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A b s t r a c t .  The Fnndamental matrizis a key concept when working with 
uncal ibrated images and mult iple viewpoints. It contains all the available 
geometric information and enables to recover the epipolar geometry from 
uncal ibrated perspective views. This paper is about a stabil i ty analysis 
for the Fundamental  matr ix.  We first present a probabil ist ic approach 
which works well. This approch, however, does not give insight into the 
causes of unstability. Two complementary explanations for unstabi l i ty  
are the nature of the motions, and the interaction between motion and 
three-dimensional structure, which is characterized by a critical surface. 
Pract ical  methods to characterize the proximity to the crit ical surface 
from image measurements,  by est imating a quadrat ic  t ransformation,  
are developped. They are then used for experiments which validate our 
observations. It turns out that  surprisingly enough, the critical surface 
affects the stabil i ty of the fundamental  matr ix  in a significant number of 
situations. 

1 I n t r o d u c t i o n  

Inferring three-dimensional information from images taken from different viewpoints 
is a central problem in computer vision. However, since the measured da ta  in images 
are just  pixel coordinates, there are only two approaches that  can be used in order to 
perform this task. The first one is to compute the model which relates pixel coordinates 
to a 3D reference coordinate system by camera calibration. Euclidean descriptions can 
then be obtained,  but  a significant amout  of flexibility is lost to this procedure, which 
cannot be used practical ly an active system. Thus, a second approach is emerging [12], 
which consists in using projective geometry, whose non-metric nature  allows to use 
uncalibrnted cameras. These approaches use only geometric information which relates 
the different viewpoints. This information is entirely contained in the Fundamental 
matriz, thus it is very important  to develop precise techniques to compute it,  achieving 
thus a form of weak calibration. More recently, affine geometry has been found to provide 
an interesting framework borrowing some nice characteristics from both Euclidean 
geometry and projective geometry. Affine calibration also requires the determinat ion 
of the fundamental  matr ix  [14], [81- 

A great  deal of work has been devoted to the problem of characterizing the s tabi l i ty  
of est imation of Euclidean motion, however nothing has been done, to our knowledge, 
to characterize the stabil i ty of est imation of the fundamental  matr ix.  This paper  tries 
to shed some light on this impor tant  problem. 
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2 Characterizing the Fundamental Matrix Stability 

The Projective Model The camera  model which we consider is the pinhole model. 
The main property of this camera model  is thus that  the relationship between the world 
coordinates and the pixel coordinates is linear projective. This property is independent 
of the choice of the coordinate systems in the ret inal  plane or in the three-dimensional 
space. The consequence is that  the relationship between 2-D pixel coordinates 3-D and 
any world coordinates can be described by a 3 x 4 matr ix  P,  called projection matr ix ,  
which maps points from 7 ~a to 7)2: 

x3 ( 1 )  
xa 2(4 

where the retinal  projective coordinates x l ,  x2, xa are related to usual pixel coordinates 
by (u,v) = (xl /xa,x2/xa) and the projective world coordinates 2(1, 2(2, )(3, 2(4 are 
related to usual affine world coordinates by ( X ,  Y, Z) = (2(1/2(4, X2/2(4, 2(3/Xa). 

The Fundamental Matrix When considering two projective views, the main geomet- 
ric property is known in computer  vision as the epipolar  constraint.  

It can be shown only from the hypothesis (1) that  the relationship between the 
projective retinal  coordinates of a point  m and the projective coordinates of the corre- 
sponding epipolar  line 1" is linear. The fundamental matrix describes this correspon- 
dence: 

l~| =I '~=Fm=F x2 

The epipolar  constraint has then a very simple expression: since the point m '  corre- 
sponding to m belongs to the line 1'~ by definition, it  follows that  

! I l I l l l lxl + 12X2 + laXa = m t T F m  = 0 (2) 

This last equation is similar to Longuet-Higgins'  equation relating the essential mat r ix  
[3], and calibrated coordinates. In par t icular ,  it  is l inear in the entries of F.  

