k , , the problem of prefix sums computation

is to output the numbers kx, kl + k2 , . . . , ka + k2 + . . . + kn. The following Lemma is
a folklore [5]:

L e m m a 3 Prefix sums of a sequence of n numbers can be computed in O(log n) time
using ~ E R E W P R A M processors.

The following L e m m a is due to Cole [4]

L e m m a 4 Sorting of n numbers can be done in O(log n) time using n E R E W P R A M

processors.

The following L e m m a concerns with the problem of sorting numbers from a small
universe:

L e m m a 5 [2] n numbers in the range [0,n r can be sorted in O(log n) time using
n l~n log log n C R C W P R A M processors, as long as c is a constant.

This problem can also be solved in O(n ~) t ime for any fixed e < 1, using ~ E R E W
P R A M processors.

3 A Parallel A l g o r i t h m Based on Kane l lak i s -Smolka

A l g o r i t h m

The KaneUakis-Smolka algorithm runs sequentially in O(nm) time, where n is the
number of states and m is the number of transitions. The basic idea behind the
Kanellakis-Smolka algorithm is to split a block in the current part i t ion if not all
states in the block can go to the same set of blocks.

Figure 1 outlines our parallel algorithm which is based on the Kanellakis-Smolka
algorithm. The algorithm uses known parallel algorithms for sorting and prefix sums.
We describe the da ta structures used in the algorithm and then the steps of the
algorithm.

D a t a S t r u c t u r e s . Let T(p) stand for {q e Q I (P,q) E T}, i.e., T(p) is the set
of states to which there is a transition from p. We also define T - l (p) to be {q C
Q [(q ,p) G T}.

The current part i t ion is represented as an array P A R T I T I O N . It is an array of
size n with (block id, state) pairs. For example, a pair (i, q) represents that the state
q currently belongs to the i th block. We maintain the array P A R T I T I O N such that
states belonging to the same block appear consecutively.

408

7r := r0; split := true

wh i l e split do

split := false; let 7r = {B1, B 2 , . . . , Be}

Unmark B1, B2, �9 �9 �9 Bt

1. fo r / := 1 to n in p a r a l l e l do

TEMP[i] := TSIZE[PARTITION[i] .s tate]
2. Compute the prefix sums of TEMP[1], TEMP[2], . . . , TEMP[n]

Let the sums be Vl~V2,... ,Vn

3. fo r i := 1 t o n in p a r a l l e l do

si := PARTITION[i] .s tate
Let T[si] be {q l , . - - , qk}

fo r j := 1 to k in p a r a l l e l do

Let processor in-charge of transition (si, qj) write (B[sl], Y[si], B[qj]) in L[vi-1 + j]
4. Sort the sequence L in lexicographic order.

5. fo r / := 1 to m in pa r a l l e l do if L[i] = L[i + 1] t h e n L[i] := 0

6. Compress the list L using a prefix computat ion

7. fo r each block Bi (1 < / < e) in pa ra l l e l do

fo r each j , 2 < j < ni in pa ra l l e l do

if [q~,j] ~ [qi,1] t h e n mark Bi

8. if there is at least one marked block t h e n

split := true; s := s + 1

Pick one of the marked blocks (say Bi) arbitrarily

for each p in Bi do

if [p] ~ [qi,,] t h e n

B[p] := s 1

Change the corresponding entry in P A R T I T I O N to (p, g + 1)

/*"Bt+I := Bi - {p E Bi: [/9] -- [qi,1]} and Bi := Bi - Bl+l */

Using a prefix computat ion, modify P A R T I T I O N such that all tuples

corresponding to the same block are in successive positions.

When the array P A R T I T I O N is modified, positions of some

states q's might change; inform the processors associated with

the corresponding T(q) 's of this change.

Figure 1: Parallel Algorithm Based on Kanellakis-Smolka Algorithm

409

The array T R A N S I T I O N S is used to store the relation T of the LTS. In partic-
ular, the array is of size m and each entry contains the (from-state, to-state) pair. In
the array T R A N S I T I O N S , we store the transitions of T(1), followed by the transi-
tions of T(2), and so on. T S I Z E is an array of size n such that TSIZE[q] stands for
[T(q)l for each q in Q. Note that the arrays T R A N S I T I O N S and T S I Z E are never
altered during the algorithm.

