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Abstract. We present an algorithm based on MRF modelling for motion 
detection in image sequences and give a modified version for implementation 
on analog resistive network. Energy minimization is realized by a network 
relaxing to its state of minimal power dissipation. It takes a few nanoseconds 
and replaces advantageously time consuming stochastic or suboptimal 
deterministic relaxation algorithms. The elementary cell of the network is 
presented along with the environment needed to feed it with the required 
inputs. Two network architectures are proposed, derived from CCD camera 
principle. Software simulations of a 128x128 network demonstrate the good 
behaviour of the modified algorithm on real sequences. Electrical simulations 
of a 16x16 network with ideal components give promising results. 
Implementation of the CMOS circuit with VLSI technology is under study at 
our laboratory. 

1 Introduction 

In this paper, we are concerned with motion detection at pixel level, based on 
Markov Random Field (MRF) modelling. Spatial and temporal interactions between 
pixels are modelled by a spatio-temporal MRF, constituting the a priori  model. The 
solution sought corresponds to the most probable configuration of primitives (labels) 
according to data (observations).  The processing consists in minimizing an energy 
function and requires only local and highly parallel computation, so that it may be 
implemented on an analog network. The idea of mapping an algorithm minimizing a 
cost function on an electrical circuit has already been proposed by Hutchinson, Koch 
and Mead [1-2], based on biological analogy. Our approach is different and the 
implementation also. Starting from an MRF-based sequential algorithm developped 
at our laboratory [3], we propose a modified version that lends itself to analog 
implementation. Section 2 outlines the MRF model for motion detection. Section 3 
gives the electrical analogy and exhibits the elementary cell. The specific model with 
virtual neighbourhood intended for analog implementation is described in Section 4 
along with software simulations. The complete cell and the network architecture are 
presented in Section 5. Section 6 reports the first results of electrical simulations. 

2 MRF Modelling for Motion Detection 

MRF modelling is a statistical tool for computing a field of labels given a field of 
observations [4]. Making assumption of constant illumination of the scene and static 
camera, we take as observations the intensity changes at each pixel (x, y, t) of the 
sequence : o(x, y, t) = I I(x, y, t) - I(x, y, t - l )  I. The final label e(x, y, t) that is to be 
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attributed to each pixel after processing should take one of the two values a ="1" 
(resp. b --"0'3 if the pixel belongs to a moving object (resp. static background). In 
our analog implementation, labels correspond to electrical potentials, so they may 
take con t inuous  values in the range b to a. To get a binary  label field after 
processing, a simple thresholding of these analogue labels is required. 

Let S be the image of the sequence at time t, s a site of S i.e. a pixel (x, y, t), r/s 
the first order spatio-temporal neighbourhood of s shown on fig. 1.a, c any binary 
clique of rls and C the set of all cliques in S. s is the current pixel which label is to be 
calculated, r e fls denotes any neighbour of s, spatial or temporal. 

(a) I . r  I ~  Co) I _0 r 
II: current pixel s I I ~,'~t + " |r / t 
o : neighbour r [~ , [ / "  I '~ I 1 , ~ "  . r O 

tr.~'~ r ~ J  t r./ff~_ 6t--~""""- t r 

Fig. I. Spatio-temporal neighbourhood T/s and associated binary cliques : 
(a) basic neighbourhood, (b) virtual neighbourhood. 

We note E = { E(s), s e S  } (resp. 0 = { O(s), s e S  } ) the label (resp. observation) 
field at time t, E -- e (resp. 0 = o ) one particular realization of E (resp. O) and we 
use simplified notations : e(x,y,t) = e(s) = es and e(r) = er ~" r~rls (neighbourhood 
notation) ; o(x,y,t) = ot and e(x, y, t) = et (temporal notation). 

