
Fish: A Fast Software Stream Cipher

Uwe B15cher and Markus Dichtl

Siemens AG, ZFE ST SN 3, D-81730 Mfinchen, Germany,
E-Maihbloecher@zfe.siemens.de or dichtl@zfe.siemens.de

Abstrac t . This paper describes a fast software stream cipher called
Fish based on the shrinking principle applied to the lagged Fibonacci
generator (Fish - Fibonacci shrinking). It is designed to make full use of
the 32 bit word length of popular processors. On an Intc1486 clocked with
33 MHz a data rate of 15 Mbit/s is achieved with a C implementation.

1 Introduction

Coppersmith, Krawczyk, and Mansour ([CKM93]) presented at Crypto '93 a
promising stream cipher, the shrinking generator. It is based on linear shift
registers with linear feedback. The output bits of one shift register decide which
of the output bits of the other shift registers are used and which are discarded.
The design is well suited for hardware implementation. In software shift registers
are not very efficient because each machine instruction operates on a single bit
only. The remaining bits in the registers of the processor are unused.

In this paper we suggest an algorithm called Fish. We apply the shrinking
principle to a stream cipher based on the lagged Fibonacci generator ([KnuS1])
(Fish - F ibonacci shrinking). We use the full 32 bit wordlength of popular pro-
cessors in order to achieve a high data rate.

2 The Principle of Shrinking Generators

In this section we describe a slight generalization of the principle of the generator
suggested originally ([CKM93]). We consider two pseudo random generators A
and S. A produces a sequence a0, a l , . . , of elements of GF(2) ~A. S produces a
sequence so, s l , . . , of elements of GF(2) ~s.

We apply a mapping d : GF(2) ns -~ GF(2) to the elements of s 0 , s l , . . .
to decide which elements are accepted and which arc discarded. In the original
shrinking generator only elements genererated by A are accepted or discarded,
in our generalization the results of S are treated the same. Another difference
of our scheme is tha t the accepted elements are not yet the final result, another
stage of processing is needed. We define the shrinking procedure as follows: If
d(s~) = 1 then a~ and s~ are accepted, otherwise they are discarded. Tha t is, we
define a sequence i l , i 2 , . . . , i~ , . . , where ik is the k-th position in So, Sl , . . �9 with
d(si) -- 1. Wc have d(sik) = 1 and ~ { j E 0 . . . i k - 1 I d(sj) = 1} = k - 1.

A

42

I

J
[/

si ~ h___.__~j

d(sO

final

processing

stage

Fig. 1. Principle of the generalized shrinking generator.

We consider the shrunk sequences zo, z l , . . , which is nil , a~2, . . , and ho, hi, �9 �9 �9
which is s~l, si2: For all elements hj d (h j) = 1 holds. The principle of the
generalized shrinking generator is illustrated in Fig. 1.

In the original shrinking generator there was nA -~ 1 and ns = 1 . The
mapping d() was the identity, z o , z l , . . , were used as the output bits of the
generator.

3 Spec i f icat ion of the Fast Sof tware A l g o r i t h m Fish

In order to make full use of the 32 bit wordlength of most popular processors,
we choose nA : 32 and n s = 32.

For both A and S we use the fastest software pseudo random number gener-
ator we know, namely the additive generator ([KnuS1]) which is also called the
lagged Fibonacci generator. We define

a i -~ a i - 5 5 �9 a i - 2 4 mod 232

and
8 i ~- 8 i _ 5 2 --~ 8 i _ 1 9 mod 232

where + stands for the arithmetical addition operation with carry, and the bi-
nary vectors are interpreted as unsigned numbers in the usual way. The values
a - 5 5 , a - 5 4 , . . . , a - 1 and s - 5 2 , s - 5 1 , . . . , s - 1 are initial values of the generators
and must be derived from the key. The sequence of the least significant bits
of a lagged Fibonacci generator is generated by a linear feedback shift register
(LFSR) where the feedback polynomial is a trinomial.

The mapping d : GF(2) 32 -~ GF(2) maps a 32 bit vector to its least significant
bit, d((b31, b3o, . . . , b0)) = b0 �9

It would be unsecure to use the shrunk sequence z0, z l , . . , as the result like
in the original shrinking generator, since the underlying linear structure could

43

be detected. With probability 1/8 a triple of elements al, ai-55, and ai-24 is
accepted as elements of zo, Z l , An attacker could try to identify such triples
by adding elements of Zo, z l , . . , with a suitable distance and checking whether
the sum turns up some elements later. Therefore we have to hide the linear
structure of z0, zl,

We split the sequences z0, z l , . . , and ho, h i , . . , up into pairs (z2i, z2i+l) and
(h2~, h2~+1) and derive the two 32 bit output words r2~ and r2i+1 from these. We
define

c2~ = z2~ �9 (h2i A h2~+1)

d2i = h2i+l A (c2i O z2i+l)

r2~ = c2i | d2i

r2i+l ~ z2i+l �9 d2i

where �9 stands for the bitwise logical XOR operation and A for the bitwise
logical AND. The last three equations achieve an exchange of those bits of c2i
and z2i+l which are 1 in h2i+l. The operations are visualized in Fig. 2.

The least significant bits of h2i and h2i+l are 1 because of our choice of the
function d. Therefore it is possible to reconstruct the least significant bits of z2~
and z2i+] from r2i and r2i+l, and vice versa the least significant bits of r2i and
r2i+l follow from z2i and z2i+l. This implies that the least significant bits of the
output words of Fish are the bits of the underlying LFSR shrinking generator
which has a feedback trinomial.

4 Implementat ion Considerations

For the implementation a security aspect must be considered. It would be fatal
for the security of the implementation if a potential attacker could find out from
the time behaviour whether results of the additive generators were discarded or
not. In applications where this could bc possible it can be prevented by buffering.

5 Results for the Suggested Algorithm

On a PC with an Intel 486 clocked at 33MHz, using the Metaware High C
compiler and the Pharlap DOS-Extender a data rate of 15Mbit/s for a C imple-
mentation of the suggested algorithm Fish is achieved.

Several statistical tests were applied to output sequences of the Fish algo-
rithm: collision test, correlation test, coupon collectors test, frequency test, gap
test, linear complexity test, Mmlrer test, overlapping m-tuple test, nonlinear
complexity test, pokcr test, rank test, run test, spectral test, Ziv Lempel com-
plexity test. None of those tests could detect a deviation from the behaviour of
a random sequence.

44

r2i ?'2iZri

Z2i
3.) exchange

Z2i-k l

2.) '|

h2i
1.) 'A'

h2i+1

Fig. 2. Final processing stage: The output words r~i and r2i+l are derived by executing
the indicated operations.

Acknowledgement

We thank Johan Mordhorst for speeding up the C-implementation of Fish.

R e f e r e n c e s

[CKM93] D. Coppersmith, H. Krawczyk, Y. Mansour, 'The Shrinking Generator', Pre-
Proceedings of CRYPTO '93.

[Knu81] D. E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical
Algorithms, 2nd Edition, Addison-Wesley, Reading, Mass., 1981.