We also mainta in an array B such that for each state p in Q, B[p] is the id of a
block to which p belongs in the current parti t ion r . In addition, for each state p E Q,
we let [p] stand for the set, {B[q] I a e T(p)}. We emphasize here that no repetit ion
of elements is permi t ted in [p]. For any state q in Q, we let [T(q)] stand for the
sequence B[pl], P Ip2] , . . . , B[pt], where T(q) = {Pl,P~,. . . ,Pt}. Notice that IT(q)] can
have multiple occurrences of the same element. Also, let V[s] stand for the position
of state s within its block. We let nl = IBil for any block Bi in the current parti t ion
and denote the j t h element of block Bi by qi,j.

As an example to illustrate our data structures, consider the following initial par-

tition,
~ro = {{a,b,c}, { d , e , f } , {g ,h , i }} .

Let the transition relation T be defined as follows: T(a) = {d, f } , T(b) = {d},
T(c) = {e , / } , T(d) = {g,i}, T(e) = {a,b}, T (f) = {g}, T(g) = {a},
T(h) = {b,c,d}, T(i) = {a,b}. Table 1 shows the contents of P A R T I T I O N ,
T R A N S I T I O N S , B, and T S I Z E at the beginning.

P A R T I T I O N (1,a) (1,b) (1,c) (2, d) (2, e) (2, f) . . .

T R A N S I T I O N S (a,d) (a , f) (b,d) (c,e) (c , f) (d,g) . . .

B 1 1 1 2 2 2 . . .

T S I Z E 2 1 2 2 2 1 . . .

Table 1: Contents of Data Structures: An Example

At the beginning, P A R T I T I O N has tuples corresponding to the initial partition.
The array T R A N S I T I O N S never gets modified in the algorithm. The array 13 is
also initialized appropriately. For any state q, processors associated with T(q) keep
track of the position of state q in the array P A R T I T I O N .

The algorithm repeats as long as there is a possibility of splitting at least one of
the blocks in the current partition. Steps 1-3 are to construct a sequence L of triples.
Each state contributes a triple corresponding to each one of transitions going out of
the state. If s~ is any s tate such that T(s~) = {ql, q~, . . . , qk}, then the corresponding
triples are (B[si], Y[s,], B[qj]), for j = 1 , 2 , . . . , k.

Steps 4-6 are to el iminate duplicates in L and compress the array L. At the end of
Step 6, the array L contains [p] for every state p in each block in the current partition.
Furthermore, for each block B = {P l , . - . , Pk}, [Pl], [P2],. . . , [Pk] appear consecutively
in L.

410

Step 7 identifies blocks that can be split. Note that even if there is a single j
such that [ql,j] ~ [qi4], we may end up splitting the block Bi and thus the block Bi is
marked.

Step 8 picks one of the marked blocks arbitrarily and splits it. If the block Bi
is chosen, then B~ is split into Bi and Bt+~, where B~+I = {p E B~I[p] ~ [q~,l]} and
Bi is updated to be Bi - Bt+l. After the splitting, we update PARTITION such
that states belonging to the same block appear consecutively. Note that we could
have split in parallel all those blocks that are marked instead of just one such block
as done in Step 8; even then, the worst case run-time of the algorithm would be the
same.

4 A n Il lustrative Exam p le

We now illustrate our algorithm with an example. The example considered is the
same as above. The initial partition T0 is given by {{a, b, c} {d, e, f} {g, h,/}}. The
transition relation is defined as:

T(a) = {d,f}; T(b) = {d}; T(c) = {e,/}; T(d) = {g,i}; T(e) = {a,b};

T(f) = {g}; T(g) = {a}; T(h)= {b,c,d}; T(i)= {a,b}.

The initial contents of various data structures are shown in Table 1. We call each
run of the while loop as a phase of the algorithm.
Phase I: At the end of Step 3 the list L looks like:

(1,1,2),(1,1,2),(1,2,2),(1,3,2),(1,3,2),(2,1,3),(2,1,3),(2,2,1),(2,2,1),

(2, 3, 3), (3, 1, 1), (3, 2, 1), (3, 2, 1), (3, 2, 2), (3, 3, 1), (3,3, 1)

In Step 4, L is sorted in lexicographic order. The above L happens to be in sorted
order already. Steps 5 and 6 compress L as follows.

(1,1,2),(1,2,2),(1,3,2),(2,1,3),(2,2,1),(2,3,3),(3,1,1),(3,2,1),(3,2,2),(3,3,1)

In Step 7, the algorithm realizes that: [q2,2] # [q2,,]; [q3.2] # [q3,1]. Therefore, the
blocks B~ and B3 will be marked.