The main property of an MRF relatively to a neighbourhood system is that the 
probability for a pixel s to have a label es depends only on the labels of its 
neighbours, not on the whole image, thus involving only local computations. 
Moreover, an MRF being equivalent to a Gibbs distribution [4], there exists an 
explicit formulation for the a priori probability of the label field : 

P r [ E : e ]  : 1 exp(-Urn(e)) 

Z is a normalizing constant. Urn(e) is the spatio-temporal energy of the a priori model 
that should ensure spatio-temporal coherence of the masks and discard spurious 
labels due to noise. This model energy is a sum of elementary quadratic potential 
functions Vc(es, er) associated to each clique c : 

Urn(e) = 2~, Vc(es, er) where Vc(es, er) = fl (es-  er) 2 (1) 

cEC 
with fl taking one of three positive values fls, tip and flf, depending on the type of 
clique (spatial, past or future). These potentials favour homogeneous labelling since 
low potentials, resulting from identical labels for neighbours, induce a low energy, 
and thus correspond to a favourable (most probable) energy configuration. As regards 
temporal potentials, we take f l f  > tip to favour the future since any innovation in 
motion is included in the future image. 

The relation between observations and labels takes the generic form o = v(e) + n, 
where n is a Gaussian noise with zero mean and variance o 2, and V a function of the 
labels that should model the observations, cr 2 is supposed to be constant and 
computed from the two first images of  the sequence. Adapting the function 
proposed in [5] for binary labelling, we define : 
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Vet( et, eta ) = m2 ( et- et-1 ) ( eo- et-1 ) (2) 
where m2 is a positive constant and e0 = (a+b)/2. The term (eo - et-1) is introduced so 
that V is always positive, a condition required since V is supposed to model ot. 
Indeed, the final label et-1 obtained at time t-1 after binarization of the corresponding 
electrical potential may only take one of the two values a or b and the current label et 
may take continuous values during the relaxation process before binarization : et E 
[b;a]. The adequation energy Ua(e, o) is derived from V and a factor f l f / f l p  is 
introduced to weight its influence : 

Ua(e, o) = K 2~, [o t -  Ilt(et, etA)] 2 where K = 1 ~ (3) 
s eS 20"2 tip 

The total energy function is given by the sum : U = Urn(e) + Ua(e,o) (4). 
Urn(e) is a regularization term acting as a smoothness constraint on the label field. 
Ua(e, o) is an adequation term that draws the label field towards the actual 
observations. The most probable configuration of the label field w.r.t, observations is 
given by the Maximum A Posteriori criterion (MAP) derived from Bayes theorem : 

P r [ E = e / O = o ]  maxi <=> P r [ E = e , O = o ]  maxi <=> Umin i  
This minimum of energy may be computed using a stochastic or a deterministic 

relaxation algorithm (simulated annealing, ICM [6]). When choosing ICM, motivated 
by low computation cost, one has to be careful on the initialization of the present 
label field in order not to get trapped in a local minimum. Fig. 2.a summarizes the 
algorithm. It works on three frames. Suppose the past label field Et. 1 has been 
determined as the result of previous relaxation, the present and future label fields/~t 
and IEt+l are initialized with binary fields derived from observations ot and Ot+l 
using a test of maximum likelihood [7]. Given the two fields Et-1 and Et+l and the 
initial field/~t, the relaxation runs on Et, taking into account the a priori model and 
the adequation with 0 t. For each pixel s of the image at time t, the two possible 
labels a or b are tested and the one inducing the minimum local energy is kept. The 
visiting order of the sites may be sequential or random. The process iterates on the 
image until convergence. 

(b) 

I b a zati~ I I 

i~ t t  t 
I bufferl IE.ergy Minimization I 

I (Network Relaxation) ] 

]Et- St 
Fig. 2. The detection algorithm : (a) basic version, (b) modified algorithm. 

(/~ denotes a coarse estimate or initialization of field E). 