Parameterizing the Fundamental Matrix The epipolar  transformation is character- 
ized by the 2 • 2 projective coordinates of the epipoles e and e '  (which are defined 
respectively by Fe  = 0 and FTe ' = 0), and by the 4 coefficients a,b,c,d of the homog- 
raphy between the two pencils of epipolar  lines. We have to find a parameter izat ion 
for the pencils of epipolar  lines such tha t  the correspondence has a simple form. One 
solution, valid in the pract ical  case where epipoles are at finite distance, consists in 
intersecting each epipolar  line with the line at  infinity, which consists of ret inal  points 
for which the third projective component is zero. The epipolar  transformation can then 
be expressed as a collineation of this line. If the epipolar  line l goes through the point 
m,  then its intersection with this line at  infinity is y ~  = (e x m)  x (0, 0,1) T, which 
can be wri t ten as (1 ,%0) T, with: 

m 2  - -  e 2  . - (3) 
m l  - -  e l  

If m '  corresponds to m,  then the eplpolar  llne l '  of the second image going through m '  
corresponds to I. It  is parameter ized by the point y ~  = (1 , r ' ,  0) T, with its projective 
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parameter obtained by priming the quantities in (3). The epipolar transformation maps 
yoo to y ' ,  and thus is an homographic function in the projective parameters: 

T' a'r + b 
= 

c - r + d  

Epipoles Stability Characterize Fundamental Matrix Stability The estimation of 
the fundamental  matrix can be done as a two-stage process, the first one being the 
estimation of the coordinates of the epipoles, and the second one the estimation of the 
coefficients of the homography. If one of the two stages is significantly more sensitive 
to noise than the other one, then we can conclude that  its stability determines the 
stability of the overall estimation. Let us see that it is indeed the case, using a statistical 
simulation with variation of the 3D motion of the camera. 

- The fundamental matrix has been computed from point correspondences using the 
quadratic criterion derived from the linear relation (2). The epipoles e and e' are 
then computed from this matrix [6]. 

- The coefficients of the epipolar homography have been computed from the point 
correspondences and the correct epipoles, using a linear least-squares formulation 
based on the relation derived by making substitutions of (3) in (4). 
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Fig. 1. Sensitivity to noise of the different components of the fundamental  matrix 

A relative distance [6], has been used to quantify the positional errors of the epipoles 
found. Since the four coefficients of the epipolar transformation axe defined only up to 
a scale factor, we have normalized them by dividing by a, which allows to consider a 
relative error for each of them. From the results of the simulation shown Fig. 1, it is 
clear that: 

- The stability of the epipoles in each of the images is comparable, which was to be 
expected, since the criterion (2) is symmetrical. Note that the non-linear criteria 
proposed in [6] also share this property. 

- Once the epipoles are determined correctly, the computation of the homography 
is quite stable, and thus that the more unstable part of the computation is the 
determination of the epipoles. 
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We thus conclude from this simulation that  an adequate measure for the stability of the 
fundamental matrix is the stability of one of its epipoles. Note that  this is consistent 
with the findings of [8], where it has been shown that  the epipole plays a par t icular  
role in the projective description of the geometry of a system of two cameras. 

3 A Probabilistic Characterization 

A classic characterization of uncertainty is to use covariance matrices.  If the measure- 

ments are modeled by the random vector x, of IR P of mean x0 and of covariance 
Ax  = E ( ( x  - x0)T(x -- x0)), then the vector y = / ( x )  is a random vector whose first 
and second order moments can be expressed very simply, up to a first order approxi- 
mation,  as functions of the first and second order moments of x. In effect, the mean is 
/ (x0)  and the covariance matr ix:  

Ay = J s ( x 0 ) A x J s ( x 0 )  T (5) 

Where  J r (x0 )  is the Jacobian mat r ix  of ] ,  at  the point x0. In our case, the function f 
associates to the coordinates of the point correspondences the entries of the fundamen- 
ta l  matrices eventually found. In the case of a linear criterion, a lready studied in [17] 
and [13] (for the computat ional ly  identical case of the essential mat r ix  computed from 
the eight point algori thm),  we have an explicit formula for the function f .  A different 
approach is needed to cope with the case of a nonlinear criterion, since we do not 
have an explicit expression for f .  We only know that  f minimizes a known criterion, 
and this can be dealt  with using a method based on the implicit  functions theorem, 
presented in [1], and used for instance in [16]. Two examples, one with epipoles near 
the image center, the other with epipoles far away, are given in Fig. 2, where we have 
superimposed the uncertainty ellipses corresponding to a 90% probabili ty,  computed 
from the exact point coordinates, and the image frames. 

