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Abs t r ac t .  Learning and problem solving are intimately related: prob- 
lem solving determines the knowledge requirements of the reasoner which 
learning must fulfill, and learning enables improved problem-solving per- 
formance. Different models of problem solving, however, recognize differ- 
ent knowledge needs, and, as a result, set up different learning tasks. 
Some recent models analyze problem solving in terms of generic tasks, 
methods, and subtasks. These models require the learning of problem- 
solving concepts such as new tasks and new task decompositions. We 
view reflection as a core process for learning these problem-solving con- 
cepts. In this paper, we identify the learning issues raised by the task- 
structure framework of problem solving. We view the problem solver as 
an abstract device~ and represent how it works in terms of a structure- 
behavior-function model which specifies how the knowledge and reason- 
ing of the problem solver results in the accomplishment of its tasks. We 
describe how this model enables reflection, and how model-based reflec- 
tion enables the reasoner to adapt its task structure to produce solutions 
of better quality. The Autognostic system illustrates this reflection pro- 
cess. 

1 Motivation and Background 

Tha t  which is commonly known as "intelligence" is surely the result of the in- 
teraction of a great number  of cognitive abilities such as motor  control, vision, 
learning, problem solving, and language use, just  to name a few. Yet most  AI 
research does not fully exploit the constraints that  these faculties impose on one 
another. For example,  research on problem solving often assumes the existence 
of rich domain knowledge for solving complex problems but it typically ignores 
the issue the acquisition of the assumed knowledge. Similarly, research on learn- 
ing often views the learner as an entity unto itself, and focuses on developing 
strategies to learn simple concepts without much regard to their usefulness in 
reasoning. For example,  much of learning research has focused on the issue of 
acquisition of domain concepts, e.g., [32, 11, 20]. The task most  commonly used 
for evaluating the products of concept learning has been classification. While 
the learning of new concepts may  expand the range of objects a classification 
system may  recognize, it h a s  little or no effect on the internal mechanism of 
classification. Improving the classification mechanism requires the learning of 
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problem-solving concepts, i.e. concepts that affect the problem-solving mecha- 
nism as opposed to domain concepts which simply refer to classes of objects and 
relations in the world. 

When learning research has aimed towards improving the performance of a 
problem solver, it has adopted a narrow view of problem-solving. For example, 
some studies have investigated learning in the context of tasks such as game- 
playing [27], automatic programming [28], symbolic integration [22], and schedul- 
ing [21]. These systems view problem solving as search in a problem space. The 
search begins at either the initial or the goal state in the problem space, and 
ends with a sequence of operators that connects the two states. These systems 
assume the availability of a "complete" set of operators. The only type of infor- 
mation not completely specified is the heuristic rules for selecting the operators. 
In this framework, the only problem-solving concepts that the problem solver 
may learn are rules for selecting an appropriate operator to apply at a given state 
in the problem space. Since these systems can learn only one kind of concept, the 
impact of learning on problem solving is limited to improving the efficiency of 
the problem solver. Moreover, for realistically complex tasks, such as planning 
in a complex environment, it is unreasonable to assume a complete operator 
set; in such environments, it would be desirable that the system can learn new 
operators depending on the environmental structure and the task requirements. 

Recent work on problem solving has led to a family of theories [6, 33, 19, 5, 29] 
that describe problem solving at a level higher than that of states, operators, 
heuristics etc. These theories analyze problem solving in terms of different kinds 
of generic tasks and generic methods. A task is specified in terms of the kinds of 
information it takes as input and gives as output. A method is characterized by 
the kinds of knowledge it uses, and the subtasks it sets up, when applied to some 
task. Different methods may use different kinds of knowledge, e.g., associative, 
episodic, or causal knowledge, and set up different subtasks for the same task. 

These theories of problem solving use a richer vocabulary of problem-solving 
concepts. They admit different kinds of concept learning that go beyond learning 
heuristics for operator selection, for example, learning new tasks and new task 
decompositions. Note that since these theories posit several different kinds of 
problem-solving concepts, which play different roles in problem solving, they 
introduce the issue of what kind or kinds of concept to learn in addition to what 
concept to learn. 

Despite the recent popularity of these theories of problem solving, relatively 
little work has been done on the learning of the problem solving concepts they 
postulate. We view reflection as a core process for recognizing the needs of prob- 
lem solving, learning the knowledge that can fulfill these needs, and effectively 
integrating it in the current problem-solving process. We endow the problem 
solver with a model of its own task structure and with a process capable of mon- 
itoring its reasoning on a specific problem, assigning blame, upon failure, to some 
element in its task structure, and appropriately redesigning its task structure. 
In this paper, we sketch an architecture for reflective learning, describe a lan- 
guage for specifying the problem-solver's knowledge and reasoning, and discuss 
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the process for performance-driven reflective learning as a model-based redesign 
task. We illustrate the learning process using an example from the Autognostic 
system, a reflective path planner. 

2 Reflection for Concept Learning 

A Perspective on Problem Solving We adopt Chandrasekaran's [1989] task struc- 
tures as the framework for analyzing and modeling problem solving. A task con- 
sumes some type(s) of information as input and produces as output  some other 
type(s) of information. A task may be accomplished by one or more methods, 
each of which may decompose the task into a set of simpler subtasks. A method 
is specified by the kinds of knowledge it uses, the subtasks it sets up, and the 
control it exercises over the processing of these subtasks. The subtasks into which 
a method decomposes a task can, in turn, be accomplished by other methods, 
or, if the appropriate knowledge is available, they may be solved directly. The 
task structure of a problem solver thus provides a recursive decomposition of its 
overall task in terms of methods and subtasks. 

The tasks and subtasks in the task structure of a problem solver may be 
instances of generic tasks [4]. A generic task is a task instances of which can be 
encountered in several domains, such as classification and plan synthesis, and 
whose methods are applicable to all its instantiations. 