170 

3 Electrical Analogy 
Instead of using a software relaxation scheme like ICM, we propose to efficiently 
implement the relaxation via an analog resistive network tending to equilibrium. Our 
purpose is to built a VLSI circuit that takes as input an image sequence and gives as 
output the masks of the moving objects. Using (1-4), we rewrite U �9 

U = .~.fls (ei j-  ei+l,/) 2 + fls(eij- ei-1,/)2+ fls(eij- ei,/-1)2+ fls(eij- eq+l) 2 
lj 

-p j)2+/ Aeo- j)2 + r [ oij - m2(e -pu)Ceo 
with digital notations : oij = o(x,y,t), eij = e(x,y,t) = et = es ; Pij = e(x,y,t-1) = et-I  
for the past ; f i j  = e (x ,y , t+ l )  = et+ 1 for the future. The global minimum of U 
corresponds to null derivatives w.r.t, each eij : 

a U  _ 0 ~ flsV2eij + [ tip + Ir (ei~- pi~) + fl/(eij -fij) + Kin2 (Pii - eo)oij = 0 (5) 
ae~j 

w h e r e  V2eij =[4  eij- el+l j -  ei-lj - eid-1 - eij+l] and K ' =  K m 2 2 ( e o  -p i j )  2 is a 
constant since Vpij ~ {a; b )  , (eo - P i t  2 = (a-b)2~4. Now we can make an analogy 
between (5) and Kirchhoffs law at a node. Each term may be interpreted as a current 
converging to node ij which electrical potential is eij. Labels correspond to electrical 
potentials and label differences to voltages. Km2(Pi  j - eo)oij  is a current generator 
driven by a voltage, fls, ( f l p+K' )  and f l f  represent conductances. Introducing a 
leakage capacitance C specific of the circuit dynamics yields : 

Vij ,  C aeij = flsV2eij + [ flp + l~] (eij-  pij) + flf(eij - fij) + Km2 (Pij - eo)oij (6) 
at 

where the left member of (6) becomes zero when the network reaches equilibrium. 

~iiii~!i!ii!i:::::s~: i::~i!i! : i ii~i .:,::~ :Cilili!i!iiiiii iiei~ili!i!!ii!iiii~ii i! 

......... ~ :::,! :: !!!:~:~ ~ i ~  ~ i ~ Compar. 
! :  ::i!iiii: " :iii!i::ii::iiii!ii:::~iiiii:::::i::: :i::: : . - . . .  - C ~ ~  ...... i = ~:':"~::"' Cell 

. . . . . . . .  . . . . . . . . . . . . . .  ................................................. : .... I e" 
(a) Markov Cell (i, j) (i,j_l) I ~ . �9 ij , [(i+l,j) 

(b) V r ~ - T  - ~  C~ ~ f f U T  

Fig. 3. The cell of the analog network : (a) elementary cell, (b) complete cell including pre- 
processing stage (N.B. the upper part is removed if pre-processing is done outside the cell) 

The linear system of equations (6) may be solved via a simple resistive network, 
made of elementary cells as the one shown on fig. 3.a. It contains only resistors and a 
current generator. All these components are scalable which is very important for the 
purpose of implementation. This elementary cell implements the local energy 
minimization. When electrical potentials Pij, f i j  and command voltages (Pij - eo)oij  
are set up, the network will relax, following Kirchhofffs law, until it dissipates its 
minimum of energy. The static output electrical potentials correspond to the solution 
of (6), i.e. the optimal continuous label field. To get the final binary labelling, a 
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simple threshold is applied on each electrical potential eij. There exists always one 
unique and stable solution, even if current sources are negative. So we have achieved 
to map the minimization algorithm on a resistive network. 