A stat is t ical  test  has then been performed using 200 configurations of points ob- 
ta ined by variation of cameras and 3D points. The correlation diagram between actual  
s tandard  deviations (computed over 20 trials for each configuration) and predicted co- 
variances (both from the exact point correspondences: light dots, and from the noisy 
point  correspondences: dark dots), presented Fig. 3 shows that  the correlation between 
the prediction and the actual  covariances is quite high, even in case of predict ion from 
the noisy data.  

4 Ambiguity  and the  Critical Surface 

Crit ical  surfaces were known from the photogrammeters  of the beginning of the cen- 
tury, who called them "ge[~hvliche Fl~che='. They were then rediscovered and studied 
theoret ical ly by computer vision scientists in the case of reconstruction from optical  
flow [9] and point correspondences [4, 11, 2]. We are going to point out some practical 
consequences of the existence of such surfaces. Our approach is to provide algori thms 
which start  from the da ta  which is available to us in uncal ibrated images, tha t  is a set 
of point  correspondences between two images. These algorithms provide us a pract ical  
means to quantify the proximity of the 3D points which have given rise to point corre- 
spondences, to such a critical surface, much the same way than the computat ion of an 
homography between projective coordinates of point correspondences [7] allowed us to 
assess the proximity of the 3D points to a plane. 
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Fig .  2. Uncertainty ellipsis and noisy epipoles, left:first motion, right:second motion 
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Fig .  3. Correlat ion between computed covariances and predicted covariances 

The Critical Surface and Quadratic Transforms If all the observed points are in 
some special configuration, then the problem to obtain fundamental  matrices from 
point correspondences may not have a unique solution, even with an arbi t rar i ly  large 
number of such correspondences. This happens when the measured points lie on some 
special surfaces called critical surfaces and yields several fundamental  matrices com- 
pat ible  with the basic constraint  : m'WFm = 0. Each of these fundamental  matrices 
gives rise to a displacement which produces identical pairs of views, called ambiguous. 
More precisely, it  is not possible to distinguish between the image of the set of 3D 
points Q1 observed during displacement R1, t l ,  and the image of a set of points set 
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of 3D points Q~ observed during displacement R2, t2, as i l lustrated in Fig. 4. I t  has 
been shown [9] that  the crit ical surfaces Q1 and Q2 are space quadrics containing the 
optical  centers and the baseline of equations: 

( R a M  + t l ) T E 2 M  = 0 (6) 

( R 2 M  + t2 )TE1M = 0 (7) 

It is known that  the maximum number of ambiguous fundamental  matrices is three 
[4]. 

F ig .  4. Cri t ical  surfaces 

Let us now characterize critical surfaces in terms of image quantities. Given two 
ambiguous images there exist two fundamental  matrices F1 and F2 such that  for each 
pair  (m,  m ' )  of corresponding points, 

m ' T F l m  = 0 and m ' T F 2 m  = 0  

we can conclude from these two equations that :  

m '  = F l m  x F 2 m  (8) 

This equation defines in general a qnadratic transformation between the coordinates 
of the points in the two images. This is a generalization of the homography which we 
encountered and studied in the case of planes [7] . The quadrat ic  t ransformation allows 
us to check if image points are close to the project ion of a critical surface, much the 
same way as the homography allowed us to check if they were close to the projection of 
a plane. The epipoles of the three different fundamental  matrices which are solutions 
to the problem, in an ambiguous si tuation,  are the fundamental  points of the quadrat ic  
t ransformation.  
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Quadratic transformations and their parameterizations Quadrat ic  transformations 
are mappings of 7 )2 into 7 ~2, whose coordinates are homogeneous polynomials of degree 
2, which are invertible, and whose inverse are also homogeneous polynomials of degree 
2. The most simple example is the reciprocal transformation,  defined by: 

r  = ( ~ 3 ,  ~ s x l ,  ~1~2) T 

From this definition, we can see that  ~0 is defined in each point of 7 )2, except for the 
points i~ = (1, 0,0) T, is = (0,1, 0) T and  is = (0, 0,1) T, which are called fundamental  
points of ~0- We also notice tha t  ~0 is invertible, since it is it  own inverse. 