A task, in our framework, is specified by the information it takes as input, the 
information it produces as output,  a prototypical task of which it is an instance, 
and a set of conceptual relations between the input and output  information. 
These conceptual relations constitute a partial description of the correct perfor- 
mance of this task. If the task is accomplished by a method, then the conceptual 
relations of its subtasks and the ordering relations that  the method imposes over 
these subtasks constitute a partial description of a correct internal mechanism 
for this task. 

The task structure of a problem solver is non-deterministic. Firstly, a task 
may be accomplished by more than one methods; if more than one method 
is applicable to a given task in the task structure, then the problem solver 
opportunistically selects a given method based on some criteria. Secondly, a 
method may itself be non-deterministic, in that  it may specify only a partial 
ordering for the subtasks it sets up, and some subtasks may not be necessary 
under specific conditions. 

Concept Learning Revisited The task-structure framework of problem solving 
identifies several problem-solving concepts, and gives rise to corresponding learn- 
ing tasks, including the following: 

1. the criteria for the applicability of a particular method for a given task, 
2. the conditions which determine whether and when a subtask of a method is 

necessary for the progress of the problem solving, and 
3. the conceptual relations between the types of information a task takes as 

input and produces as output.  
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Thus the products of concept learning may be of several different kinds and 
may result in different kinds of modifications to the problem-solving process. 
Learning the applicability criteria of a method to some task is roughly similar to 
learning heuristic rules for selecting among operators in the problem-solving-as- 
search framework. Learning the conditions under which to perform a subtask, 
and learning the conceptual relations between the input and output of a sub- 
task, do not really have equivalents in the problem-solving-as-search framework. 
If, however, we were to paraphrase them in that framework, then, the former 
(learning the conditions under which a task needs to be performed in order to 
contribute to the progress of problem solving) would be roughly equivalent to 
learning when the application of an operator contributes to the progress towards 
the goal state, and the latter (learning the conceptual relations that a task im- 
poses between its input and output) would be roughly equivalent to revising the 
preconditions and post-conditions of an operator or learning a new operator. 

3 R e f l e c t i v e  C o n c e p t  L e a r n i n g  

The task-structure view of problem solving compounds the difficulty of concept 
learning because it raises the issue of deciding "what kind or kinds of concept 
to learn" in addition to the question of deciding "which concept to learn". In 
our work, we adopt reflection as the core process for learning problem-solving 
concepts. We view the reflection process as composed of three abilities: 

1. recognizing the need for a new concept of a specific kind in the task structure, 
2. identifying the specific concept to be integrated in the task structure, and 
3. integrating the new concept so that it results in a vMid modified task struc- 

ture and improved performance. 

To enable reflection, we need a well-defined language for representing the 
task structure of the problem solver. We have adapted the language of structure- 
behavior-function (SBF) models for describing how physical devices work [12] 
for this purpose. Adapting the SBF language for modeling how a problem solver 
works, we express tasks as transitions between information states: the input and 
output information states of a task describe the types of information that the 
task takes as input and produces as output correspondingly: Each information- 
transformation task is annotated by a set of conceptual relations between the 
task's input and output information, and a set of conditions under which its 
accomplishment contributes to the progress of problem solving. Moreover, each 
information transformation is annotated by a pointer to a prototypical task of 
which it is an instance, and a set of pointers to the methods that can be used 
to accomplish it. Methods are expressed as partially-ordered sequences of state 
transformations which specify in detail how they accomplish the task for which 
they are applicable. Each method in turn is annotated by a set of conditions 
under which it is applicable to the task. Tasks which are not decomposable by 
any methods point to the program modules that can directly accomplish them. 
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The comprehension of a problem solver of its own reasoning in terms of this 
SBF model enables the problem solver to improve its performance 

1. by specifying a "road map" for problem solving which allows the problem 
solver to monitor the progress of its reasoning on a specific problem, 

2. by specifying "correctness" criteria for the results of each of the problem- 
solver's subtasks, so that, when it fails, the problem solver can assign blame 
for its failure to these subtasks whose results are not consistent with their 
corresponding criteria, and 

3. by guiding the problem solver to consistently redesign its own problem solv- 
ing and thus improve its performance. 

Monitoring When presented with a new problem, the problem solver uses the 
model of its reasoning to monitor its process for solving this problem. As it 
solves a given problem, the problem solver records which method it uses for a 
specific task, which of the resulting subtasks it performs, in which order, by which 
method, and their corresponding results. The model generates expectations re- 
garding the information states the problem solver goes through as it solves the 
problem. Each information state in the problem solving should be related to the 
preceding one according to the conceptual relations of the task carrying out the 
transformation between them. Also, a task should be performed only when it 
contributes to the progress of the reasoning. 

As the problem solver monitors its reasoning on a given problem, some of 
these expectations may fail. For example, a conceptual relation of some task may 
not hold true between the actual values of its input and output information. If, 
in spite of this failure, the problem solver produces an acceptable solution for 
the given problem, then the problem solver may recognize the need to modify 
its understanding of the conceptual relations of task that generated the failed 
expectations. That is, it may recognize the need to learn a new conceptual rela- 
tion that can appropriately describe the transformation that this task imposes 
between its input and output. This is an instance of recognizing the need for 
learning a type-3 concept. 

Another type of expectation failure that may occur during monitoring is that 
the information produced by some intermediate subtask may not get used by 
any other subtask. In this case, the problem solver may recognize the need to 
refine its understanding about the conditions under which the performance of 
this task contributes to the progress of problem solving. This is an instance of 
recognizing the need for learning a type-2 concept. 