4 Modified Algorithm and Functional Simulation 

Some important modifications are introduced in the algorithm for the purpose of 
implementation. First, with the basic algorithm, it was necessary to initialize 
carefully the present label field/~t in order not to get trapped in a local minimum with 
ICM. But for analog implementation, we dot not need to initialize the network at the 
beginning of the relaxation process at each time t. In fact we only need to initialize 
the future label field Et+ 1, not the present label field/~t since the network will relax 
to its state of minimal energy dissipation wathever the initial conditions are at each 
node. Taking into account this remark, we redefine the concept of past, present and 
future and propose the use of  a virtual neighbourhood. What we call the present  
corresponds now to a virtual time t - & where 0 < St < 1 and we redefine spatial and 
temporal neighbours of virtual pixel  s as shown on fig. 1.b. So the modified 
algorithm is greatly simplified since it does not need any longer to work on three 
frames : two frames are sufficient for the relaxation process to run. This 
simplification induces a drastic reduction (33 %) of the circuit dimension. Another 
simplification concernes the binarization of Ot to get a coarse estimate of the "future" 
/~t : instead of a maximum likelihood estimate [7], we use a simple threshold. These 
two simplifications lead to the synoptic given in fig. 2.b. 

To test the modified algorithm before running electrical simulations, we wrote a 
program in C language, running on a Sun Sparc workstation, to make a software 
simulation of the network. The main difference between the analog circuit relaxation 
and the software developped to simulate energy minimization is that the first one is a 
continuous and parallel process while the other one is a discrete sequential process. 
From (5), we derive an iterative scheme to calculate eij from its neighbourhood : 

fls(eij-l+eij+l+ei.lj+ei+lj) + (fie + 1~) pij + fllfij + Km2 (eo - pij)oi] (7) eij= 

We use a frame recursive method to compute the best configuration of the 
electrical potentials at each time t : we scan the image and calculate each electrical 
potential following (7). When a complete scan of the image is accomplished, we 
update all electrical potentials at the same time. We iterate the scanning until 
convergence. Only few iterations per image are needed before convergence (less than 
10). Various tests have been made on synthetic and real 8-bit image sequences of size 
128x128, demonstrating the robustness of the model parameters fls, tip, flfand m2 
which may be adjusted once and for all. The values fls = 40, tip = 5, f l f  = 30, m 2 = 1 
give satisfying results in all cases. This is worth to mention since it implies that we 
do not need adjustable but only constant resistors. Still, parameters K and K' depend 
on cr 2. In our first simulations, we use a constant value (e.g. K=60) but it limits the 
grey level dynamics of observations. The detection algorithm has a good behaviour in 
the presence of noise : in a few iterations per image, it may clean up very noisy 
observations and reconstruct the masks of moving objects. 

An example of motion detection is shown on fig. 4. We used a standard output 
threshold value e0 so that the mask of the moving car is a little too large. But if we 
take a better value for the threshold, we obtain a mask closer to the shape of the car. 
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Fig. 4. Result of motion detection : (a) original real sequence with a white car in the 
foreground moving from right to left and others ears in the background being static, (b) grey 
level representation of continuous label field before thresholding, (c) final binary label field 

after thresholding exhibiting the mask of the moving ear. 

5 N e t w o r k  A r c h i t e c t u r e  

We shall specify two different ways for supplying the elementary cell with the 
required inputs and for integrating it in the network. 

I II I I! I I I  ' ; ' I  ; l ;  ' I l l  i 11 

[:i:i:i:~:i:i:i:i:i:i:i:i:it i:i:i:i:i:i:i:~:i:i:i:i:l ~ 

Fig. 5. Network architecture : (a) direct parallel inputs, (b) serial inputs. 
If one photoreceptor is included in each cell (direct parallel input to the network), 

all the pre-processing stage (image difference, module, threshold) for computing the 
inputs must be implemented on the cell itself (fig. 3.b). This option requires a CCD 
register to store the values l(x,y,t) and I(x,y,t-1), a circuit implementing the difference 
and the absolute value to get oij, plus an input comparator (threshold) to get fij. Note 
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that the past label Pij should not be considered as a supplementary input since it may 
be obtained via a sample and hold circuit (S/H) included in the cell itself. We also 
need an output comparator to get the final binary (thresholded) label from the 
continuous electrical potential after relaxation. The corresponding network is shown 
on fig. 5.a. Inputs are parallel (integrated matrix of photoreceptors) and outputs are 
serial. We propose an architecture using vertical and horizontal CCD registers. The 
network architecture is quite simple but the complete cell is more cumbersome. This 
solution gives a dedicated circuit that could be used for motion remote control. 