In the general case, a quadrat ic  t ransformation �9 has also three fundamental  points 
g l ,  g2, ga which are distinct of those of ~ - 1  g~, g~, g~. and we have: 

---- A ~ 0 B  (9) 

where A and B are two collineations which can interpreted as changes of ret inal  coor- 
dinates: 

A i l  = g~ Ai2 = g'~ Aia = g~ Ai4 = g~ (10) 
B g l  = i l  B g 2  = is B g a  = is B g 4  = i4 

where i4 = (1,1, 1) T. The inverse of �9 is ~ -~  = B - I ~ 0 A  -1. The point g4 can be 
chosen arbitrarily,  whereas the point g~ is determined by �9 [15]. Thus A depends on 8 
parameters  (the projective coordinates of the points g~, i = 1, 2, 3, 4) and B depends on 
6 parameters  (the projective coordinates of the points gi,  i = 1, 2, 3). Thus �9 depends 
on 14 parameters,  which is consistent with (8), where �9 is defined by two fundamental  
matrices,  which gives 7+7 parameters .  

A first approach is to es t imate  the 14 parameters  of the most general quadratic 
transformation ~ as given by (9) and (10). A second approach gives us only an upper 
bound of the distances of the points (m,  m ' )  to the critical surface, but  requires only the 
computat ion of 7 parameters .  The idea is to s tar t  from a fundamental  mat r ix  P1 and 
to compute a second fundamental  mat r ix  F2 such that  F1 and F2 define a quadrat ic  
transformation (8). For both approaches, we have designed a method consisting in a 
combination of the linear solution and non-linear minimizat ion with an appropria te  
parameter izat ion and symmetric Euclidean distance. Details can be found in [5]. 

Theoretical link between ambiguity and unstability Crit ical  surfaces have been pre- 
sented in (4) as sets of points yielding ambiguous interpretat ions of motion. Maybank 
[11] has shown that  a configuration whose 3D reconstruction is unstable is close to a 
critical surface. We are going to provide evidence for the reciprocal property. 

The unstabi l i ty  is very clear in the formulation of Horn [2] which defines criti- 

cal surfaces as sets of points M for which the variation of r e 'TErn  is a second-order 
(quadratic) function of the parameters  r ,  t .  While  the equation he obtains is quite dif- 
ferent from (7), he finds propert ies similar to the one which axe described by Maybank 
[10]. We are going to see tha t  the two forms are indeed equivalent, which will prove 
that  an ambiguous si tuat ion is also unstable.  

Normalized coordinates are used, the optical  center C being mapped onto the 
optical  center C '  by the displacement R,  t ,  per turbed by the infinitesimal vectors 6r, 
6t. The difference of residual values of the Longuet-Higgins equation for unperturbed 
and per turbed displacement can be expressed in the final coordinate system, using 
triple products,  as: 

A = [(t + 6t), C ' M ,  C M  + 6r • CM] - It, C ' M ,  CM] (11) 
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We have used the fact that an infinitesimal rotation 61% can be expressed from 6r using 
the Rodrigues formula, with an infinitesimal 8 = [l*r[[: 

sin 8 ~ 1 - cos 8 ~r 2 ,,, I + ~r 
~ R  = e ~ = I + 7 b r  + 

The difference Zl in (11) is normally a first order quantity, and the unstable situations 
are those for which it is a higher order quantity. If we drop the second order term 
[/~t, CtM,  ~r x CM] we obtain by expanding the products: 

A = [t, C t M , ~ r  x CM] + [6t, C ' M ,  CM] 

Using t -- C ' C  and some standard properties of the triple product yields: 

ZI = [(I q- ~ r ) C ' M  - ~r • t -b/~t, t ,  C 'M]  

It is easy to see that this is equivalent to Horn's expression. Now using M in the initial 
coordinate system, we obtain, by writing that the triple product is zero: 

((I -b ~ r )RM - 6r • t -[- 6t)T(t  • R M )  ----- 0 (12) 

A critical surface given by (7), can be written in the initial coordinate system: 

(R2M -k t2)T(t  • R M )  ---- 0 

which is has the form (12). 

5 Experimental Results 

The Nature of the Motion Since the epipoles are a simple function of the camera 
displacement, we can expect that the stabilily of the fundamental  matrix computation 
can be related to the stability of motion estimation [17] We have studied three cases 
where the results are unstable: 

- small translational component, 
- translational component parallel to the image plane a 
- pure translation. 