In Step 8, one of the marked blocks is picked arbitrarily. Let B2 be the picked
block. B2 gets split into two blocks namely {d, f} and {e}. PARTITION gets
modified to:

(1,a) (1, b)(1,c)(2, d)(2, f) (4, e)(3,g)(3, h)(3, i)

Phase II: The list L after Step 3 looks like:

(1, 1, 2), (1, 1, 2), (1,2, 2), (1, 3,4), (1,3,2), (2, 1, 3), (2, 1, 3), (2, 2, 3), (4, 1,1),

411

(4, i, I), (3, i, i), (3, 2, I), (3, 2, I), (3, 2, 2), (3, 3, I), (3, 3, i)
After L gets sorted and compressed (in Steps 4 through 6), L becomes:

(I, I, 2), (1, 2, 2), (i, 3, 2), (1, 3, 4), (2, 1, 3), (2, 2, 3),

(3,1,1),(3,2,1),(3,2,2),(3,3,1),(4,1,1)
In Step 7, blocks B, and B3 get marked. In Step 8, one of the marked blocks (say

B1) gets chosen. As a result, P A R T I T I O N gets modified as follows:

(1,a) (1,b) (5, c) (2,d) (2, f) (4, e) (3,g) (3, h) (3, i)

Phase III: The list L gets formed in Step 3:

(1, 1, 2), (1, 1, 2), (1, 2, 2), (5, 1,4), (5, 1,2), (2, 1,3), (2, 1,3), (2, 2, 3), (4, 1,1),

(4, 1, 1), (3, 1, 1), (3, 2, 1), (3, 2, 5), (3, 2, 2), (3, 3, 1), (3, 3, 1)

In Steps 4 through 6, L gets modified as follows:

(I, 1, 2), (I, 2, 2), (2, i, 3), (2, 2, 3), (3, I, 1), (3, 2, I), (3, 2, 2), (3, 2, 5), (3, 3, 1),

(4,1, 1), (5, 1,2)(5,1, 4)

In Step 7, B3 gets marked and hence is chosen in Step 8 for splitting. P A R T I T I O N
now becomes:

(1,a) (1,b)(5, c)(2, d) (2, f) (4, e)(3,g) (3, i) (6, h)

Phase IV: No block gets marked in this phase and hence the algorithm terminates to
yield the final partition of: {{a,b} {c} {d,f} {e} {g,i} {h}}.

5 Analysis

We assume that there are n + m processors, one for each state and one for each
transition.

Step 1 takes O(1) time using n processors. Steps 3,5,7 also take O(1) time but
need m processors. In Step 2, prefix computation can be done using log~ EREW
PRAM processors in O(logn) time (by Lemma 3). In Step 4, we need to sort m
numbers in the range [0, n3], and hence, we apply Lemma 5 to infer that it can be
done in O(log m) = O(log n) time using ~ loglog n CRCW PRAM processors, or
in n ~ time using ~ EREW PRAM processors for any fixed ~ < 1. Step 6 takes
O(logm) = O(log n) time using ~ EREW PRAM processors (by Lemma 3). In
Step 8, prefix computation takes O(log n) time using ~ EREW PRAM processors
and the rest of the computation can be completed in O(1) time using n processors.

Thus, each run of the while loop can be completed in either: 1) O(log n) time with
a total work of mloglog n on the CRCW PRAM, or 2) O(n ~) time with a total work
of O(m) on the EREW PRAM. Since the while loop can be executed at most n times,
we get the following theorem (using Lemmas 1 and 2):

412

T h e o r e m 1 R C P P with m transitions and n states can be solved 1) in O(n log n) time
using ~o-~ loglogn C R C W P R A M processors, or 2) in O(n TM) time and ~, E R E W

P R A M processors, for any fixed e < 1.

The same algorithm can be modified easily to the case of multiple-relation RCPP
to use quadruples instead of triples in the list L. The stated processor and time
bounds still hold, where m is the total number of transitions in all the relations.

6 Implementat ion Details

We have implemented our parallel algorithm on two parallel machines, CM2 and CM5
of the Thinking Machines Corp. We employed the CM2 located in the CIS department
of the University of Pennsylvania for program development. CM2 is a SIMD machine
and has 4096 processing elements. Input and output are through a front end (which
is a sun 3/60 work station). Each processing element is bit serial and can compute
any boolean function that maps three bits into two bits. On the other hand, CM5
is a MIMD machine with 512 processing elements. Unlike the CM2 processors, CM5
processors are quite powerful; each processing element is comparable to a work station
in computing power. We accessed the CM5 located in the CS department of University
of Illinois at Urbana-Champaign through internet.

