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A b s t r a c t .  The view lines associated with a family of profile curves of 
the projection of a surface onto the retina of a moving camera defines 
a multi-valued vector field on the surface. The integral curves of this 
field are called epipolar curves and together with a parametrization of 
the profiles provide a parametrization of regions of the surface. This 
parametrization has been used in the systematic reconstruction of sur- 
faces from their profiles. We present a complete local investigation of the 
epipolar curves, including their behaviour in a neighbourhood of a point 
where the epipolar parametrization breaks down. These results give a 
systematic way of detecting the gaps left by reconstruction of a surface 
from profiles. They also suggest methods for filling in these gaps. 

1 I n t r o d u c t i o n  

Consider a surface M and centres of projection (camera  centres) c(t) moving 
on a curve which lies outside M [2]. For a fixed t, the critical set (or c o n t o u r  
g e n e r a t o r )  ~ t  is the set of points r of M where the normal  is perpendicular  
to the line segment ( 'viewline')  f rom c(t) to r.  The critical set is then projected 
along the visual rays onto a unit sphere centred at c(t) to give the p r o f i l e  points 
c(t) + p in this sphere (the ' image sphere') .  Thus p is regarded as a unit vector 
giving the direction of the viewline. We have the basic equation 

r = c(t) + Ap (1) 

where A is the (positive) distance f rom c to r (the distance f rom the profile point 
c + p to r being A - 1). (One may  also consider rota ted image coordinates q, 
where p = Rq,  R being a rotat ion with R(0) : identity [2].) 

The ideal si tuation is when M can be parametr ized (locally) by t and an- 
other variable u, say, such tha t  ru is along the tangent to the critical set at r 
(i.e., 'u parametr izes  ~ t ' )  and r ,  is along the viewline at r (i.e., rt[lP)- Then we 
say that  M is given the e p i p o l a r  p a r a m e t r i z a t i o n .  On M,  Successive critical 
sets, for t and t + 6t, are matched by constant u, and, in the image, successive 

* Both authors would like to thank the Newton Institute in Cambridge, England, for 
providing an excellent environment for us to work together, and NATO grant CRG 
910221. In addition, the second author would like to acknowledge the support of 
DAI:tPA and TACOM under contract DAAE07-91-C-R035 and NSF under grants 
IRI-920892 and IRI-9116297. 

Notes in Computer Science, Vol. 800 
Jan-Olof Eklundh (Ed.) 
Computer Vision - ECCV '94 



15 

profiles are matched by the e p i p o l a r  c o n s t r a i n t .  See [2]. In [10], it is shown 
that  the advantage of using the epipolar correspondence for defining a corre- 
spondence between points on two or more profiles is that  the reconstruction can 
be t ransformed readily into an opt imal  est imation problem. 

In this paper  we examine what happens in a neighbourhood of points where 
the epipolar parametr izat ion breaks down. At each point r of a critical set St  
we can draw a tangent vector to M in the direction r - c of the viewline. This 
gives a (possibly multivalued) vector field on the v i s i b l e  r e g i o n  of M,  which is 
swept out by the critical sets as t varies. The  integral curves of this vector field 
are curves tangent to the viewlines and are called e p i p o l a r  c u r v e s  on M.  The 
vector field is called the e p i p o l a r  f ie ld on M.  See Fig. 1. In order to examine 
this vector field, we pass to the s p a t i o - t e m p o r a l  s u r f a c e  M (§2), where the 
vector field becomes single-valued. 

_ ~ . . . . . . . .  - o  c 2 

Fig. 1. Two critical sets El, ~2 corresponding to camera centres cl, e2, and the epipolar 
field along them. Note that at the point of intersection, the field is two-valued. 

For the epipolar parametr izat ion to be possible, we must  firstly have t as one 
allowable parameter  on M (so the t = constant curves are critical sets on M).  
This  says that  the critical sets are smooth and do not form an envelope. 