Extensive experimental simulations and qualitative explanations can be found in [5]. 

An Experiment Starting from a Critical Surface In order to show that critical sur- 
faces are a cause of unstability, we first start from 3D points that  are generated on 
such a surface Q. We then construct different sets Qd of 3D points which lie close to 
the critical surface. Each point M~(d) is obtained from the point M~ of the surface Q 
from Mi :t= dn~, where ni is the uni t  normM to the surface Q at Mi,  and d is a fixed 
scalar which represents the 3D distance of Qa to Q. Taking the Qa instead of the Q 
amounts to "add noise to the critical surface", in order to assess the "robustness of 
unstabili ty",  or to evaluate the "critical volume". To assess the stability of fundamen- 
tai matrix computation, we have then estimated the variance of the coordinates of the 
epipoles from 50 tries, for different values of the distance to the critical surface and the 
image noise. The results appear in Table 1, where we also show the mean values d~ and 
dy of the retinal disparities between the projections of points of Q and the projections 
of the corresponding points of Qd. 

3 The epipoles are far from the image center. 
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T a b l e  1. Influence of the distance to the critical surface and 
stability. 

d I d~ dy 
0 0 0 
5 3.89 7.74 
10 7.60 14.51 
20 15.19 29.12 
50 89.34 148.53 

of image noise on the 

b = O  
flex fey 
6140 3639 
10 -7 10 -7 
10 -7 10 -7 
10 -T 10 -7 
10 -7 10 -7 

b = l  
fie x ffey f e x  f e y  
1466 872 1261 788 
2935 1765 3749 2305 
726. 459 822 492 
153 106 280 199 
39 40 65 68 

Let us comment the results. First, it is clear that the farther the points are from 
the critical surface, the more stable are the results. When the points are far away 
from the critical surface, an increase of the image noise increases the covariance of the 
epipoles, which is to be expected, but when they are very close to the critical surface, 
the noise induces a reconstruction error which drives the points away from the critical 
surface, which explains why the variances decrease a little. If there is no image noise, 
then 3D points are reconstructed exactly. In this case, their 3D distance to the critical 
surface, even if it is very small, is significant, and unstabili ty does not occur. In the case 
where there is some image noise, the 3D points are reconstructed with an uncertainty. 
Now if the original 3D points were close to the critical surface, and if this distance is 
smaller that the reconstruction uncertainty, then they cannot be distinguished from 
points lying on the critical surface, and thus unstabili ty will occur. Thus, the volume 
for which unstability occurs depends on the 2D noise and we call it the critical volume. 

A Global Exper iment  So far, we have always started from synthetic data which was 
created to illustrate some facts. Now we start from the image data, such that it would 
be available to an algorithm, and we try to explain the sources of uncertainty. This 
experiment was carried on using synthetic data because at that  time we did not have 
a reliable system to obtain automatically point matches, but the principle would be 
exactly the same with real data. In this experiment, we try to account simultaneously 
for two sources of unstability, the proximity to a critical surface, and the distance of 
the epipole to the image center. Note that we have eliminated data with small retinal 
disparity in order to ignore the unstability due to small and pure translations. The 
image noise is 2 pixels. For each of the 500 displacements, we have computed the 
epipoles and their covariance matrices, and ordered the trims by increasing unstability. 
The horizontal axis in Fig. 5 represents unstabili ty increasing from left to right. 

We have first considered the distance of the epipole to the image center, represented 
on the Y-axis. There is a correlation between this distance, and unstability, quantified 
by the leftmost and rightmost columns of Table 2. 

