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Abs t rac t .  Edge detectors which use a quadratic nonlinearity in the 
filtering stage are attracting interest in machine vision applications be- 
cause of several advantages they enjoy over linear edge detectors. How- 
ever, many important properties of these quadratic or "energy" edge 
detectors remain unknown. In this paper, we investigate the behavior of 
quadratic edge detectors under scaling. We consider two cases important 
in practice: quadratic detectors with constitnent filters related by the 
Hilbert transform, and with constituent filters related by the first spatial 
derivative. We prove that in one dimension, Hflbert-palr detectors with 
Gaussian scaling permit the creation of new features as scale is increased, 
but such causality failures cannot generically occur with derivative-pair 
detectors. In addition, we report experiments that show the effects of 
these properties in practice. Thus at least one class of quadratic edge de- 
tectors can have the same desirable scaling property as detectors based 
on linear differential filtering. 

1 I n t r o d u c t i o n  

The process of detecting image features across a range of scales is important  in 
many machine vision applications, and dates at least from Rosenfeld [14] and 
Marr [9]. In practical systems using multiscale techniques, features detected at 
a coarse scale can determine processing at finer scales. It is important  in this 
context that features detected at a given resolution were not created gratuitously 
at that  scale, but  rather are "grounded" in image detail at a finer resolution. 
When a multiscale feature detection method never introduces features as the 
scale is coarsened, the method has the desirable property of causality [6]. 

It is known that  edge detectors which mark edges at zeros or extrema in the 
output  of linear differential filters acting on the image have the causality prop- 
erty if scale is selected by convolution of the filters or image with a Gaussian [2, 
15], and these results have been extended to scale selection by anisotropic dif- 
fusion [12]. More recently, quadratic nonlinear filters for feature detection have 
been proposed as having advantages over linear filters, particularly in their abil- 
ity to localize edges with complex structure [5,7,10,11,13]. However, the question 
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whether these quadratic or "energy" filters permit a causal scale selection tech- 
nique has remained open. 

In this paper, we address this question for quadratic edge detectors in the 
context of images containing one-dimensional edges scaled by convolution. We 
concentrate on quadratic detectors with two constituent filters; this coincides 
with existing practice [10,11] and theory [7]. We consider two special cases of 
practical interest: constitutent filters related by the first spatial derivative, and 
constituent filters related by the ttilbert transform. We show that  in the case of 
derivative-pair filters, Gaussian scaling is causal, whereas Ganssian scaling with 
Hilbert-pair filters permits noncausal edge creation at any scale. Thus we show 
that  in the one dimensional case, at least one class of quadratic edge detectors 
has the same desirable scaling property as the more familiar detectors based on 
linear differential filtering. 

2 Causality, Catastrophe, and Edge Detection 

Let h(x) be a real-valued signal. In this paper we assume z E IR, giving direct 
application to time signals, images with unidirectionally oriented edges, and 
images with edges that  are one-dimensional on a scale comparable to the filter 
s i z e .  

A quadratic or "energy" edge detector marks an edge at scale ~ wherever 
there is a local maximum with respect to x of the nonlinearly filtered signal 

M 

E(x ,  o) = �9 �9 h)(x)] 
j----1 

(1) 

Here �9 denotes convolution. The fJ are the impulse responses of the "constituent 
filters" of the quadratic edge detector; we will concentrate on the case of detectors 
with two constituent filters, one even and one odd, with impulse responses fe 
and fo respectively. The function ge is the impulse response of a scaling filter 
with scale parameter cr; it has the form 

= g( l )lo (2) 

with g even, so increasing e corresponds to coarser scales. 
We assume that  i f ,  fo, h, and g~ are such that  the energy signal E is smooth. 

We are interested in whether some choices of i f ,  fo, and g~ may guarantee that  
for any h no new maxima are introduced in E as e increases, i.e. that  E has 
the causality property. We will pay particular attention to the Gaussian g~(x) = 
exp(-x2/2~2)/c~, and approach this question by considering the conditions under 
which the degenerate critical points of E may be noncausal. A discussion of 
an approach from the point of view of systems of partial differential equations 
satisfying a maximum principle can be found in [8]. 
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2.1 Quadratic Filters and Scalespace Singularities 

Suppose a maximum of the energy E(x,  o') is created with increasing cr in the in- 
terior of a bounded domain, say at x = x0, ~r = cr 0. Then (x0, c~0) is a degenerate 
critical point of E, and generically the set of critical points E= = 0 in a neigh- 
borhood of (x0, c~0) form an upward opening parabola (a fold catastrophe) [1, 
4]. Conditions accompanying such a generic causality failure can be expressed in 
terms of partial derivatives of E at the degenerate critical point x = x0, cr = c%, 
vi~. (cf. [15]) 

E~(x0, ~0) = 0 (3) 

E  (xo, = 0 

E=(xo, < 0 .  