Blame Assignment Even if the problem solving proceeds without expectation 
failures, the problem solver may produce an incorrect or suboptimal solution. If 
the problem solver receives the correct solution as feedback from the world, then 
this too may present another opportunity for learning. In this case, the problem 
solver can use the record of its failed reasoning process, and the model of its 
problem solving~to assign blame for the failure to some element(s) in its task 
structure and propose modifications which can potentially remedy the problem. 
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The task-structure view of problem solving gives rise to a taxonomy of learning 
tasks each one corresponding to a different type of potential cause of failure that  
the problem solver can identify [30]. In this paper we focus on the learning tasks 
that  involve learning of a new problem-solving concept. 

One possible cause for the failure of the problem solver to produce the desired 
solution to the given problem may be that  it did not use the appropriate method 
to solve it. Often the applicability criteria of some methods may overlap. If the 
known applicability criteria do not enable the problem solver to discriminate 
between the methods, then it may choose one arbitrarily. As different methods 
decompose the overall task into different sets of subtasks, the sets of conceptual 
relations that  describe the transformation of the input problem to the output  
solution differ from one method to another. Thus, in general, the solutions that  
each method produces are characterized by different properties. The proper- 
ties and attributes of the desired solution may suggest that  the problem solver 
should have been used some method, say, Malternative, different from the one 
actually used, say Mused. In such a case, the problem solver may recognize that  
it should modify the applicability criteria of the available methods such that  
it gives precedence to M~Iternative over Mused in similar situations. This is an 
instance of recognizing the need for learning a type-1 concept. 

Another possible cause for the failure of the problem solver to produce the 
desired solution may be that  as it transforms its input information to produce 
a solution, it does not "pay attention" to the "right properties" of its problem 
domain. Often there may be enough information in the problem-solver's knowl- 
edge of the world to enable the production of the desired type of solutions. But 
the problem solver may produce an incorrect solution because it does not make 
use of the available knowledge. The problem-solver's model of its reasoning and 
knowledge may lead it to recognize the need for introducing a new subtask in 
the task structure, such that  it uses the knowledge needed for the production 
of the desired solution type. In this case, the problem solver has to learn the 
conceptual relations that  specify the new task. This is an instance of recognizing 
the need for learning a type-3 concept. 

Redesign After having recognized the need for learning a problem-solving con- 
cept of a specific type, the problem solver must employ a learning strategy to 
actually learn the concept and subsequently redesign its task structure to inte- 
grate the new concept in it. In the cases of revising the conditions of a method's  
applicability to a task, or the conditions of a task's usefulness in problem solving, 
the integration of the new concept does not involve any non-local consequences 
to the task structure. However, in the case of introducing a new task in the 
task structure (type-3 concept learning), the consequences to the task structure 
are non-local. This is because the introduction of a new task implies modifica- 
tions to the flow of control and information among the existing tasks in the task 
structure. The semantics of the SBF models can guide the problem solver in its 
modification process so that  the result is a valid task structure as we illustrate 
below. 
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Evaluation of Learning There is no a priori guarantee that  learning will result 
in an improved problem solver. However, learning can be evaluated through 
subsequent problem solving, If the problem that triggered the modification can 
now be solved and the appropriate solution produced, then this is strong evidence 
that  indeed the modification was appropriate. If not, the problem solver may 
try other modifications or it may try to evaluate why the modification did not 
bring the expected results. The latter assumes a model of the reflection process: 
reflection is a reasoning task, and it too can be modeled in terms of SBF models 
just like any other task. 

4 R o u t e r :  A C a s e - S t u d y  P r o b l e m  S o l v e r  

In our work, we use Router, [13], a path planning system, as a case-study problem 
solver. Router 's task is to find a path from an initial location to a goal location 
in a physical space. Router was not developed specifically for the purposes of this 
work; thus, originally it did not have a model of its own problem solving. On top 
of Router, we have developed Autognostic which has a SBF model of Router 's 
reasoning and which is also capable of the reflection process described above. 
Router and Autognostic together constitute a reflective reasoner and learner. 

Figure 1 diagrammatically depicts the architecture we have developed for 
reflective learning. In this architecture, the reasoner has both reasoning and 
meta-reasoning capabilities. In Figure 1 tasks are depicted as solid-line, tilted 
boxes, knowledge is depicted as dashed-line boxes, control flow is shown by 
double arrows, input and output  information flow is depicted by simple arrows, 
and access and use of knowledge by tasks is depicted by double-headed arrows. 

At the reasoning level, Router has domain knowledge. It has a world model 
which contains knowledge about objects in the world and the relations between 
them. It also has a case memory which consists of experiences of solving specific 
problems in the world. Router knows two methods that  can achieve this task: a 
model-based method, and a case-based method. When Router is presented with 
a problem, it chooses one of these methods based on a set of heuristic rules which 
evaluate their applicability and utility on the particular problem at hand. At the 
reasoning level the reasoner, Router, does not have explicit understanding of its 
knowledge or reasoning. 

At the recta-reasoning level, however, the reasoner, Autognostic, understands 
Router 's problem solving in terms of a SBF model. The SBF model of the 
problem-solver's reasoning captures the interdependencies between the different 
tasks it can perform, its problem-solving methods, and its knowledge. Autog- 
nostic understands that  it knows two methods that  can be used to achieve the 
path-planning task. Each one of these methods decomposes the overall problem- 
solving task in different sets of subtasks, and uses different types of knowledge. 
One method uses the world model and the other uses the case memory. The 
problem solver has also explicit knowledge about the ontology on which its world 
model and case memory are based and their respective organizations. The prob- 
lem solver uses the knowledge it has at the meta-reasoning level to monitor its 



294 

SBF MODEL OF PATH PLANNING 
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Fig. 1. The Architecture of a Reflective Reasoner and Learner 

reasoning, assign blame to some element of its reasoning process it when it fails, 
redesign it, and thus learn and improve its performance. 

