
R e c u r s i v e  N o n - L i n e a r  E s t i m a t i o n  of  
D i s c o n t i n u o u s  F low Fie lds  

Michael J. Black* 

Xerox Palo Alto Research Center 
3333 Coyote Hill Road, Palo Alto, CA 94304, USA 

Abst rac t .  This paper defines a temporal continuity constraint that ex- 
presses assumptions about the evolution of 2D image velocity, or opti- 
cal flow, over a sequence of images. Temporal continuity is exploited to 
develop an incremental minimization framework that extends the mini- 
mization of a non-convex objective function over time. Within this frame- 
work this paper describes an incremental continuation method for recur- 
sive non-linear estimation that robustly and adaptively recovers optical 
flow with motion discontinuities over an image sequence. 

1 Introduct ion 

Many approaches for estimating optical flow have focused on the analysis of 
motion between two frames in an image sequence while others have at tempted 
to deal with spatiotemporal information by processing long sequences in batch 
mode. More recently, there has been an interest in incremental approaches which 
are more suited to the dynamic nature of motion estimation [4, 9, 11]. This 
paper addresses the problem of incrementally estimating optical flow when the 
formulation of the problem accounts for motion discontinuities. In this situation 
we minimize a non-convex objective function that  is changing over time. To do 
so, we propose a general incremental minimization framework which is illustrated 
by extending a deterministic continuation method over time. 

Our goal is to incrementally integrate motion information from new images 
with previous optical flow estimates to obtain more accurate information about 
the motion in the scene over time. There are some general properties that  an 
incremental algorithm should have: (i) Anytime Access: motion estimates are 
always available; (ii) Temporal Refinement1: flow estimates are refined over time 
as more data  is acquired; (iii) Computation Reduction [9]: by exploiting the 
information available over time, the amount of computation between any pair 
of frames is reduced; (iv) Adaptation: as the motion of the observer and scene 
changes over time, the algorithm must adapt to changes in the motion and the 

changing image. 

* Portions of this work were performed at the NASA Ames Research Center, Yale 
University, and the University of Toronto with support from NASA (NGT-50749), 
ONR(N00014-91-J-1577), and NSERC. 

1 This idea has also been referred to as "quality improvement" [9]. 
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In the following section we explore the idea of temporal  continuity. We then 
show how a temporal continuity constraint is added to a robust formulation 
of the optical flow problem. Section 4 describes the incremental minimization 
framework and an incremental continuation method, called IGNC. 2 The algo- 
rithm recovers accurate optical flow estimates, preserves motion discontinuities, 
requires only a fixed amount of computation between frames, and adapts to 
scene changes. Experimental  results are presented for natural and synthetic im- 
age sequences. 

2 T e m p o r a l  Continuity 

The predictable motion of surfaces in the world gives rise to a predictable change 
in image velocity over time which we call temporal continuity. This property 
is exploited by spatiotemporal-filtering approaches [1] and epipolar-plane image 
analysis [7]. In contrast to these locally batch approaches we are interested in 
incrementally processing a sequence of images. 

Murray and Buxton [10] extend the standard spatial neighborhood system 
of Markov random field approaches to include neighbors in both space and time 
and they define a crude temporal continuity constraint, ET, that  assumes that  
the flow at an image location remains constant over time. We take a different 
approach in which we treat  temporal continuity as a constraint on image velocity, 
formulate it to account for violations, and incorporate it into the estimation 
problem. For example, consider the simple assumption that  the acceleration of a 
surface patch is constant over time. Let u(x,  y, t) = (u(x, y, t), v(x, y, t)) be the 
optical flow at a point (x, y) at a particular instant in time t. We can predict 
what the flow will be at the next instant, t + St, as follows: 

u - ( x :  y, t) = u(x  - uSt, y - vSt, t - St) + O u ( x  - uSt, y - vSt, t - St)St, (1) 

where the acceleration is approximated by 

t u ( x , y , t )  ~ ( u ( x , y , t ) -  u - ( x , y , t ) ) ,  (2) 

and where u -  is the "predicted" flow field. This equation corresponds to warping 
the flow field by our current estimate of the flow. 

3 Estimating Piecewise-Smooth Flow 

We formulate the problem of recovering the optical flow, u~ = (u~, v~), at every 
pixel, s, in the image, as the minimization of an objective function, E, composed 
of a data conservation constraint, ED, a spatial coherence constraint, Es ,  and a 
temporal continuity constraint, ET: 

E(u~, u~-) = ADED(u~) + AsEs(u~)  + ATET(u~, u~-), (3) 

2 IGNC stands for Incremental Graduated Non-Convexity. 
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where the hi control the relative importance of the terms. 
To illustrate we adopt a robust gradient-based formulation of the optical 

flow problem [5] where the da ta  conservation, spatial coherence, and temporal  
continuity constraints are defined as 

ED(U) = pD(Izu + Iyv + It,aD), (4) 

Es(u~) = ~ ps(us - u,~, as) + ~ ps(v~ - vn, as), (5) 
nE~  nE~8 

Er(u ,  u - )  : pT(u -- u - ,  aT) + pT(V -- V-, aT). (6) 

where the p. are robust estimators, the a .  are continuation parameters described 
below, and ~s is the set of nearest neighbors of s. The data  term is the s tandard 
optical flow constraint equation where Ix, Iy, and It are the partial derivatives 
of the image sequence with respect to both spatial dimensions and time, and the 
spatial term, Es,  implies a first-order smoothness assumption. The temporal  
term, ET, insures that the estimate, u, is close to the prediction, u - .  