We will be interested in whether these conditions can exist in (1) for some 
choice of constituent filters fY, scaling function g~, and image signal h. If  they 
can, then E is not causal for that  choice of constituent and scaling filters. If no 
such h exists for some choice of fJ and g~, then no signal will produce generic 
causality failures for that  scalable quadratic filter design. We do not consider 
the case of nongeneric causality failures. 

2.2 Toward Constructing Causality Failures 

We consider the occurence of causality failures at x0 = 0; since E is shift invariant 
with respect to the image h, this is without loss of generality. Then partial 
derivatives of E in c~ and x involved in (3) will contain terms of the form 

0,~+m 

OxnOo. m (fJ �9 g~ �9 h)(0) (4) 

with j C {e, o}. The conditions (3) can be expressed in a form which reduces 
the question of noncausality to the question of solving a constrained system of 
linear equations. We adopt the following notation. 

We suppose that  h(x) is the sum of k sinusoidal components; k may be 
large as desired, and so h approximates in the L2 sense any image function as 
closely as desired. Let { u l , . . . ,  uk} be the (positive) frequencies of the sinusoidal 
components defining h. Further, let F e, F ~ G, and H be the Fourier transforms 
of i f ,  f~  g, and h respectively, and let G ~ be the derivative of G. We introduce 
the real k-vectors fe, f o  fet, for, h e, h o, with t he / t h  component of each specified 
as 

= (5 )  

f ~  : (6)  

f~'l = F~(u,)G'(cru,) (7) 
fo,  = (8) 

h e, = 2 ReH(u, )  (9) 

hO ' = _2. I m H ( u , )  . ( i 0 )  
$ 
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Further, let U be the k x k matrix diag(ul , . . . ,  u~). 
Now, satisfying (3) at (0, a) is equivalent to satisfying the system 

(Uf~ T v2 (Ufe) T w2 
(U2fe) T h e v3 (U2f~ T hO= w3 
(U3f~ T v4 ' (U3f~) 1 w4 
(Uf~') T v~ (Uf~ T w~ 

(U2f~ T \ v~ (U2f~r) T w~ / 

E~(0, ~) = 4~(v~wl  - v~w~) = 0 

E ~ ( 0 ,  ~) = 8 ~ ( v ~  - v~v3 + w~ - ~ w ~ )  = 0 

V t • ( -  ~w~ - v~% + v~% + v~w~) < 0 

In the following sections, we consider the existence of solutions to this con- 
strained sytem. 

(11) 

3 H i l b e r t  P a i r  F i l t e r s  a n d  G a u s s i a n  S c a l i n g  

Quadratic edge detectors with an even and and an odd constituent filter in 
quadrature, i.e. such that  one is the Hilbert transform of the other, are perhaps 
the most common in practice [10,11]. This case gives a particularly simple form 
for the system (11), since when fe and fo are Hilbert transforms of each other 
we have fc = fo = f. A further simplification is possible when Gaussian scMing 
is used; then G(ucr) -- exp(-u2~2/2)  and f~' = fo, = -~rUf.  We consider this 
case, and obtain 

P r o p o s i t i o n l .  Assume a quadratic edge detector E with constituent filters f~ 
and fo even and odd respectively, such that one is the Hilbert transform of the 
other, and with Gaussian scaling function. Assume the Fourier transform of f~ 
is nonzero at at least four distinct positive frequencies. Then E is not causal. 

Proof. The proof is constructive; given any filter of the stated type, and any 
scale or0, we produce a signal h which satisfies (11) and so produces a causality 
failure in E(x, or) at x = 0 c~ = ~0. See [8] for details. [] 

4 D e r i v a t i v e  P a i r  F i l t e r s  a n d  G a u s s i a n  S c a l i n g  

The case of quadratic edge detectors with an even and and an odd constituent 
filter such that  one is the derivative of the other have been studied by Kube 
[7]. Here we consider this case in which fe = df~ which in the present 
notation implies fe = UfO and fer = -o-Uf% As in the previous section, these 
assumptions together with Gaussian scaling lead to simplifications in the form 
of the constrained system (11). Here however the result is more favorable: 
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P r o p o s i t i o n 2 .  Assume a quadratic edge detector E with constituent filters fe 
and fo even and odd respectively, such thai one is the derivative (with respect 
to the spatial coordinate x) of the other, and with a Gaussian sealing function. 
Then generic causality failures cannot occur in E. 