Figure 2 depicts a part of the SBF model of Router's problem solving, more 
specifically a part of its model-based path-planning method. Since the example 
we discuss in this paper involves the model-based method only, we do not de- 
scribe in detail Router's case-based method [14]. In the language of SBF models, 
problem-solving process is viewed as a sequence of transformations between in- 
formation states. In Figure 2, each information state is depicted as a rectangular 
box, and contains the information available at the state; each state transforma- 
tion is depicted by a double arrow, and is annotated by the description of the 
task which accomplishes the transformation. 

Router model of its world is a hierarchically organized topographical model. 
The model contains knowledge about pathways, their directions and the in- 
tersections between them. The pathways are grouped into neighborhoods and 
the neighborhoods are organized in a space-sub@ace hierarchy. The higher-level 
neighborhoods contain knowledge of major pathways, and cover large spaces. 
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Fig.  2. Part  of Router 's  SBF model 

Each ne ighborhood  gets decomposed  into several ne ighborhoods  a t  the immed i -  
a tely lower level. These  lower-level ne ighborhoods  contain knowledge of m ino r  
pa thways  but  cover spaces smal ler  t han  the ne ighborhood  tha t  subsumes  them.  

W h e n  Route r  is presented with  a p rob lem,  it first finds the ne ighborhoods  
of the  init ial  and goal intersections,  initial-zone and g o a l - z o n e  correspond-  
ingly, wi th  the e l a b o r a t i o n  subtask .  Then,  the r e t r i e v a l  sub task  searches 
in Rou te r ' s  p a t h  memory ,  for a p a t h  t ha t  is close to the current  p rob lem.  
The  conceptual  re la t ions of  the r e t r i e v a l  sub task  specify t h a t  the re t r ieved 
pa th  should connect  some intersect ion in the i n i t i a l - z o n e  to some intersec- 
t ion in the g o a l - z o n e ,  to be s imilar  enough to the current  p rob lem.  If  the two 
p rob lem intersect ions belong in the s ame  ne ighborhood ,  Route r  m a y  use the 
i n t r a z o n a l - m o d e l - b a s e d  m e t h o d  to s e a r c h  for a p a t h  between the two given 
locations.  T h e  i n t r a z o n a l - m o d e l - b a s e d  search m e t h o d  is essential ly a b read th -  
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Fig. 8. Fragment of Autognostic's meta-model of Router's world knowledge 

first search within the common neighborhood of the two intersections. If the two 
intersections do not belong in a single neighborhood, Router has two other op- 
tions for solving the search subtask: it can either perform a hierarchical search 
its neighborhood organization, in terzonal-model-based method, or it can use 
the path it retrieved from its memory, as the basis for solving the current prob- 
lem (case-based method). The SBF model of the in t razonal-model-based 
method, is shown in the bottom dashed-line box, in Figure 2. Initially, Router 
sets up its current-location to be the initial-location, and initializes 
its temporary-path to contain only this intersection. Then, by repeating the 
inc rease -o f -pa th  subtask, it incrementally adds additional intersections to the 
temporary-path. This subtask is repeated under the condition that the length 
of the temporary path does not exceed N. If, at some point, Router reaches the 
goa l - l oca t ion  Router assigns the value of the temporary-path to the path 
and returns it as the desired solution. 

Figure 3 depicts part of Autognostic's meta-model of Router's world knowl- 
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edge. Router's world is described in terms of several different types of objec ts ,  
such as i n t e r s e c t i o n s ,  neighborhoods, s t r e e t s  and paths. The types  of 
in format ion  that Router reasons about in its route-planning process are in- 
stances of these objects. The objects in Router's world are related through 
r e l a t i o n s ,  such as be longs- in  which relates intersections to neighborhoods, 
and covers which relates neighborhoods with other neighborhoods. Finally, 
some relations are related to each other with domain constraints. 

5 L e a r n i n g  a P r o b l e m - S o l v i n g  C o n c e p t :  A n  E x a m p l e  

In this section we describe in detail Router's reasoning for a specific problem. 
In this problem, feedback from the world informs Router that there is a better 
solution to the problem at hand. Thus Autognostic reflects on Router's reasoning 
using the SBF model of its problem solving as a guide, identifies the cause of 
the failure and proposes to introduce a new task to Router's task structure. We 
discuss the adaptation and show how it improves Router's planning performance. 

Monitoring the Problem Solving Pwcess Router is presented with the problem 
of connecting (lOth Cd center) with (dalney 8d ferst-1). Autognostic monitors 
Router's planning process and generates its trace. The trace is a partial instanti- 
ation of the SBF model of Router's problem solving; only the part of the model 
which explains the subtasks actually performed during the specific problem- 
solving process gets instantiated. For this example, the trace is the instantiation 
of the part of the SBF model depicted in Figure 2, where each one of the different 
types of information is instantiated with the specific values produced during the 
particular planning session. 

Router uses its rou te -p lann ing  method to solve the task, and sets up its 
corresponding subtasks. The e l abo ra t ion  snbtask produces as output zl as the 
value of both the i n i t i a l - z o n e  and the goal-zone. The r e t r i e v a l  task returns 
no path similar enough to the current problem from Router's memory. Since 
its applicability test, i.e., equality of the initial and goal zones is true, Router 
chooses to solve the search task with in t razonal -model -based  metho.d. The 
repeated execution of the i n c r e a s e - o f - p a t h  subtask produces the path (center 
lOth East atlantic) (lOth atlantic South ferst-1) (atlantic ferst-1 East dalney) 
which is returned as the output path of the overa]] rou te -p la rming  task. 

Assigning Blame for Producing a Suboptimal Solution The path that Router 
produced is correct. However it is suboptimal, because it is longer than the path 
(center lOth East dalney) (lOth dalney South ferst-1) which is presented to 
Router as feedback. 