D e f i n i t i o n  1. The envelope of critical sets on M is called the f r o n t i e r  of M 
(relative to the given motion). See Fig. 2. Provided the critical sets are smooth,  
frontier points r can also be recognised by the condition c t .n  = 0, n being a 
non-zero normal  to M at r. Assuming ct is not along the viewline, this is the 
same as saying that  the e p i p o l a r  p l a n e ,  spanned by ct and the viewline, is the 
tangent plane to M at r. See [5]. 

Note that  the frontier is, at  least locally, the boundary of the visible region swept 
out by the critical sets on M. 

Secondly, we must have the critical sets transverse (non-tangent) to the epipo- 
lar curves, i.e. to the viewlines. 

P r o p o s i t i o n 2 .  The epipolar parametrization can always be used on M except 
in the following circumstances: 
(a) At  frontier points. 
(b) When the profile is singular. This means that the critical set is tangent to the 
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(ii) 

F 

Fig. 2. The frontier F: envelope of critical sets on M (i) the generic case and (ii) the 
case of a parabolic point of M. 

viewline (and also that the viewliue is asymptotic at r) .  For an opaque surface 
the profile appears as an ending; for  a transparent surface as a cusp. 

Proof. See [5]. 

We therefore have to consider the cases (a) and (b) of the above Proposition, 
including the generic possibility that  both occur: a frontier point r can give rise 
to a singularity of the profile. The latter is by far the most complicated case, and 
we mention it briefly in §5 below; for full details see [5]. The cases (b) at non- 
frontier points are covered in §4, and for (a) we need to introduce an auxiliary 
surface, the spatio-temporal surface, which we do now. 

2 E p i p o l a r  c u r v e s  a n d  t h e  s p a t i o - t e m p o r a l  s u r f a c e  

In order to examine the epipolar curves near the frontier we need to introduce 
an auxiliary surface (compare [6]). 

D e f i n i t i o n  3. Let M be a smooth surface, defined locally by a parametrizat ion 
(u, v) --* r(u,  v). The s p a t i o - t e m p o r a l  su r f ace  M is defined to be the surface 
in R 3 (coordinates u, v, t) given by the equation 

(r(u, v) - c(t)) .n(u,  v) = 0, (2) 

where n(u,  v) is a nonzero normal vector at the point r(u,  v) of M. 

Thus the equation for M is identical with the equation for the critical sets, 
except that here we spread out the critical sets in the t direction. The surface 
M is smooth unless r is parabolic and r - c  is asymptotic and r is a frontier point 
(the case of ' l ips/beaks on the frontier', which is non-generic). See [7, p.458] for 
information on lips/beaks, and also §4 below. 

There is a natural  projection ~r from M to M, given by 

~r: M --+ M, ~r(u, v, t) = r(u,  v), 

and we can 'lift' the critical sets, the frontier and the epipolar curves from M to 
M: 
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L i f t e d  c r i t i c a l  se t  ~t  is given by intersecting M'with the plane t = constant; 
L i f t e d  f r o n t i e r / ~  is the set of points of Msatisfying ct .n(u,  v) = O; 

L i f t e d  e p i p o l a r  c u r v e  is an integral curve of a vector field on Mwhich asso- 
ciates to (u, v, t) EM a vector projecting under 7r to a nonzero multiple of the 
viewline vector r - c. 

P r o p o s i t i o n  4. (a) The lifted critical set ~t  and the lifted frontier F are tangent 
at a point of intersection if and only if either c, is parallel to r - c, or r is a 
parabolic point of M;  
(b) An epipolar field on M has the form 

\ HnH3 n ] ) ' ( - - c t ' n ) (  [ r - c ' r u ' n ]  

Here, II is the second fundamental form of M (see e.g. [7, 8]), and n = ru x r~ 
is normal to M. 

N 

The proofs are a mat ter  of examining the equations which give F,  ~ ,  and 
M. See [5]. 

N o t e s  o n  P r o p o s i t i o n  4 

1. (a) explains the structure of the critical sets at a parabolic point on the 
frontier, already sketched in Fig. 2, (ii). A schematic sketch of the projection 

7r from M to M in this case is shown in Fig. 3, (ii). Note tha t  the lifted 

critical sets ~ ,  move from not meeting F,  to touching it, to meeting it twice, 
corresponding to the critical sets S,  not meeting F,  then touching it once 
with high contact, then touching it twice. 