Proof. The proof proceeds by cases to show that  under the stated conditions the 
system (11) has no solutions; see [8] for details. [] 

5 Results of Experiments 

Sections 3 and 4 showed that,  in principle, causality failures can occur in quadratic 
edge detector schemes which use Hilbert-pair filters and Gaussian scaling, but 
cannot generically occur if derivative-pair filters are used with Gaussian scaling. 
However, these results leave open the questions whether causality failures occur 
often in practice with Hilbert-pair quadratic detectors, and whether nongeneric 
causality failures occur in practice with derivative-pair quadratic detectors. We 
have at tempted to address these questions with experiments we report here. 

Five images were obtained of scenes consisting of mat te  surfaced right rectan- 
gular prisms and cylinders placed randomly on a surface. The camera geometry 
and illumination was such that  all edges in the images were approximately verti- 
cal. A typical row of 512 pixels was taken from each image; this one-dimensional 
signal was subjected to quadratic edge detection as defined in Section 2, using 
Gaussian scaling with ~ in the range 1 to 64 pixels. In one set of experiments, 
the quadratic detector had as constituent filters the first-derivative operator and 
its I-Iilbert transform; in the other set of experiments, the quadratic detector 
had as constituent filters the first-derivative operator and its first derivative (i.e. 
the second derivative operator). Impulse responses of the constituent filters at 
a scale of 8 pixels are shown in Figures 1 and 2 respectively. In each case, local 
maxima were detected without thresholding at each scale and the resulting scale 
space representations were examined for causality failures. 

" - ; o  . . . .  5 . . . .  ' 5 0  -~0 
. . . .  , . . . .  i 

0 5 0  

Fig. 1. 

Scaled impulse responses of the constituent filters f~ fr for the Itilbert- 
pair quadratic edge detector discussed in the text. Left, the first derivative of 
a Gaussian with standard deviation 8 pixels; right, its Hilbert transform. 

For each of the five images, the Hilbert-pair quadratic detector generated a 
few noncausal edges, some of which were quite robust and extended over a range 
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Fig. 2. 

Scaled impulse responses of the constituent filters f~  �9 g~, fe  . g~ for the 
derivative-pair quadratic edge detector discussed in the text. Left, the first 
derivative of a Gaussian with standard deviation 8 pixels; right, its derivative. 

of scales. The derivative-pair quadratic detector generated no noncausal edges. 
Results from a typical image are shown in in Figure 3; for others, see [8]. It 
is perhaps somewhat surprising that  filters with such similar impulse responses 
produce exhibit such qualitatively different performance. These experimental  
results are, of course, consistent with the theoretical results of previous sections 
in this paper. 

6 S u m m a r y  

The scale-space properties of quadratic edge detectors being of potential  inter- 
est, we have investigated whether quadratic detectors admit  of causal scaling. 
Considering the cases of detectors with constituent filters related by the Hilbert 
t ransform and with constituent filters related by the first spatial derivative, we 
have stated theorems to the effect that  Gaussian scaling leads to causality fail- 
ures in the first case but not in the second, and we have supported these results 
with experimental observations on real images. Thus we have shown that ,  in the 
one dimensional case at least, a class of quadratic edge detectors has the same 
desirable causal scaling property as the more well known types of edge detectors 
based on linear differential filtering. 

We have not shown that  the Gaussian is unique in providing causal scaling 
in the derivative-pair case, nor that  no scaling filter is causal in the Hilbert-pair 
case. While we believe sharper results are obtainable along these lines, general 
statements about solutions to the constrained system (11) are equivalent to 
feasibility testing for fairly general systems of quadratic inequalities and so entail 
difficult problems [3]. 

In addition, we have worked here with the assumption of one-dimensional 
edges. The results are thus applicable to feature detection in t ime signals, images 
with edges oriented in the same direction, or images with edges that  are one- 
dimensional on a scale comparable to the filter size. The extension to higher 
dimensions appears feasible and is the subject of ongoing work. 
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Fig.  3. 

From top to bottom: An image with one-dimensional edges; the graph of image 
intensity for the top row of pixels in the image; edge scale-space generated from 
that  1D signal with a Hflbert-palr quadratic edge detector; edge scale-space 
generated from that  1D signal with a derivative-pair quadratic edge detector. 
Gaussian scaling and periodic convolution are used in each case. Edge scale- 
space graphs have spatial coordinates 0-511 pixels in x and scale coordinates 
1-64 pixels in ~r. The ttilbert-pair detector exhibits a robust causality failure 
at (x, o') .~ (17, 22). Smaller causality failures can be observed near (93, 19) 
and (103, 18). The derivative-pair filter exhibits no causality failures. See text 
for discussion. 
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