Autognostic uses the feedback, the trace of Router's reasoning on the specific 
problem, and the SBF model of Router's problem solving, to identify the cause 
of its failure. This model-based method for blame-assignment searches through 
the task structure of Router's problem solving, and the search is guided by the 
feedback and the problem-solving trace. 
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The blame-assignment process first identifies the highest task in the task 
structure whose output is the information for which the problem solver produced 
an undesirable value. In this example, it identifies the rou te -p lann ing  task 
because this is the highest task producing the suboptimal path. The process then 
uses the conceptual relations of the task under inspection to investigate whether 
the desired value given as feedback could have been produced by the task. If the 
desired output value and the input of this task are verified by the conceptual 
relations, then the desired value could indeed have been produced by the task 
under inspection. The blame-assignment method thus infers that the reason why 
this value was not actually produced must lie within the internal mechanism of 
the task, that is, it must be due to some of the subtasks which were performed to 
accomplish the task under inspection. From the trace of the problem solving, the 
blame-assignment process infers which method was actually used to solve this 
task, and, as above focuses the assignment of the blame to the subtask which 
produced the undesired value. In this ~xample, the blame-assignment process 
focuses initially to route-planning and subsequently to increase-of-path. 

If at some point, the conceptual relations of a task do not hold true between 
the input of this task and the desired value, then Autognosti c tries to infer 
alternative input values which would satisfy the failing conceptual relations. 
This is possible when the task's input information is not part of the overall 
problem specification, in this example { initial-location goal-location }, 
but is produced by some intermediate task in the task structure. Autognostic 
is able to infer alternative values for the input of the task under inspection in 
two ways: (a) if the failing conceptual relation is a domain relation exhaustively 
described in an association table, (Autognostic's meta-level understanding of 
Router's domain relations, 3, includes a pointer to the data structure holding 
the relation's association table), then Autognostic can search for the inverse 
mappings; alternatively (b) Autognostic may know the domain of the desired 
value (Autognostic's meta-level understanding of Router's domain objects, 3, 
includes a pointer to the data structure holding the set of the instances of this 
object known to Router) and it can try to find these values in the domain 
that would satisfy the conceptual relations of the task. If Autognostie infers an 
alternative value for some intermediate type of information, the focus of the 
blame-assignment process shifts to identifying why this value was not produced. 

In this example, the conceptual relation of the i n c r e a s e - o f - p a t h  fails 
for the desired value for path and the actual input value for the information 
i n i t i a l - z o n e .  The relation be longs- in  is a domain relation, and from its as- 
sociation table, Autognostic infers that the value of i n i t i a l - z o n e  should have 
been za. Thus, the blame-assignment process focuses on identifying why za was 
not produced as the value for i n i t i a l - z o n e .  

If the blame-assignment process reaches a leaf task (that is, a task not further 
decomposable by a method) whose input is part of the overall problem specifi- 
cation, then there are two possible situations: the desired output value and the 
actual input values may or may not be consistent with the conceptual relations 
of that task. In the latter case, Autognostic infers that another method should 
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probably have been used for the production of the desired value. If there is no 
alternative method known, then this is an indication that  the role of the task 
under inspection in the task structure, that  is its conceptual relations, should 
be reevaluated. 

On the other hand, a leaf task which can produce two alternative values, 
both of them consistent with its conceptual relations, with one of them however 
leading to the desired overall problem solution and the other leading to an un- 
acceptable solution, is an indication that  the task structure is not sufficiently 
tailored to producing the right kind of solutions. 

ASSIGN-BLAME-SUBOPTIMAL-VALUE(path ,  
actual value (center lOth East atlantic) 

(lOth atlantic South ferst-1) 
(atlantic ferst-1 east dalney) 

desired value (center lOth East dalney) 
(lOth daIney South ]erst-1) ) 

PRODUCED(path) = { increase of path } 
CONCEPTUAL-RELATIONS(increase of path): 

ForAll n IN nodes(path) belongs-in(n initial-zone) 
Conceptual-Relations hold TRUE for actual values of path and initial-zone 
Conceptual-Relations DO NOT hold TRUE for desired value of path 

and actual value of initial-zone 
INFERRING ALTERNATIVE VALUE FOR initial-zone 

ForAIl n IN nodes(desired path) belongs-in(za) => 
desired value(initial-zone) = za 

ASSIGN-BLAME-SUBOPTIMAL-VALUE(initial-zone, 
actual value zl  
desired value za ) 

PRODUCED(initial-zone) = {elaboration } 
CONCEPTUAL-RELATIONS(elaboration): 

belongs-in(initial-intersection initial-zone) 
Conceptual-Relations hold TRUE for actual values of initial-zone 

and initial-intersection 
Conceptual-Relations hold TRUE for desired value~of initial-zone 

and actual value of initial-intersection 

====} e labora t ion  can produce either za or zl for value of i n i t i a l - z o n e  

Fig. 4. Blame Assignment using the SBF model of Router's Path-Planning process 

Part  of the blame-assignment process for this example is shown in detail 
in Figure 4. From the desired value of the p a t h  and the conceptual relation 
of the producing subtask i n c r e a s e - o f - p a t h ,  Autognostic infers that  the value 
of the information i n i t i a l - z o n e  should have been za. Both the actual z l  and 
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the alternative za values of this information meet the conceptual relation of 
its producing subtask e l a b o r a t i o n .  At this point, Autognostic knows that  the 
e l a b o r a t i o n  subtask can potentially produce either za or z l  as values for the 
initial-zone, because the domain relation belongs-in(intersection zone) 
is not one-to-one. 