2. The condition c, I I r -  c appearing in (a) means that  the motion of the camera 
centre is directly towards the point r on M. Such points are automatically 
frontier points (compare Definition 1). As to the behaviour of the epipo- 
lar curves and critical sets, this case is completely analogous to that  of a 
parabolic point on the frontier (Figs. 2, 3). 

3. It is a standard fact of surface geometry (see e.g. [2, Eq.(9)]) that  l I(v,  v), 
for a tangent vector v, is just  the sectional curvature of M in the direction 
v, scaled by Ilvll 2. Thus, in our case, the term II(r  - c, r - c) in (3) can 
be rewritten ~¢t/)t2 where t¢ t is the 'transverse curvature',  i.e. the sectional 
curvature of M in the direction of viewing. Both quantities here can be 
measured from the image; see [2, §4]. 

4. In particular, the last term of (3) is zero precisely for the case of an asymp- 
totic viewing direction. 

5. The first two terms of (3) are zero if and only if r is a frontier poin t  of M. 

This means that,  at frontier points, the epipolar curve of M has a 'vertical' 
tangent (parallel to the t-axis), which means that  the epipolar curve on M 
is singular at a frontier point. See Fig. 3. 

6. All three terms in (3) are zero if and only if r is a frontier point which also 

gives a singular profile. In that  case the epipolar field on M (and hence on 
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M)  actually has a singularity. This makes the analysis of this case much 
more difficult; see w 

M 

t 

l.. 
parameter pla ~ 

( i )  

l- 

Fig. 3. Projection from M to the parameter space of M showing the ~t and St (thin 
solid lines), F and F (thick fines), and epipolar curves E on M, E on il~(dashed fines), 
(i) at a generic point of the frontier; (ii) at a parabolic point of the frontier 

3 E x a m p l e :  t h e  p a r a b o l o i d  

Before going on to examine the exceptional circumstances of Proposition 2 we 
give a simple example which illustrates many of the ideas above. Full details of 
the calculations are in [5]. 

Consider the paraboloid surface M with equation z = x 2 + y2 parametrized 
by r(u, v) = (u, v, u2+v2),  so that n(u ,v)  = ( - 2 u , - 2 v ,  1)is a (non-unit) normal 
to M. Consider the path of camera centres c(t) -- (1, t, t2). The spatio-temporal 

surface M has equation f (u ,  v, t) =- O, from (2), where 

f ( u , v , t )  = ( u -  1) ~ + ( v -  t) 2 - 1, (4) 

which is a slanted cylinder whose horizontal (t = constant) cross-sections are all 
circles. Under the projection to the (u, v) plane, which parametrizes M,  these 
project to circles centred on the u-axis. 

The frontier F is the envelope of these circles (we can think of them in 
the parameter plane or, of course, raised up onto M using the parametrization 
r(u, v)), which is the two lines u = 0, u = 2 (eliminate t between f -- 0 and 
f t  = 0). The visible region on M is the part parametrized by the strip 0 < u < 2. 
On M the lifted frontier _V is the two lines {(0, t, t) : t E IR} and {(2, t, t) : t E IR} 
'above' F .  

The epipolar field on M can be taken as 

- 1 ) ( .  - t ) ,  ( v  - t )  1 ) .  
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To find the epipolar curves on Mwe want the solutions of the differential equation 

dv 
d-t- = (v - t) 2. 

The solution is v = t- tanh(t+k) for any constant k. There are two 'exceptional'  
solutions, namely v = t -4- 1, which correspond to 'k = =t:cr Using the equation 
f = 0 (see (4)), the corresponding solutions for u are u = 1 =i= sech(t + k ) .  The 

exceptional solutions for v both give u = 1. So the epipolar curves on Mare  (for 
any constant k) 

(u, v, t) = (1 =t= sech(t + k), t - tanh(t  + k), t); 

v, t) = (1, t + 1, t).  (5) 

Note that  these curves are always nonsingular and are necessarily transverse to 
the 'lifted critical sets' ~ which are given by t = constant. This says that  we 
can always parametrize Mlocally with a coordinate grid consisting of the ~ t and  
the epipolar curves: ' the epipolar parametrization always works (locally) on M.' 