Both CM2 and CM5 provide a routing network for the processors to communicate.
In CM2 the underlying routing network has a topology of a hypercube; whereas in
CM5, the routing network takes the topology of a fat tree. There are special hardware
to handle operations such as scan, broadcast, etc., in both of these machines.

In CM5, we can choose a subset of the processors to work with at any time. We
have exploited this facility to study the scalability of our parallel program. Though
CM2 supports virtual processors, it does not support selection of a subset. One could
run programs written for CM2 on CM5 without much effort. We have coded our
algorithm in C* (a parallel programming language supported by CM2 which is very
similar to C). The same program runs on CM5. The main objective of this experiment
was to study the behavior of the program when the number of processors used changes.

Input to the program was generated as follows: We fix the number of states (call
it N) and the number of initial blocks in the Relational Coarsest Partition Problem.
States in each block were chosen randomly (under a uniform distribution). Transitions
were also picked randomly. Transition Probability, Tp, is a parameter that the user
can choose. Each possible transition is picked with this probability.

Figure 2 Shows the results of our experiment with N = 10,000 and Tp = 0.05.
The number of initial blocks was 50. The program was run with various number
of processors: 32, 64, 128, 256 and 512. For each processor configuration, the time
indicated is the average of 5 independent runs.

Solid lines correspond to total execution time of the program, whereas the dotted
lines correspond to the time spent on just sorting (in Step 4). 65 to 70 % of the total
execution time is spent on sorting. Since the execution time of our program is always

413

seconds

50

40

30

20

Jr

"..

x total run-time

+ sorting time

I I]
32 64 128

' ' ' p r o c e s s o r s
256 5~2

Figure 2: Execution Times on CM5

bounded below by how fast the parallel machine can sort, we are currently exploring
ways of substituting sorting with some other operations.

T C o n c l u s i o n s

We have presented a simple parallel algorithm for RCPP and its implementation. An
interesting open problem is to design faster versions of this algorithm. The bottleneck
in this algorithm is the use of sorting. Since RCPP is known to be 7~-complete, a
reasonable time to aim for will be O(n~), for any fixed e < 1. In [7], we present
an efficient algorithm for RCPP which runs in time O(n log n) using ~ log n CREW
PRAM processors. This algorithm is based on the sequential algorithm of Paige and
Tarjan (whose run time is O(mlogn)) [8]. Due to lack of space, we are unable to
provide details of this algorithm.

Acknowledgements
We are grateful to Inhye Kang for many stimulating discussions. We are also grateful
to Angela Lal and D.R. Mani for their wonderful help in implementing our algorithm.

R e f e r e n c e s

[1] C. Alvarez, J.L. Balcazar, J. Gabarro, and M. Santha. Parallel Complexity in the
Design and Analysis of Concurrent Systems. In PARLE '91. Parallel Architectures
and Languages Europe, Vol 1. Springer-Verlag LNCS 505, 1991.

414

[2] P.C.P. Bhatt, K. Diks, T. Hagerup, V.C. Prasad, T. Radzik, and S. Saxena.
Improved Deterministic Parallel Integer Sorting. Information and Computation,
pages 29-47, 1991.

[3] R.P. Brent. The Parallel Evaluation of General Arithmetic Expressions. Journal
of the ACM, 21(2):201-208, 1974.

[4] R. Cole. Parallel Merge Sort. SIAM Journal on Computing, 17:770-785, 1988.

[5] J. Js Js Parallel Algorithms: Design and Analysis. Addison-Wesley Publishers,
1992.

[6] P.C. Kanetlakis and S.A. Smolka. CCS Expressions, Finite State Processes, and
Three Problems of Equivalence. Information and Computation, 86:43-68, 1990.

[7] I. Lee and S. Rajasekaran. Parallel Algorithms for Relational Coarsest Partition
Problems. Technical Report MS-CIS-93-71, Dept. of CIS, Univ. of Pennsylvania,

. July 1993.

[8] R. Paige and R.E. Tarjan. Three Partition Refinement Algorithms. SIAM Journal
on Computing, 16(6):973-989, 1987.

[9] S. Zhang and S.A. Smolka. Towards efficient parallelization of equivalence checking
algorithms. Unpublished Manuscript, 1993.