In this case, Autognostic has two possible modifications actions to choose 
from: (i) modification to domain relation, that  is deletion from the domain rela- 
tion of the unacceptable mapping, so that  it allows only the preferred mapping, 
and (ii) insertion of selection task, in order to enable the problem solver to select 
the preferred one mapping when multiple ones are possible. We discuss the first 
adaptat ion in [30]; in this paper we describe how the insertion of a selection task 
affects Router 's  problem solving. 

Redesigning the Problem Solver: Inserting a Selection Task The motivation be- 
hind inserting a selection task after the elaboration task in Router 's task 
structure is to enable Router to reason about the two possible values for 
i n i t i a l - z o n e  and select the most appropriate one. This way, Autognostic can 
"tailor" Router 's task structure towards producing the kind of solutions repre- 
sented by the feedback. 

The SBF model of the problem-solver's reasoning explicitly specifies the on- 
tology of the problem-solver's domain. For each type of information that  its 
tasks consume and produce, the SBF model specifies what type of world object 
it is. Moreover, for each type of world object, among other things, the model 
specifies the domain relations which are applicable to it. Autognostic uses this 
knowledge, along with the specific values (actual and preferred) of the informa- 
tion type to be selected, to discover a relation which can be used to differentiate 
between these values. If there is such a relation, then Autognostic can use it as 
a conceptual relation for the new task to be inserted in the task structure. 

In our example, Autognostic knows that  one domain relation applicable 
to neighborhoods is the cove r s  relation. Given the actual and the alterna- 
tive values for the i n i t i a l - z o n e ,  zl  and za correspondingly, Autognostic no- 
tices that  covers(z1 za). It then hypothesizes that  this can be used as a differ- 
entiating criterion between possible alternative values for the i n i t i a l - z o n e .  
Thus it inserts in the set of subtasks  of the r o u t e - p l a n n i n g  method, af- 
ter e l a b o r a t i o n ,  the s e l e c t i o n - a f t e r - e l a b o r a t i o n  subtask, with input 
i n t e r m e d i a t e - i n i t i a l - z o n e ,  (a new information type:produced by the elab- 
oration subtask, which does not produce anymore "the" initial zone but  
all the possible alternatives) output  i n i t i a l - z o n e ,  and conceptual relation 
covers(intermediate-initial-zone initial-zone). The new task has as a 
goal, given a specific path-planning problem, to reason about the possible values 
of the i n i t i a l - z o n e  in the context of this problem, and select the one which is 
covered by the rest of them, that  is the most specific one. 

In more general terms, a newly inserted task in the problem-solver's task 
structure has as a goal to reason about the possible values of some type of infor- 
mation in the context of a specific problem and select the most appropriate one 
for the given problem. Thus, the selection-task insertion implies the discovery of 
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a characteristic property of the information type to be selected which will enable 
the problem solver to discriminate among the possible values of this informa- 
tion, and select the most appropriate one for a given problem. In our example, 
selecting the most specific value for the i n i t i a l - z o n e  results in the selection of 
a low-level neighborhood. Given that lower-level neighborhoods describe smaller 
spaces in more detail, Router's search becomes very local, and the two problem 
locations are connected through small pathways instead of major ones, which, 
in general, results in shorter paths. 

In order for the problem solving task structure to be consistent after this 
modification, Autognostic needs to perform some more modifications in addi- 
tion to the insertion of the s e l e c t i o n - a f t e r - e l a b o r a t i o n  task: (i) introduce a 
new type of information i n t e r m e d i a t e - i n i t i a l - z o n e  to hold the intermediate 
results of the e l a b o r a t i o n  task and to be the input of the new task, (ii) create 
a function to carry out the transformation of the new task, (iii) change (repro- 
gram) the function e l abora t ion - rune  to actually return appropriately a list of 
values instead of a single one, (iv) modify the description of i n i t i a l - z o n e  in the 
SBF model to describe as producing task the s e l e c t i o n - a f t e r - e l a b o r a t i o n  
task, and (v) modify the rou te -p lann ing  method to include the new task after 
the e l abo ra t ion  task. Autognostic can autonomously perform modifications (i) 
(ii) and (iv) but not (iii), which is currently performed by a human programmer, 
at the suggestion of Autognostic. 

Evaluating the modified Problem Solver After Router's process is modified, Au- 
tognostic evaluates the appropriateness of the revision by presenting Router 
with the problem that led to failure before. As Router solves the same problem 
once again Autognostic goes back again to its monitoring task. In our example, 
Router produces the desired path this time, so the modification can be evalu- 
ated as successful. Had Router failed, once again, to deliver the desired path, 
Autognostic would have another learning opportunity, and it would repeat its 
blame-assignment-and-learning task. 

6 R e l a t e d  a n d  F u r t h e r  R e s e a r c h  

Reflection has received much attention in psychological research on meta- 
cognition. The main results of this research are that reflection upon own's prob- 
lem solving enables the problem solver to select particular strategies in particular 
situations [9], reformulate the course of its own "thinking" to improve perfor- 
mance and meet the varying demands of the task at hand [2], and improve its 
performance capabilities by monitoring and careful evaluation of its own think- 
ing [17]. Our work on Autognostic is inspired by these results and is consistent 
with them. 

In parallel with research in psychology, AI researchers recognized the use- 
fulness of meta-knowledge, that is knowledge about what they know and how 
they reason, in intelligent systems [3]. Many AI systems have used descriptions 
of their own problem solving for several different tasks. These descriptions have 
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taken a variety of forms depending on the view they adopt for problem-solving 
and on the task they are used for. Teiresias [7, 8], for example, views problem 
solving as recursive rule activation. It models its rule base in terms of meta- 
rules that  describe which rules can be used as evidence for or against inferences 
on domain objects. Teiresias uses its meta-rules to guide the domain expert in 
identifying erroneous rules in the rule base and acquiring new ones. 