Each of these constraints embodies a set of assumptions about the scene, the 
motion, and the imaging process. These assumptions are often violated in real 
scenes and the measurements made by the constraints can be viewed in a statis- 
tical context as outliers. To reduce the effect of these outlying measurements we 
adopt the robust estimation framework of [3, 5] in which the standard constraints 
are formulated in terms of robust estimation [8]. We choose the p. to be robust 
estimators; in this case the Lorentzian estimator: 

p(x, a) : log 1 + [ , r  a) - 2a 2 + X2 (7) 

The C-function is the derivative of the estimator and can be used to characterize 
the "influence" of outliers. In the case of the Lorentzian, the influence of outliers 
tends to zero. This robust estimation formulation results in a computationally 
expensive non-convex minimization problem. 

3.1 Global Optimization 

Local minimization of E is performed using Simultaneous Over-Relaxation (SOR) 
(see [3] for details of the approach). We focus here on the problem of finding a 
globally optimal solution when the function is non-convex. The general idea is to 
take the non-convex objective function and construct a convex approximation. 
In the case of the Lorentzian estimator, this can be achieved by making the 
continuation parameters (6r aS, aT) sufficiently large (see [3] for details). This 
approximation is then readily minimized using a local technique like SOR. Suc- 
cessively better  approximations of the true objective function are constructed 
by gradually lowering the values of the a . .  Each successive approximation is 
minimized starting from the solution of the previous approximation. Figure 1 
shows the Lorentzian estimator (Figure la ,  b) and its C-function (Figure lc) for 
various values of a. 
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Fig.  1. G r a d u a t e d  N o n - C o n v e x i t y .  Figures a, b show p(x, or) for various values of 
or. Figure c shows the C-functions for three values of ~r. 

Incremental Minimization: 
u, u -  ~-- initially 0 everywhere 
T *--- initial value at every site 
n ~ fixed, small number of iterations 
fo r  each image 

;; refinement 
for n iterations 

u +-- minimize (E, u, u - ,  T) 
W(x, y) ~ f (T (x ,  y)) 

end  

;; prediction 
u ~-- u +  ( u -  u - )  

u -  (x, y) ~ u ( x  - ~, y - v) 
T(x,y)  ~- T ( x -  u , y -  v) 
;; adaptation 
i f  location (x, y) is occluded or disoccluded then 

T(x,  y) ~- initial value 
u, u -  ~-  [0, 0] 

end if 

end. 

; p e f o r m  n i t e r a t i o n s  b e g i n n i n g  a t  u -  
; u p d a t e  t h e  con t ro l  p a r a m e t e r  

; constant acceleration assumption 
; warp flow by current flow 
; warp control parameter 

Fig.  2. Incremental Minimization algorithm. 

4 R e c u r s i v e  N o n - L i n e a r  E s t i m a t i o n  

The  t radi t ional  recursive es t imat ion techniques for incremental  es t imat ion (eg. 
[11]) are ill-suited to the robust  es t imat ion task. Here the problem is to minimize 
a non-convex object ive funct ion tha t  is changing over t ime and to do so, we 
develop an new incremental minimization framework tha t  performs recursive 
non-linear est imation.  The  basic a lgor i thm is summarized in Figure 2. 

At any ins tant  in time, the a lgor i thm has a current  es t imate  of the flow field 
u and a control  pa ramete r  T at each pixel. W h e n  a new image is acquired,  the 
constraints  are applied to  yield a new objective function E and the es t imate  is 
refined, beginning with the predict ion u -  as an initial est imate,  by performing 
a fixed number  of  i terat ions (usually between 1 and 10) of some cont inuat ion 
method,  where an i terat ion here corresponds to upda t ing  all flow vectors in the 
image. 
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The assumption of temporal continuity is exploited to predict what the flow 
field and the control parameter  will be at the next instant in time. In areas of 
the image that are undergoing significant change, the values of T(x ,  y) mus t  be 
reset. This can be done by detecting occlusion and disocclusion boundaries in the 
flow and reinitializing T in these locations [4]. In our current implementation we 
reset T when we detect a violation of any of the three constraints (ie. whenever 
a measurement is t reated as an outlier). Thus, unlike standard continuation 
methods, for incremental estimation we allow the continuation parameter  to 
vary spatially; this will permit the algorithm to adapt to scene changes. After 
prediction, a new image is acquired and the process is repeated. 