The frontier is given by c t .n  = 0, where ct = (0, 1, 2t) and n = ( - 2 u ,  -2v ,  1). 

The epipolar field on M is obtained by projection from M, so of course it becomes 
zero on the frontier, since v -- t there. The epipolar curves on M are obtained by 
treating the first and second components in (5) as parametrizations with respect 
to t. For example, consider the curve which, at t =: 0, passes through u = v = 0. 
This is the curve 

u = 1 - secht, v = t - t anh t ,  

which has initial terms in its MacLaurin expansion 

l t 2  1 3 
u = 2  + . . . ,  v = - ~ t  + . . . .  

This curve, like all the epipolar curves on M apart from the 'exceptional '  curve 
u = 1, has an ordinary cusp where it meets the frontier. (The exceptional curve 

does not meet the frontier.) The shape of the epipolar curves in M and M is 
shown in Fig. 4. 3 

Of course, in this example there are no parabolic points on M, nor singular 
points on the profile. 

4 S p e c i a l  n o n - f r o n t i e r  p o i n t s  

These are the generic cases: 

(a) An epipolar direction at r is asymptotic,  making the profile singular. Special 
cases of this are: 

(b) The point r is parabolic and one of the epipolar directions at r is asymptotic 
(creating a ' l ips/beaks'  transition on the profiles) [7, p.458]; 

3 This figure was produced by Gordon Fletcher using the Liverpool Surface Modelling 
Package, written by Richard Morris. 



20 

Fig. 4. Epipolar curves on M and ~r for the paraboloid example 

(c) One of the epipolar directions at r is asymptotic with four-point contact 
(creating a 'swallowtail' transition on the profiles) [7, p.458]. 

As the camera moves, the point on the surface which generates the singularity 
on the profile traces out a curve called the cusp trajectory on M. In the general 
case C a) above (Fig. 5), the critical sets are smooth and transverse to the cusp 
trajectory. A non-smooth critical set occurs in case (b) and a tangency between 
a smooth critical set and the cusp trajectory occurs in case (c). In both (b) and 
(c) two cusps are in the act of appearing or disappearing. 

cusp t r a j ec to ry ,~  / /' It" 

i i 

Fig. 5. Local pattern of critical sets (solid lines) and epipolar curves (dashed) in M or 
for the case of a profile with a cusp 

The cusp t rajectory is a component of the natural boundary, which separates 
the self-occluded points from the rest of the surface. Wheras the frontier sep- 
arates points which appear in profile on a transparent M from those that  do 
not, the natural  boundary separates those points which actually do appear in 
profile on an opaque surface from those that  are obscured by another part  of 
the surface. Thus, this type of boundary can only occur for non-convex objects 
or configurations of objects. The natural  boundary can terminate at lips, beaks 
and swallowtail transitions. 
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For the ' l ips /beaks '  case, the critical set itself is singular, so it cannot be part  
of a parametrizat ion.  However, the epipolar curves are non-singular. Thus, it is 
necessary to find another family of curves transverse to the epipolar curves. The 
cusp trajectory is transverse to the epipolar curves, so there is a parametr izat ion 
such that  one family of curves is the epipolar family and the other contains the 
cusp t rajectory which is (locally) the whole natural  boundary  (see Fig. 6). 

A swMlowtail point occurs when the tangent ray has order of contact four at 
a hyperbolic point, i.e. there are nearby tangents intersecting the surface at four 
points. This occurs along a flecnodal curve on the surface, and the camera center 
must  lie on an asymptot ic  ray [7, p.448]. In general, the camera t rajectory will 
only intersect the asymptot ic  developable surface of this flecnodM curve at iso- 
lated points. For opaque surfaces, a cusp trajectory and a T-junction trajectory 
will end at a swallowtail point. These two curves form the natural  boundary  (see 
Fig. 7.) 