Castle and Meta-Aqua are recent systems that  use reflection for failure-drive 
learning. Castle [10] views problem solving as a sequence of interacting compo- 
nents. For each of its components it has a description of its correct performance 
and a set of intended behavior properties which are important to the effectiveness 
of this component in the overall architecture. Castle's components are similar 
to Autognostic's tasks. However, Castle's functional architecture is not hierar- 
chical (a problem solver is a sequence of components) and deterministic (it uses 
a single sequence of components) which limits its expressiveness. In addition, 
this limits Castle's blame-assignment task to finding a fault in a single linear 
component sequence. Moreover, Castle lacks the concept of generic (prototypi- 
cal) tasks which enables Autognostic to transfer the results of its learning from 
one point of its task structure to another. Meta-Aqua [26] views understanding 
as a cycle of explaining its input using XPs, cases and domain knowledge, and 
modifying its knowledge when anomalies are encountered. It uses a set of spe- 
cial explanation patterns,. IMXPs (introspective meta XPs), to parse its trace 
of reasoning and recognize reasoning failures. Unlike Autognostic, Meta-Aqua 
does not have explicit descriptions for the "correct" behavior of its reasoning 
elements (i.e. XP-instantiation, case-interpretation). 

NOOS [25] views reasoning as transfer from precedents and uses reflection 
for learning by memorization of episodes. In NOOS reasoning and learning are 
modeled in a framework similar to task structures. MAX [18] uses a explicit 
description of a robot's capabilities to enable deliberative, and consequently 
more effective, integration of these capabilities. It focuses on self-monitoring 
rather than recovery from failure. 

Failure recovery analysis [15] is another technique for planner modification. 
It uses statistical analysis of long traces of the planner actions to infer correla- 
tion between action patterns and failures. This technique is more appropriate 
to rapidly changing domains where planning tends to be more reactive to the 
environment and less deliberative, and where there is no good understanding of 
the interactions between the different planning strategies. 

Functional models, similar to SBF models, have also been used for software 
program verification [1], knowledge-base validation [31], and student modeling 
in the context of a tutoring system [16]. 

Both Router and Autognostic are operational systems. We have evaluated 
Autognostic for several learning tasks in Router's task domain, for example, 
the acquisition of new world knowledge, certain kinds of reorganization of the 
world knowledge, and some kinds of modifications to the task structure along 
the lines described above. In order to evaluate the generality of Autognostic's . 
language for describing how a problem solver works and its process for reflective 
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reasoning, we are presently using it in the task domain of engineering design. In 
the future, we are interested in validating our process-model of reflection against 
existing psychological data, integrating Autognostic with an autonomous robot 
and investigating the acquisition of SBF models from source code. 

7 C o n c l u s i o n s  

We believe that theories of intelligence that artificially divorce learning and 
problem solving are often under-constrained. Problem solving determines the 
knowledge needs of the reasoner which learning must fulfill, and learning en- 
ables improved problem-solving performance - improvement in problem-solving 
performance is one way of evaluating the quality of learning. However, different 
models of problem solving recognize different kinds of knowledge needs, and, as 
a result, set up different learning tasks and enable different kinds of performance 
improvement. 

The task-structure framework of problem solving gives rise to three different 
types of problem-solving concepts: 

1. the criteria for the applicability of a particular method for a given task, 
2. the conditions which determine whether and when a subtask of a method is 

necessary for the progress of the problem solving, and 
3. the conceptual relations between the types of information a task takes as 

input and produces as output. 

We view reflection as a core process for learning these problem-solving con- 
cepts. The capability of reflection raises, itself, a set of issues: 

1. How to assign the blame for the undesirable properties of the overall problem- 
solving behavior to some element of the problem-solver's reasoning 

2. How to modify elements of the problem-solver's reasoning while maintaining 
its overall consistency 

3. How to represent the elements of the problem-solver's reasoning and the 
interactions between them, in order to support the previous two tasks, and 
in such a way, that it is possible to model problem solvers with complex 
hierarchical, multi-strategy reasoning capabilities 

Our work has led us to identify some types of knowledge which must be 
captured in a framework for modeling problem solving. Such a framework should 
describe: 

1. the subtasks that the problem solver can accomplish and their information 
needs, 

2. the alternative strategies which can potentially accomplish the overall task 
of the problem solver, and the information and control interactions of the 
subtasks these strategies consist of 

3. the ontology on which the problem-solver's domain knowledge is based 
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We adapted the language of structure-behavior-function (SBF) models for 
specifying the functioning of a physical device to develop a modeling framework 
which satisfies the above knowledge needs. The SBF model enables a reasoner to 
monitor  its problem solving, and, upon failure, to assign blame to some element 
(subtask or domain knowledge) in its task structure and redesign it appropri- 
ately. In this paper, we showed how this process enables the problem solver 
to 

1. recognize the need for a new concept of a specific kind in the task structure, 
2. identify the specific concept to be integrated in the task structure, and 
3. integrate the new concept so that  it results in a valid modified task structure 

and improved performance. 

In addition to improving problem-solving efficiency, which is the general re- 
sult of learning problem-solving concepts of the first and second kinds, learning 
concepts of the third kind enables the reasoner to tailor the problem-solving 
mechanisms to produce solutions of better quality. 
A c k n o w l e d g e m e n t s  

This work has been supported by the National Science Foundation (research 
grant IRI-92-10925), the Office of Naval Research (research contract N00014- 
92-J-1234), and the Advanced Projects Research Agency. In addition, Stroulia's 
work has been supported by an IBM graduate fellowship. 