The other option is to feed the network with data coming from a camera (serial 
input). In this case, the pre-processing is done outside the network. This simplifies 
the cell (fig. 3.b without the upper part). But feeding the cells with the inputs is more 
complicated, leading to the network shown on fig. 5.b. We need an analog 
demultiplexer to supply the network with parallel inputs. Thus one horizontal CCD 
register must be added to feed the network with the data plus two vertical CCD 
registers per column of cells to feed each cell with oij andfi j. This solution may be 
chosen for applications in image compression and coding for TV transmission. 

6 Results of Electrical Simulation 

Two main caracteristics of the cell are its surface and its power dissipation. We may 
rescale all the model parameters fls, tip, ill;, m2 so that the order of magnitude of all 
required resistors may be of about 10 kl2. This leads to a power dissipation of about 
0.5/.tW per cell for a supply voltage of 100 mV. As regards the surface, the more 
cumbersome component is the capacitance of about 4 pF required for the S/H circuit, 
occupying a surface of 4000/.on 2. About 50 transistors are needed to implement the 
complete cell of fig. 3.b. This leads to an acceptable dimension for the cell. 

We have simulated the electrical behaviour of a 16x16 network with an electrical 
simulation software Eldo. As expected, spatial resistors act as spatial smoothing 
(low-pass filter) while current generators inject high currents at nodes corresponding 
to transition areas (static/moving), increasing their electrical potential. The power 
dissipated in the network is about 0.5 roW, while current intensities range from 10 nA 
to 1 IrA. Of course, the time needed for the circuit to relax is very short : about 10 ns. 
That is the reason why such an implementation is interesting : we can developp a 
motion detector working at video rate. 

Fig. 6 exhibits results for the same sequence as in fig. 4.a. Only three images are 
shown (a). We were limited to a 16x16 network because Eldo couln't simulate a 
bigger one (too much signals to handle). So we decimated the data to reduce image 
size from 128x128 to 16x16. This leads of course to a drastic decrease in spatial 
resolution : we show in (b) the final masks (obtained after thresholding of electrical 
potentials). They are of poor quality. But more interesting to see is the state of the 
network after relaxation but before binarization of the electrical potentials (c) : 
electrical potential at each node reflects motion information. Nodes corresponding to 
static pixels have a null electrical potential while nodes corresponding to moving 
pixels have a high electrical potential. Of course, the result for the first image of the 
sequence is of poor quality since we do not have any past image at our disposal. Fig. 
6.d illustrates the influence of two parameters, K and tip : increasing K yields sharper 
transitions in the electrical potentials. Decreasing tip reduces the trail at the back of 
the car (due to the past position of the car). 
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Fig. 6. Processing of a real sequence : (a) real sequence, (b) binary labelling after 
thresholding, (c) state of the network obtained for some standard values of K and tip, (d) state 

of the network for the last image when K is increased and tip is decreased. 

7 Conclusion and Perspectives 

Starting from an MRF-based motion detection algorithm developped at our 
laboratory and implemented on software, we propose a modified version that may be 
implemented on hardware. Energy minimization is realized via an analog resistive 
network relaxing to its state of minimal dissipation. Electrical potentials at each node 
of the network correspond to MRF labels. The first electrical simulations of the 
network with ideal components are promising. Presently we are testing the cell and 
the network with real components. The circuit will be implemented with CMOS 
technology. It is well suited for image compression via motion coding. This 
application is now being investigated with industrial partners. 
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