A number of algorithms can be implemented using this general framework. In 
previous work we have described an Incremental Stochastic Minimization (ISM) 
algorithm [4] in which the minimization is achieved through simulated annealing. 
Unlike stochastic minimization techniques, continuation methods, such as Grad- 
uated Non-Convexity (GNC) [6], provide a deterministic minimization strategy 
for non-convex optimization problems. One benefit of these deterministic ap- 
proaches is that the coarse approximations provide useful descriptions of the 
flow field. 

5 Experimental  Results  

S R I  T r e e  S e q u e n c e :  The first experiment illustrates the dynamic nature of 
the algorithm by showing the evolution of the horizontal component of the op- 
tical flow over time. The SRI tree sequence 3 contains 63 images in which the 
camera is translating in a direction parallel to the image plane. The maximum 
displacement between frames is approximately 2 pixels, thus a two-level image 
pyramid was used. The images were Laplacian filtered and the weights used for 
this experiment w e r e :  ( ) iD  = 10.0, )is = 1.0, )iT = 0.1). The continuation param- 
eters had the following ranges: O" D C [5.0, 0.5], O" S C [0.5, 0.01],  O~T E [2.5, 0.15]. 
These continuation parameters started at the highest value and were reduced 
by a factor of 0.8 per frame down to the minimum value with only 5 iterations 
of the method per frame. The results at every tenth frame (starting at frame 
32) are shown in Figure 3. At Frame 34 the spatial discontinuities are not yet 
enforced and the flow is smoothed across the branches of the tree. By Frame 
44 the flow becomes more piecewise smooth and this character is maintained 
throughout the rest of the sequence. 

Yosemite Fly-Through: The Yosemite fly-through image sequence 4 consists 
of 15 synthetic images for which the largest displacement is approximately 4 
pixels. For this sequence a three-level pyramid was used and the images were 
Laplacian filtered. We took the weights )iD = )iT = 1.0 and As = 4.0 to give a 

3 Provided by Bob Bolles and Harlyn Baker. 
4 This sequence was generated by Lynn Quam. 
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Fig. 3. The  SRI Tree Sequence. The horizontM component of the flow at every 
tenth image is shown. Bright areas are moving faster to the right than dark areas. 
Discontinuities in flow are gradually introduced over time. 

higher weight to the spatial smoothness constraint. The values for the continu- 
ation parameters o'D, o's, and O'T were all taken to be the same with an initial 
value of 4.0 and a minimum value of 1.0. These parameters were lowered by a 
factor of 0.8 per frame. Ten iterations (at each level of the pyramid) were used 
per frame. Figure 4 shows the flow field computed at the end of the sequence. 

Since the sequence is synthetic, we can quantify the accuracy of the results 
using the angular error measure of Barron et  al. [2]. Table 1 lists the results of a 
number of algorithms applied to this sequence. The first set of algorithms in the 
table produce dense flow fields and generally have large average angular errors. 
The second set of algorithms produce lower average errors but do not provide flow 
estimates everywhere. The robust formulation results are for a two frame robust 
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Fig.  4. Yosemite Sequence. The first and last images in the sequence are shown above. 
The final flow field recovered at the end of the sequence is shown beside the actual flow 
field. 

estimation problem [5] which is identical to the formulation presented here but 
without temporal continuity. 5 The incremental version (IGNC) achieves better 
results than the two-frame algorithm and produces errors in the range of the most 
accurate approaches, but still gives dense estimates. The table on the right shows 
that the majority of flow vectors have angular errors less than three degrees. 

6 C o n c l u s i o n s  

We have addressed the problem of incrementa l ly  e s t i m a t i ng  optical  f low over a 
sequence  of  images  in the case where the  robust formulat ion of the opt ical  flow 
problem results  in a computat iona l ly  expens ive  non-convex  m i n i m i z a t i o n  prob- 
lem.  We have developed a framework for solving these  problems  over t ime  and 

5 Flow errors were not computed in the sky area, because, unlike the Barron et al. 
images which contained clouds, our images were cloudless. 
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Technique AverageError DeviationStandard Density I 

FIorn and Schunck 32.43 ~ 30.28 ~ 100% 
Anandan 15.84 ~ 13.46 ~ 100% 
~ingh 13.16 ~ 12.07 ~ 100% 

Fleet and Jepson 4.17 ~ 11.28~ 34.1% 
Weber and Malik [12] 3.42 ~ 5.35 45.2% 

IRobust Formulation [511 4.47~ 3.90~ 100% I 

IIGNC [ 3.52~ 3.25~ 100% I 

% flow vectors with error: 

< 1 ~ 13.3% 
< 2 ~ 38.3% 
< 3 ~ 56.5% 
< 5 ~ 79.5% 
< 10 ~ 96.5% 

Table  1. Comparison of various optical flow algorithms (adapted from [2]). 

have shown how a determinist ic  cont inuat ion me thod  can be made  incremental  
within this framework.  The  result is an a lgor i thm which uses a fixed amount  of 
compu ta t i on  per frame, incremental ly  improves the mot ion  est imates over time, 
and adapts  to scene changes. 
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