R e f e r e n c e s  

1. D. Allemang: Understanding Programs as Devices, PhD Thesis, The Ohio State 
University (1990) 

2. L. Baker, A.L. Brown: Metacognitive skills of reading. In: D. Pearson (ed.): A Hand- 
book of reading research, New York: Longman (1984) 

3. A. Barr: Meta-Knowledge and Cognition. Proceedings of the Sixth International 
Joint Conference on AI 31:33 (1979) 

4. B. Chandrasekaran: Towards a functional architecture for intelligence based on 
generic information processing tasks. In Proceedings of Tenth International Joint 
Conference on Artificial Intelligence, 1183-1192, Milan (1987) 

5. B. Chandrasekaran: Task Structures, Knowledge Acquisition and Machine Learning. 
Machine Learning 4:341-347 (1989) 

6. W.J. Clancey: Heuristic Classification, Artificial Intelligence 27:289:350 (1985) 
7. R. Davis: Interactive transfer of expertise: Acquisition of new inference rules, Arti- 

ficial Intelligence 12:121-157 (1977) 
8. R. Davis: Meta-Rules: Reasoning about Control. Artificial Intelligence 15:179-222 

(1980) 
9. J.H. Flavell: First discussant's comments: What is memory development the devel- 

opment of? Human Development 14:272-278 (1971) 
10. M. Freed, B. Krulwich, L. Birnbaum, G. Collins: Reasoning about performance 

intentions. In Proceedings of the Fourteenth Annual Conference of the Cognitive 
Science Society, 7-12 (1992) 



305 

11. D. Fisher, M. Pazzani: Computational Models of Concept Learning. In D.H. Fisher, 
M.J. Pazzani, and P. Langley (eds.): Concept Formation: Knowledge and Experience 
in Unsupervised Learning. Morgan Kaufmann. (1991) 

12. A. Goel: Integration of Case-Based Reasoning and Model-Based Reasoning for 
Adaptive Design Problem Solving, PhD Thesis, The Ohio State University (1989) 

13. A. Goel, T. Cailantine, M. Shankar, B. Chandrasekaran: Representation, Organi- 
zation, and Use of Topographic Models of Physical Spaces for Route Planning. In 
Proceedings of the Seventh IEEE Conference on AI Applications. 308-314, IEEE 
Computer Society Press (1991) 

14. A. Goel, T. Callantine: An Experience-Based Approach to Navigational Route 
Planning. In Proceedings of the IEEE/RSJ International Conference on Intelligent 
Robotics and Systems (1992) 

15. A. Howe: Analyzing Failure Recovery to Improve Planner Design. In Proceedings 
of the Tenth National Confrence on AI, 387-392 (1992) 

16. K. Johnson: Exploiting a Functional Model of Problem Solving for Error Detection 
in Tutoring, PhD Thesis, The Ohio State University (1993) 

17. R.H. Kluwe: Cognitive Knowledge and Executive Control: Metacognition. In D. R. 
Griffin (ed.): Animal Mind - Human Mind. Springer-Verlag, Berlin (1982) 

18. D.R. Kuokka: The Deliberative Integration of Planning, Execution, and Learning, 
Carnegie Mellon, Computer Science, Technical Report CMU-CS-90-135 (1990) 

19. J. McDermott: Preliminary steps toward a taxonomy of problem-solving methods, 
In Sandra Marcus (ed.): Automating Knowledge Acquisition for Expert Systems, 
Kluwer Academic Publishers (1988) 

20. R.S. Michaiski: Inferential learning theory as a basis for multi-strategy adaptive 
learning. In R.S. Michalski and G. Tecuci (eds.): Proceedings of the First Interna- 
tional Workshop on Multistrategy Learning, 3-18, Harpers Ferry, WV (1991) 

21. S. Minton: Qualitative results concerning the utility of explanation-based learning. 
Artificial Intelligence 42:363-392 (1990) 

22. T.M. Mitchell, P.E. Utgoff, B. Nudel, R.B. Banerji Learning problem-solving 
heuristics through practice. In Proceedings of the Seventh International Joint Con- 
ference on AI 127-134 (1981) 

23. T. Mitchell, J. Allen, P. Chalasani, J. Chang, O. Etzioni, M. Ringuette, J. Schlim- 
met: Theo: A Framework for Self-Improving Systems. In K. VanLehn (ed.): Archi- 
tectures for Intelligence, Lawrence Erlbaum (1989) 

24. J. Piaget: Biology and Knowledge. University of Chicago Press (1971) 
25. E. Plaza, J.L. Arcos: Reflection and Analogy in Memory-based Learning. In R. S. 

Michalski and G. Tecuci (ads.): Proceedings of the Second International Workshop 
on Multistrategy Learning (1993) 

26. A. Ram, M.T. Cox: Introspective Reasoning Using Meta-Explanations for Multi- 
strategy Learning. In R. S. Michalski and G. Tecuci (eds.): Machine Learning: A 
Multistrategy Approach IV. Morgan Kaufmann, San Mateo, CA (1992) 

27. A. Samuel: Some studies in machine learning using the game of checkers. IBM 
Journal of R&D. (1959) Reprinted in Feigenbaum and Feldman (eds.): Computers 
and Thought (1963) 

28. J.G. Sussman: A Computational Model of Skill Acquisition, American Elsevier, 
New York, (1975) 

29. L. Steels: Components of Expertise. AI Magazine 11:30-49 (1990). 
30. E. Stroulia, A. Goel: Functional Representation and Reasoning for Reflective Sys- 

tems. Applied Artificial Intelligence: An International Journal (to appear). (1993) 



306 

31. M. Weintraub: An Explanation-Based Approach to Assigning Credit, PhD Thesis, 
The Ohio State University (199]) 

32. P. Winston: Learning New Principles from Precedents and Exercises. Artificial 
Intelligence 19 (1982) 

33. B.J. Wiehnga, A.Th. Schreiber, J.A. Breuker: KADS: A modelling approach to 
knowledge engineering. In Knowledge Acquisition 4(1). Special issue "The KADS 
approach to knowledge engineering" (1992) 