N B  (i) (ii) N B  

Fig. 6. Lips/beaks: local picture in M or )t~ of the critical sets (solid), epipolax curves 
(dashed) and natural boundary N B  on M for (i) lips and (ii) beaks transition. Lines 
on one side of N B  axe occluded for an opaque surface. 

T T 

\ c  c 
I I / , J  

/ / 

/ e- g 
g 

f f r  

f 

Fig. 7. Swallowtail: local picture in M or )~ of critical sets (sofid), epipolax curves 
(dashed) and natural boundary for a swallowtail transition. Here, the natural boundary 
has two parts, T = locus of T-junctions, and C = locus of cusps. Everything between 
(say) the left branch of T and the right branch of C is occluded. 
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5 F r o n t i e r  p o i n t s  

The pattern of epipolar curves and critical sets, on M and on M, at ordinary 
and parabolic frontier points has been described in w and illustrated in Figures 
2, 3. The remaining case from Proposition 2 is that  of a frontier point giving a 
singular profile point, and (see Note 6 on Proposition 4) a zero of the epipolar 
field on M. We shall not give the full details here (see [5]) but recall that  there are 
three generic possibilities for the local structure of integral curves around such 
a zero: the focus ,  s add le  and n o d e  (see for example [9, Ch.4] or any book on 
elementary differential equations). The corresponding pattern of integral curves 
on surfaces with boundary (such as the visible part of M) was found by Davydov 
in [3], and in Fig. 8 we show, by way of example, the situation in M for the focus 
case. The invariant which distinguishes the three cases, and further details, are 
in [5]. 

t ~ v  I . _ ~ - - .  / 
F 

Fig. 8. Pattern of epipolar curve (dashed) and critical sets (thin solid) round a focus 
singularity on the frontier (thick solid) (i) in jl~; (ii) in M. 

6 C o n c l u s i o n  

The epipolar parametrization of a surface M has been shown elsewhere to be very 
useful in the reconstruction process. This paper presents the criteria for failure 
of the epipolar parametrization, namely, at the frontier and at a singularity of 
the profile, i.e. a cusp point. We have shown that  at the frontier we cannot 
parametrize M using critical sets as parameter curves, but that  the ~Dipolar 
curves can be understood there by using the 'spatio-temporal surface' M, which 
is (except at a cusp point on the frontier) parametrized locally by lifted criticM 
sets and lifted epipolar curves. In all cases we have found the detMled structure 
of the epipolar curves around the point at which the epipolar parametrization 
breaks down. (In [5] we have also studied the epipolar constraint in the image 
at these exceptional points.) 

The information presented here will be used to fill in the gaps left in re- 
constructing a surface from its profiles, caused by the failure of the epipolar 
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parametr izat ion.  It  is also of interest to find alternative parametr izat ions  which 
can replace the epipolar parametr izat ion where the lat ter  fails. For example,  in 
the case of profiles with cusps, we can follow the cusp trajectory on M and use 
a parametr izat ion in which this is one parameter  curve and the epipolar curves 
form the other family of parameter  curves. At lips and beaks points the critical 
set is singular, but the epipolar curve is not, so the epipolar curves can form 
par t  of a parametr izat ion.  

Another possible application of the analysis of the frontier and cusp tra- 
jectories is the labeling of regions of the surface which are not recovered from 
occluding contours. Cusp trajectories together with par t  of the bi tangent  curve 
form the natural  boundary. The frontier and the natural  boundary  f rom the 
boundary  of the reconstructed surface. The criteria for the detection of frontiers 
and natural  boundaries are straightforward. In the former case, c t .n  = 0, where 
ct is the camera velocity and n is the surface normal.  In the lat ter  case, contour 
endpoints can be detected although not necessarily localized, and T-junctions 
can be detected and localized. Based on this information, either camera mot ion 
can be directed to recover those regions or information f rom other sources such 
as surface markings, texture, and other sensors can be applied. 
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