The next idea is to try to fit a critical surface, by computing the repro jeered 
distance to a critical surface using the method described in Sect. 4. Since the 3D 
points are chosen randomly, their probability to lie on a critical surface is almost zero. 
However, and this is one of our findings, they may lie uear a critical surface, which 
means that they are in a critical volume. The idea is, after estimating the fundamental  
matrix F1 from the point correspondences, to find the fundamental  matrix F2 which 
minlmizes (8). This is like trying to fit a critical surface to the 3D points which have 
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T a b l e  2. Sources of unstabil i ty in a s tat is t ical  experiment.  

displacements 
(inereasing unstabil i ty 

1-100 
101-200 
201-300 
301-400 
401-500 

critical surface 
at  less than 10 pixels 

9% 
13% 
31% 
40% 
49% 

average distance of epipoles 
to image center 

754.6 pixels 
1164 pixels 
1783 pixels 
2624 pixels 

25280 pixels 

given rise to  the point correspondences. If the residual distance, which is the value 
of the criterion (8) at  the minimum, is high, it  means that  no fit can be found, and 
thus the crit ical surface does not exist. But is the residual is low, it  means tha t  the 
2D points  lie near the projection of a crit ical surface, the distance of the points  of the 
points  to the project ion of the fitt ing critical surface being given by the residual. Of 
course, there is a continuum of possibilities, and we have chosen the threshold of 10 
pixels, for which we know that  unstabi l i ty  is still  significant, as shown by the example 
presented in Table 1. 

The black dots in Fig. 5 are those for which the distance is under the threshold. Let 
us consider two points N1 and N2 in Fig. 5, with approximately the same horizontal  
coordinate,  but  for which the vertical coordinates are different, say yl > y2. The 
points have the same stability, but  N2 correspond to a motion yielding an epipole 
which is closer to the image center than N1. The reason may be tha t  N2 represents a 
configuration which is close to a critical surface. Now we can notice that  these points 
(the dark dots) are stat ist ically below the light dots (corresponding to distances to 
the  crit ical surface which are more than 10 pixels), which val idate this hypothesis. 
Another  thing which may be observed is that  there are more black dots in the area 
of high unstabi l i ty  (right), as shown in the middle column of Table 2 as well as in 
Fig. 5. Thus, the combination of the proximity to a crit ical surface and the direction of 
t ransla t ion provides a bet ter  explanation for unstabi l i ty  than any of these two causes 
in isolation. 

Another  impor tant  observation is the omnipresence of the critical surface, which 
is at  less than  10 pixels in 28% of the displacements.  Although the crit ical surfaces 
do not  exist ezactly in normal scenes in the sense that  real objects rarely are crit ical 
surface, they have a large practical  importance since our experiments show tha t  the 
critical volume where the points have to lie in order to yield some unstabi l i ty  is rather  
large. 

6 C o n c l u s i o n  

In this paper,  we have studied the influence of the camera motion on the s tabi l i ty  of the 
fundamental  matr ix .  Two tools have been introduced, a probabil ist ic character izat ion 
of s tabi l i ty  via computat ion of eovariance matrices,  and a method to es t imate  the 
reprojected distance to the closest critical surface from image da ta  via  computat ion 
of a quadrat ic  transformation. Using these tools we have been able to characterize 
the unstable situations. They can result from the nature of the motion (si tuations 
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F i g .  5 .  A g l o b a l  e x p e r i m e n t  t o  c h a r a c t e r i z e  t h e  c a u s e s  o f  u n s t a b i l i t y  ( s e e  t e x t )  

we have identified are small  t rans la t iona l  components ,  large t rans la t iona l  component  
paral lel  to the  image  plane,  and pure  t ransla t ions) ,  but  also in a more  subti le  way, 
f rom the in te rac t ion  of  the  camera  mot ion  and the  3D s t ructure  of the  scenes which 
can be described by a cr i t ical  surface. These  character izat ions  have been val idated 
exper imenta l ly  th rough s ta t i s t ica l  s imulat ions.  Some of the  new results which have been 
found are also appl icable  to  the  problem of Eucl idean mot ion  s tabi l i ty  analysis.  They  
suggest tha t  surprisingly enough,  the cri t ical  surface, apparent ly  a mos t ly  theore t ica l  
construction~ affects the  s tabi l i ty  of the  fundamenta l  m a t r i x  in a significant number  of 
s i tuat ions.  

A c k n o w l e d g e m e n t s  

W e  w o u l d  l i k e  t o  t h a n k  S t e v e  M a y b a n k  a n d  N a s s i r  N a v a b  f o r  f r u i t f u l  d i s c u s s i o n s  d u r i n g  

t h e  p r o g r e s s  o f  t h i s  w o r k .  Q T L  w a s  s u p p o r t e d  b y  a n  I N R I A  d o c t o r a l  g r a n t .  
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